
Caché ObjectScript Program
CHAPTER

11
Date, Time, and Numeric
Utilities
This chapter describes date, time, and numeric utilities that Caché supplies. All of
these utilities are character-based.

Date utilities perform conversions between expressions in internal date format
used by $H and expressions in printable formats. You can also use the $ZD
function to convert a date in internal format to one in printable format.

Time utilities perform similar conversions between printable time-of-day formats
and the internal format used by $H.

Other utilities print the current date and time.

Numeric utilities convert between decimal, octal, and hexadecimal number
formats and find square roots.

This chapter also discusses the concept of a locale, a set of properties that control
the display of the several data conversion functions discussed in this chapter.

Date and Time Utilities page 11-2

Locales page 11-9

Numeric Utilities page 11-20
ming Guide 11-1

Chapter 11 — Date, Time, and Numeric Utilities
Date and Time Utilities
The Caché date and time utilities are listed and briefly described in Table 11-1.
More details are provided in the following sections.

Year 2000 Compliance
The Caché database management system is fully Year 2000 compliant. All dates
used by the system itself are stored in a format that correctly represents and
enables manipulation of dates in the twentieth and twenty-first centuries and
beyond. In addition, all dates that are used by Caché but stored outside of a
database, such as date stamps stored in database back up and transaction journal
files, are stored in the same century-independent format.

Caché provides all support needed for full Year 2000 compliance at the
application level. The Caché native date format correctly stores and enables
manipulation of dates in the range January 1, 1841 to December 31, 9999. Caché
also provides input and output conversion functions that correctly convert
between this internal date format and external formats using four digit years.

Caché also includes several features to reduce problems associated with
applications that currently display two digit year values. In many cases, these
features enable applications to function correctly in the twenty-first century using
two digit dates with little or no application change.

Table 11-1: Date and Time Utilities

Utility Purpose

%D Display the current date

%DATE Convert dates to an internal format

%DO Convert an internal date to an external
format

%T Display the current time

%TI Convert the time to an internal format

%TIME Display the current time, day, and date

%TO Convert the time to an external format
11-2 Caché ObjectScript Programming Guide

Date and Time Utilities
Displaying the Current Date
The %D utility displays the current date. Invoking %D at label INT returns the
date in the variable %DAT instead of displaying it. For example:

%SYS>D ^%D
Nov 22 99
%SYS>D INT^%D

%SYS>W %DAT
Nov 22 99
%SYS>

Converting Dates to an Internal Format
The %DATE utility converts dates to an internal format: the number of days since
December 31, 1840, the same format used by the $H system variable. %DATE is
very flexible about the input format; some examples of proper formats follow:

1/21
1/21/99
21/1/99
Jan. 21, 1999
January 21, 1999
21 Jan 99
21-JAN-99
T (today)
T+1 (tomorrow)
T-1 (yesterday)
T-5 (5 days ago)

In the input value, you can use any punctuation character in place of the space or
slash (/) characters used in the above examples. You can also spell out the month
in full, as in “JANUARY”, or abbreviate it to three characters, as in “JAN”. Unless
you specify otherwise, the utility assumes the current year.

The utility returns the internal format of the date in variable %DN.

Invoking %DATE at label INT bypasses the operator dialogue. In this case, pass
the external format of the date in variable %DS:

%SYS>D ^%DATE

Date: 4-5-99
%SYS>W %DN
57803
%SYS>S %DS="April 5,1999 D INT^%DATE
%SYS>W %DN
57803
Caché ObjectScript Programming Guide 11-3

Chapter 11 — Date, Time, and Numeric Utilities
Testing for Leap Years

You can use the $$LEAP entry point to ^%DATE to test if a given year is a leap
year:

$$LEAP^%DATE(year)

Return values are:

• 1 = year is a leap year
• 0 = year is not a leap year

Using $ZDATEH for Most Printable Formats

If you use the $ZDATE function (see below), you can convert any of its formats to
$HOROLOG format quite easily using $ZDATEH. The exact action $ZDATE
performs depends on the parameters you use.

• $ZDATEH(date) converts a date in the current locale default date format to
the first integer in the $HOROLOG format (two or four digits as defined by
the sliding date window.)

• $ZDATEH(date,format) converts a date in the specified format to $HOROLOG
format. The format value is identical to the format values used by $ZDATE.

