Skip to content
インタ―システムズ製品やソリューション、キャリアの機会などについて、検索してご覧ください。

How to Optimize Production Planning for Repackaging

SupplyChainBrain Interview

In this interview with SupplyChainBrain, Mark Holmes, senior advisor for supply chain with InterSystems, lays out the multiple challenges that manufacturers face in optimizing their repackaging processes, and proposes some solutions for addressing those hurdles.

Repackaging of finished consumer goods, including food and beverage items, involves drawing on finished product from somewhere in the network and placing it into different packaging for its final consumable state.

As performed today, often by contract manufacturers, the process runs into a number of challenges arising from inadequate technology. Based on a recent survey by InterSystems, Holmes identifies five that are typical of many existing planning tools:

  • Limited or no visibility to the inventory that needs to be repackaged.
  • Reliance on manual processes, such as Excel spreadsheets, that are prone to error and do not operate in real time. 
  • Inability to efficiently redirect inventory from multiple locations.
  • Inability to adapt to sudden changes, including disruptions to the supply chain.
  • Suitability only for working in an unconstrained environment, where labor is plentiful, inventory always available and there’s no production downtime. 

Artificial intelligence and machine learning are key to optimizing fulfillment and demand planning for repackaging today, Holmes says. They improve accuracy and productivity. They enable real-time decision-making. And they make it possible to rebalance inventory in an optimal manner.

When engaging in production planning and optimization, most companies are juggling multiple pieces of technology that all have to work smoothly together. That’s especially difficult to achieve in a constrained environment, which characterizes nearly all such operations.

The answer, Holmes says, lies in a decision intelligence data platform that can replace many of those legacy enterprise systems, boosting productivity, dealing efficiently with disparate data, and optimizing a complex but critical process.

あなたが好きかもしれない他のリソース

2024年 12月 10日
HIEのビジョンを実現する
要件の特定、技術の評価、パートナーの選択 プランニング・ガイドのダウンロード
2024年 12月 10日
基礎編
データメッシュ・アーキテクチャと InterSystems が、組織におけるチーム横断的なデータの管理、拡張、活用をどのように支援するかをご覧ください。
2024年 12月 10日
基礎編
データレイクとデータウェアハウスを比較:主な違い、メリット、理想的なユースケースを学び、ビジネスに適したデータストレージ・ソリューションを選択しましょう。
2024年 12月 10日
基礎編
データレイクとは何か、生データをどのように保存し分析するのか、そしてInterSystems IRISがデータレイクの効果的な管理をどのように支援するのかをご紹介します。
2024年 12月 4日
企業を行動へと駆り立てるシステムをベンチマーク
レポートのダウンロード
2024年 12月 4日
S&P Global Market Intelligence
S&P Global Market Intelligence レポートでは、アナリストのジェームス・カーティスが InterSystems IRIS について考察しています。 彼はインターシステムズとInterSystems IRISにつき、以下の分析しています:
2024年 11月 26日
基礎
ヘルスケアの相互運用性が患者ケア、データ共有、イノベーションをどのように促進するかをご覧ください。
2024年 11月 16日
拡張性
はじめに 今日、世界で生成され、増え続ける膨大なデータに直面し、ソフトウェア・アーキテクトはソリューションのスケーラビリティに特別な注意を払う必要があります。 また、必要に応じて、何千人もの同時使用者に対応できるシステムを設計しなければなりません。 それは簡単なことではありませんが、大規模なスケーラビリティのための設計は絶対に必要です。
2024年 11月 13日
InterSystems HealthShare Health Connectの4つの顧客事例
ヘルスケアリーダーは、EMRの橋渡し、ベッドサイドでのより良いケアの決定、遠隔医療と遠隔ケアの革新、ビジネスの成長、または将来への準備のために、InterSystems HealthShare Health Connect®を利用しています。
2024年 11月 13日
エンタープライズ・イメージング・ソリューション
慢性疾患は増加の一途をたどっており、診断のための医療用画像の使用量も年間30%以上増加しています。 しかし、Journal of Digital Imaging 誌に掲載された研究によると、放射線科のオーダーの60%近くが重要な慢性疾患について言及していないことが示唆されており、これは「憂慮すべきコミュニケーション不足」であり、「解釈の質に悪影響を及ぼす可能性がある」とされています。病院、放射線科グループ、そして臨床医は、このボリュームを処理するのに役立ち、以下を実現する新世代の高度な企業向け画像処理ソリューションを求めています:

次のステップへ

ぜひ、お話を聞かせてください。 詳細をご記入の上、送信してください。
*必須項目(英語でご記入ください)
強調表示は必須項目です。
*必須項目(英語でご記入ください)
強調表示は必須項目です。
** ここをチェックすることにより、お客様は、既存及び将来のインターシステムズ製品及びイベントに関するニュース、最新情報及びその他のマーケティング目的のために連絡を受けることに同意するものとします。 また、フォームを送信することで、お客様は、お客様のビジネス連絡先情報が、米国でホストされているが、適用されるデータ保護法に従って維持されている当社のCRMソリューションに入力されることに同意するものとします。