Open M/SQL Developer Guide

Version: Open M/SQL F.6, F.7

Revision Date: April 25, 1996

Print History

Creation Date: July, 1992

Revision Dates: March, 1993
September, 1995

Open M/SQL Developer Guide

Copyright © InterSystems Corporation
1995
All rights reserved
NOTICE
PROPRIETARY — CONFIDENTIAL

This document contains trade secret and confidential information which is the property of InterSystems Corpo-
ration, One Memorial Drive, Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the
operation and maintenance of the products of InterSystems Corporation. No part of this publication isto be
used for any other purpose, and this publication is not to be reproduced, copied, disclosed, transmitted, stored in
aretrieval system or translated into any human or computer language, in any form, by any means, in wholeor in
part, without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited
except to the limited extent set forth in the standard software license agreement(s) of InterSystems Corporation
covering such programs and related documentation. InterSystems Corporation makes no representations and
warranties concerning such software programs other than those set forth in such standard software license
agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or aris-
ing out of the use of such software programsis limited in the manner set forth in such standard software license
agreement(s).

THE FOREGOING ISA GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS
IMPOSED BY INTERSY STEMS CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM,
ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION REFERENCE SHOULD BE MADE TO
THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSY STEMS CORPORATION, COP-
IES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in thisdocument, and it reserves
theright, in its sole discretion and without notice, to make substitutions and modifications in the products and
practices described in this document.

M/SQL®, M/PACT®, and M/NET® are registered trademarks, and I nter Systems™, Open M™, Open M/SQL™,
ISM™, DTM™, DT-MAX™, DT Windows™, DSM™, and DASL™ are trademarks of | nter Systems Cor poration.

MUMPS®, now called M Technology, is a registered trademark of Massachusetts General Hospital.
DSV DDP™, VAX™, VMS™, Open VMS™, and DEC™ are trademarks of Digital Equipment Cor poration.

Microsoft®, MS-DOS®, Microsoft Access®, and, Excel® are registered trademarks and Windows™, Visual
Basic™, and Visual C++ ™ are trademarks of Microsoft Corporation.

ORACLE® is aregistered trademark of Oracle Corporation.
For Support questions about any InterSystems products, contact the InterSystems Worldwide Support Center:

U.Ss.:
Tel: +1 617 621-0700
Fax: +1 617 494-1631
Europe:
Tel: +44 753 830-077
Fax: +44 753 861-311
I nter net — support@intersys.com

Preface

Open M/SQL is an integrated environment for developing and running database
applications. It includes an advanced relational database management system, an
application and report generator, and a procedural programming language.

Open M/SQL combines two ANSI-Standard languages — M, the only proce-
dural programming language designed specifically for database applications, and
SQL (Structured Query Language), the most widely used relational query lan-
guage.

Open M/SQL provides two program development environments:

n The M environment, in which you can execute system management com-
mands, and create, modify, and execute M routines.

n Therelational environment, in which you define the database in relational
terms and use the application generator tools to create, modify, and execute
advanced relational database applications.

Open M/SQL’s relational environment is a complete RDBMS (Relational Data-
base Management System)—it includes a development environment for creating
advanced relational database applications, a management system for maintaining
them, and a run-time environment for executing them.

Open M/SQL’s relational environment has the following components:

n Relational Data Dictionary — environment where you define tables to rep-
resent the logical structure of arelational database, or map the physical struc-
ture of an existing database to relational tables. These tables act asthe
foundation on which Open M/SQL relational database applications are built.

n Form Generator — an application generation tool used to create ready-to-
run data screens through which end users can add, retrieve, edit, and delete
database information.

Open M/SQL Developer Guide iii

Preface

n Menu Generator — an application generation tool used to create pop-up
menus and menu bars which unite the various components of an application
inalogical and visually sophisticated manner and structure an application by
defining how it is organized and how it is presented to end users.

n M/PACT (Report Generator) — areport-writing tool used to create and run
sophisticated end-user data reporting applications that interact with the Open
M/SQL Relational Data Dictionary.

n Query Generator — environment in which you can create and run database
queries on an ad-hoc basis.

n Relational Server — an optional component of Open M/SQL that allows
non-M applications to access and modify your Open M/SQL relational data-
base.

The Open M/SQL Developer Guide describes all aspects of Open M/SQL pro-
gram development that are independent of considerations specific to hardware
platform, operating system, and host M system.

This document provides an overview of the Open M/SQL program devel opment
environment (including both the M environment and the relational environment)
and presents various strategies for developing applications.

More specifically, it containsinformation on the following topics:

n Development of macro source routines

n Useof the Full Screen Editor

n Use of routine management utilities

n Use of the Open M/SQL developer utilities

n Overview of Open M/SQL’s implementation of SQL

n Various methods for using SQL to query an Open M/SQL relational database

Audience

This document is intended for use by programmers who are using InterSystems’
Open M/SQL Developer product to create Open M/SQL relational database
applications.

The term “application programmer” in this document refers to the programmers
who create Open M/SQL relational database applications.

Theterm “user” in this document refers to the end user of an Open M/SQL rela
tional database application.

This document assumes that you have programming experience. In specific, it
assumes familiarity with programming in the M language and the SQL language.

iv Open M/SQL Developer Guide

Preface

Organization of this Guide

This manual isdivided into four sections. Section I, Getting Sarted, contains the
following two chapters:

n

Chapter 1, Introduction to Open M/SQL, introduces InterSystems’ Open
M/SQL and discusses its usesin a4GL application generator environment.
Chapter 1 begins with a discussion of application development strategies,
then goes on to discuss the components of Open M/SQL and their various
applications.

Chapter 2, The Open M/SQL Relational Database, describes relational con-
cepts and their implementation in SQL aswell asthe database concept and its
implementation in Open M/SQL.

Section |1, Program Devel opment, contains the following five chapters:

n

Chapter 3, Open M/SQL Program Development, outlines the range of facili-
ties available for program development in Open M/SQL.

Chapter 4, Full Screen Editor, describes the Open M/SQL Full Screen Editor
used in editing macro source routines, intermediate code routines, and
includefiles.

Chapter 5, Devel oping Macro Source Routines, describes how to create rou-
tines at the macro source level, including descriptions of all the macro con-
structs permitted by Open M/SQL at thislevel.

Chapter 6, Routine Handling and Maintenance, presents an overview of the
Open M/SQL routine environment and describes routine handling and main-
tenance.

Chapter 7, Open M/SQL Routine Management Utilities, describesthe built-in
utilities that InterSystems supplies to assist in examining and manipulating
routines and include files.

Section |11, SQL Language Implementation, contains the following three chap-
ters:

n

Chapter 8, Embedded SQL, describes the two ways of using SQL in an Open
M/SQL program: cursor-based and non-cursor-based.

Chapter 9, Open M/SQL Implementation of SQL, describes extensions to
ANSI-Standard SQL that InterSystems has incorporated into Open M/SQL.

Chapter 10, Query Generation and Processing, describes the Query Genera-
tor and the Query Editor—the two facilities provided by Open M/SQL for
the generation and processing of ad hoc SQL queries.

Open M/SQL Developer Guide v

Preface

Section IV, Application Programming, contains the following chapter:

n Chapter 11, Programmer Interface to Applications, presents an overview of
the M variables and globals that interact with forms and reports. It al'so dis-
cusses the uses of inserted M code in an application, the conventions for call-
ing forms, reports, queries, and menus and emulating forms, and the contents
of applications.

n Chapter 12, Open M/SQL Developer Utilities, describes the built-in utilities
that InterSystems suppliesto assist in examining and manipulating routines
and include files.

This guide contains the following appendices:

n Appendix A, SQL Error Messages, which lists and describes all message
codes (successful completion messages and error messages) that can be
returned to the SQLCODE variable.

n Appendix B, Open M/SQL Reserved Words, which lists all Open M/SQL
reserved words.

n Appendix C, Open M/SQL Supported Terminal Types, which listsall terminal
types currently supported by Open M/SQL.

n Appendix D, Keyboard Actions for the Full Screen Editor, which showsthe
keyboard mapping for using the Full Screen Editor on keyboards associated
with the terminal types supported by Open M/SQL/

A glossary defines the terminology used in this guide.

vi Open M/SQL Developer Guide

Preface

Other References

Depending on the configuration of your system, you may also wish to refer to the
following guides:

n

The Open M/SQL Database Administrator’s Guide, which describes how to
configure, manage, and maintain an Open M/SQL environment, including
both the application development environment and the application run-time
environment. For sites that use the Open M/SQL Relational Server to make
Open M/SQL data available to external applications, this guide also
describes how to configure, manage, and maintain the Relational Server.

The Open M/SQL User Interface Programming Guide, which describes how
to use the application generation tools within Open M/SQL Devel oper to cre-
ate a user interface for your relational database. These application generation
tools include the Form Generator — used to create ready-to-run data
screens through which end users can add, retrieve, edit, and del ete database
information; the M enu Generator — used to create pop-up menus and menu
bars which unite the various components of an application in alogical and
visually sophisticated manner and structure an application by defining how it
isorganized and how it is presented to users; and the Application Help
Facility — used to create and deploy a context-sensitive on-line help system
for your Open M/SQL relational database application.

The Open M/SQL Data Dictionary Guide, which describes how to define
tables to represent the logical structure of arelational database, or how to
map the physical structure of an existing database to relational tables. These
tables act as the foundation on which Open M/SQL relational database appli-
cations are built.

The Open M/SQL Relational Client User Guide, which describes how to
access an Open M/SQL relational database (retrieve and modify data) from
various third-party application development toals.

The Open M/SQL Server Programming Guide, which describes how to
access an Open M/SQL relational database from applications created using
the C or C++ programming language.

The M/PACT Guide, which describes how to create and run sophisticated
end-user data reporting applications that interact with the Open M/SQL Rela-
tional Data Dictionary.

An tutorial entitled Open M/SQL: A Gentle Introduction, which uses a
project management demonstration application to show how to develop and
use an Open M/SQL application.

The Open M/SQL M Programming Guide, which describes ISM (InterSys-
tems’ original implementation of the M programming language), including
global database concepts, the devel opment of intermediate code routines, and
theuse of ISM utilities.

Open M/SQL Developer Guide vii

Preface

n The appropriate system guide for your Open M system platform, which
describes the system-specific elements of using Open M on your particular
computer and operating system.

viii Open M/SQL Developer Guide

Preface

Typographic Conventions Used in this Guide

This guide observes the following typographic conventions:

Convention Description

Example

Body text appears in Times
Roman type.

Open M/SQL offers avariety of strategies for
developing an application.

Computer generated informa-
tion appears in Courier type.

Li nki ng/ Synt ax Checki ng. .. DONE

Computer generated required
fields appear in Courier Bold
type.

Updat e New M Dat abase Defaul ts?

User input appears in Courier | Yes

Bold Italic type.

Keystrokes appear in upper- <RETURN>
case and enclosed within

angle brackets.

Simultaneous keystrokes <CTRL-Z>

appear hyphenated, in upper-
case, and enclosed within
angle brackets.

Command syntax appears
indented in Courier type with
variable information in Courier
Italic type and enclosed within
angle brackets.

> do setai d*%rsql (“<User Nanme>")

Examples of user-typed com-
mands appear indented in
Courier Bold Italic type.

> do setai d*%sql (“Zeus”)

Procedure titles appear in bold
Helvetica type and are desig-
nated by an underlined side-
head prefix.

Procedure To access the System Configu-
ration window:

Note, Caution, Warning, and
Hint statements appear in Hel-
vetica type with an appropriate
sidehead.

Note Turning DBMS security OFF is a useful way
to guarantee access to current applications
by users who will need them while you are
in the process of implementing a privilege
system.

Titles of other guides and other
chapters within this guide
appear in Times ltalic type.

Open M/SQL User Interface Programming Guide

Open M/SQL Developer Guide ix

Preface

X Open M/SQL Developer Guide

Table of Contents

Preface

AUIENCE. . .o iv
Organization of thisGuide. %
Other REfErenCest e e Vii
Typographic ConventionsUsed inthisGuide iX

Part |—Getting Started

1 Introduction to Open M/SQL

What ISOpen M/SQL 2. 1-2
What [sOpen M/SQL Developer?.t e 1-3
Application Development Strategieso 1-4
Automated Program Generationiiiiiiiiin.nn 1-4
Procedural Programming in ANSIM oo 1-6
Mixed ENVIronmentso 1-7
Overview of the System Environmentcoieiiinenn.. 1-8
Hardware and Operating System Environments. 1-8
Memory Environment 1-9
Global Database.o 1-9
ANSI-Standard M Language Processor.covveeineeeennnnn 1-9
ANSI-Standard SQL Language Processor.ccovvvvennnn.. 1-9
Relational DataDictionaryccoviiiiiiiniinnnnn.. 1-10
Program Development Environment. 1-10
The Form Generator and M/PACTt 1-12
MenU GENEIatoro vttt e 1-12
Query Optimizer e e 1-12
M/NET Networking.o vt 1-13

Open M/SQL Developer Guide Xi

Table of Contents

DT NEWOIK . . oo e 1-13
Open M/SQL Runs on Top of Any M Implementation 1-14
Integration of TWoO ANSI Standardst 1-15
Embedded SQLo 1-15
Inserted Code for Data Dictionary, Forms, and Reports. 1-15
AccessingtheGlobal Database.coiiiii i 1-16
SQL - Relational Datahase ACCESSo vt v i i 1-16
M Global Referenceso i 1-16
Open M/SQL Program Structure. ie i 1-17
Macro SOUrCE ROULINGES. oot 1-17
Intermediate Code ROUtINES oot 1-17
Object Code ROULINES. oot 1-18
Open M/SQL Routine Utilitiesand Editors 1-18
Distributed Data Processingo oo i 1-19

2 The Open M/SQL Relational Database

Open M/SQL Implements Relationsas Tables. 2-2
Open M/SQL Tables Follow The First Normal Form 2-2
Open M/SQL Supports Two Typesof Tables 2-3

Open M/SQL Implements Schemasas M Directories. 2-4
Open M/SQL Database Structure for Non-1ISM Implementationsof M. 2-4

The Open M/SQL Relational DataDictionary 2-5

Accessing Datain an Open M/SQL Relational Database. 2-6
Using SQL toQuery theDatabase 2-6
Cartesian Productt 2-7
0= ot 29
RESIIICE . . 2-10
JOINS o 2-11

