
High Performance 
Ingestion and 
Analytics

Saurav Gupta
Sales Engineer



Sample Use Case – Equity 
Trades
• Store market data events and query real-time & historical projections of this data. 

• Trades, Depth, Asks, Bids – Real time events across multiple financial instruments 
(volatile & non-volatile).

• Compute Aggregates (Statistics) - a trade event or a statistical update event from the 
source system can affect the last price, open price, high price, low, close, cumulative 
volume etc.

• REST APIs to access data as JSON

• Real Time access to data



Challenges

• Concurrent Ingestion and real time analytics(query)
• 1 million inserts/second
• 1000 REST APIs per second

• In-memory databases offer high performance but are expensive to scale

• Different databases for ingestion and query workloads creates multiple copies of data 
and synchronization issues

• Scaling beyond 500K Inserts/Second and keeping indexes up to date to make data 
available for query workloads

• Complex Architectures



IRIS

Persister

Application 
Load

Balancer

Bids, Trades, Asks,
Depth 

Aggregations

SQL 

REST

Architecture

Query tier

REST
Service{ }

ECP Node

JSON

Persistence tier

REST
Service{ }

ECP Node

REST
Service{ }

ECP Node

Client tier

Emulating Distributed
Sources

JMETER REST ClientJMETER REST Client JMETER REST Client

JSON JSON

RESTREST



Sample Use Case Components

Sample Data 
● 1 day of JSON Data
● Average Size of message – 500 Bytes
● No of Symbols – 140K

Sample Data Provided on S3 Buckets 
loaded into KafKa Cluster (Amazon MSK)
● 100 partitions
● 3 brokers with each broker of 800GB 

size

IRIS Persister/Loader loads data from 
KafKa broker into a single IRIS DB Node

3 IRIS Query Nodes using ECP being 
used for query workloads being serviced 
through REST APIs

3 JMETER REST Client Nodes being used 
to send concurrent REST Requests



KafKa and InterSystems IRIS Persister

• KafKa Consumer Group
• Related consumers with a common

task
• KafKa sends message from partitions

of a topic to consumers in the
consumer group

• Kafka Streams
• Stream processing Library
• Supports aggregations

• IRIS Persister
• Store objects on an InterSystems IRIS

DB Node
• Multi-threaded Loader that can be

used to ingest large data sets
• The Loader consumes a data stream,

serializing each record and writing
each serialized record to a pool of
output buffers, each of which
maintains a separate connection to an
InterSystems IRIS Server.



InterSystems IRIS Persister

Obtains a connection to InterSystems IRIS Server
Connections to a server can be obtained directly or by using an 
IRISDataSource.

Get a Schema Manager Instance
Schema Manager can be instantiated directly once a connection is 
available.

Getting a Schema

Define the schema using JSON, load a previously defined schema from a 
file, receive a schema from an external source such as a Kafka message, 
load a previously defined schema from the server or generate a schema 
from server class

Get an IRIS Persister Instance, passing schema 
Manager and schema as arguments

Interface that stores data in the extent of the Server's schema local 
implementation class

Use the IRIS Persister to store Records in the extent of 
the schema's InterSystems IRIS Server 
implementation class

Index Mode – Immediate or Deferred 



InterSystems IRIS Horizontal Scaling with Distributed Caching

TCP/IP 

Query tier

Persistence tier

REST
Service{ }

Query Node

AWS EC2 Instance
r5B.xLarge

4 cores, 32GB

REST
Service{ }

Query Node

AWS EC2 Instance
r5B.xLarge

4 cores, 32GB

REST
Service{ }

Query Node

AWS EC2 Instance
r5B.xLarge

4 cores, 32GB

Database Node

AWS EC2 Instance
r5B.8xLarge

32 cores, 256GB

AWS EC2 Autoscaling group

The data server continues to store, update, and serve
the data. The data server also synchronizes and
maintains the coherency of the query server caches to
ensure that users do not receive or keep stale data, and
manages locks across the cluster.

Each query against the data is made in a namespace on
one of the various query servers, each of which uses its
own individual database cache to cache the results it
receives; as a result, the total set of cached data is
distributed across these individual caches.

User requests can be distributed round-robin across the
query servers by a load balancer

The number of query servers in a cluster can be
increased (or reduced) without requiring other
reconfiguration of the cluster or operational changes, so
you can easily scale as query volume increases.



Ingestion Speed

1 million sustained inserts/second with journaling ON for reliable persistence using a 
single DB Node

AWS DB 
EC2 
Instance 
Type

Specifications

R5b.8xLarge 32 Cores 256GB Memory

Storage Storage Volumes
Root Device – Install Directory
EBS block storage –Database 
volume and journaling volume



Query Speed

200 – 250 messages/second(REST API) on a single query node with 10 symbols per 
message

AWS DB 
EC2 
Instance 
Type

Specifications

R5b.xLarge 4 Cores 32GB Memory

Storage Storage Volumes
Root Device – Install 
Directory
EBS block storage –
Database volume and 
journaling volume

JMETER 
Node

Symbols 
Per Rest 
API

Mean 
RPS

Average 
Response 
Times(ms)

Maximum 
Response 
Times(ms)

1 10 450-460 16 285

2 10 450-460 16 278

3 10 450-460 16 306

JMETER 
Node

Symbols 
Per Rest 
API

Mean RPS Average 
Response 
Times(ms)

Maximum 
Response 
Times(ms)

1 30 180-190 40 593

2 30 180-190 40 631

3 30 180-190 40 592



Demo

• Store market data events and query real-time & 
historical projections of this data. 

• Trades, Depth, Asks, Bids - financial instruments 
(volatile & non-volatile).

• Compute Aggregates (Statistics) - a trade event or a 
statistical update event from the source system can 
affect the last price, open price, high price, low, close, 
cumulative volume etc.

• REST APIs to access data as JSON

• Real Time access to data



IRIS

Persister

Application 
Load

Balancer

Bids, Trades, Asks,
Depth 

Aggregations

SQL 

REST

Summary

Query tier

REST
Service{ }

ECP Node

JSON

Persistence tier

REST
Service{ }

ECP Node

REST
Service{ }

ECP Node

Client tier

Emulating Distributed
Sources

JMETER REST ClientJMETER REST Client JMETER REST Client

JSON JSON

RESTREST



Thank you


