APPENDIX

Physical Storage of Globals and
Collation

This appendix describes how Caché stores globals and collates data.

Physical Storage of Globals page C-2
Collation page C-12
Routine Storage page C-14

Caché ObjectScript Programming Guide C-1

Chapter C — Physical Storage of Globals and Collation

Physical Storage of Globals

This section describes the physical storage of globals in Caché. While this
information is currently accurate, the internal structure may change in future
releases. Take when developing applications that rely on the physical structure of
the database, as these may need to be updated in the future. %ST node should be
used where possible to avoid hard-coded values which must be maintained “by
hand.”

Globals Stored in CACHE.DAT or CACHE.EXT Files

Globals are stored in a Caché database file called CACHE.DAT. In a multi-
volume database, the first volume is called CACHE.DAT; additional volumes are
called CACHE.EXT. Under Caché, each host operating system directory can have
an CACHE.DAT or CACHE.EXT file, so there can be more than one Caché
database file available on a system. No two globals can have the same name
unless they are in different Caché databases (i.e., an CACHE.DAT file and any
CACHE.EXT files associated with it).

Globals

Caché databases contain Caché globals. Each database include a global directory,
which describes where in the database the globals are stored and some attributes
describing the individual globals.

Routines

Caché ObjectScript programs are called routines. Routines can exist in three forms,
all stored in globals:

Routine Form How and Where Stored

macro code As nodes in the “mMAC global,

intermediate code | In the “ROUTINE global.

object code In a special global whose name is the single
character with the ASCII value of 255. The object
code global is not normally included in a display
of the globals in a database.

Creating a Caché Database

Before you can assign globals values in an application, you must create a Caché
database in the directory in which your process will run.

C-2 Caché ObjectScript Programming Guide

Physical Storage of Globals

General Structure of Caché Database Files

Caché stores information in blocks that contain 2,048 bytes each. The blocks are
organized in groups of 400, called maps. Maps are numbered starting at zero,
within each volume. The final map in a database that has undergone expansion
may contain fewer than 400 blocks, if there is no more disk space available. Later,
if it expands the database automatically again, Caché first tries to add blocks to a
final map if that final map contains fewer than the standard 400 blocks.

Note for OpenVMS systems: One Caché block is equivalent to four OpenVMS
blocks.

A block number identifies each block uniquely. The cumulative block number is
unique within the entire database. The first block is numbered 1, the first block in
the second map is numbered 401, the first block in the third map 801, and so on. A
block can also be described by its position within a map. The block 0:32 is the
32nd block in the first map. The block 2:400 is the 400th, or last, block in the third
map.

A database is a collection of one or more extents which contain all of the maps
comprising the database. This extent structure allows the Caché database to
expand beyond the bounderies of the physical disk or partition.

On OpenVMS and Windows, an extent is a flat file within a directory.

On UNIX, an extent can be either a flat file within a directory, or a UNIX raw disk
partition.

A database always consists of one primary extent and from zero to seven
secondary extent. A primary extent is the first or only extent in the database. Any
other extents are secondary database extents. The extents are permanently
arranged in a definite order, with the primary extent always being the first.
Database references are made to the primary extent which transparently
manipulates data on the secondary extents.

Block Types

The types of blocks you can have in an Caché database are as follows.

Caché ObjectScript Programming Guide C-3

Chapter C — Physical Storage of Globals and Collation

Table C-1: Database Block Types

Block Type

Decimal Hexadecimal | Definition

1 1 Global Directory Block

2 2 Routine Directory Block or
Global or Routine Upper Level
Pointer Block

6 6 Bottom Level Pointer Block

8 8 Global Data Block (strings 512 bytes
or less)

12 C Big Global Data Block (strings up to
32,767 bytes)

170 AA Map Block

When the Garbage Collector (process GARCOL) has collected a block, it adds 32
(decimal) to the block type number. (The Caché Garbage Collector keeps large

areas of free space available in your database.