InterSystems' Extensionsto the Relational Model 2-14
One-Way OULEr JOINSttt e e 2-14
IMpPlicit JOINS. . ..o 2-15
Multi-LineFields 2-21

Part Il—Program Development

3 Open M/SQL Program Development

Programming Methods i 32
TheFull Screen Editor.t e 32
Intermediate Code ROULINESottt e e 3-3

RoutineLine Editor.t e 3-3

xii Open M/SQL Developer Guide

Table of Contents

Routine Management Utilities. i 3-3
Developer UtIlitieso 34
Programmer Interfaceto Applications.o, 34

Full Screen Editor

Overview of the Full ScreenEditor o it 4-2
Full Screen Editor Features. 4-2
Routine Typesfor Editingt 4-2

Invokingthe Full ScreenEditor i 4-3
Loading Existing Routines. 4-6
Creating New ROULINES oot 4-7
Preventing OVerwrites.t e 4-7

Full Screen Editor ScreenDisplay oo v v 4-8

Navigating the Full Screen Editor Menu System. 4-10
Primary Menu 4-10
BuffersMenu. 4-11
WindowsSMenu 4-11
Mark MenU o 4-12
Other Menu e 4-12

Editing Operationst e 4-13
Movingthe CUrsor.o e e e 4-13
INSErting TeXt. . ..o o e 4-14
DeletingTeXt . ..o e 4-14
CuttingandPasting Textcoiiini e 4-15
Editing Multiple Copiesof aRoutine 4-16
Displaying MultipleBuffers oo, 4-18
Setting aMark in Your Current Buffer 4-19
Searching For Text Strings 4-20
ReplacingText Strings.o oot e e 4-20
Using Control Key Commands for Quicker Editing............... 4-20

GettingHelp. ..o 4-22

Exitingthe Full ScreenEditor o i 4-23
Automatic Syntax Checking o 4-23
Automatic Dateand TimeStamps. viv i 4-24

Developing Macro Source Routines

Creating Macro SoUrce ROULINESo ot 5-2
Compiling Macro SourceRoutines 5-2
Macro Source Routinesand Include Files. 5-3
Macro Source Routines Are Portable Across M Implementations 5-3

Open M/SQL Developer Guide xiii

Table of Contents

The Open M/SQL MaCro PreproCessor. . ..o v v v e e e eee e i 5-4
Macro Preprocessor Commands.oovi i 54
Macro Preprocessor FUNCLIONSo 55
MaCro REfEIreNCES oot 5-5

Summary of Macro Preprocessor Commands. 5-7
#defineand#undef 5-7
Nested EXpansionot 59
#ifdef, #ifundef, #if, #else, #elsaif, and#endif 5-11
HNClude. 5-13
Indicating Comment LineS 5-15

Summary of Macro Preprocessor Functions. 5-16
<7 o | () 5-16
BVENAOT . . oo 5-17

6 Routine Handling and Maintenance

Routine ENVironment.ot 6-2
WrHtiNg ROULINES. o e 6-2
Converting Intermediate Code to Macro SourceCode. 6-2

Routine Names, Extensions, and VersionNumbers 6-3
RoutineNamesMust BeUnique oiiin... 6-3
Case SENSItiVILY . . . oo 6-3
ROULINEEXIENSIONS oo e 6-3
VersonNUMbBErso 6-5

Using Wildcard Symbolsto Specify Routines 6-6
Wildcardsfor RoutineNames.t 6-6
Wildcardsfor EXtensionst 6-7
Wildcardsfor VersonNumbers.t 6-7

Referencing Routinesin Other Directories. ..., 6-8
Restrictions on Using Remote Directory Syntax 6-9

ROULINE SELS. . ..ot 6-10
CreatingaRoutineSet 6-10
UsingaRoutine Set.ot e 6-10

Compiling ROULINES.o e 6-11

BackingUpPROULINES.t e 6-12
How Backups are Shuffled and Renumbered. 6-12
The Full Screen Editor Generates Backups When You Save. 6-13
Restoring aBackup Version to the Current Version. 6-13

Deleting ROULINES oo e 6-14
QoUrdEl 6-14
018 010 1 = 6-14

Routine Copying and Compiling Synchronization 6-15

xiv. Open M/SQL Developer Guide

Table of Contents

Open M/SQL Routine Management Utilities

Summary of Routine Management Utilities. 7-2
Accessing the Routine Management Utilities 7-3
Calling the Routine Utilities Directly fromM. 7-3
Accessing the Routine Utilities from within Open M/SQL. 7-3
11 0] 1) 7-7
Selectingan Output Device. 7-7
UM, 7-9
Routine Input Optionso 7-9
Compile Macro Source Routings. 7-10
QOUNDIT .« et 7-11
QOUICHANGE . . . o e ittt e 7-15
GOUNCOIMIP. .« . et ettt e e e e e e 7-17
QOUICOPY - - v vt e e e e e e et e e e e e 7-19
QOUNTING. . 7-23
QoUrfand 7-25
QOUNDEL. . . e 7-27
018 Y7 1 17 N 7-28
0180 = 7-29
GOUNSEL . . . ettt 7-30
TheGlobal "mtemp.o 7-30
Parametersof Qourset. 7-31

Part Ill—SQL Language Implementation

8

Embedded SQL

Preprocessor Syntax DelimitsEmbedded SQL 8-2
Open M/SQL Supports Two Kindsof Embedded SQL 8-2

Non-Cursor-Based SQL. oottt 8-2

Cursor-Based SQLo 8-4
Referencing Macrosin Embedded SQL. 8-7
Internal and External Values 8-8
Multi-LineValues 8-8
Reserved Tag and VariableNames, 89
Portability . . .o 8-9
Detailed Example. 8-10

Open M/SQL Developer Guide xv

Table of Contents

XVi

9

Open M/SQL Implementation of SQL

Summary of EXtENSIONS.ot 9-2
Added Keywordsand Symbols. i, 9-3
JOINS. o 9-5
One-Way OULEr JOINS v ettt e e 9-5
IMplicit JOINS. . ..o 9-6
Aggregate EXteNSIONS oot 9-11
AggregatesasQuery Columns.o oo 9-11
JOFOREACH. . . . 9-12
WAFTERHAVING. . . e 9-14
DISTINCT BY .ot e 9-14
DUplicate ROWS o 9-16
Embedded SQLt 9-17
Usingthe INTO Clause. oo s 9-18
YouMay Use INTO in Cursor Declaration 9-18
UsSiNg INTOWIth AIrays. . ..o e i e 9-19
SELECT INTOUSING AMayS. . oot vie et ie e ee e eiieeee e 9-19
INSERT and UPDATE INTO USINGAITaYS . .. oo vovvieeeeens 9-21
VALUES Extension for INSERT and UPDATE Queries. 9-23
Multi-Line Fields.o 9-24
Using Multi-Line Fieldsin SELECT Queries. 9-24
Using Multi-Line Fieldsin INSERT and UPDATE Queries. 9-25
Internal and External Values. 9-26
%INTERNAL and %EXTERNAL Functions. 9-29
M OPEraOrS. . .ttt et 9-30
Pattern Match Operator Can Test Variables. 9-31
Extensionsto SQL Operatorsvvvviin it 9-32
[NOT]IN Operatorottt et e e 9-32
Concatenation Operatorcvvveiein i 9-32
OSTARTSWITH. ..o e e 9-33
LIKEPredicatecouui i 9-34
Special Pattern MatchingCharacters 9-34
Specifying aHost Variable asthe Search Pattern. 9-35
ESCAPE Qualifier .. .o e 9-35
ErrorHandling ... 9-36
Collation SeqUENCE oot 9-37
EXACT . 9-37
ALPHAUP 9-38
UPPER ... 9-38
Plus, Minus,and Space.ot 9-39

Open M/SQL Developer Guide

Table of Contents

10

Field Collation Sequence. ..o 9-39
Collation Sequenceand ORDERBY, 9-40
Collation Sequenceand ComparisonS.ovvveeinnnennnn.. 9-40
%ALPHAUP, %UPPER, and %EXACT ..., 9-41
Changing the Default Collation Sequence. 9-42
ONOCHECK ..ot 9-44
SQL Transaction Processingovviveii e 9-45
Privilege Operators.ot 9-47
GRANT L 9-47
REVOKE. ..o e 9-49
%CHECKPRIV Keywordt 9-50
SQLCODEVEUES. . ..ottt e 9-51
USINg SUDQUETTESottt e e e e 9-52
UsingaSubqueryinaWHEREClause. 9-52
UsingaSubqueryinaFROMclause.ccovvun.t, 9-54
Open M/SQL Subquery EXtensions.ccovvinevnnnn... 9-55
Query-Based VIeWsSot 9-57
CREATEVIEW ... e 9-57
ALTERVIEW e 9-57
DROPVIEW . ..o e e 9-58
Restrictions on Defining Query-Based Views. 9-58
You May Name Query-Based Viewsin FROM Clause 9-58

Query Generation and Processing

Facilitiesfor Creating SQL QUENes.t 10-2
Accessing the Query Generation Facilities. 10-2
Usingthe Query Generator.o vv ottt i 10-5
EXxample. . ..o e 10-9
Query DefinitionMenuBar.oiiiiiii i 10-11
Using the Interactive Query Editor. oo, 10-17
QUENY TYPES. . et e 10-17
Creating a Query in the Interactive Query Editor 10-18
EditingCommands i 10-23
Query Editor Horizontal OptionsMenu 10-23
RUNNING QUENIES. . . o vttt e e et 10-29
Privileges RequiredtoRunQueries.coovivennon... 10-29
Running a Query From its Definition Environment 10-29
Using the Run Existing Queries Utility. 10-30
RunningaQuery fromM Code. ... 10-31
Selectingan Output Device. 10-32

Open M/SQL Developer Guide xvii

Table of Contents

ASCII-Delimited Output for Queriescovviiiiinenn.. 10-35
Contentsof an ASCII-Delimited File. 10-35
Queries Support Dual Output Formats. 10-35

CopyiNg QUENESottt e 10-36

List QUENieSREPOItot 10-39

Detailed Query ListingReport. 10-40

Part IV—Application Programming

Xviii

11 Programmer Interface to Applications

Open M/SQL Variables. 11-2
List of Open M/SQL Percent (%) Variables. 11-2
Entry Pointsto the%msgl Routine.oov s, 11-8
OpenM/SQL Globals ... 11-9
Object DefinitionGlobals. 11-9
Open M/SQL Percent (%) Globals. 11-12
Inserting Code into Open M/SQL Applications 11-13
Inserted Code Can Reference Fields.ooiintt. 11-14
Inserted Code Can Reference Variablesand Globals. 11-15
Open M/SQL Performs Syntax Checking on Inserted M Code.. 11-15
I e = £ 11-16
Override Queriesfor LooKUPSo vi oo n 11-22
Computed Fields. 11-22
Internal/External ConversionCode.ovviviinennn... 11-23
Additiona ValidationCode oo 11-24
Required-MaybeFields. i 11-24
Map Subscriptsand Pieces.o 11-25
NEXT Subroutine. e 11-25
Conditional Mapt 11-26
Calling Open M/SQL ObjectsfromM Programs 11-27
Caling Formso 11-27
Calling REPOMS. . .. oo 11-30
Calling QUENES. . ..ot 11-31
Caling Old-StyleMenust 11-32
CalingMenu ObjectS. . ..ot 11-32
Emulating Form Behavior fromM Programs. 11-34
Displaying Help TextinaHelp TextBoxX 11-34
WritingMessage TeXt.o e e 11-35
ReadingFields. i 11-36
CleaningUpWindowscoviiiii i e 11-38

Open M/SQL Developer Guide

Table of Contents

12

Establishing Authorization ID from Programmer Mode 11-39
Intermixing Open M/SQL Objects with User-Defined M Routines 11-40
pushvars’¥omsglutl 11-40
popvarsf%msglutl 11-41
$Pmsglvarshoomsalutl 11-42
Contentsof Applicationst 11-43
RoutineNames.ot 11-43
Contentsof Base TableRoutines., 11-44
Contentsof FormRoutines 11-46
Contentsof Menu Object Routines. 11-46
Contents of Old-StyleMenuRoutines. 11-47
Contentsof Report Routinest 11-47
Contentsof QUEry ROULINES.oovvi i 11-47

Open M/SQL Developer Utilities

Accessing the Developer UtilitiesMenut 12-2
Using the Object Compile Driver Utility 12-5
Setting Compilation Option Defaults 12-8
Defining the Contents of a Compilation Configuration. 12-12
Compiling the Configuration. 12-20
Viewing the Results of the Last Compilation 12-21
Compiling a Compilation Configuration from M Program Code 12-22
Checking the Integrity of Open M/SQL Objects. 12-23
ChecksonBaseTables ... 12-24
ChecksonViews. 12-24
CheckSONFOrMS. 12-25
ChecksON REPOMS. oo e e e 12-25
ChecksonMenuObjects.o oo e 12-26
Checkson TrHggerS . ..o v e e 12-27
Running the Integrity Checker Utility 12-29
Error FixingMode. 12-34
Searching for Stringsin Open M/SQL Objects 12-35
Invoking Macro Source Routine Utilities. 12-40
Querying Objectsby Routine Prefix 12-42
National Language Reportst 12-44

Open M/SQL Developer Guide xix

Table of Contents

Appendices
A SQL Error Messages
Successful CompletionMessageSo v v i cii i
Error Messages

B Open M/SQL Reserved Words

C Open M/SQL Supported Terminal Types

OpenM/SQLTOrDSMot
OpenM/SQLTOrDTMo
Open M/SQL for MSM Environment.

D Full Screen Editor Keyboard Actions

DECVT 200 ...ttt ittt e e et i
DEC VT 220 ...ttt
WY SE-60 (NativeMode)cciiiiiiinnn..

Glossary of Terms

Index

xx Open M/SQL Developer Guide

Getting Started

Chapter 1

Introduction to Open M/SQL

Chapter 2

The Open M/SQL Relational
Database

Introduction to Open M/SQL

CHAPTER

This chapter introduces InterSystems Open M/SQL and discussesits usesin a
4AGL application generator environment.

Specifically, it covers the following topics:

n

n

What |s Open M/SQL?