For more information about $ZDATEH, see the Caché ObjectScript Reference .

Sliding Window Support %DATE Utility Entry Points
The %DATE utility supports entry points for inspecting and/or modifying the
system-wide default or process-specific sliding window definition. Each entry
point defines an extrinsic function which returns the old sliding window
definition (before the function takes any action) in the form of a string:

"OldStartDate^OldEndDate"
where OldStartDate and OldEndDate are absolute dates in $H format representing
the start and end, respectively, of the old sliding window

As a quick rule of thumb for the entry points:
11-4 Caché ObjectScript Programming Guide

Date and Time Utilities
The value RETURNED by each extrinsic function is ALWAYS in terms of absolute
$H-format dates. This is necessary in order to provide for the interoperability of
the three methods of defining sliding windows.

In the following description of each entry point, “system default” means the
system-wide default sliding window definition and the term process window
means the process-specific sliding window definition.

$$EmptyDefWindow^%DATE()
Set system default to be an “empty” window, so that all years display using 4
digits.

$$EmptyProcWindow^%DATE()
Set process window to be an “empty” window, so that all years display using
4 digits.

$$GetDefWindow^%DATE()
Get current system default definition.

$$GetProcWindow^%DATE()
Get current process window definition.

$$NoDefWindow^%DATE()
Remove current system default so that a 20th-century fixed window is used
by default.

$$NoProcWindow^%DATE()
Remove process window so that Caché uses a 20th-century fixed window.

$$SetDefAbsYearWindow^%DATE(StartYear,EndYear)
Set system default to begin on the absolute year StartYear and end on the
absolute year EndYear.

If the entry point name
includes... The entry point deals with...

Def system-wide default sliding window
definition.

Proc process-specific default sliding window
definition.

Date, AbsYear, RelYear parameters defined for absolute
$H-format dates, absolute years, or
relative years, respectively.
Caché ObjectScript Programming Guide 11-5

Chapter 11 — Date, Time, and Numeric Utilities
$$SetDefDateWindow^%DATE(StartDate,EndDate)
Set system default to begin on the absolute date StartDate and end on the
absolute date EndDate.

$$SetDefRelYearWindow^%DATE(StartYear,EndYear)
Set system default to begin on the relative year StartYear and end on the
relative year EndYear.

$$SetProcAbsYearWindow^%DATE(StartYear,EndYear)
Set process window to begin on the absolute year StartYear and end on the
absolute year EndYear.

$$SetProcDateWindow^%DATE(StartDate,EndDate)
Set process window to begin on the absolute date StartDate and end on the
absolute date EndDate.

$$SetProcRelYearWindow^%DATE(StartYear,EndYear)
Set process window to begin on the relative year StartYear and end on the
relative year EndYear.

$$UseDefWindow^%DATE()
Set process window to be the same as the current system default

For example, suppose some time during 1999 you issued this command:

S X=$$SetProcRelYearWindow^%DATE(90,10)

The command would establish a process-specific sliding window definition
which resulted in this process displaying two-digit years for any dates in the
range 1/1/1909 through 12/31/2008, inclusive.

Converting an Internal Date to an External Format
The %DO utility converts the internal date in variable %DN to an external format
returned in variable %DS. The %DO utility respects any current sliding window
definition. For example:

%SYS>S %DN=$H D ^%DO
%SYS>W %DS
JUN 7 1999
%SYS>

You can use any of several internal entry points into %DO to produce different
output formats, as listed below:
11-6 Caché ObjectScript Programming Guide

Date and Time Utilities
Using $ZDATE for Most Printable Formats

For producing most printable formats you will find the $ZDATE function easier
to use and much faster than the %DO utility. The $ZDATE function converts a
specified date in $HOROLOG format to one of several alternate date formats. The
value returned by $ZDATE depends on the parameters you use.

• $ZDATE(Hdate) returns the date in a printable format that corresponds to the
specified Hdate. Hdate is an integer value that is the number of days elapsed
since December 31, 1840, and can range from 0 to 2980013 (12/31/1840 to 12/
31/9999).

• $ZDATE(Hdate,format) returns the date in the specified format.
• $ZDATE(Hdate,format[,picture]) returns the date in the specified format and,

optionally, picture.
For more information on $ZDATE, see the Caché ObjectScript Reference .

