
High-Speed
Processing & SQL

InterSystems UKI Summit
October 19, 2022

High Speed – UKI Edition

Abbey

Wellington
Straight

Maggots

Hanger
Straight

Pit Lane

Abbey:
Everything
Parallel

High-Speed Processing & SQL

High Speed – UKI Edition

Wellington
Straight

Maggots

Hanger
Straight

Pit Lane

Everything
Parallel

Everything Parallel

Copyright InterSystems. All rights reserved. Confidential.6

Single Car Multi Car

Everything Parallel – Application

Available Today
● Auto-parallelized SQL query execution

● Always-parallel MDX query execution

● Work Queue Manager API for custom code

● Workload distribution across shards

Coming Soon
● Tuned heuristics for auto-parallelized SQL

● Auto-parallelized ingestion with LOAD DATA command

Everything Parallel – Kernel

Available Today
● Auxiliary Write Daemons participate in Write Image Journaling,

complementing async IO – up to 4x throughput

● Multi-process dejournaling – easily doubles mirroring throughput

Coming Soon
● Multi-process Online Backup

Wellington
Straight:
Scale
Anywhere
High-Speed Processing & SQL

High Speed – UKI Edition

Maggots

Hanger
Straight

Pit Lane

Everything
Parallel

Scale
Anywhere

Scaling Compute

Enterprise Cache Protocol

● Fully Transparent

● Fully Elastic

● Easy to Organize

Recent work: increased
efficiency at ultra-high scale

compute
node

compute
node

client apps

compute
node

data
node

client apps

Scaling Compute – Recent Lab Testing

Goal: identify application and system-level bottlenecks
beyond the current horizon
● 100 compute nodes

● over 4000 CPU cores

Outcome: Achieved 600M grefs/s of sustained load.
● IRIS keeps pushing the limits to get the most out of your

infrastructure investment.

Scaling Data

Sharding

● Transparent Data Management

● Transparent Query Management

Recent work: elasticity in the
data tier and improved schema design flexibility

data
node 1

data
node 2

data
node 3

ingest query

Maggots:
Adaptive
SQL

High-Speed Processing & SQL

High Speed – UKI Edition

Hanger
Straight

Pit Lane

Everything
Parallel

Scale
Anywhere

Adaptive SQL

Race Planning

The RaceThe Plan

SQL Processing

Parse Plan Cost Code Run

Normalize statement
by parsing out
all parameters

Generic plan takes
parameter values as
runtime arguments

SQL Processing

Parse Plan Cost Code Run

Reuse generic plan
and code at next

invocation

SQL Processing

Parse Plan Cost Code Run

Adapt plan if fast
runtime check indicates

alternative plan may be faster

SQL Processing

Parse Plan Cost Code Run

Reuse adapted plan and
code at next invocation

with same runtime context

Outlandish Parties

FL GA IL MI NC NJ NY OH PA WY FL GA IL MI NC NJ NY OH PA

National retailer Wyoming retailer

Outlandish Parties

Outliers are field values with a disproportionately high
frequency
● Outliers are very common in real-world data and (used to be) a

common source of unlucky query plans.

● IRIS registers outliers and their selectivity separately in the table
stats

Adaptive Planning

InterSystems IRIS SQL’s RunTime Plan Choice checks
parameter values for re-planning opportunities before
running the default plan:

● Outlier values:
… FROM log WHERE level = 'INFO'

● Range selectivity:
… FROM log WHERE dt > '5/5/22'

● Truth conditions:
… FROM log WHERE (1 = 0 AND …)

Adaptive Planning – Customer Benchmark

2020.1 2021.1 2022.1

Time (s)
I/O (gref)

25%
less IO

2x
faster

Already 3x
faster vs

IRIS 2018.1

Hanger
Straight:
Columnar
Storage
High-Speed Processing & SQL

High Speed – UKI Edition

Pit Lane

Everything
Parallel

Scale
Anywhere

Adaptive SQL

Columnar
Storage

Applications

SELECT TOP 10 * FROM tx WHERE acct = 123
ORDER BY txTime DESC

START TRANSACTION

INSERT INTO tx (txTime, acct, type, amount)
VALUES (NOW(), 123, 'DEBIT', -1000);

INSERT INTO tx (txTime, acct, type, amount)
VALUES (NOW(), 456, 'CREDIT', 1000);

UPDATE acct SET balance = balance – 1000
WHERE ID = 123;

UPDATE acct SET balance = balance + 1000
WHERE ID = 456;

COMMIT

Applications

Fast row inserts & updates

Full row retrieval

Focus on latency

Store data how it’s used: row by row

Analytics

SELECT MONTH(txTime) AS TxMonth,
type AS TxType,
AVG(amount) AS AverageAmount,
MAX(amount) AS MaxAmount

FROM tx

WHERE acct = 123
AND txTime > DATEADD('YY', -1, NOW())

GROUP BY MONTH(txTime),
type;

LOAD DATA FROM FILE '/tmp/20221018-tx.csv' INTO tx;