You can control the location of global pointer blocks, and global data blocks when

you create a new database.

Map Organization

Each map contains a special first block, called a map block, that contains a map of
all blocks in use and all blocks that are still available, or free, within the 400-block

section.

The map block of the first map, called map 0, is called the label block. It contains

information that other map blocks do not contain. The first map block of the first
volume in the volume set includes information that is not in the map 0 map block
of other volumes.

Note that in the following table, items marked with an asterisk (*) are in the first
map block of the first volume of the volume set only. All other items in the table

are in the first map block of every volume in the volume set.

C-4 Caché ObjectScript Programming Guide

Physical Storage of Globals

Table C-2: Map 0 Map Block Only

%ST Subscripts Decimal | Hex

location size Location | Location | Length | Contents

gfoic szoic 1024* 400 2 UIC of Caché Database

gfvolseq | szvolseq 1026 402 2 This Volume Number

ofexp szexp 1028* 404 2 Extend By (Number of
Maps)

1030 406 2 Total Number of Volumes

gfdir szdir 1036* 40C 4 Location of Global
Directory (Byte count
within map)

ofgptr szgptr 1040* 410 4 Location of New Global
Pointers

gfrdir szrdir 1044* 414 4 Location of Routine
Directory

gfrgrw szrgrw 1048* 418 4 Location for New Routine
Growth

ofggrw szggrw 1052* 41C 4 Location for New Global
Growth

gfmsz szmsz 1060 424 2 Number of Blocks per Map

gfmaps szmaps 1064 428 4 Size of File (Number of
Maps)

gfmax szmax 1068* 42C 4 Maximum Number of
Maps

gfvolmaps | szvolmaps | 1072 430 4 Maps in this Volume

none 1524* 5F4 8 Map Label "ISM0 UCI"

Executing D GFs*%8T defines a number of entries in the %ST() array related to the
organization of the label block. Applications which access this information should
use %ST() to locate data to avoid problems caused when the structure of the label
block is modified.

Each map block contains the information listed in the following table.

Caché ObjectScript Programming Guide C-5

Chapter C — Physical Storage of Globals and Collation

Table C-3: All Map Blocks

%ST Decimal | Hex
Subscripts | Location | Location Length | Contents
offset 0-399 0-18F 1 Map Flags:
0 (Available)
1 (Normal Database Block)
128 (Mapped Out Bad Block)
246-254 (Used by Caché)
255 (Reserved)
MAPLABEL | 2038 7F6 2 Map Label FFFF (hex)
(65535 decimal)
2040 7F8 2 Map Label 5555 (hex)
(21845 decimal)
2042 TFA 1 Map Label and Block Type AA
(hex) (170 decimal)
BLTYPE 2043 7FB 1 Block Type AA (hex)
(170 decimal)
2044 7FC 2 Map Label 8001 (hex) (32769
decimal)
BLOFF 2046 7FE 2 Summary Count (how many
blocks are free)

Summary Count

The last two bytes in the map block, locations 2046 and 2047, contain the
summary count. These locations normally contain the number of free blocks in
that map. However, if the system attempts to free a block that is already marked
free in the map (this can happen if there is a physical disk degrade due to a
hardware problem), it notes this degradation of the database by setting the two
highest order bits in the last word, so that the summary count is 49,152 or greater.
Caché then allocates no more blocks in that map.

If this condition occurs, run an integrity check using either the Integrity functions
of the GUI Database System Operations utility, and correct any errors using its
Repair function or the manual or auto repair function of DIAG. Then you can
correct the map summary count by inserting the proper value in decimal location
2046 of the map block. To obtain the correct value, run the CHECKMAP utility.

C-6 Caché ObjectScript Programming Guide

Physical Storage of Globals

Non-Map Blocks

A sample non-map block stores information as described in the following table.