Displaying the Current Time
The %T utility displays the current time. Invoking %T at label INT returns the
time in the variable %TIM, instead of displaying it. For example:

%SYS>D ^%T
10:21 AM
%SYS>D INT^%T

%SYS>W %TIM
10:21 AM

Converting the Time to an Internal Format
%TI converts the time to an internal format: the number of seconds since
midnight, which is the same format used in the system variable $H. The utility
returns the internal format of the time in variable %TN.

Table 11-2: Internal Entry Points into %DO

Entry Point Result

^%DO JUN 7 1999

INT^%DO 07 JUN 99

300^%DO 19990607

400^%DO 06/07/99
Caché ObjectScript Programming Guide 11-7

Chapter 11 — Date, Time, and Numeric Utilities
Enter the time as shown below:

11:00 AM
12:00 NOON
3:15 PM

You must enter the AM or PM, just A or P, or NOON or MID (or MIDNIGHT),
but the space between the number and the letter is not required. 24-hour time is
acceptable only without colons or other punctuation.

Use INT^%TI Entry Point to Bypass the Operator Dialogue

Invoking %TI with the entry point INT bypasses the operator dialogue. In this
case, pass the external format of the time in variable %TS. For example:

%SYS>D ^%TI

TIME: 2:00 PM
%SYS>W %TN
50400
%SYS>S %TS="10:30A" D INT^%TI

%SYS>W %TN
37800

$ZTIMEH Function

$ZTIMEH converts a time value from a format produced by the $ZTIME function
to $HOROLOG or $ZTIMESTAMP (special variable) format. The exact value
produce depends on the parameters you use.

• $ZTIMEH(time) converts a time in the form hh:mm:ss[.ffff] to $HOROLOG
format.

• $ZTIMEH(time,format) converts a time in the specified format to $HOROLOG
format. The format value is an integer value identical to the format value used
by $ZTIME.

For details on $ZTIMEH, see the Caché ObjectScript Reference.

Displaying the Current Time, Day, and Date
The %TIME utility displays the current time, day and date. When you call %TIME
on your CRT, the cursor moves in a square, clockwise pattern around the time
and date information, updating the time every 60 seconds. Type an interrupt for
your terminal (e.g., <CTRL-C>) to exit the %TIME utility.

When you type at the prompt:

D ^%TIME
11-8 Caché ObjectScript Programming Guide

Locales
the system responds with the current date and time:

** 02:15 PM **
MONDAY
22 Feb 99

As the cursor moves, it updates the time every minute.

Converting the Time to an External Format
The utility %TO converts the time, in seconds, to an external format. Pass the time
as seconds since midnight in the variable %TN. The utility returns the external
format in the variable, %TS. For example:

%SYS>S %TN=34390

%SYS>D ^%TO

%SYS>W %TS
09:33AM
%SYS>

$ZTIME Function

$ZTIME converts a internal system time from the specified $HOROLOG-format
value (Htime) to a printable format. The value returned depends on the
parameters you use.

• $ZTIME(Htime) converts the value in Htime to a time in the format: "hh:mm:ss”

• $ZTIME(Htime,format) converts the value in Htime to the time format you
specify in format.

• $ZTIME(Htime,format,precision) converts the value in Htime to the time format
you specify in format. It also displays the seconds carried out to the number of
decimal places you specify in precision.

For details on $ZTIME, see the Caché ObjectScript Reference.

Locales
This section deals with locales that control data conversion functions. This differs
from the National Language locale which defines properties based on character
set. For information on National Language Support locales, see the Caché
Advanced System Management Guide.

This is the list of data conversion functions included in the locales discussed in
this section:
Caché ObjectScript Programming Guide 11-9

Chapter 11 — Date, Time, and Numeric Utilities
For information on the functions themselves, see the Caché ObjectScript Reference.

Definition of Locales
A locale consists of a list of properties that determine how data is displayed. The
locale may be either public or private.

A public locale can be used by any Caché process. Currently there is only one
public locale available. This is predefined by InterSystems. Future version will
allow you to use locales associated with your National Language and choose the
default locale using the NLS utility. Unless you specify a private locale for your
process it will use the public locale by default.

A private locale is a locale that you design for a particular process or application.
It can only be used by that process or application.

At any one time, a process has only one locale, which is either the public locale or
a private locale.