What |Is Open M/SQL Developer?
Application Development Strategies
Overview of the System Environment
Integration of Two ANS| Standards
Accessing the Global Database

Open M/SQL Program Structure

Open M/SQL Developer Guide 1-1

Chapter 1—Introduction to Open M/SQL

What Is Open M/SQL?

Open M/SQL is an integrated environment consisting of an advanced relational
database management system, application generator, and procedural program-
ming language that offers a variety of strategies for developing and running data-
base applications.

Open M/SQL combinestwo ANSI Standard programming languages, SQL and
M. SQL isthe most widely used relational query language. M is a database-ori-
ented procedural language that has been used to develop and run perfor-
mance-critical online applications at thousands of sites. The merger of these two
languages provides a powerful standards-based system that offers extremely high
performance.

The “Open” in Open M/SQL refersto its open systems architecture, which
allowsit to run in a vendor-independent host M environment. Specifically, you
can develop and run Open M/SQL applications on top of the following M imple-

mentations:
n ISM

n DTM

n DSM

n Micronetics MSM
All Open M/SQL applications are completely portable between these M systems.

This means you can develop an application on one M system, then port it to
another M system without making any modifications.

1-2 Open M/SQL Developer Guide

What Is Open M/SQL Developer?

What Is Open M/SQL Developer?

Open M/SQL Developer is InterSystems' devel opment environment for creating
Open M/SQL relational applications.

Open M/SQL Devel oper encompasses the relational Data Dictionary, where you
define relational data structures, the Form Generator, where you build interactive
data entry screens, and the Menu Generator, where you bring the various compo-
nents together into a coherent application. It also supports various applications of
SQL, including the interactive construction of queries and the embedding of SQL
code within M routines. Open M/SQL Developer alows you to produce sophisti-
cated reports, queries, and forms with speed and ease.

The Open M/SQL Data Dictionary describes the elements of an Open M/SQL
relational database and as such constitutes the structural foundation of an Open
M/SQL application. The Data Dictionary provides an advanced, window-based
approach to defining, storing, and retrieving data.

The Open M/SQL Form Generator creates ready-to-run data entry screensto add,
delete, retrieve, and edit database information. The generated forms are equipped
with data validation, full-screen display handling, powerful function keys, and
SQL queries used internally to retrieve and store data.

M/PACT isan Open M/SQL add-on option that allows you to generate highly
formatted reports from data served by the relational Data Dictionary.

The Open M/SQL Relational Server isarelated product that allows non-M, third
party application development tools and C programs on client systems to access
your Open M/SQL relational databases on a server system.

Open M/SQL Developer Guide 1-3

Chapter 1—Introduction to Open M/SQL

Application Development Strategies

Open M/SQL offers avariety of strategies for developing an application: devel-
opment can take place at a purely automated level; programs can be entirely
hand-coded; or, most commonly, applications can be developed in amixed envi-
ronment that includes programs created using M, the Open M/SQL procedural
programming language, as well as automati cally-generated forms, reports, and
SQL queries, and other ancillary functions using the application generation tools
of Open M/SQL . The following discussion addresses the different strategies for
applications development in Open M/SQL .

Automated Program Generation

Automated program generation takes place in five phases:
1. Map the functional specifications for the application out on paper.

2. Define the data structures in the Data Dictionary, along with integrity con-
straints, table relationships, and triggers.

3. Usethe Form Generator to develop data entry and inquiry forms.
4. Use M/PACT to develop reports.
5. Usethe Menu Generator to tie the different parts of the application together.

Mapping the Functional Specifications

Thefirst step in developing an application is to organize the logical structure of
the data on paper as a series of tables, just as you might design a paper filing sys-
tem. To do this, consider the functional needs of your application and make alist
of al the different pieces of datathat you need. The object of the designisto
describe the tables that constitute the database and how those tables will interact
with one another. For example, one application might have a customer table, an
invoice table, an invoice line item table, a parts table, etc. The customer table
might then consist of fields for customer name, address, phone, current balance,
etc.

Defining the Data Structure in the Data Dictionary

Once you have designed a data structure on paper, you next define that data struc-
turein the Open M/SQL Data Dictionary, along with any integrity constraints on
the data. See the Open M/SQL Data Dictionary Guide for details about how to

create and modify the underlying M global structure for your relational database.

Integrity constraints may be very simple; for example, you can specify arange of
valid numbers that can be entered for afield. Other constraints may be more

complex; perhaps you want to specify that an invoice cannot be entered into the
invoice table without a corresponding customer entry in the customer table. Even

1-4 Open M/SQL Developer Guide

Application Development Strategies

more complex constraints may require the addition of complete SQL queries or
procedural M code.

The Data Dictionary will aso contain descriptions of the relationships between
tables. For example, where rows of an invoice line item table cannot exist with-
out a corresponding row in an invoice table, the lineitem table should be defined
asacharacteristic table of the invoice table. Onefield in the invoice table
should also be defined to serve as adesignative reference to rowsin the cus-
tomer table. Open M/SQL uses this information to enforce integrity constraints
and produce automatic joins in queries.

You may also define processing triggersin the Data Dictionary. Triggers are
seguences of actions defined to automatically occur, or be triggered, when cer-
tain other events occur. A trigger definition usually consists of an SQL query or
M code segment that should be invoked when rows are created, modified, or
deleted. For example, if amedical record for agiven patient is deleted, you may
want to establish atrigger that will automatically delete al of that patient's lab
test information from various lab files.

Developing Forms and Reports

Once you have defined the data structure in the Data Dictionary, the next step is
to generate forms that enable data entry and inquiry using the Form Generator.
See the Open M/SQL User Interface Programming Guide for details about how
to use the Form Generator.

Forms are sets of windows for entering, retrieving, modifying, and displaying
data. The Form Generator creates visually sophisticated windows complete with
data validation capabilities, full screen display handling, and powerful function
keys. The Form Generator usesinternally stored SQL queriesto retrieve and
store data.

You can generate windows automatically and modify them easily using
cut-and-paste editing facilities. For more complex applications, you can enhance
the windows by adding SQL queries or M code to the window definition. You
can add very simple lines of code, or add entire programs that perform complex
calculations or generate their own displays and prompts in cooperation with the
Form Generator.

M/PACT generates reports. Reports are defined through a series of questions on
the screen; no complex procedural programming is required. See the Open
M/SQL M/PACT Guide for information about using M/PACT.

SQL queries can be entered interactively through the SQL Query Definition win-
dow.

Open M/SQL Developer Guide 1-5

Chapter 1—Introduction to Open M/SQL

Tying the Application Together with the Menu Generator

The Menu Generator ties the different components of the application together.
You may create pop-up menus and menu bars that unite the various components
of an application, apply an orderly structure to the application, and offer the user
easy access. For details about creating and using the Menu Generator, see the
Open M/SQL User Interface Programming Guide.

Procedural Programming in ANSI M

It isalso possible to develop applications entirely in M, a powerful procedural
programming language that affords rapid program development and high perfor-
mance in adatabase application environment. M isan ANSI Standard procedural
programming language. Other ANS| Standard procedural programming lan-
guagesinclude COBOL, C, FORTRAN, PL/1, BASIC, and PASCAL.

Within M programs, data can be accessed in the following ways:

n Directly through M global referencesthat view the database as a collection of
arrays,

n Through standard SQL Data Manipulation Language (DML) constructs:
insert, update, and delete. Cursors are fully supported. For standard SQL syn-
tax, refer to acommercial textbook or the ANSI X3.135-1989 standard, also
known as 1SO 9075:19809.

n Through embedded SQL queries that access or edit a single row (provided
you have a so defined the data structures in the Data Dictionary);

n Through embedded SQL queries that access multiple rows one row at atime
using cursors;

n Through embedded SQL queriesusing UPDATE or DEL ETE statements that
operate on multiple rows.

Direct global references and SQL queries can be used to access the same data.

Programming in a procedural language allows the creation of complex programs
that use sophisticated algorithms. However, procedurally generated programs
take longer to develop and are more difficult to maintain than applications gener-
ated automatically in Open M/SQL. The combined power of M, the Data Dictio-
nary, the Form Generator, M/PACT, and SQL déelivers aflexible, productive, and
easily maintained environment for application development.

1-6 Open M/SQL Developer Guide

Application Development Strategies

Mixed Environments

While many applications can be developed entirely through automatic genera-
tion, and some are so specialized that they must be entirely hand coded, most
applications fall somewhere in between. For this, Open M/SQL offers the advan-
tages of amixed programming strategy. It generally makes sense to use the Form
Generator and M/PACT to develop as much of the application as possible, utiliz-
ing customization capabilities where necessary. Then, use M to program those
portions that have to be written procedurally. Thus, alaboratory application
might perform most of its data entry through generated windows but use M for
direct input from specialized instruments. The result is an integrated application
created and run entirely within Open M/SQL.

Open M/SQL Developer Guide 1-7

Chapter 1—Introduction to Open M/SQL

Overview of the System Environment

Open M/SQL runs on avariety of platforms and offers a varied systems environ-
ment. It also runsin avendor-independent host M environment, equally support-
ing the ISM, DTM, DSM, and Micronetics MSM implementations of M. The
following discussion introduces the various elements of the system environment,
including:

n Hardware and Software Operating System Environments

n Memory Environment

n Global Database

n ANSI M Processor

n ANSI SQL Processor

n Relational Data Dictionary

n Program Development Environment

n The Form Generator and M/PACT

n Menu Generator

n Query Optimizer

n M/NET Networking

n DT Network

n Open M/SQL Runson Top of Any M Implementation
Hardware and Operating System Environments

Open M/SQL runs on a variety of hardware platforms and operating systems,
ranging from single-user PCsto large UNIX- and VM S-based systems support-
ing many hundreds of users, including most major supermicro and minicomputer
systems from the leading hardware vendors. Operating systems include MS-
DOS, Microsoft Windows 3.1, VMS, and Unix.

One of Open M/SQL’s most exceptional featuresisits portability. Although the
host operating system may vary, the Open M/SQL environment is consistent
across platforms. Applications devel oped on one system can be moved to another
easily and usually with no modification. Frequently, these applications can be
ported with no changes.

1-8 Open M/SQL Developer Guide

Overview of the System Environment

Memory Environment

Each M process runs as a separate process on the host operating system, except
for MS-DOS and Microsoft Windows systems. In addition to a private memory
section for each M process, there are two configurable caches, one for database
transactions and one for shared re-entrant use of application programs. The glo-
bal databaseis paged in adata pool that is shared by all of the processes, and run-
time code is shared among processes. This strategy resultsin ahighly optimized,
memory-efficient system.

Global Database

The global databaseisthe physical structure that controls the storage of data. The
database can be accessed through SQL requests or M global references, as the
programmer sees fit. A full set of utilities for database management are aso pro-
vided.

ANSI-Standard M Language Processor

The M programming language is widely used for database applications, particu-
larly in interactive environments. Although it is best known for offering pro-
grammers the ability to develop programs rapidly and change them easily, M is
also recognized for providing high performance in interactive transaction-ori-
ented database environments.

M is one of the few languages that is defined by an ANSI Standard, which indi-
cates its importance to a wide audience in the data processing community. Con-
formity to this standard protects software and hardware investments and
facilitates alevel of portability uncommon in other programming languages.

M is accepted by ANSI-Standard SQL as a host language for embedded SQL .
ANSI-Standard SQL Language Processor

ANSI-Standard SQL isthe most widely used query language for relational data-
base systems. Open M/SQL permits SQL queriesto be entered directly through
an interactive window, or to be embedded in M routines. SQL can be used not
only to retrieve data, but also to insert, update, and del ete data. InterSystems
SQL implementation is compatible with ANSI-Standard SQL . InterSystems also
provides numerous SQL language extensions to enhance the power of SQL que-
ries.

Open M/SQL Developer Guide 1-9

Chapter 1—Introduction to Open M/SQL

Relational Data Dictionary

Open M/SQL includes an advanced relational Data Dictionary that allows you to
define the database as a group of tables. Extensive capabilities are built into the
Data Dictionary to avoid code redundancy. Data Dictionary maps define the con-
nection between thelogical and physical storage structure of the tables. Maps can
be automatically generated to produce default structured tables. Alternatively,
advanced M programmers may wish to define their own maps to conform with
the global structures of existing applications or to design anew database structure
compliant to application specifications.

Relationships among tables can be described in the Data Dictionary by defining
characteristic or designative relationships between tables. When you define
these relationships in the Data Dictionary, joins among tables are “implicit” and
occur in queries automatically, freeing the programmer and end-user from the
tedious and demanding task of specifying explicit joinsin SQL statements.

The Data Dictionary can also be used to enforce integrity constraints that apply
to database modifications made using SQL and forms designed using the Form
Generator. Processing triggers can be attached to events in database update and
form execution that cause related processing to occur automatically. For exam-
ple, atrigger can specify that when an invoice is deleted, associated line items of
the invoice are also deleted. The system thus provides a means to enforce refer-
ential integrity and to define application-specific processing in the dictionary,
eliminating redundant programming efforts.

A database is defined as a functionally-related group of tables that have been
explicitly linked in the Data Dictionary. Tablesin asingle database can be used to
create aview. Views are considered virtual tables because they appear to be
tables to the end user, but are not stored as such in the database. A view can be
used as a data source in queries and reports. Views also perform a security func-
tion by restricting users' accessto specified fields in database tables.

Although describing the database in the Data Dictionary is essential to the use of
SQL queries, the Form Generator, and M/PACT, it is not required for M pro-
grams that access the database only through direct global references.

Program Development Environment

An Open M/SQL application can consist of data structures defined entirely in the
Data Dictionary, with forms for data entry and inquiry devel oped using the Form
Generator and reports for data output developed using M/PACT. Alternatively,
you can write programs in the ANSI M programming language, which is
extended in Open M/SQL to allow the use of macros, include files, and embed-
ded SQL (M isan ANSI-approved host language for SQL). Open M/SQL aso
provides afull set of utilities for routine devel opment and management.

