Skip to content
Suchen Sie nach Produkten und Lösungen von InterSystems, Karrieremöglichkeiten und mehr.

Accelerating Clinical Trials Through Access to Real-World Patient Data

Life Sciences & Research

healthcare workers working in lab

Leveraging Normalized Real-World Patient Data to Streamline Clinical Trials, Reduce Delays and Costs.

The pharmaceutical and life sciences industry needs to accelerate clinical research to reduce overall R&D costs while delivering innovative treatments.1 However, virtually all pharmaceutical manufacturers and contract research organizations (CROs) recognize that accessing the needed quantity and quality of real-world patient data is a fundamental barrier to reaching this goal. Escalating costs and delays in clinical trials for new drugs and treatments remains the norm.

Easier access to and sharing of real-world data across healthcare organizations, communities, and countries is the solution. But how do you move an industry conditioned to working with highly structured, consolidated data repositories into the unstructured, decentralized, and often chaotic realm of real-world clinical data?

The answer is to provide the clinical trials ecosystem with a foundational health informatics platform that enables researchers to access and use real-world data from hospitals and other healthcare providers. Such a platform and complementary solutions are needed to navigate and normalize the various federated networks being put in place. With a health informatics platform, clinical researchers can more quickly evaluate protocol feasibility, identify and recruit viable patient candidates for trials, and track patients enrolled in clinical trials. Once a drug or treatment is on the market, the platform enables efficient and accurate health surveillance and observational studies using real-world data originating from many different sources.
 

1 “Integrating New Approaches for Clinical Development: Translational Research and Relative Effectiveness,” by Jean-Pierre Lehner, Robert S. Epstein, and Tehseen Salimi. Journal of Comparative Effectiveness Research, Vol. 1, Issue 1s, 2012.

Andere Ressourcen, die Ihnen gefallen könnten.

04 Sep 2024
Künstliche Intelligenz im Gesundheitswesen
Die Medizin ist mit ihrer Fülle an Diagnose- und Behandlungsdaten prädestiniert für KI-Anwendungen. Drei Anwendungsfälle zeigen, wo sich KI heute im administrativen klinischen Bereich einsetzen lässt.
09 Aug 2024
Eine Data Fabric modernisiert die Datenverwaltung, indem sie den Zugriff, die Umwandlung und die Harmonisierung von Daten für verschiedene Geschäftsanwendungen vereinfacht.
08 Aug 2024
Künstliche Intelligenz im Gesundheitswesen
Gesundheitsdienstleister setzen auf künstliche Intelligenz (KI) und maschinelles Lernen (ML), um die Versorgung zu verbessern, Prozesse und Arbeitsabläufe zu optimieren und neue Erkenntnisse zu gewinnen
05 Aug 2024
Supply Chain
Erfahren Sie, wie der InterSystems Supply Chain Orchestrator™ die Abläufe in der Lieferkette mit Echtzeitdaten und direkt verwertbaren Erkenntnissen verbessert. Supply Chain Orchestrator umfasst ein erweiterbares Datenmodell, eine Integrations-Engine und ein API-Framework, mit denen Sie umfassende Echtzeitanwendungen für die Auftragsabwicklung, die Bearbeitung von Störungen, die Bedarfsprognose und vieles mehr erstellen können.
01 Aug 2024
Künstliche Intelligenz im Gesundheitswesen - Potenziale und Anwendungsfälle
Operationen stellen einen kostenintensiven Bereich in Kliniken dar und weisen somit auch einen signifikanten Einfluss auf die Wirtschaftlichkeit auf. KI kann helfen, die OP-Dauer besser zu prognostizieren. Patienten, Klinikpersonal und Klinikmanagement profitieren.
31 Jul 2024
Partnerschaft
InterSystems, einer der weltweit renommiertesten Anbieter von Datenmanagement-Plattformen, erweitert sein Partnernetzwerk, um Innovationen im Supply Chain Management zu ermöglichen. Angesichts ständiger Veränderungen, Störungen und Chancen benötigen Unternehmen eine einheitliche und zuverlässige Datenquelle, die in Echtzeit verfügbar ist. InterSystems Supply Chain Orchestrator beseitigt die Datenprobleme, die Unternehmen auf dem Weg zu einer erkenntnisgestützten Optimierung ihrer gesamten Lieferkette haben. Erweitern Sie das Ökosystem Ihrer Lieferkettenanwendungen durch den Einsatz einer zentralen Datenplattform, die als Bindeglied fungiert und die nahtlose Integration verschiedener Datenquellen sowie die Erkennung von Störungen und Chancen in Echtzeit ermöglicht. Dieser einheitliche Ansatz bietet einen umfassenden Überblick über die Lieferkettendaten Ihres Unternehmens und führt zu einer einheitlichen Betrachtungsweise.
29 Jul 2024
Harris Associates
Durch die Implementierung von InterSystems Smart Data Fabric durchbricht Harris Associates Datensilos und verkürzt die Zeit, die für fundierte Geschäftsentscheidungen benötigt wird.
29 Jul 2024
Technologieleitfaden
Ermöglicht Integratoren und Entwicklern die Bereitstellung hochgradig individueller intelligenter Lieferkettenanwendungen
23 Jul 2024
Künstliche Intelligenz im Gesundheitswesen - Potenziale und Anwendungsfälle
KI-gestützte Managed Services helfen bei der Senkung der No-Show Raten in Kliniken. Die Vorteile liegen auf der Hand: Gewährleistung einer durchgehenden Patientenversorgung, ausgewogenere Arbeitsbelastung des Klinikpersonals, Kosteneinsparungspotenziale nutzen.
12 Jul 2024
Elf allgemeine Fragen und Antworten
Mehr denn je sind Unternehmen heute bestrebt, sich einen Wettbewerbsvorteil zu verschaffen, ihren Kunden einen höheren Mehrwert zu bieten, Risiken zu verringern und schneller auf die Anforderungen der Fachabteilungen zu reagieren. Um diese Ziele zu erreichen, benötigen Unternehmen einen einfachen Zugang zu einer zentralen Gesamtübersicht mit stets akkuraten, konsistenten und vertrauenswürdigen Daten - und das alles in Echtzeit. Aufgrund der kontinuierlich zunehmenden Datenmenge und -komplexität ist dies in der Praxis jedoch nur schwer umsetzbar. Mit dem Wachstum der Daten wächst auch die Zahl von Datensilos, was die Integration und Nutzung von Daten aus internen und externen Datenquellen zu einer Herausforderung macht.