The public locale is permanent. Its properties are defined by Caché and are
immutable. In contrast, a private locale is temporary, existing only for the lifetime
of a process. Its properties are defined for a process and can be further modified
by that process at any time.

Limitations of the Locale Implementation
The following restrictions apply to Caché:

• The only possible value for LocaleName is “DEFAULT”
• $$DefDCLocale^%NLS always returns "DEFAULT"
• $$GetDCLocale^%NLS always returns either "DEFAULT" or "PRIVATE"

Invoking $$SetDCLocale^%NLS("DEFAULT") selects the single public shared
locale for this process. This function is implicitly performed when any Caché
process is created. You may need to set your application to explicitly invoke
$$SetDCLocale^%NLS("DEFAULT") after using a private locale.

$FNUMBER $ZDATETIME

$INUMBER $ZDATETIMEH

$ZDATE $ZTIME

$ZDATEH $ZTIMEH
11-10 Caché ObjectScript Programming Guide

Locales
The properties defined in the default locale correspond to the standard default
behavior of the data conversion functions before Caché 2.1. Applications
requiring the traditional standard behavior of these functions need take no special
action, since all processes initially use the default locale unless/until a private
locale is created.

Manipulating Locales
An application determines its choice of locale and manipulates its locale
properties by calling extrinsic functions which are packaged as entry points into
the %NLS utility. The following functions are provided:

$$GetDCFormat^%NLS(PropName)
Returns the current setting of the property named PropName in the current
locale. Propname must be enclosed by quotation marks unless it is a variable.

$$SetDCFormat^%NLS(PropName,PropVal)
Sets the property named PropName to the value PropVal and returns the old
setting of that property. Propname must be enclosed by quotation marks
unless it is a variable.

$$DefDCLocale^%NLS
Returns the name of the default locale table.

$$SetDCLocale^%NLS(“LocaleName”)
Sets the locale named LocaleName as the current locale for this process and
returns the name of the previous locale used by this process.

$$GetDCLocale^%NLS

Returns the name of locale currently used by this process.
Although these values are not case sensitive, Caché will always return either
“DEFAULT” or “PRIVATE” in all uppercase letters.

The %NLS extrinsic functions always return the current value for the Getxxx and
Defxxx entry points, or the former value for Setxxx entry points.

Error Messages Returned by Locale Extrinsic Functions

If an error is detected, a negative number is returned as an error code. Currently,
the possible error codes are:

-100 Invalid locale name or locale property name specified

-101 Attempt to set a locale property to an invalid value
Caché ObjectScript Programming Guide 11-11

Chapter 11 — Date, Time, and Numeric Utilities
Using Locale Extrinsic Functions

The Extrinsic functions can be used at the command line or within a routine. A
complete list of the options available for these functions is in Table 11-3, “Locale
Properties,” on page 11-14.

Example of Changing a Locale Setting

This example shows the current setting of plussign, the locale name and changes
the setting of plussign which results in the locale changing to a private locale for
this terminal session:

USER> w $$GetDCFormat^%NLS("plussign")
+
USER> w $$GetDCLocale^%NLS
DEFAULT
USER> w $$SetDCFormat^%NLS("plussign","*")
+
USER> w $$GetDCFormat^%NLS("plussign")
*
USER> w $$GetDCLocale^%NLS
PRIVATE

Examples of Setting Illegal Values

This example shows the error that results from specifying an illegal value for a
valid property:

USER> w $$SetDCFormat^%NLS("plussign","PLUS")
-101

This command shows the error that results from specifying an illegal property
name:

USER> w $$GetDCFormat^%NLS("xyz")
-100

Example of Resetting the Locale

This resets the terminal to the DEFAULT locale, effectively removing all changes
made to the locale:

USER> w $$SetDCLocale^%NLS("DEFAULT")
PRIVATE

Creating Private Locales
An application creates a private locale when the application calls
$$SetDCFormat^%NLS() to alter any property of its current locale. Subsequent
calls to $$SetDCFormat^%NLS() by that process operate directly on that process's
existing private locale.
11-12 Caché ObjectScript Programming Guide

Locales
Once a process creates its own private locale, it continues to use it unless an
explicit call is made to $$SetDCLocale^%NLS("DEFAULT").

Example of Private Locale Creation

This example shows routine code that creates a private local that changes the date
display format from the default DD/MM/YY to European standard MM/DD/
YY. A list of the locale properties you can alter is in Table 11-3, “Locale
Properties,” on page 11-14.