1-10 Open M/SQL Developer Guide

Overview of the System Environment

Hand-Coded Programming in Open M/SQL

For hand-coded programming, Open M/SQL allows you to work at two levels of
processing — the macr o sour ce code level and the inter mediate sour ce code
level. Typically, you create routines a the macro source level, though you may
also create routines at the intermediate code level. Macro source code permitsthe
definition of macros and embedded SQL statements using a combination of
ANSI Standard M syntax, special macro preprocessor commands, and ANSI
Standard SQL. The macro preprocessor phase of the Open M/SQL Compiler
converts macro source code into M routines called intermediate code. You can
view and edit intermediate code routines using the Full Screen Editor. From
intermediate code the Open M/SQL Compiler generates executable code, called
object code.

Macro source code can make use of include files, which contain definitions that
are used in the preprocessor phase of compilation to expand macros and deter-
mine whether optional lines of code should be included. They can also be used to
include acommon block of code in several routines, saving the overhead of calls
to acommon subroutine.

Open M/SQL Interpreted Compiler

Open M/SQL combines the best elements of interpreted and compiled systems.
Interpreters are easy to use because they allow program devel opment, testing,
and modification in asimple, integrated process. Fully compiled code runs faster
than interpreted code but typically involves more work for the programmer.

Open M/SQL provides program debugging facilities at the intermediate code
level. These debugging facilities operate like interpreted systems. When an error
or breakpoint occurs, the routine is suspended and a message appears indicating
exactly where the error or breakpoint occurred. You can examine and modify
variables, arrays, and database data, edit the routine, and resume debugging at
any location in the program without restarting the testing process.

When you insert a new lineinto an Open M/SQL intermediate code routine,
Open M/SQL’s incremental Compiler automatically processes the code, produc-
ing efficient object code. The system always executes the object code version of
the routine — never the intermediate code version. The Open M/SQL incremen-
tal Compiler istotally transparent; you need never issue separate compilation or
linkage commands explicitly.

For purposes of security, you can delete the macro source or intermediate code
version of any routine and still execute the object code. Furthermore, by simply
erasing aline with the ZREM OV E command and inserting anew lineinits place
with the ZINSERT command, you can edit an object code routine asif the source
code were present. Open M/SQL will maintain an audit trail of any new lines.

Open M/SQL Developer Guide 1-11

Chapter 1—Introduction to Open M/SQL

The Form Generator and M/PACT

The Form Generator allows you to automatically generate data entry/inquiry
formsfrom Data Dictionary table definitions. You can then modify these formsto
your exact specifications using a screen editor called QuickForm. The Form Gen-
erator also supports the insertion of M code and SQL statements to further
enhance the processing scope of your forms.

M/PACT isan add-on option that allows you to generate highly formatted reports
based on data from the Data Dictionary. Designed for use by non-programmers
aswell as programmers, M/PACT enables you to design sophisticated reports
without the use of a complex command language. Reports are generated from
your answers to questions logically presented in an easy-to-use window-based
interface. Though an M/PACT development license is required in order to
develop M/PACT reports, an RDBMS Engine license is sufficient to run
M/PACT reports.

Menu Generator

Open M/SQL includes a Menu Generator that ties a variety of programs and
options together. The Menu Generator can create two types of menus. menu
objects and old-style menus.

Menu objects are definitions that include the list of optionsfor amenu, its screen
positioning, and its display attributes. Menu objects can be run as either menu
bars, which display horizontally across the screen, or pop-up menus, which dis-
play options vertically on the screen.

Old-style menus can be either vertical menus, which display avariety of options
inavertical list, or horizontal menus, which display optionsin ahorizontal list
across the bottom of the screen. Menu options can include the following: M code,
SQL code, routines, forms, windows, reports, queries, and other menus.

Query Optimizer

An unseen but extremely important part of Open M/SQL isthe query optimizer.
During program compilation and query processing, the query optimizer analyzes
hundreds and sometimes thousands of different solutions to an information
request, ultimately selecting the best solution. The result is compiled routines
whose speed and efficiency guarantee optimal database throughput and response
time, based on the application and database design.

1-12 Open M/SQL Developer Guide

Overview of the System Environment

M/NET Networking

The database need not reside on a single computer. M/NET is an add-on option
that supports both local area and wide area networks within Open M/SQL.
M/NET works transparently, i.e. it isinvisible to both the programmer and end-
user.

M/NET can access remote databases and split a database across multiple comput-
ers. M/NET also allows mixing the hardware of different vendors. M/NET fea-
tures the Distributed Cache Protocol (DCP), which is a high-speed, block-
oriented networking protocol that is proprietary to InterSystems. Some of the
other networking protocols currently supported by M/NET are:

n Ethernet

n TCP/IP

n DSM-DDP

n OMI

n UDP

n RS232
DT Network

DT Network is InterSystems' PC network technology for distributing databases
over Local- and Wide-Area networks (LANS and WANS). It supports cli-
ent/server architecture flexibly, in that each networked computer can act asacli-
ent, arouter, a server, or al three. DT Network supports a variety of database
protocols, including:

n Distributed Cache Protocol (DCP)
n ISNET for sharing globals with Open M/SQL platforms
n Open M/Interconnect (OMI), for connectivity to other M databases

n DSM/DDRP, InterSystems implementation of Digital Equipment Corpora-
tion’s Distributed Database Protocol (DDP)

n Serial Networking using serial lines for connectivity
It is possible to use multiple database protocols on the same machine. These data-

base protocols also operate over a variety of network protocol stacks. For more
information, see the DT-MAX Network Configuration Guide.

Open M/SQL Developer Guide 1-13

Chapter 1—Introduction to Open M/SQL

Open M/SQL Runs on Top of Any M Implementation

Note

Open M/SQL runsin an environment that is independent of the underlying M
implementation. You can develop and run Open M/SQL applications on any of
the following host M systems:

n ISM
n DSM
n DTM

n Micronetics MSM

No matter what M implementation you are using as the host environment, Open
M/SQL supports full application development and run-time capabilities. This
allows existing users of these M systemsto protect their current software invest-
ments while taking full advantage of Open M/SQL’s extensive relational data-
base and application devel opment capabilities.

OnSM systems, Open M/SQL storesroutinesin aglobal called " ROUTINE. On
all other host M systems, Open M/SQL stores routines in aglobal called “mrou-
tine.

On all of the above host M environments, you may create and edit macro source
routines using the Open M/SQL Full Screen Editor. You may also use the full
suite of Open M/SQL routine management utilities to operate on routines.

To comply with all M implementations, InterSystems has renamed the routine
management utilities to be implementation-indepenedent. The implementation-
independent names of the utilities all begin with “u” and are lowercase. See Chap-
ter 7, Open M/SQL Routine Management Utilities for more information about
these utilities.

Open M/SQL applications are completely portable acrossM systems. Thismeans
applications can be developed on one M system and ported to other M systems
(for continued development or run time purposes) without modification, aslong
asthey arewritten in ANSI-Standard M code and do not include implementation-
specific extensions. This portability is made possible by Open M/SQL'’s
Export/Import facility, which generates programs specific to a supported M sys-
tem without disturbing the programs on the development system.

1-14 Open M/SQL Developer Guide

Integration of Two ANSI Standards

Integration of Two ANSI Standards

Open M/SQL integrates two ANSI Standard programming languages: SQL and
M. SQL isastandard query language for relational databases. M is a powerful
procedural programming language and ANSI-approved host language for SQL.
Together they form an integrated environment for applications devel opment.

Embedded SQL

SQL statements that access the database to select, insert, update, or delete rows
(records) can be directly embedded within M routines. SQL statements inserted
into M routines are called embedded SQL statements. Non-embedded queries are
SQL queries entered into aspecia query template or entered interactively
through a query editor; the results of a non-embedded query can be output to the
terminal screen or to aprinter. If the query isa SELECT query, the result may or
may not be asingle row.

Cursors

Embedded SQL statements can be cursor-based or non-cursor-based. A cursor-
based statement is used to retrieve multiple rows from a table repetitively, one
row at atime. A cursor-based query includes a DECLARE statement, an OPEN
statement, one or more FETCH statements, and a CL OSE statement.

For example, if aprogrammer iswriting aroutine to access all invoices for a par-
ticular customer that are older than a given date, his routine must: 1) DECLARE
acursor, 2) issue an OPEN of the specified cursor, 3) perform a FETCH repeti-
tively on that cursor to get the next invoice that meets the query criteria, and
finally 4) perform a CLOSE on the cursor when the processing is complete. An
UPDATE or DELETE could aso be used following a FETCH to edit or delete
the row returned by the FETCH.

A non-cursor-based SQL statement embedded in aroutine performsasingle
operation, such as retrieving a single row, inserting a new row into atable, or
updating or deleting a specific row. A non-cursor-based SQL statement is appro-
priate when the operation is intended to act on only one row.

Inserted Code for Data Dictionary, Forms, and Reports

Programmers can also insert M and SQL code into tables, forms, and reportsin a
variety of places, including triggers, lookup queries, computed field definitions,
and conversion and validation codes. This allows the programmer to take full
advantage of Open M/SQL’s automatic generator capabilities without costing
him/her the ability to create highly customized applications.

The powerful syntax and flexible variable and database structures of M makesit,
along with SQL, an excellent language for providing this customization.

Open M/SQL Developer Guide 1-15

Chapter 1—Introduction to Open M/SQL

Accessing the Global Database

The Open M/SQL global database can be accessed via the SQL language or the
M language, both together, using SQL code embedded within M code, and inde-
pendently. In thisway existing M applications can incorporate the use of SQL
over time; no large conversion is required.

SQL - Relational Database Access

SQL can be used for database queries or to insert, update, or deleterowsin a
table. SQL queries can be entered interactively and the results displayed on ater-
minal, or they can be embedded within M routines. Global structures that were
built in a non-relational manner by M programs can be described relationally in
the Data Dictionary. Thisis consistent with the relational model, which does not
demand a specific physical storage structure or design. This special feature eases
the migration to SQL and the application generator features of Open M/SQL for
clients whose applications were developed with M.

M Global References

M also allows the use of global references for direct access to and modification
of the database. It is possible to make direct global referencesto global struc-
tures, regardless of whether they have been defined in the Data Dictionary. The
same data can be referenced by either SQL or global references. The choice of
access technique is up to the programmer and database manager. Thus, existing
M applications can incorporate the use of SQL over time; no large conversion is
required.

1-16 Open M/SQL Developer Guide

Open M/SQL Program Structure

Open M/SQL Program Structure

Open M/SQL programs are organized in units called routines. A routineis an
individual block of code that is compiled, and then run. In Open M/SQL, al rou-
tine linking is dynamic at run time. The programmer never needs to link routines
explicitly.

Open M/SQL routines can exist at three levels:

n Macro source level
n Intermediate code level
n Object codelevel

The three types of routines and their development and management in Open
M/SQL are discussed below.

Macro Source Routines

Typically, you create routines at the macro source level. Macro source routines
can include preprocessor syntax that permits macros, optional line inclusion,
include files, and embedded SQL . Macro source routines are compiled into inter-
mediate and object code routines.

All routines have macro source code, no matter what host M environment you are
using.

Intermediate Code Routines

The middle level of routinesis called intermediate code, which is the standard
3GL M source code availablein al M implementations. The macro preprocessor
phase of the Open M/SQL Compiler produces intermediate code from macro
source code. At the intermediate code level, al preprocessor syntax is resolved,
and the routine contains only pure M source code.

You may create, view, and edit routines at the intermediate code level using the
Full Screen Editor. When you create routines at the intermediate code level, you
must do so without the benefit of embedded SQL or any preprocessor syntax,
such as macros.

Intermediate level source code is displayed on the terminal during debugging or
error message display.

Open M/SQL Developer Guide 1-17

Chapter 1—Introduction to Open M/SQL

Object Code Routines

Object code isthe lowest level of routine code. Thisisthe code that is actualy
executed.

The Open M/SQL Compiler produces object code from intermediate code.

Routines can run in their object code form even if the macro source and interme-
diate code have been deleted. Each M implementation handles object code differ-
ently.

Open M/SQL Routine Utilities and Editors

Open M/SQL includes a number of routine utilities; some are designed to aid
program devel opment, while others assist system operations and maintenance:

n Routine development utilities provide editing, error analysis, date and time
conversion, compilation, and maintenance capabilities.

n Developer utilities provide editing, object integrity checking, string search,
and compilation capabilities.

n Global utilities provide analysis and control of the global database.

n System operation and maintenance utilities check hardware and database
integrity, protect globals, and manage and control the database and networks.

Most Open M/SQL utilities are response driven. In other words, they use menus
and prompt you for input. In addition, the utilities often include on-line docu-
mentation describing their uses and functions.

Open M/SQL provides the Full Screen Editor for usein creating and editing of
macro source routines, include files, and intermediate code routines. A
line-by-line editor for the editing and debugging of intermediate code routinesis
also available.

Routine Utilities for Non-ISM Implementations of M

Open M/SQL provides a set of utilities for editing Open M/SQL macro source
routines. These routine utilities are available to all Open M/SQL users regardless
of the host M environment.

In addition, for users of Open M/SQL running on non-ISM systems, the host M

implementation will usually provide its own utilities for intermediate and object
code management, global management, and system management.

1-18 Open M/SQL Developer Guide

Open M/SQL Program Structure

Distributed Data Processing

Open M/SQL'’s distributed data processing feature enables you to link computer
systems. From any system node, a user with appropriate access privileges can

read and modify the global database anywhere in the system network. To refer-
ence aglobal on another system, you can:

n Issuethe global reference with an extended syntax that specifiesthe directory
and a system name for the other computer, or

n Usestandard global syntax to reference an implicit global (aglobal that
resides on another computer or in another directory on the same computer).

Open M/SQL Developer Guide 1-19

Chapter 1—Introduction to Open M/SQL

1-20 Open M/SQL Developer Guide

CHAPTER

The Open M/SQL Relational
Database

Open M/SQL is based on an advanced relational model, which defines the data-
base as agroup of tables. InterSystems has extended the relational model to allow
the definition of designative and characteristic relationships between tables. In
Open M/SQL, any related group of tables that resides within an M data partition
is considered adatabase. The M data partition is usually referred to as adirectory
or UCI, depending on your M system. An Open M/SQL database corresponds to
the schema in the relational model.

Open M/SQL considers any related group of tables that resides within an M data
partition to be a database. The M data partition is usually referred to as a direc-
tory or UCI, depending on your M system.