Table C-4: Non-Map Block Contents

Decimal
%ST() Location | Contents Description
Size=2036 |0 First byte is Necessary for integrity of Caché
"BLENGTH" always 0. data and pointer blocks.
1-2035 DATA Pointer Block Format:
Global Ref: "A(123,"TEST")
Pointer: 126545
Data Block Format:
Global Ref: "A(123,"TEST")
Data: "HELLO"
"BLGAR" 2036-2039 | Garbage Used by the Garbage Collector.
Pointer
"BLLNK" 2040-2042 | Right Link Points to next block in the Link List.
Pointer
"BLTYPE" 2043 Block Type Tells if this block contains Data,
Upper Level Pointer, or Bottom
Level Pointer.
"BLOFF" 2046-2047 | Offset Location of next available space in
block.

Global Storage

Caché maps the logical global into physical locations in a balanced binary tree.
This organization consists of the global directory plus two or more levels of
blocks with a single block at the top. All of the data lies in blocks at the bottom of
the tree. The same number of steps is required to get from the top block to any
block in the bottom level.

Each node in the database contains two parts. The first part is a global reference
like "GLO(1,3,4). The second part is the data. Blocks at the bottom of the tree are
called data blocks. Blocks above this level are called pointer blocks. Both data and
pointer blocks contain: <global reference> <value>.

= pointer block: <value> = a block number in the database
= data block: <value> = actual value assigned to the global reference.

Caché ObjectScript Programming Guide C-7

Chapter C — Physical Storage of Globals and Collation

Within each block, the entries are ordered by subscript reference sorted according
to the collation sequence for the global.

Global Directory (Type 1)

Each Caché database has a global directory. For each global, there is an entry in
the global directory. If the number of globals and/or the length of global names is
large, the global directory may span multiple blocks.

An entry in the global directory node has the format:

~global-name, type, protection, growth-area, block-number

The block to which block-number points is a pointer block. The entries in the global
directory are not sorted. They are organized in the order the globals are created.
The following table describes the contents of a global directory entry.

Table C-5: Global Directory Node

Field Description

type A two-byte value. The lower byte contains a 4 if the
global is journaled.

The upper byte specifies the collation type.

Note: Information about whether the global is
replicated to other systems is no longer stored in the
global directory. As of Version 5.10, it is stored in
system tables.

protection A two-byte value. This value is interpreted as four
sets of two binary digits. From left (high-order) to
right (low-order), the sets represent the Network,
World, Group, and then Owner, as follows:

00 —N

01 —R

10 —RW

11 —RWD
growth-area Where search for new pointer blocks will begin.
block-number Location of first pointer.

Global Pointer Blocks

The highest blocks, which normally comprise less than 1% of the block total, are
all pointer blocks.

The first pointer block for a global holds the uppermost node of the global's
balanced tree. Depending on the size of the global, it may have multiple levels of
pointer blocks.

C-8 Caché ObjectScript Programming Guide

Physical Storage of Globals

The logical structure of a global pointer node is (global-reference, block-number).
Pointer nodes are stored in a collating order based upon the global name and
subscript.

It is best to allow enough space for the global pointer blocks when you first create
the Caché database. For most databases, the default values are sufficient. For very
large databases (2 gigabytes or more), you may want to adjust these values. You
can use the routine %GCREATE to control where Caché begins to search for new
pointer blocks on a per global basis.

Bottom-level Pointer Blocks (Type 6)

Blocks in the level immediately above the data blocks are called bottom-level
pointer blocks, or Type 6 blocks. These blocks contain nodes equal to the first
global reference in each data block. Each node in a bottom-level pointer block
contains the block number of the corresponding data block. Therefore, pointer
blocks on this level have one node for each data block, and you can use these
nodes to find the data block with information you are looking for.