LocaleCk ; Routine for setting locale.
 ; This routine asks your prefer date format and sets the locale
accordingly
Ask ; Asking for the data
READ "European or American date format (E/A)",DateSel
Set ; Setting the locale
 IF (DateSel="E")!(DateSel="e") SET
x=$$SetDCFormat^%NLS("DateFormat",2)
 ELSE IF (DateSel="A")!(DateSel="a") SET
x=$$SetDCFormat^%NLS("DateFormat",1)

ElSE WRITE !,"No such date format."

Locale Properties
The property names are not case sensitive. They may be specified directly as
strings enclosed in quotation marks, as string expressions, or may be specified
with Caché local or global variables.

The property names currently supported are described in the following table. The
Default Value column indicates the property's value in the DEFAULT locale.
Caché ObjectScript Programming Guide 11-13

Chapter 11 — Date, Time, and Numeric Utilities
Table 11-3: Locale Properties

Property Name Description
Default
Value

AM The suffix which may optionally be
appended to time values prior to 12
noon.

“AM”

DateFormat The DateFormat code used
whenever a $ZDATE, $ZDATEH,
$ZDATETIME or $ZDATETIMEH
function call omits its second
parameter, or specifies a second
parameter value of -1. See “Format
Code Descriptions”.

1

DateMaximum The numeric value that specifies the
upper limit of the range of valid
dates used whenever a $ZDATE,
$ZDATEH, $ZDATETIME, or
$ZDATETIMEH function omits its
maxdate parameter or specifies a
maxdate parameter value of -1. See
“Format Code Descriptions”.

2980013

DateMinimum The numeric value that specifies the
lower limit of the range of valid
dates used whenever a $ZDATE,
$ZDATEH, or $ZDATETIMEH
function omits its mindate
parameter or specifies a mindate
parameter value of -1. See “Format
Code Descriptions”.

0

DateSeparator The character used to delimit the
months, days, and years of those
dates which are otherwise entirely
numeric. See “ODBC Date Format
and Date Separator”.

“/”

DecimalSeparator The character used by the
$FNUMBER and $INUMBER
functions to separate the whole part
of a number from the fractional part
of the number. See “Number
Formatting” and “ODBC Date
Format and Decimal Separator”.

“.”
11-14 Caché ObjectScript Programming Guide

Locales
Midnight The suffix which may optionally be
appended to time values
corresponding to exactly 12
midnight.

“MIDNIG
HT”

MinusSign The character which may precede
or follow a negative numeric
quantity formatted by the
$FNUMBER or $INUMBER
function. See “Number
Formatting”.

“-”

MonthAbbr The abbreviations of the names of
the twelve months, used whenever
a $ZDATE, $ZDATEH,
$ZDATEIME or $ZDATETIMEH
function call omits its
MonthNameList parameter, or
specifies a MonthNameList
parameter value of -1, and the
selected date format uses month
name abbreviations (i.e., the
effective DateFormat code is 0, 2, 5,
6, or 7).

See “Month
and Date
Names”

MonthName The full names of the twelve
months used whenever a $ZDATE,
$ZDATEH, $ZDATEIME or
$ZDATETIMEH function call omits
its MonthNameList parameter, or
specifies a MonthNameList
parameter value of -1, and the
selected date format uses full
month names (i.e., the effective
DateFormat code is 9).

See “Month
and Date
Names”

 Noon The suffix which may optionally be
appended to time values
corresponding to exactly 12 noon.

“NOON”

NumericGroupSepa
rator

The character used to separate
groups of numeric digits within the
whole number portion of a number
formatted by the $FNUMBER or
$INUMBER function. See “Number
Formatting”.

“,”

Table 11-3: Locale Properties (Continued)

Property Name Description
Default
Value
Caché ObjectScript Programming Guide 11-15

Chapter 11 — Date, Time, and Numeric Utilities
 NumericGroupSize The number of digits in a numeric
group formatted by the
$FNUMBER or $INUMBER
function. See “Number
Formatting”.

3

 PM The suffix which may optionally be
appended to time values at or after
12 noon.

“PM”

 PlusSign The character which may
optionally precede or follow a non-
negative numeric quantity
formatted by the $FNUMBER or
$INUMBER function. See “Number
Formatting”.