This chapter discusses relational concepts and their implementation in Open

M/SQL.
Specifically, it covers the following topics:

n Open M/SQL Implements Relations as Tables

n Open M/SQL Implements Schemas as M Directories

n The Open M/SQL Data Dictionary

n Accessing Datain an Open M/SQL Relational Database
n InterSystems Extensionsto the Relational Model

Open M/SQL Developer Guide 2-1

Chapter 2—The Open M/SQL Relational Database

Open M/SQL Implements Relations as Tables

A relational database is characterized by:

n A database structure that consists of a collection of tables (also called “rela
tions” or “files’).

n The presence of aquery language that permits the manipulation of these
tablesin amathematically complete manner.

The table, which isthe basic unit of data storage in the relational model, is a col-
lection of rows (also called “tuples’ or “records’) and columns (also called
“fields’ or “attributes’). Each column contains a particular type of data, such as
integer, date, or text. (Columns may also contain null values.) Each row inatable
correspondsto areal world entity and contains exactly one value for each column
in the table.

Below isasamplerelationa table:
Table 2-1: A Sample Relational Table

EmpName EmpNum HireDate Status Salary

Grainger,Lisa 445-67-7891 06/06/90 Part-Time 28,000.00
Corson,Bob 210-92-8518 12/08/86 Active 15,000.00
Doe,Suzanne 333-44-7800 01/05/87 Active 38,000.00
Fast,Felix 334-45-5678 06/23/89 Active 44,000.00
Finley,Jack 356-62-1221 09/09/85 Part-Time 77,500.00
Gable,Bill 567-89-0123 08/02/92 Active 44,000.00

Open M/SQL Tables Follow The First Normal Form

Tablesfollow what is called the First Normal Form; that is, each column of a
single row contains exactly one value, which may be null if the field is empty.

In some non-relational database systems, acolumn for asingle row might contain
several values. For example, the “ Child” field in a*“People” table might contain

the names of three children; a single child field might also have three grandchil-

dren.

However, in arelationa system, each parent/child/grandchild relationshipis rep-
resented by a separate row. For instance, each child of a given parent will occupy
aunigue row in the table despite the commonality of their parent fields. Like-
wise, each grandchild of that parent will also occupy its own unique row. This
means that if a parent has three children who in turn have three children apiece,
the relational model uses nine separate rows to describe the entire geneal ogy.

2-2 Open M/SQL Developer Guide

Open M/SQL Implements Relations as Tables

Alternatively, separate tables called characteristic tables (see below) can be used
to designate relationships between parents, children, and grandchildren. The
database designer must choose how s/he wants Open M/SQL to handle par-
ent/child relationships.

Open M/SQL Supports Two Types of Tables

Open M/SQL supports two types of tables:

n Basetables
n Virtual tables

A base table is an autonomous, hamed table. Unlike virtual tables, base tables
exist physically in the sense that they are mapped directly to physical storage
structures. We say that base tables are “named” because the table is explicitly
given aname viaan appropriate definition statement, unlike, for example, the
result of aquery, which is not explicitly named and exists only ephemerally.

A virtual table is a named table derived from one or more base tables. Virtua
tables are not directly represented in physical storage. Rather, they are abstract
collections of base tables.

Examples of virtual tables include the output from a SELECT query and views.
Views are windows through which data from multiple base tables can be
“viewed”. Open M/SQL allows views to serve as data sources for M/PACT
reports, SQL queries, and other views.

No two rows of abasetable areidentical. In virtual tables, two or more rows may
be identical.

RowID/Primary Key

The primary key or Rowl D isafield or combination of fields that serve as the
unique identifier to each row in a base table. At any given time, no two rows of
the base table may contain the same primary key value.For example, the primary
key of an “Employees’ table might be the unique empl oyee number; as each
employee isidentified by a unique employee number, each employee row in the
table isidentified by the value of the employee number field.

Since two rows of a base table cannot be identical while two rows of a virtua
table can, only base tables have primary keys. Virtual tables (results of queries,
for example) do not have primary keys.

In Open M/SQL, the RowlID field isthe primary key. The RowlID isasinglefield

of the table that uniquely identifiesthe row. Optionally, the database designer can
base the RowlID field on one or more other fields.

Open M/SQL Developer Guide 2-3

Chapter 2—The Open M/SQL Relational Database

Open M/SQL Implements Schemas as M Directories

In the relational model, a schemais a conceptual repository for agroup of rela
tions. No relation within the schema can have the same name as another.

In Open M/SQL, the unit equivalent to the schemais an M database. In Open
M/SQL, an M database can be spread over one or more directories. Each direc-
tory contains one component—MUMPS.DAT file—of the entire M database. A
MUMPS.DAT fileisusually referred to by the name of the operating system
directory in which it resides. All tables defined in the same M directory must
have unique names.

The system manager's directory contains a database directory table. The database
directory table contains the database name, directory, and directory set if net-
worked.

Open M/SQL Database Structure for Non-ISM Implementations of M

When Open M/SQL islayered on top of a non-1SM implementation of M, the
database concept isimplemented differently.

For example, under DSM, Open M/SQL considers all tableswithin aunique UCI
and volume set to be a common database.

Other M systems employ various other schemes for storing the list of databases.
For more information, see the documentation provided with your M system.

2-4 Open M/SQL Developer Guide

The Open M/SQL Relational Data Dictionary

The Open M/SQL Relational Data Dictionary

In Open M/SQL, tables are defined and “mapped” to M global storage structures
through the Open M/SQL Relational Data Dictionary. Mapping defines the link
from the logical representation of atable to the physical storage of that table.
When you define a database, the Relational Data Dictionary can generate a
default global storage structure, or if you prefer, you may specify a customized
global storage structure. The Relational Data Dictionary also lets you map exist-
ing global structuresto Open M/SQL.

The Data Dictionary contains definitions for all the base tables that comprise the
database. It also contains map specifications for the underlying data storage
structures. The Form Generator, the SQL query facilities, and M/PACT all rely
on Data Dictionary-defined structures. The window-based Data Dictionary
makes the process of defining data structures very simple. It allows the program-
mer to develop applications using automated map generation facilities, and
enables the linking of existing Open M/SQL applications, thus providing access
to stored data through SQL, forms, and reports.

The following aspects of a database are defined in the Data Dictionary:

n Itsconceptual elements (base tables, fields)

n RowlDsthat enable dataretrieval

n Global data storage (“map” specifications of global structures)

n Indexes for data access efficiency

n Implicit joins - characteristic relationships and designative references

n Triggersthat enforce referential integrity and control application processing
n Viewsthat control users accessto tables

n Datavalidation parameters for datainsert and update

n Codeto convert field values between data entry formats (external format)
and database storage formats (internal format)

n Lookupsfor row selection in forms
n Field access code for forms
n Field display information for forms and reports

Open M/SQL Developer Guide 2-5

Chapter 2—The Open M/SQL Relational Database

Accessing Data in an Open M/SQL Relational Database

Once you have defined tablesin the Open M/SQL Relational Data Dictionary,
you can access data from those tables by any of the following means:

n SQL queries— you may embed queriesin M macro source code, or you may
define them via the Open M/SQL Query Definition template or the Interac-
tive SQL Query Editor

n M global references (in conjunction with or independent of SQL)

n Dataentry, inquiry, and update forms designed using the Form Generator

n Reports defined and formatted using M/PACT

This section provides abrief overview of relational operationsin SQL, the ANSI-

Standard Query Language. SQL enables the retrieval of data from the relational
database for the generation of queries and reports.

Refer to an SQL text for afull understanding of this language. Chapter 9, Open
M/SQL Implementation of SQL, describes InterSystems' extensions to standard

SQL.
Using SQL to Query the Database

Open M/SQL lets you query the database using standard SQL SELECT state-
ment queries. Queries access data in tables and views. The output from a query
formsavirtual table and leaves the targeted table(s) unchanged.

You can reference multiple tablesin a single query.

SQL enablesyou to use the following relational operations when querying a data-
base:

n Combining tables (or, more accurately, viewing tables asif they had been
combined into one larger table)

n Selecting particular columns from a single table or a combined table

n Specifying particular rowsin asingle table or acombined table

Relational algebra provides the conceptual foundation for these relational opera-

tions. Understanding how the relational algebraworkswill help you take full
advantage of the capabilities of SQL.

Conceptually, the relational algebra operates on one or more tablesto produce a
new (virtual) table. For example, ajoin combines two tablesinto athird. Or, a
select operation extracts sel ected rows from one table to produce another table. A
virtual output table isthe result of the relational operation.

2-6 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database

Cartesian

Example

Thelist of fundamental relational operatorsincludes:

n Cartesian Product — creates a cross-product of multiple tables, i.e. views
the tables as if they had been combined into one larger table

n Project — selects particular columns from a single table or acombined table

n Restrict — selects particular rows from a single table or a combined table

n Join — selects some fields from some rows of multiple tables based on some
relationship between the fields of the different tables

Table.Name Syntax

When referencing fieldsin an SQL query you may optionally precede the field
name with the name of the base table to which it belongs, using the following
syntax:

Table.Field

For example, a SELECT clause might read as follows:

SELECT Enpl oyees. EnpNane, Depts. Dept Nanme

If you do not use prefixes when creating field names that reflect the name of the
base table in which they reside, it is generally agood ideato use this syntax for
clarity.

If aquery references multiple tables and those tables contain fields with identical
field names, you must use the Table.Name syntax.

Product

The Cartesian Product of two tables is the cross-product of al possible combi-
nations of rows from the two tables, such that each row of the first table is com-
bined (concatenated) with each row of the second table.

In SQL, the Cartesian Product operation occurs when two or more tables are
explicitly or implicitly (within aview) named in the FROM clause, al fieldsin
those tables are named in the SELECT clause, and no WHERE clauseis present
to specify relationships among the tables.

In the example below, the tables “ Employees’ and “ Departments’ are combined
to form avirtua table, whichistheir Cartesian Product, by issuing the following
SQL statement:

SELECT *
FROM Enpl oyees, Departnents

The asterisk in the SQL SELECT statement is used to denote “all fieldsin the
specified tables”.

Open M/SQL Developer Guide 2-7

Chapter 2—The Open M/SQL Relational Database

The “Employees’ table is shown below:
Table 2-2: Employees Table

EmpName EmpNum DeptNum
Bravo, Vicki 445-67-7800 1000
Doe, Suzanne 253-44-7898 3000
Corson, Bob 210-92-6518 2000
The “Departments’ table is shown below:
Table 2-3: Departments Table
DeptNum DeptName NumEmp DeptMgr
1000 Sales 50 Bravo, Vicki
2000 Administration 101 Corson, Bob
3000 Development 200 Doe, Suzanne

The table below represents the Cartesian Product of the “Employees’ table and
the “Departments” table:

Table 2-4: Output Table After Cartesian Product Operation

E.Dept- | D.Dept- D.Num-

E.EmpName E.EmpNum Num Num D. DeptName | Emp D.DeptMgr
Bravo, Vicki 445-67-7800 | 1000 1000 Sales 50 Bravo,Vicki
Bravo, Vicki 445-67-7800 | 1000 2000 Administration | 101 Corson, Bob
Bravo, Vicki 445-67-7800 1000 3000 Development 200 Doe, Suzanne
Corson, Bob 210-92-6518 | 2000 1000 Sales 50 Bravo,Vicki
Corson, Bob 210-92-6518 | 2000 2000 Administration | 101 Corson, Bob
Corson, Bob 210-92-6518 2000 3000 Development 200 Doe, Suzanne
Doe, Suzanne | 253-44-7898 | 3000 1000 Sales 50 Bravo,Vicki
Doe, Suzanne | 253-44-7898 | 3000 2000 Administration | 101 Corson, Bob
Doe, Suzanne | 253-44-7898 3000 3000 Development 200 Doe, Suzanne

Note that this output may not be ordered by the “Employees.EmpName” field.
The ordering is subject to the specificationsin the ORDER BY clause of the SQL
query, and

2-8 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database

Project

Example

The project operation extracts a subset of fieldsfrom an existing table. The result
isanew table (avirtual table) with the same number of rows but fewer fields.

You can perform a Project operation on a single table or on a combination of
tables.

In the exampl e below, thefields“ EmpName” and “ DeptName” are selected from
the Cartesian Product of the tables “ Employees’ and “ Departments’.

SELECT Enpl oyees. EnpNane, Depart ment s. Dept Nane
FROM Enpl oyees, Depart nent s

The SELECT clause specifiesthe fieldsto be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause.

This Project operation yields the following table:
Table 2-5: Output Table After Cartesian Product Operation

EmpName DeptName
Bravo, Vicki Sales

Bravo, Vicki Administration
Bravo, Vicki Development
Corson, Bob Sales
Corson, Bob Administration
Corson, Bob Development
Doe, Suzanne Sales

Doe, Suzanne Administration
Doe, Suzanne Development

Whether you perform a query on one or many tables, the conceptual result is
always a new table that is derived from existing tablesin the database.

Open M/SQL Developer Guide 2-9

Chapter 2—The Open M/SQL Relational Database

Restrict

Example

The Restrict operation selects a designated set of rows from one or more tables.
In the SQL query language, restriction is expressed through the WHERE clause,
which uses the comparison operations, such as >, <, and =, for example:

WHERE Ci t y="Boston”

or

WHERE Age>20

You can perform a Restrict operation on asingle table or on a combination of
tables.

In the example below, all fields are selected from the Cartesian Product of the
tables “Employees’ and “Departments”, but the output table is restricted to only
those rows for which the “NumEmp” field has a value greater than 100:

SELECT *
FROM Enpl oyees, Depart nents
VWHERE Enpl oyees. NumEnp > 100

The SELECT clause uses the asterisk (*) to select all fields for inclusion in the
table. The Cartesian Product is derived from the tables named in the FROM
clause. The WHERE clause designates the condition for the restriction operation.

This Restrict operation yields the following table:

Table 2-6: Output Table After Restrict Operation

E.Dept- | D.Dept- D.Num-

E.EmpName E.EmpNum Num Num D.DeptName Emp D.DeptMgr
Bravo, Vicki 445-67-7800 | 1000 1000 Administration | 101 Corson, Bob
Bravo, Vicki 445-67-7800 1000 3000 Development 200 Doe, Suzanne
Corson, Bob 210-92-6518 | 2000 1000 Administration | 101 Corson, Bob
Corson, Bob 210-92-6518 | 2000 3000 Development 200 Doe, Suzanne
Doe, Suzanne | 253-44-7898 | 3000 1000 Administration | 101 Corson, Bob
Doe, Suzanne | 253-44-7898 3000 3000 Development 200 Doe, Suzanne

Note that restriction occurs through the WHERE statement, not through the

SELECT statement. The SELECT statement is used for projection, as discussed
above.