Analytics

Complex queries on large tables

Returning aggregates, not rows

Focus on throughput

Analytics

Complex queries on large tables

Returning aggregates, not rows

Focus on throughput

Store data how it’s used: column by column

A Bitmap of Pioneering

Bitmap Indices pioneered the key concepts needed for
efficient analytical query processing
● Pack info for many rows in one IO

● Operate on many rows in one function call

Regular Index Bitmap Index

^idx(“ABC”, 1) = “”
^idx(“ABC”, 3) = “”
^idx(“ABC”, 4) = “”
^idx(“DEF”, 2) = “”
^idx(“DEF”, 5) = “”
^idx(“DEF”, 64001) = “”
^idx(“DEF”, 64002) = “”

^idx(“ABC”, 1) = $bit(1, 3, 4)
^idx(“DEF”, 1) = $bit(2, 5)
^idx(“DEF”, 2) = $bit(1, 2)

A Bitmap of Pioneering

$bit is a dedicated string-based datatype for bit sequences,
used in bitmap indices

Optimized Storage
● Flexible internal structure for $bit enables compression

● Optimal 64k chunk size empirically shown to work well

Optimized Compute
● Dedicated operations for Boolean logic & traversal

● Support for atomic updates, ECP and journaling

Optimized Storage

L
o

g
ic

a
l

P
h

y
si

ca
l

Row Storage Columnar Storage

Optimized Storage

L
o

g
ic

a
l

P
h

y
si

ca
l

^d(1) = $list(“abc”, 9, 1.23, …)
^d(2) = $list(“abc”, 8, 2.1, …)
^d(3) = $list(“def”, 7, 3.45, …)
^d(4) = $list(“ghi”, 6, <null>, …)
^d(5) = $list(“xyz”, 5, 9.99, …)

^d.V1(1) = $vector(<string>: “abc”,
“abc”, “def”, “ghi”, “xyz”, …)

^d.V2(1) = $vector(<integer>: 9, 8, 7,
6, 5, …)

^d.V3(1) = $vector(<decimal>: 1.23, 2.1,
3.45, <null>, 9.99, …)

Row Storage Columnar Storage

Optimized Storage

L
o

g
ic

a
l

P
h

y
si

ca
l

$list

Latency

$vector

Throughput

Row Storage Columnar Storage

Optimized Storage

Row Storage Columnar Storage

● Clustered for point IO: Latency
● Packed in $list format for dynamic

access: Flexibility
● Cache all fields for few rows:

Transactions

● Clustered for bulk IO: Throughput
● Packed in $vector format for predictable

access: Throughput
● Cache selected fields for many rows:

Throughput

$vector

New internal data type for storing large arrays of same-
datatype values

Efficient handling of sparse data
● Internal distinction between dense and sparse regions using run-

length encoding

Efficient datatype-specific encodings
● Dictionary encoding for strings

● Adaptive scale for integers

Support for atomic and bulk updates
● Including ECP and journaling

Optimized Compute

Modern CPUs love tight loops:
for (i = 0; i < BUF_SIZE; i++) { c[i] = a[i] + b[i]; }

SIMD units keep getting wider & supporting more operations

Compilers getting better at auto-vectorization

Operating directly on encoded data:
● RLE: int sum(RLUnit u) { return u.length * u.value; }

● Leverage dictionaries where possible

$vectorop()

New set of dedicated internal functions for operating on
$vector data
● Tight loops, auto-vectorized, SIMD, RLE, …: ✅

Functions for aggregates, filters, groupings, …

set i = “”, sum = 0
for {

s i = $order(^d.V1(i), 1, col1) q:i=“”
s filter = $vectorop(“=”, col1, “abc”)
s sum = sum + $vectorop(“sum”, ^d.V2(i), filter)

}

Optimized Processing

Copyright InterSystems. All rights reserved. Confidential.41

$vector Operations

Handle 64k values at a time
● Leverage encoding scheme

Exploit modern CPU strengths
● Tight loops
● SIMD instructions
● Auto-vectorization

Vectorized SQL Processing

Leverage columnar layout
● Push $vector chunks

throughout query processing
● Only read required columns
● Late row materialization

Adaptive Parallel Execution

We’re making
Analytical Queries
10x Faster
Available from IRIS 2022.2 as an Experimental Feature

Pit Lane:
Smarter
Operations

High-Speed Processing & SQL

High Speed – UKI Edition

Everything
Parallel

Scale
Anywhere

Adaptive SQL

Columnar
Storage

Smarter
Operations

Smarter Operations

Tired of juggling Tires?

Let us be your pit crew!

Best Practices
● Agile deployment (K8s)
● Observability & Monitoring
● Security

Managed Services
● IRIS & IRIS for Health
● Health Connect Cloud

Full SaaS
● IRIS Cloud SQL
● IRIS Cloud IntegratedML
● FHIR Server
● FHIR SQL Builder
● FHIR Transformation Service

Wrapping Up

High-Speed Processing & SQL

High Speed – UKI Edition

Everything
Parallel

Scale
Anywhere

Adaptive SQL

Columnar
Storage

Smarter
Operations

Wrapping up

Needles are for Moving

Application Transparency

Let us be your pit crew

Thank You