“+”

 TimeFormat The TimeFormat code used
whenever a $ZDATETIME,
$ZDATETIMEH, $ZTIME or
$ZTIMEH function call omits its
TimeFormat parameter, or specifies
a TimeFormat parameter value of -
1. See “Format Code Descriptions”.

1

 TimePrecision The number of fractional digits
displayed in a time value whenever
a $ZDATETIME or $ZTIME
function call omits its Precision
parameter, or specifies a Precision
parameter value of -1.

0

Table 11-3: Locale Properties (Continued)

Property Name Description
Default
Value
11-16 Caché ObjectScript Programming Guide

Locales
Month and Date Names

The default values for the month/weekday name abbreviations and full names
are:

 " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"

 " January February March April May June ... November December"

 " Sun Mon Tue Wed Thu Fri Sat"

 " Sunday Monday Tuesday Wednesday Thursday Friday Saturday"

 TimeSeparator The character used to delimit the
hours, minutes and seconds in a
time value. See “ODBC Date
Format and Time Separator”.

“:”

 WeekdayAbbr The abbreviations of the names of
the seven days of the week, starting
with Sunday and ending with
Saturday, used whenever a
$ZDATE or $ZDATEIME function
call selects a date format which uses
weekday name abbreviations (i.e.,
the effective DateFormat code is
11).

See “Month
and Date
Names”

 WeekdayName The full names of the seven days of
the week, starting with Sunday and
ending with Saturday, used
whenever a $ZDATE or
$ZDATEIME function call selects a
date format which uses full
weekday names (i.e., the effective
DateFormat code is 12).

See “Month
and Date
Names”

 YearOption The YearOption code used
whenever a $ZDATE, $ZDATEH,
$ZDATETIME or $ZDATETIMEH
function call omits its YearOption
parameter, or specifies a
YearOption parameter value of -1.
See “Format Code Descriptions”
and “Year Option Code and Date
Format”.

0

Table 11-3: Locale Properties (Continued)

Property Name Description
Default
Value
Caché ObjectScript Programming Guide 11-17

Chapter 11 — Date, Time, and Numeric Utilities
As with the MonthNameList parameter of the $ZDATE function, the first
character of the above month/weekday strings specifies the delimiter which
separates each of the names in the string. In the case of the month name
abbreviations and full names, this same delimiter is also the delimiter used in the
formatted date values in between the days, months, and years.

Format Code Descriptions

The DateFormat, TimeFormat, maxdate, mindate, and YearOption codes are
described in the $ZDATE intrinsic function in the Caché ObjectScript Language
Reference.

Number Formatting

When an $FNUMBER function call specifies a “.” as one of its format codes, that
call returns “.” as its NumericGroupSeparator and “,” as its DecimalSeparator,
regardless of the current locale’s properties. This call uses the NumericGroupSize,
PlusSign, and MinusSign properties of the default locale (i.e., 3, “+”, “-”),
regardless of the current locale. This results in European number formatting.

ODBC Date Format and Date Separator

The $ZDATE, $ZDATEH, $ZDATETIME, and $ZDATETIMEH functions ignore
the “DateSeparator” character defined in the current locale when the effective
DateFormat code is 3, because the ODBC standard dictates that the ODBC date
format always uses a hyphen
(“-”) as its separator character.

ODBC Date Format and Decimal Separator

The $ZDATETIME and $ZDATETIMEH functions ignore the DecimalSeparator
character defined in the current locale when the effective DateFormat code is 3,
because the ODBC standard dictates that the ODBC date format always uses a
period (“.”) as its decimal separator character.

ODBC Date Format and Time Separator

The $ZDATETIME and $ZDATETIMEH functions ignore the TimeSeparator
character defined in the current locale when the effective DateFormat code is 3
because the ODBC standard dictates that the ODBC date format always uses a
colon (“:”) as its time separator character.

Year Option Code and Date Format

The “YearOption” code defined in the current locale only affects $ZDATE,
$ZDATEH, $ZDATETIME, and $ZDATETIMEH function calls which have an
effective DateFormat code of 0, 1, 2, 4, or 7. All other DateFormat codes produce a
date whose year, if any, has 4 digits regardless of the effective YearOption.
11-18 Caché ObjectScript Programming Guide

Locales
 This example shows how you could change the MonthAbbr property to use
upper case instead of mixed case letters for the month name abbreviations.