2-10 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database

Joins

Example

Joins provide the means of linking datain one table with datain another table and
are frequently used in defining reports and queries.

A join is an operation that combines two tables to produce a third, subject to a
restrictive condition. Every row of the new table must satisfy the restrictive con-
dition.

Usually, when the two tables (A and B) are combined to form a third table (C),
some condition is specified in the WHERE clause. This condition determines
how arow from B is chosen to combine with arow from A. Often, this condition
is equality, such that the value of a particular field from table A equals the value
from aparticular field from table B. Combining tablesin thisway is called an
equijoin. Equijoins are often referred to asinner joins.

Although joins are often thought of as fundamental operators, they represent a
combination of Cartesian Product plus Restriction.

For an example of an inner join, consider the following two tables, a“Suppliers”
table and a“Parts’ table:

Table 2-7: Suppliers Table

SNum SName SCity
S1 Smith Paris
S2 Jones London
S3 Blake Boston
S4 Whitney Boston
S5 Roberts Paris

Table 2-8: Parts Table

PNum PName PCity

P1 Nut Paris

P2 Screw Houston
P3 Cog New York
P4 Wheel Boston
P5 Switch Boston

Open M/SQL Developer Guide

2-11

Chapter 2—The Open M/SQL Relational Database

Suppose you wish to query the database for the names of every supplier, part, and
city, where the supplier and part are located in the same city. To do this, you
would use the following SQL query:

SELECT SNane, PNane, SCity
FROM Suppliers, Parts
WHERE Suppliers.SCity=Parts.PCity

The SELECT clause specifiesthe fieldsto be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause of the
above SQL statement, which combines the tables “ Suppliers’ and “Parts’. The
WHERE clause in the above statement (Suppliers.SCity=Parts.PCity) specifies
the inner join condition.

The Cartesian Product of the “ Suppliers’ table and “Parts’ tableis shown below.
The rows that satisfy the inner join condition are shaded.

Table 2-9: Output Table After Cartesian Product Operation

SNum SName SCity PNum PName PCity

S1 Smith Paris P1 Nut Paris

S1 Smith Paris P2 Screw Houston
S1 Smith Paris P3 Cog New York
S1 Smith Paris P4 Wheel Boston
S1 Smith Paris P5 Switch Boston
S2 Jones London P1 Nut Paris

S2 Jones London P2 Screw Houston
S2 Jones London P3 Cog New York
S2 Jones London P4 Wheel Boston
S2 Jones London P5 Switch Boston
S3 Blake Boston P1 Nut Paris

S3 Blake Boston P2 Screw Houston
S3 Blake Boston P3 Cog New York
S3 Blake Boston P4 Wheel Boston
S3 Blake Boston P5 Switch Boston
S4 Whitney Boston P1 Nut Paris

S4 Whitney Boston P2 Screw Houston
S4 Whitney Boston P3 Cog New York
S4 Whitney Boston P4 Wheel Boston

2-12 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database

Table 2-9: Output Table After Cartesian Product Operation (Continued)

SNum SName SCity PNum PName PCity

S4 Whitney Boston P5 Switch Boston
S5 Roberts Paris P1 Nut Paris

S5 Roberts Paris P2 Screw Houston
S5 Roberts Paris P3 Cog New York
S5 Roberts Paris P4 Wheel Boston
S5 Roberts Paris P5 Switch Boston

This join operation yields the following output table:

Table 2-10: Output After Join Operation

SName SCity PName
Smith Paris Nut
Blake Boston Wheel
Blake Boston Switch
Whitney Boston Wheel
Whitney Boston Switch
Roberts Paris Nut

When the join is based on an exact match between fieldsfrom thetwo tables, it is
asimplejoin. Rowsin the both tables where no match is found do not appear in
the output table. There are no rowsin the output table for the cities, “London”,
“New York”, or “Houston”.

Open M/SQL Developer Guide 2-13

Chapter 2—The Open M/SQL Relational Database

InterSystems’ Extensions to the Relational Model

InterSystems has extended SQL and the relational model to include two addi-
tional types of joins: one-way outer joins and implicit joins.

One-Way Outer Joins

With standard “inner” joins, when rows of one table are linked with rows of a
second table, arow in the first table that finds no corresponding row in the sec-
ond table is excluded from the output table.

With one-way outer joins, all rows from the first table are included in the output
table even if thereis no match in the second table. The first table pulls relevant
information out of the second table but never sacrificesits own rows for lack of a
match in the second table.

When specifying a one-way outer join, the order in which you name the tablesin
the FROM clauseisvery important. Thefirst table you specify isthe source table
for thejoin.

You specify an outer join by using the symbol =* in place of = in the WHERE
clause of the SQL query.

Example Inthe example below, the “Suppliers’ tableis specified as the source table for a
one-way outer join operation (=*) with the “ Parts’ table, where the “ SCity” field
matches the “PCity” field.

SELECT SNane, PNane, SCi ty
FROM Suppliers, Parts
WHERE Suppliers.SCty=*Parts.PCty

The SELECT clause specifiesthe fieldsto be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause of the
above SQL statement, which combines the tables “ Suppliers’ and “Parts’. The
WHERE clause in the above statement (Suppliers.SCity=* Parts.PCity) specifies
the one-way outer join condition.

This query returns al rows from the “ Suppliers’ source table as well as any rows
from the “ Parts’ table where the “ SCity” field matches the “PCity” field.

2-14 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model

This join operation yields the following output table:
Table 2-11: Output After Join Operation

SName SCity PName
Smith Paris Nut
Jones London

Blake Boston Wheel
Blake Boston Switch
Whitney Boston Wheel
Whitney Boston Switch
Roberts Paris Nut

Implicit Joins

Note

One of the most powerful features of the relational model isits ability to handle
unanticipated ad hoc queriesin a graceful and straightforward manner. However,
for many implementations this capability is costly: the power to join tablesin
complex ways often means sacrificing the ease of executing joins for the more
common connections between tables.

I nterSystems has solved this problem by implementing theimplicit join. Implicit
joins are pre-defined joins between tables which you specify in the Data Dictio-
nary. They allow you to define queries without specifying the WHERE condition
that isused to join tables.

Open M/SQL supports two types of implicit joins, designative references and
characteristic relationships.

Designative references and characteristic relationships are useful for:

n Pre-defining commonly used joins
n Improving data access efficiency
n Formally specifying integrity constraints

You may only define designative and characteristic relationships among tables
that reside within a single database.

Open M/SQL Developer Guide 2-15

Chapter 2—The Open M/SQL Relational Database

Designative References

A designative reference is a many-to-one link between tables in which one field
of the designating table contains the Row IDs of al rows in the designated table.
A designative reference is said to be a non-dependent link because rows in the
referenced table exist independently of rowsin the designating table. In relational
database terminol ogy, the designating table hasa“foreign key” on the referenced
table. In M terminology, the designating table has a*“ pointer” to the referenced
table. In Open M/SQL, afield that designates another tableis called a designative
reference field.

In the example below, the “ Customer” field of the “Invoice” table serves asthe
Designative Reference field to rows in the “ Customer” designated table:

Table 2-12: Invoice Table

InvNum InvTotal Customer
1234 100.00 C1l
5555 20,000.00 c3
3333 5,000.00 C4

Table 2-13: Customer Table

Number Name Address

C1l Acme Hardware 10 Main Stree
Boston, MA

Cc2 Waterfront Motors 210 Willow Street
Brighton, MA

C3 Global Furniture 1010 5th Street
New York, NY

c4 Hill Pharnaceuticals 958Jordan Ave.
Pittsburgh, PA

The Designative Referencefield, when it is not empty, contains avalue that iden-
tifies one and only one row of the referenced table. Every entry in the “ Cus-
tomer” field of the “Invoice’ table that is not empty must have exactly one
corresponding entry in the “ Customer” table. However, not all of the “Number”
valuesin the “ Customer” table need appear in the “ Customer” field of the
“Invoice” table. In thisway, a designative reference satisfies the relational defini-
tion of a one-way outer join.

2-16 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model

Furthermore, when the “Invoice” tableislinked by designative reference to the
“Customer” table, the following is true:

n There may be invoices with no “Customer” value, but

n If a“Customer” value appears, there must also be a“Number” valuein the
“Customer” table with the same value, and

n There may be customers with no invoices

Designative references contribute to data storage efficiency by helping to elimi-
nate unnecessary redundancy. Since you can access the information through a
designative reference to the “ Customer” table, it is not necessary to store the cus-
tomer names and addresses in the “Invoice” table. Accordingly, updates need be
made in only one table, rather than in two or more tables.

A table may have several fields that designate the same or different tables. Simi-
larly, atable may be designated by any number of tables. For example, the
“Invoice” table may contain another designative reference field to the
“Accounts’ table. And the “Accounts’ table might have a designative reference
to the “ Customer” table.

Characteristic Relationships

A characteristic relationship is alink between tables in which rows in one table
(the “child table”) are existence-dependent (cannot exist without) on rowsin
another table (the “parent table”), such that parent rows have a one-to-many rela-
tionship with child rows. A child table always designates its parent table. For this
reason, a characteristic relationship can be thought of asakind of designative ref-
erence. However, a characteristic relationship is more restrictive than a designa-
tive reference since the join condition specifies that all rows of the child table
must designate the same parent table row. In thisway, a characteristic relation-
ship satisfies the relational definition of an inner join.

Extending our previous example, the “Line Items’ table, shown below, isa child
table of the “Invoice” table (its parent). The existence of the“Line Items’ tableis
entirely dependent on its parent “Invoice” table. If an invoice is deleted from the
parent table, its line items become 'orphaned’ and must also be deleted, or trans-
ferred to a“foster parent”. Within the Data Dictionary definition of atable, you
may set atrigger that will function to automatically delete al child rowswhen its
parent is deleted.

Open M/SQL Developer Guide 2-17

Chapter 2—The Open M/SQL Relational Database

Each row of the “Invoice’ table can have multiple line items, illustrating the
one-to-many relationship:

Table 2-14: Invoice Table

InvNum InvTotal Customer
2222 10,000.00 C3
5555 20,000.00 c2
1234 100.00 C1

Table 2-15: Line Items Table

InvNum Iltem UnitCost Quantity Amount
2222 Chair 200.00 10 2,000.00
2222 Desk 300.00 10 3,000.00
2222 Rug 250.00 4 1,000.00
2222 Bookshelf 200.00 30 6,000.00

An“Invoice” row might also have no line items.

Though characteristic relationships may be perceived as hierarchical, they com-
ply with the tenets of the relational model; just as other tables, child tables can be
addressed through SQL without explicit reference to the parent table.

A parent table may have several child tables. For example, a*“Patient” table may
have “Visits’, “Medical Problems’, and “Lab Tests” as child tables. However, a
child table may have only one parent. (The “Visits’ table, for example, may be a
child only of the “Patient” table.) A child table can never be 'orphaned, i.e. exist
without a parent table.

2-18 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model

Implicit Join Syntax

Implicit joins simplify the process of querying the database. By defining charac-
teristic relationships and designative references in the Data Dictionary, you may
take advantage of Open M/SQL'simplicit join syntax to facilitate the definition
of queries.

Arrow syntax, a dash followed by a greater-than symbol (->), isan InterSys-
tems SQL extension used to indicate an implicit join between tables. This syntax
causes an additional outer join condition to be added implicitly to the WHERE
clause and the joined table to be added implicitly to the FROM clause of an SQL

query.

In Open M/SQL, you may use arrow syntax in the following three cases:
1. To signify Designative References between tables

2. Tosignify Child-to-Parent References between tables

3. Tosignify Parent-to-Child References between tables

Implicit Join Syntax in a Designative Reference

If thefield A.b designatestable B, and x isafield in table B, the reference:

A. b->x

points to the value of x in the row of table B corresponding to A.b. It isinter-
preted as areference to B.x with B added implicitly to the FROM clause and an
additional outer join condition added implicitly to the WHERE clause.

For example, the following query retrieves the patient's name and patient's doc-
tor's name for every patient who livesin Boston:

SELECT Pati ent. Pnane, Patient. Doct or->Dnane
FROM Pat i ent
WHERE Patient.City = “Boston”

Assuming that “Patient.Doctor” is a designative reference to the “Doctor” table,
the above query is equivalent to:

SELECT Pati ent. Pnane, Doct or. Dnane
FROM Pat i ent, Doct or
WHERE Patient.City = “Boston”
AND Pati ent. Doctor = *Doct or. Doct or

Open M/SQL Developer Guide 2-19

Chapter 2—The Open M/SQL Relational Database

Implicit Join Syntax in a Child-to-Parent Reference

If Pisthe parent of C and x isafield in B, the implicit join syntax:
C. P->x

for agiven row pointsto the value of x in that row's parent row. It isinterpreted
as areference to Px with P added implicitly to the FROM clause and an addi-
tional outer join condition added implicitly to the WHERE clause.

For example, given a parent table “ Customer” with a child table “Invoice”, the
following query:

SELECT | nvoi ce. Cust oner - >Nanme
FROM I nvoi ce
WHERE | nvoi ce. Nunber = 51140

is equivalent to:

SELECT Cust omer . Nane
FROM | nvoi ce, Cust oner
WHERE | nvoi ce. Nunber = 51140
AND | nvoi ce. Cust oner = Cust oner. Cust oner

Implicit Join Syntax in a Parent-to-Child Reference

If Pisthe parent of C and x isafield in C, theimplicit join reference:

P. C->x

for agiven P row pointsto the value of x in achild row of that row. It isinter-
preted as areference to C.x with C added implicitly to the FROM clause and an
additional outer join condition added to the WHERE clause.