Upper Level Pointer Blocks (Type 2)

If there is more than one block on the bottom level of pointer blocks, then there is
a higher level of pointer blocks. These higher level blocks point to the blocks in
the bottom level just as the bottom-level pointer blocks point to the data blocks. If
necessary, this process continues with even higher pointer levels until the very
top-level consists of a single block, referred to as the top-level pointer block. In a
small global with fewer than about 200 data blocks (about 400 Kb), the top-level
pointer block may also be the bottom pointer level (that is, only one level of
pointer blocks is needed), but in larger globals there may be two or three pointer
levels.

Global Data Blocks (Type 8)

The logical structure of a global data node is (node-reference,data). Data blocks, like
global pointer blocks, store data nodes in collating order based on global names
and subscripts. Type 8 blocks hold strings up to 756 bytes long.

Note: If Caché cannot find enough global data blocks, it attempts to create a new
map before using free pointer blocks in the current map. This reserves space near
the beginning of the database for pointer blocks to minimize fragmentation.

Big Global Data Blocks (Type 12)

Type 12 blocks are identical to type 8 blocks, with the exception that they hold
references to strings up to 32,767 bytes long.

Caché ObjectScript Programming Guide C-9

Chapter C — Physical Storage of Globals and Collation

Right Link Pointers

Each block (data or pointer) contains a link to the next block on its right at the
same level in the tree. The right link pointers on a block level connect that level's
blocks in collation sequence. Thus, the tree includes a redundant set of pointers;
the downward pointers in a pointer block specify the same structure as the
right-link pointers of the next lower level.

The first node of every global is a dummy entry that appears as an unsubscripted
global whose name is the space character. This node, inaccessible through the
Caché ObijectScript language, is present so that Caché never has to insert a node
before the first node.

Figure C-1, “Portion of Global Balanced Tree Block Structure,” on page C-11,
illustrates the physical structure of a Caché database. The figure shows a portion
of a balanced tree structure with right links. The portion of the global directory
block shown provides for three globals: A, ~X, and ~C. The global ~X is shown
pointing to block 70 which points to subscripts to ~X in blocks 431, 214, and
others. Each of these blocks contains pointers to nodes of ~X. For example:
= Block 431 points to:
= node ~X(“L”) (and others) in block 171
= node MX(*“0”) (and others) in block 240
= and so on
= Block 214 points to:
= node ~X(*“U”) (and others) in block 371
< node *"X(“W?”) (and others) in block 97
« and so on
Each subscript is shown in the shaded Data Block with its data value in the form
(“Subscript”) Data value. For example:
= Node MX(*“L”) stores the value 1, shown in the figure as (“L”)1 in the upper
left cell of the Data Block

= Node *X(“Y”) stores the value 25, shown as (“Y”)25 in the upper right cell of
the Data Block

The values for the nodes of ~X are shown in Figure C-2, “~X Node Values Stored
in Global Structure,” on page C-12.

C-10 Caché ObjectScript Programming Guide

Physical Storage of Globals

Block 1: Portion Of Globd Directory Block

~f 52 w70 56
Block 70: Portion of Upper Level Pointer Block
431 " 714
Block 431: Blod 214
"F‘u:urtiu:un of Bottomn Level Fointer Blocdk Y
T o] o] e ITE "W" T
171 240] 106 93? 3?1 268
‘ | Yk 214 / / Link: xrz
Yy ¥
Blodk Block Blodk Blodk Blodk E-Iu:ud< E-Iu:ud<
171 240 106 937 371 268

Data Blodks

Figure C-1: Portion of Global Balanced Tree Block Structure

Caché ObjectScript Programming Guide C-11

Chapter C — Physical Storage of Globals and Collation

AX("L")=1 ~X("O)= 4 AX("R')= 9 AX("U')=n AX("X')=9
AX("M)=2 AX("P'")=5 AX("S')= 6 AX("V')= o AX("Y')= 25
AX("N')=3 "X("Q)=7 AX("T')= 8 AX("W)=1 AX("Z")= 26

Figure C-2: ~X Node Values Stored in Global Structure

Collation

This section describes how data is collated in Caché.