>s x=$$SetDCLocale^%NLS("DEFAULT")
>f i=0:1:12 w !,?6,i,?12,$ZD(57191,i)
0 01 Aug 99
1 08/01/99
2 01 Aug 99
3 1999-08-01
4 01/08/99
5 Aug 1, 1999
6 Aug 1 1999
7 Aug 01 99
8 19990801
9 August 1, 1999
10 5
11 Fri
12 Friday
>w $$SetDCFormat^%NLS("MonthAbbr",
$ZCVT($$GetDCFormat^%NLS("MonthAbbr"),"U"))
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>w $$GetDCFormat^%NLS("MonthAbbr")
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
>f i=0:1:12 w !,?6,i,?12,$ZD(57191,i)
0 01 AUG 99
1 08/01/99
2 01 AUG 99
3 1999-08-01
4 01/08/99
5 AUG 1, 1999
6 AUG 1 1999
7 AUG 01 99
8 19990801
9 August 1, 1999
10 5
11 Fri
12 Friday
Caché ObjectScript Programming Guide 11-19

Chapter 11 — Date, Time, and Numeric Utilities
This example illustrates how the locale can alter the behavior of the $FNUMBER
function.

>s x=$$SetDCLocale^%NLS("DEFAULT")
>w $FN(123456789.987654321,"+")
+123456789.987654321
>w $FN(123456789.987654321,"+,")
+123,456,789.987654321
>w $$SetDCFormat^%NLS("PlusSign","*")
+
>w $$SetDCFormat^%NLS("DecimalSeparator",":")
.
>w $$SetDCFormat^%NLS("NumericGroupSeparator",";")
,
>w $FN(123456789.987654321,"+")
*123456789:987654321
>w $FN(123456789.987654321,"+,")
*123;456;789:987654321
>w $FN(123456789.987654321,"+.")
+123.456.789,987654321

Numeric Utilities
The Caché numeric utilities are listed in the following table. All these utilities are
character-based.

Converting a Decimal into an Octal
The %DOCTAL utility converts a string representing a numeric value in decimal
notation into a string representing a numeric value in octal notation. It prompts
you to type a numeric value in decimal notation, then displays that value in octal
notation.

Table 11-4: Numeric Utilities

Utility Purpose

%DOCTAL Convert a decimal into an octal

%DX Convert a decimal into a hexadecimal

%OD Convert an octal to a decimal

%SQROOT Compute the square root

%XD Convert a hexadecimal into a decimal
11-20 Caché ObjectScript Programming Guide

Numeric Utilities
If you invoke the utility using the entry point INT^%DOCTAL, the utility
converts a numeric value in decimal notation taken from the variable %DO into
octal notation. %DOCTAL leaves the value in octal notation in %DO.

The following example demonstrates both methods of invoking the utility:

%SYS>D ^%DOCTAL

Decimal #: 15500 Octal: 36214
Decimal #: 4096 Octal: 10000
Decimal #: 500 Octal: 764
Decimal #: <RETURN>

%SYS>S %DO=1023 D INT^%DOCTAL

%SYS>W %DO
1777
%SYS>

Converting a Decimal into a Hexadecimal
The %DX utility converts a string representing a numeric value in decimal
notation into a string representing the same numeric value in hexadecimal
notation. It prompts you to type a decimal numeric value, then displays that
value in hexadecimal notation.

If you invoke the utility using the entry point INT^%DX, the utility converts the
string representing a numeric value in decimal notation found in the variable %D
into a string representing the numeric value in hexadecimal notation. The utility
then assigns the string in hexadecimal notation to the variable %X.

The following example demonstrates both methods of invoking the utility:

%SYS>D ^%DX
Decimal: 123 Hex: 7B
Decimal: <RETURN>
%SYS>S %D=456 D INT^%DX
%SYS>W %X
1C8
%SYS>

Converting an Octal to a Decimal
The %OD utility is used to convert octal to decimal notation. When you call %OD,
it prompts you to type a number in octal notation and displays that value in
decimal notation.
Caché ObjectScript Programming Guide 11-21

Chapter 11 — Date, Time, and Numeric Utilities
If you invoke %OD using the entry point INT^%OD, it converts into decimal
notation a numeric value taken from the variable %OD in octal notation. The
utility leaves the value in decimal notation in the variable %OD.