For example, given parent “ Customer” with child “Invoice’, the following query
for all invoicesfor all customers named Smith:

SELECT Cust oner. | nvoi ce- >Nunber
FROM Cust oner
WHERE Custoner.Nane = “Smth”

is equivalent to:

SELECT | nvoi ce. Nunber
FROM Cust oner, | nvoi ce
WHERE Custoner.Nane = “Smth”
AND Cust oner. Custoner = I nvoi ce. Cust oner

2-20 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model

Integrity Constraints

Implicit join definitions include built-in integrity constraints. For instance, the
existence-dependent relationship between the “Line Items’ table and the
“Invoice” table may be regarded as an integrity constraint: no line item can exist
without a corresponding invoice.

The Open M/SQL relational Data Dictionary can be used to define other integrity
constraints, such as:

n Field validation code to enforce integrity constraints at the field processing
level, such as affect field values, required fields, and field formats.

n Triggersto enforce table integrity constraints, such as complex interactions
between fields, or the prohibition of DELETES from the table.

Multi-Line Fields

Open M/SQL extends the relational database model by permitting the creation of
multi-line fields. Such fields are useful for storing information about a single
entity where that information spans several lines. A typical multi-line field might
be used for an address or a block of comment text.

Open M/SQL treats the data in multi-line fields as a single entity, in accordance
with First Normal Form principle of the relational model.

InterSystems SQL supports the use of multi-line fields in input operations
(INSERT and UPDATE statements) and output operations using INTO lists by
creating an array and matching each line of the multi-line field to anode in the
array. InterSystems SQL also supports the naming of multi-line fields in the
SELECT statement of SQL SELECT queries. It does not, however, alow the use
of multi-linefields to perform comparisons or row ordering in an SQL SELECT

query.

You can access pieces of multi-line field data using the M language, but this use
of multi-line fields is not recommended, because it does not adhere to first nor-
mal form.

Open M/SQL Developer Guide 2-21

Chapter 2—The Open M/SQL Relational Database

2-22 Open M/SQL Developer Guide

PART

Program Development I I

Chapter 3

Open M/SQL Program Development

Chapter 4

Full Screen Editor

Chapter 5

Developing Macro Source Routines

Chapter 6

Routine Handling and Maintenance

Chapter 7

Open M/SQL Routine Management
Utilities

Open M/SQL Program Development

CHAPTER

This chapter presents a brief overview of the facilities available for program
development in Open M/SQL.

Specifically, it covers the following topics:

n

n

Programming Methods

Full Screen Editor

Intermediate Code Routines

Routine Management Utilities
Developer Utilities

Programmer Interface to Applications

Open M/SQL Developer Guide 3-1

Chapter 3—Open M/SQL Program Development

Programming Methods

Open M/SQL allows the programmer to develop hand-coded applications at two
levels: the macro source level and the intermediate code level.

Typically, you create routines at the macro source level. At the macro source
level, you may define macros, refer to existing macros, and write pure M code or
embed SQL statements using a combination of ANSI-Standard M syntax, special
macro preprocessor commands, and ANSI-Standard SQL. Macro source code
also makes use of include files. Like macro source code, include files may con-
tain M syntax, SQL syntax, and preprocessor syntax.

The macro preprocessor phase of the Open M/SQL Compiler converts macro
source code into M code with an internal form of embedded SQL. This converted
codeis called intermediate code. You may view and edit routines at the interme-
diate code level. You may also create routines directly at the intermediate code
level, although without the benefit of embedded SQL or preprocessor syntax,
such as macros. One strategy you may use isto create pure M routines at the
intermediate code level, copy those routines to the macro source level using the
%urcopy utility, then edit the routinesin the Full Screen Editor to include prepro-
cessor syntax and embedded SQL.

The Full Screen Editor

You may use the Full Screen Editor to edit any of the following types of routines:

n Macro source routines
n Includefiles
n Intermediate code routines

You must use the Full Screen Editor to create and edit macro source routines and
includefiles.

You may create and edit intermediate code routines either using the Full Screen
Editor or directly from the M prompt using the Routine Line Editor.

3-2 Open M/SQL Developer Guide

Intermediate Code Routines

Intermediate Code Routines

Open M/SQL provides three ways to create intermediate code routines:

1. Intermediate code routines are the products of compiled macro source code
routines — these routines consist of M code with the possible inclusion of
embedded SQL statements.

2. You may create intermediate code routines in the Full Screen Editor — these
routines consist of pure M source code.

3. You may create intermediate code routines at the M programmer mode
prompt — these routines consist of pure M source code.

Routine Line Editor

The Routine Line Editor lets you edit and debug intermediate code routine lines
and insert new routine lines directly from the M programmer prompt. The Rou-
tine Line Editor operates only on intermediate code—it does not operate on
macro source code or include files. For more information on using the Routine
Line Editor to develop and edit intermediate code routine lines, see the Open
M/SQL M Programming Guide.

Routine Management Utilities

InterSystems provides a set of pre-defined utilities for examining and manipul at-
ing routines and include files. These routine utilities are useful for developing
and maintaining Open M/SQL applications. See Chapter 7, Open M/SQL Routine
Management Utilities, for a complete description of the Open M/SQL routine
management utilities.

Open M/SQL Developer Guide 3-3

Chapter 3—Open M/SQL Program Development

Developer Utilities

InterSystems provides a set of utilities useful for testing and developing pro-
grams and manipulating program objects. These utilities perform functions that
include checking the integrity of program objects, searching for stringsin
objects, and compiling sets (called configurations) of objects. For acomplete
description of the Open M/SQL devel oper utilities see Chapter 12, Open M/SQL
Developer Utilities.

Programmer Interface to Applications

Open M/SQL combinesthe precision of hand-coded programming with the speed
and ease of application generation to provide atotally integrated application
development environment.

You can reference Data Dictionary-defined global structures using any combina-
tion of SQL and M code. Open M/SQL provides entry points that enable you to
call menus, forms, and reports from anywhere in your application. You can insert
M and SQL code directly into base table definitions, form definitions, menu defi-
nitions, and report definitions, which allows you to develop highly customized
applications while still preserving Open M/SQL’s automatic-generation capabili-
ties.

In the Data Dictionary, you can define processing triggers to enforce integrity
congtraints or to automatically invoke related processing actions every time a cer-
tain event occurs. You can enter code to perform data vaidation checking and
conversion of user-entered and edited data. You can define computed fields that
will automatically calculate data values based on user input. And you can manu-
ally insert your own M code to customize lookup and filing routines.

In the Form Generator, you can manually insert M and SQL code at the form

level, window level or field level to customize your application to your exact

specifications. You can use processing triggers to program window branching
that responds in different ways to different situations.

These are but afew of the many ways the Open M/SQL environment combines
custom programming flexibility with the ease of automatic generation.

3-4 Open M/SQL Developer Guide

Full Screen Editor

CHAPTER

This chapter describes the Open M/SQL Full Screen Editor. The Full Screen Edi-
tor isused for creating, editing, and viewing macro source routines, intermediate
code routines, and include files.

Specifically, this chapter covers the following topics:

n

n

Overview of the Full Screen Editor

Invoking the Full Screen Editor

Full Screen Editor Screen Display

Navigating the Full Screen Editor Menu System
Editing Operations

Getting Help

Exiting the Full Screen Editor

Open M/SQL Developer Guide 4-1

Chapter 4—Full Screen Editor

Overview of the Full Screen Editor

The Full Screen Editor isan Open M/SQL utility that allows you to view an
entire block of source code and edit sections of it. By contrast, the alternative
editing utility, the Routine Line Editor, allows only line-by-line editing (see the
Open M/SQL M Programming Guide for an in-depth description of the Routine
Line Editor).

Full Screen Editor Features

The Full Screen Editor provides all of the following capabilities:

n Cut and paste capabilities

n Search and replace functions

n Ability to work in more than one buffer or window at atime

n Automatic syntax checking

n A lockout mechanism to prevent overwrites

When you edit aroutine in the Full Screen Editor, you are editing a temporary
copy of the routine. Pressing the <PREVIOUS> key invokes a save menu that dis-

plays options for saving, compiling, and renaming the routine as well as an
option for exiting the Full Screen Editor.

Routine Types for Editing

Using the Full Screen Editor, you may edit any of the following types of routines:

n Macro source routines

n Includefiles

n Intermediate code routines (ANSI Standard M)
n Theroutinein your current M partition

4-2 Open M/SQL Developer Guide

Invoking the Full Screen Editor

Invoking the Full Screen Editor

You can invoke the Full Screen Editor from either the M programmer prompt or
from within the Open M/SQL development environment.

Procedure To invoke the Full Screen Editor from the M programmer prompt:
1. Issueany of thefollowing commands at the M programmer prompt:
> do "% de
or:
> do "%
or:

> X "%
Edit: .E

To exit from the “ Edit:” prompt befor invoking the Full Screen Editor, type a
period (.), and press <RETURN>.

Note If you are running Open M/SQL on a non-ISM host M system, you
must use the first command (*%rde).

Once invoked, the Full Screen Editor prompts you to load aroutine, as fol-
lows:;

Load Routi ne:

At this prompt you may either load an existing routine or create a new rou-
tine. See below for information on both options.

Open M/SQL Developer Guide 4-3

Chapter 4—Full Screen Editor

Procedure To invoke the Full Screen Editor from the Open M/SQL development
environment:

1. AttheM programmer prompt, type the following command to enter
Open M/SQL:

> do "%sql
You see the Termina Type prompt, as shown below:
Term nal Type: VI220 =>

2. At the Terminal Type prompt, enter the name of the terminal type you
are currently using.

You may press <RETURN> to accept the system-wide default terminal type.

You see the Open M/SQL User Identification window, as shown below:

UAAA,

SUAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3

e open MSQ User lLdentification . o %

SRAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAA S
U e

3A A
B VELCOME TO CPEN M SQL B
3 3
B Version F B
s Mai nt enance Rel ease F.7 38
A, us

AAU
SUAAA S

SAU A3
3 User Nane Passwor d 3
33 33
33 33
= Language =
33 33
3A<; Us

AAUS
AAL

User Login Press <Hel p> For Hel p

Enter a valid Open M SQ. usernane.

3. At the UserNamefield on the Open M/SQL User Identification window,
enter your Open M/SQL User Name, and press <RETURN>.

4. At thePassword field on the Open M/SQL User Identification window,
enter the Password for your Open M/SQL User Name, and press
<RETURN>,

4-4 Open M/SQL Developer Guide

Invoking the Full Screen Editor

5. At theLanguagefield on the Open M/SQL User Identification window,
enter the language in which you want to run Open M/SQL.

To accept the system-wide default run-time language, press <RETURN>,

To choose a different run-time language, press <CTRL-L> to delete the sys-
tem-wide default language.

You may press the <LIST CHOICES> key to see alookup box that lists the run-
time languages supported by Open M/SQL.

You see the Open M/SQL Main Menu, as shown below:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR OPEN M SQ
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
UAAACpen M SQL MenuAAA;
3
Data Dictionary 3
Forns 3
Reports 3
Queries 3
Menu Gener at or 3
Syst em Managenent 3
Privil eges 3
Devel oper UWilities 3
User Uilities 3
Server Managenent 3
Rel ati onal Gateway 3
Hel p Options 3
3

WWw W wWwWww W W W W w

3
AAAAAAAAARAAAAAAAAAAAAD
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

Open M SQ Menu 03: 50PM Press <Hel p> For Help

6. From the Open M/SQL Main menu, select the Developer Utilities option.

You see the M/SQL Developer Utilities menu, as shown below:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR OPEN M SQ
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

UAAAAM SQL Devel oper UtilitiesAAAA;

3

Export/Inmport Options
Qoj ect Conpile Driver
M SQ Object Integrity Checking
Qbject String Search Wility
Ful | Screen Editor
Macro Routine Wilities
Query Object By Routine Prefix
National Language Reports

WO W W W W W W
W w W W Wwww e W

3
AAAAAAAAAAAAAAAAARRAAAAAAAAAAAAAAAU

Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

Open M/SQL Developer Guide 4-5

Chapter 4—Full Screen Editor

M SQ. Devel oper Utilities 03:50PM Press <Hel p> For Help ‘

7. Fromthe M/SQL Developer Utilities menu, select the Full Screen Editor
option to invoke the Full Screen Editor.

Note: You may type f to select this option—it is a mnemonic accelerator.

Once invoked, the Full Screen Editor prompts you to load aroutine, as fol-
lows:

Load Routi ne:

At this prompt you may either load an existing routine or create a new rou-
tine. See below for information on both options.

Loading Existing Routines

To load an existing routine, enter the name and extension of the routine or
include file you wish to edit at the “Load Routing” prompt.

When entering the name of aroutine, if you do not specify a suffix, Open M/SQL
assumes the .MAC suffix.

For example, to load the routine ABC.MAC, you may type the following:
Load Routine: ABC

If you specify the name of aroutine that already exists, Open M/SQL loads the
routine and invokes the Full Screen Editor.

Loading Routines Automatically

You can set up Open M/SQL to automatically load a specified routine whenever
you invoke the Full Screen Editor. You do this by setting the %first variable to
the routine that you want to be auto-loaded.

Procedure To load a specified routine automatically:

1. FromtheM programmer prompt, set the %first variableto theroutine
that you want to be auto-loaded.

Use the following syntax to do this:
> SET % irst="routine.ext”

where routine.ext is the name and extension of the routine you want to auto-
load.

2. Invokethe Full Screen Editor.

4-6 Open M/SQL Developer Guide

Invoking the Full Screen Editor

The Full Screen Editor automatically loads the routine stored in the %first
variable.

Creating New Routines

To create and load a hew routine, use the procedure below:

Procedure To create a new routine using the Full Screen Editor:

1. Atthe“Load Routing” prompt, enter the name of a new routine, asfol-

lows:
Load Routi ne: NEWROU

The Full Screen Editor automatically appends the default extension “.MAC”
to the routine name you entered and then issues the following prompt:

Load Routi ne: NEWROU
the source ' NEWROU. MAC does not exi st
Continue with new buffer? Y=>

Press <RETURN> to accept the Yes default and load the new routineinto
the Full Screen Editor, or type No and press <RETURN>toreturn to the
“Load Routing” prompt.

Preventing Overwrites

The Full Screen Editor provides alockout mechanism to ensure that two pro-
grammers cannot modify the same routine simultaneously. This mechanism
issues alock on aroutine as soon as the first user retrievesiit.