Collation Sequence

A character set and a collation rule together make up a collation sequence. The
character set can be the native character set of the computer (such as ASCII) or
any other character set the system manager chooses. Caché supports several
collation rules, including unicode, ANSI M, and string. National language
support (NLS) allows user defined collation in extended character sets.

ANSI Standard M Rule

By this rule, canonic numeric subscripts come first in numeric order, followed by
all others in string order. String order is the order of characters in the character
set. You can think of canonic numeric subscripts being ordered by the Caché ">"
operator, and all others being ordered by the Caché “]” operator. In the following
example, -2.40 lies after the other numbers because its trailing zero makes it
non-canonic. This example shows the non-canonic subscripts in ASCII order:

-5 -24 1 2 19 -2.40 A BB

String Rule

String rule orders all subscripts as strings in the character set, just as the Caché "]"
operator does. This example shows the same subscripts in the ASCII character set,
collated using the string rule:

-2.4 -2.40 -5 1 19 2 A BB

How Collation Sequence is Selected

Caché normally uses the computer's native character set and the Unicode
standard collation rule. The system manager can, however, select the collation
sequence for individual globals. Because the collation sequence is the storage
sequence, you must set it before any data is stored in the global. You select the
collation sequence of a new global using the % GCREATE utility.

C-12 Caché ObjectScript Programming Guide

Collation

Collation for National Language Support

Caché’s national language support allows for more sophisticated collation. Data
is encoded so that it will collate appropriately based on its binary representation.
Subscripts may include any character, including control characters, except $C(0).

A collation rule contains two kinds of information: a rule for collating numeric
values and a rule for collating string values. The following two tables show the
possible values of the fields that specify this information.

Table C-6: Numeric Collation Types

Value Meaning

0 New ANSI (ANSI standard collation) New ANSI compacts
numeric subscripts more efficiently than Old ANSI.

1 Old ANSI (ANSI collation in earlier releases) Useful if you
need to port global data to systems running older versions.

3 DTM Compatibility collation (DTM collation) Useful if you
need to port global data from DTM systems.

5 UNICODE (uses 8 or 16-bit characters) Unicode collation

uses New ANSI numeric subscript encoding for future
support of unicode character sets (default).

Table C-7: String Collation Types

Value Meaning (see note below)

0 No conversion, quote initial < 32. For example, you might
want string rule 0, if all characters in subscripts will be
control characters. This is used for local arrays.

1 Quote 0-3 and initial < 32. This is used for global arrays.

2 Disallow 0 or initial < 32. If any character in the subscript is
0 or the first character is a control character, a
<SUBSCRIPT> error occurs.

3 Many-to-many 256-byte encoding table, then quote 0-3 and
initial < 32, as in rule 1. This rule allows multi-character
collation, such as for characters that are stored internally as
two separate characters, such as, for example, Spanish “ch”
and “II”.

Caché ObjectScript Programming Guide C-13

Chapter C — Physical Storage of Globals and Collation

Note: When Caché stores control characters, it inserts a leading character of
decimal 31 before the actual character. A “quote” indicates that an extra character
has been inserted, but that it does not affect the collation order.

Routine Storage

Caché routines are stored as binary “big strings” as nodes in a special global. The
global is named “rOBJ.”

C-14 Caché ObjectScript Programming Guide

	Physical Storage of Globals and Collation
	Physical Storage of Globals
	Globals Stored in CACHE.DAT or CACHE.EXT Files
	Globals
	Routines

	Creating a Caché Database
	General Structure of Caché Database Files
	Block Types
	Map Organization
	Summary Count
	Non-Map Blocks

	Global Storage
	Global Directory (Type 1)
	Global Pointer Blocks
	Global Data Blocks (Type 8)
	Big Global Data Blocks (Type 12)
	Right Link Pointers

	Collation
	Collation Sequence
	ANSI Standard M Rule
	String Rule
	How Collation Sequence is Selected
	Collation for National Language Support

	Routine Storage