The following example demonstrates both methods of invoking the utility:

%SYS>D ^%OD

Octal #: 2400 Decimal: 1280
Octal #: 17325 Decimal: 7893
Octal #: <RETURN>
%SYS>S %OD=37777 D INT^%OD

%SYS>W %OD
16383
%SYS>

Computing the Square Root
The %SQROOT utility prompts for a numeric value for which the square root is
computed. The root is then displayed on your terminal.

When you invoke the utility using the entry point INT^%SQROOT, the utility
computes the square root of the value in the variable %X and leaves the result in
the variable %Y. The variable %X must be defined.

The following example demonstrates both methods of invoking the utility:

%SYS>D ^%SQROOT
Square root of: 100 is: 10
Square root of: 10 is: 3.162277660168379332
Square root of: <RETURN>

%SYS>

%SYS>S %X=100 D INT^%SQROOT
%SYS>W %Y
10
%SYS>

Converting a Hexadecimal into a Decimal
%XD prompts you to type a hexadecimal numeric value and returns that value in
decimal notation.

If you invoke the utility using the entry point INT^%XD, the utility converts the
string representing a numeric value in hexadecimal notation found in the variable
%X into a string representing the same numeric value in decimal notation. The
utility then assigns the string in decimal notation to the variable %D.
11-22 Caché ObjectScript Programming Guide

Numeric Utilities
The following example demonstrates how to use the utility:

%SYS>D ^%XD
Hex: 1CD Decimal: 461
Hex: <RETURN>
%SYS>

Additional Math Functions
Caché includes a variety of additional math functions (listed in the following
table) and a special variable.

The mathematical special variable is $ZPI which contains the value of the
constant Pi (3.141592653589793238).

Table 11-5: Mathematical Functions

Function Purpose

$ZABS Returns the absolute value of any number

$ZARCOS Returns the trigonometric inverse cosine of a signed
decimal number

$ZARCSIN Returns the trigonometric inverse sine of a signed
decimal number

$ZARCTAN Returns the trigonometric inverse tangent of any
number

$ZCOS Returns the trigonometric cosine of an angle in radians

$ZCOT Returns the trigonometric cotangent of an angle in
radians

$ZCSC Returns the trigonometric cosecant of an angle in
radians

$ZEXP Returns a value that is the natural logarithm (base e)
raised to the specified power

$ZLN Returns the natural logarithm (base e) of any number

$ZLOG Returns the base 10 logarithmic value of an number

$ZPOWER Returns the value of a specified number raised to a
specified power
Caché ObjectScript Programming Guide 11-23

Chapter 11 — Date, Time, and Numeric Utilities
$ZSEC Returns the trigonometric secant of an angle in radians

$ZSIN Returns the trigonometric sine of an angle in radians

$ZSQR Returns the square root of any positive number

$ZTAN Returns the trigonometric tangent of an angle in
radians

Table 11-5: Mathematical Functions (Continued)

Function Purpose
11-24 Caché ObjectScript Programming Guide

	Date, Time, and Numeric Utilities
	Date and Time Utilities
	Year 2000 Compliance
	Displaying the Current Date
	Converting Dates to an Internal Format
	Testing for Leap Years
	Using $ZDATEH for Most Printable Formats

	Sliding Window Support %DATE Utility Entry Points
	Converting an Internal Date to an External Format
	Using $ZDATE for Most Printable Formats

	Displaying the Current Time
	Converting the Time to an Internal Format
	Use INT^%TI Entry Point to Bypass the Operator Dialogue
	$ZTIMEH Function

	Displaying the Current Time, Day, and Date
	Converting the Time to an External Format
	$ZTIME Function

	Locales
	Definition of Locales
	Limitations of the Locale Implementation
	Manipulating Locales
	Error Messages Returned by Locale Extrinsic Functions
	Using Locale Extrinsic Functions

	Creating Private Locales
	Example of Private Locale Creation

	Locale Properties
	Month and Date Names
	Format Code Descriptions
	Number Formatting
	ODBC Date Format and Date Separator
	ODBC Date Format and Decimal Separator
	ODBC Date Format and Time Separator
	Year Option Code and Date Format

	Numeric Utilities
	Converting a Decimal into an Octal
	Converting a Decimal into a Hexadecimal
	Converting an Octal to a Decimal
	Computing the Square Root
	Converting a Hexadecimal into a Decimal
	Additional Math Functions