The locking mechanism prevents the following scenarios from occurring:

n

Prevents two users from editing the same .MAC file simultaneously
Prevents two users from editing the same .INT file simultaneously
Prevents two users from editing the same .INC file simultaneously

Prevents one user from editing the .MAC version of a routine while another
user is simultaneously editing the .INT version of the same routine, or vice
versa

When the Full Screen Editor detects alock on aroutine, it allows the second user
to browse theroutinein “read mode”, but the user cannot edit or file the routine.
When this happens, the terminal beeps and the Full Screen Editor displaysthe
following message at the bottom of the screen:

ROUTINE |'S LOCKED: Now i n Read Mdde

Open M/SQL Developer Guide 4-7

Chapter 4—Full Screen Editor

Asyou browse the locked routine, the Status Line continues to display the tag:
(read)

4-8 Open M/SQL Developer Guide

Full Screen Editor Screen Display

Full Screen Editor Screen Display

Edit Field

Below isatypicat Full Screen Editor screen display:

EMPLI ST ;List the enployees in a given departnent
;Define macro to convert a string to uppercase and renove
;punctuation. Calls the entry point 4al phaup®yraz(%) as a
;function

#defi ne ALPHAUP(%) $$al phaupyr az(%)
;Define macro to get the external value of a returned field.
#def i ne EXTERNAL(%) $p(%, $c(1),2)
; Declare cursors for accessing departnment tables. Selects fields
;"Departnent” and “Name” fromthe “Departnent: table and puts theminto
;the Mvariables “deptid” and “deptnanme”.
##sql (DECLARE deptcurs CURSOR FOR SELECT Department, Nane
I NTO : deptid, :deptnane
FROM Depar t ment WHERE (Y%ALPHAUP(NAME) %STARTSW TH : nane)

; Declare cursor for accessing Enpl oyee table. Selects fields "Nane"

EMPLI ST. MAC(modi f i ed)

Goto Find Next Prev Sel ect Cut/ Repl ace Check Buffer Mark O her

Tag String Find Find Bl ock Paste String Errors Menu Menu Menu

The screen display is divided into the following three parts:

n Edit Field — the top (and major) portion of the screen
n StatusLine— Directly below the Edit Field
n Horizontal Options Menu — Directly below the Status Line

The Full Screen Editor display consists of as many lines as will fit on your termi-
nal screen. One of those linesis reserved for the Status Line and two more are
reserved for the Horizontal Options Menu. The remaining lines belong to the Edit
Field.

Thetypical terminal screen consists of 24 lines, therefore the Edit Field of atypi-
cal terminal screen displays up to 21 lines of text.

The Full Screen Editor is alwaysin insert mode.

The Edit Field scrolls appropriately as you insert and delete text.

Open M/SQL Developer Guide 4-9

Chapter 4—Full Screen Editor

Status Line

The Status Line appears in reverse video between the Edit Field and the Horizon-
tal Options Menu. It displays the following information:

n Name of the current buffer
n Name of the current routine
n Type of routine being edited (MAC, .INT, .INC)

When changes have been made to the current routine, the Status Line displaysthe
following tag:

(rodi fi ed)

If the current routine is non-modifiable, the Status Line displays the tag:
(read)
Theinformation displayed on the Status Lineis standard and does not vary across

systems. The system, however, may alter the appearance of the information. The
standard appearance format is as follows:

[buffer]routine_nane.type
Horizontal Options Menu

The Horizontal Options Menu displays across the bottom of the screen, directly
beneath the Status Line. You can use the options on this menu to perform basic
editing functions such as selecting and moving text.

Procedure To access an option on the Horizontal Options Menu:

1. From anywherein the Edit Field of the Full Screen Editor, pressthe <co
TO BOTTOM MENU> Key.

The cursor moves to the Horizontal Options Menu.

2. OntheHorizontal Options Menu, you may select and invoke an option
using any one of the following methods:

a. Usethearrow keysto position the cursor on the desired option, and press
<RETURN> to invoke it.

b. Typethefirst letter of an option (the cursor selects and automatically
invokes the option).

c. Press<cTtrL-E> plusthefirst |etter of the desired option.

d. If you are selecting an option from a submenu, you may type
<CTRL-E>Xy Where X isthefirst letter of the primary menu optionandyis
the first letter of the submenu option.

4-10 Open M/SQL Developer Guide

Navigating the Full Screen Editor Menu System

Navigating the Full Screen Editor Menu System

The following sections list and describe the options located on each of the hori-
zontal options menus in the Full Screen Editor menu system

Primary Menu

The following table lists and describes the options on the Primary Menu:

Table 4-1: Options on Primary Menu

Option Function

Goto Tag Specify the tag and offset within your M routine that you wish to locate,
using the syntax:

TAG
TAGH+3
TAG 3

Find String Specify a string to be located.

Next Find Finds next occurrence of a string specified in previous Find, working
towards the bottom of the buffer.

Prev Find Finds previous occurrence of a string specified in a previous Find, work-
ing towards the top of the buffer.

Select Block Turn on select mode. Any cursor movement while in select mode results
in highlighting the text between the current cursor position and its posi-
tion when select mode was activated. Selecting this option a second
time eliminates the highlighting.

Cut/Paste If select mode is on, cuts the contents of the select region from the text

and inserts it into the paste buffer, then turns off select mode. If select
mode is off, inserts the contents of the paste buffer into the current
buffer.

Replace String

Scans the buffer for a specified string, and optionally replaces it with
another.

Check Errors

Syntax checks the routine from the location of the cursor down, replac-
ing the cursor at the beginning of the first line in which it detects a syn-
tax error. This is an error-by-error syntax checking mechanism.

Buffer Menu Invokes Buffers submenu (described below).
Mark Menu Invokes Mark submenu (described below).
Other Menu Invokes Other submenu (described below).

Open M/SQL Developer Guide 4-11

Chapter 4—Full Screen Editor

Buffers Menu

When you select the Buffers Menu option from the Primary Menu, you see the
Buffers Menu. The table below lists and describes the options on the Buffers
Menu:

Table 4-2: Options on Buffers Menu

Option Function

Make Buffer Make a new buffer with a specified routine name and load that routine
if it exists.

Use Buffer Switch from one buffer to another.

Directory of Buff- | View the names of all existing buffers.

ers

Print Buffer Print the contents of buffer to a device.

Load Routine Load a routine into current buffer, deleting the existing contents of the
buffer.

Insert Routine Insert a routine into current buffer, without deleting the existing con-
tents.

Windows Menu Invokes Windows menu.

Windows Menu

When you select the Windows Menu option from the Buffers Menu, you see the
Windows Menu. The table below lists and describes the options on the Windows
Menu:

Table 4-3: Options on Windows Menu

Option Function

Two Windows Arranges the terminal screen to display two buffers at the same time,
each in its own area (window).

One Window Sets the terminal screen to display one buffer using the entire screen
area.

Switch Windows Moves the cursor from one buffer window to the other.

Grow Current Increases the size of one of the two displayed windows, allowing it to
Window occupy a greater portion of the screen.

4-12 Open M/SQL Developer Guide

Navigating the Full Screen Editor Menu System

Mark Menu

When you select the Mark Menu option from the Primary Menu, you see the
Mark Menu. The table below lists and describes the options on the Mark Menu:

Table 4-4: Options on Mark Menu

Options Function

Set Mark Mark a location in the current buffer.

Clear Mark Remove a mark from the current buffer.

Find Mark Go to a specified mark in the current buffer.
Other Menu

When you select the Other Menu option from the Primary Menu, you see the
Other Menu. The table below lists and describes the options on the Other Menu:

Table 4-5: Options on Other Menu

Option

Function

Redraw Screen

Redraws screen without saving or deleting contents of buffer.

Execute M Code

Prompts for lines of M code and executes them. Type “Q” to exit
from this option.

M/SQL

Invokes Open M/SQL

Open M/SQL Developer Guide 4-13

Chapter 4—F

ull Screen Editor

Editing Operations

This section describes how to perform the following text editing operations:

n

Moving the

Moving the Cursor

Inserting and Deleting Text
Cutting and Pasting Text
Editing Multiple Copies of a Routine

Displaying Multiple Buffers

Setting aMark in Your Current Buffer
Searching For Text Strings

Replacing Text Strings

Cursor

The use of control keys simplifies cursor movement for touch typists. The fol-
lowing table describes the cursor positioning keys available for use in the Full
Screen Editor:

Table 4-6: Full Screen Editor Cursor Movement Key Commands

Keystroke(s)

Function

<RIGHT ARROW> Or
<CTRL-K>

Cursor moves one character to the right. If at right physical
margin, cursor moves to the first character of the next line.

<LEFT ARROW> Or
<CTRL-H>

Cursor moves one character to the left. If at left physical
margin, cursor moves to the last character of the previous
line.

<UP ARROW> or
<CTRL-U>

Moves the cursor to the same column position on the next
physical line up.

<DOWN ARROW?> or
<CTRL-J>

Moves the cursor to the same column position on the next
physical line down.

<ENHANCE><RIGHT ARROW>

Moves the cursor to the end of the current M code line.

<ENHANCE><LEFT ARROW>

Moves the cursor to the beginning of the current M code
line.

<ENHANCE><UP ARROW>

Moves the cursor to the first character of the edit field.

<ENHANCE><DOWN ARROW>

Moves the cursor to the first character of the last line of the
edit field.

<CTRL-N> Moves the cursor to the next tag.
<CTRL-P> Moves the cursor to the previous tag.
<CTRL-V> Moves the cursor to the last character of the routine being

edited (bottom of routine).

4-14 Open M/SQL Developer Guide

Editing Operations

Table 4-6: Full Screen Editor Cursor Movement Key Commands (Continued)

Keystroke(s) Function

<CTRL-F> Moves the cursor to the first character of the next word*.

<CTRL-B> Moves the cursor to the last character of the previous
word*.

<CTRL-E><1> Repaints the screen when it is split into two windows for the
syntax error report.

* A word is defined as any sequence of characters delimited by one or more
spaces or commas.

Inserting Text

The Full Screen Editor is alwaysin insert mode.

Procedure To insert text:

1. Usethearrow keysto locate the cursor at the place where you wish to
insert text.

2. Begin typing.
Note: There is an implicit hard return at the end of each M code line.

Pressing <RETURN> breaks the line. Deleting a <RETURN> joins the
line.

Deleting Text

To delete text, use the appropriate key or key sequence from the following table:
Table 4-7: Text Delete Options

Keystroke Function Description

<CTRL-D> Delete Current Character Deletes the character on which the cursor is
currently positioned.

<DELETE> Delete Previous Character Deletes the character to the left of the cur-
rent cursor position.

<CTRL-W> Delete Word Deletes from the current cursor position to
the end of the current word.

<CTRL-L> Delete to End of Line Deletes from current cursor position to the
end of the current physical screen line.

<CTRL-X> Undelete Restores a previously deleted character,
word, or line.

Open M/SQL Developer Guide 4-15

Chapter 4—Full Screen Editor

Cutting and Pasting Text

To cut and paste text, use the following procedure.

Procedure To cut and paste text:

1.

Place the cursor at the beginning of the block of text that you want to
cut.

Pressthe <Go TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

From the Horizontal Options Menu, choose the Select Block option.

The Select option makes the cursor function asatool for highlighting blocks
of text.

Movethe cursor to the end of the block of text that you want to select.

The cursor highlights all text in its path from the location where Select mode
was activated.

Pressthe <Go TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

From the Horizontal Options Menu, select the Cut/Paste option to cut
the text.

When you cut text from the document, the Full Screen Editor storesit in an
area called the Paste Buffer. Each time you cut a block of text, the new text
overwrites the previous contents of the Past Buffer. The Paste Buffer always
contains the most recently cut block of text.

Movethe cursor to the location where you wish to insert the text.

Pressthe <Go TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

From the Horizontal Options M enu, select the Cut/Paste option again to
paste the text.

4-16 Open M/SQL Developer Guide

Editing Operations

Editing Multiple Copies of a Routine

Procedure

Procedure

The Full Screen Editor provides buffers and windowsto let you edit multiple rou-
tines and multiple copies of the same routine simultaneously.

Buffers are conceptual spaces where you can temporarily store text to be edited.
Thefirst routine loaded into the Editor is automatically placed in a buffer called
MAIN. You can then create and name additional buffers, and place new text into
the new buffers. You can also create empty buffers for use during an editing ses-
sion.

When placing routines in buffers, you can LOAD or INSERT. LOAD places the
text into the buffer, overwriting the current contents of the buffer. INSERT places
the designated text into the buffer without deleting the current contents.

Creating a New Buffer
Use the procedure below to create a new buffer.

To create a new buffer:

1. Pressthe<Go TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffer Menu option.
You access the Buffers Menu.
3. From the Buffers Menu, select the Make Buffer option.
You see the following prompt in the bottom right-hand corner of the screen:
Make Buffer:

4. Atthe“MakeBuffer” prompt, enter the name of anew buffer, and press
<RETURN>,

The Full Screen Editor opens anew buffer and places you in insert mode.
Selecting an Existing Buffer
Use the procedure below to select an existing buffer.

To select an existing buffer:

1. Pressthe<GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffers M enu option.

You access the Buffers Menu.

Open M/SQL Developer Guide 4-17

Chapter 4—Full Screen Editor

3. From the Buffers Menu, select the Use Buffer option.
You see the following prompt in the bottom right-hand corner of the screen:

Use Buffer:

4. Atthe"UseBuffer” prompt, enter the name of the buffer you want to
edit, and press <RETURN>.

Note: To see a list of all current buffers, select the Directory option from
the Buffer Menu.

The Full Screen Editor opens the specified buffer and places you in insert
mode.

Loading a Routine into the Current Buffer
Use the procedure below to load a routine into the current buffer.

Procedure To load aroutine into the current buffer:

1. Pressthe<GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. Fromthe Horizontal Options Menu, select the Buffer Menu option.
You access the Buffers Menu.
3. From the Buffers Menu, select the Load Routine option.
You see the following prompt in the bottom right-hand corner of the screen:
Load Routi ne:

4. Atthe“Load Routine” prompt, enter the name of the routine you want
toload, and press <RETURN>.

The Full Screen Editor load the specified routine into the current buffer,
overwriting its previous contents.

Note: Using the Insert Buffer option allows you to insert the specified

routine into the current buffer without overwriting its previous
contents.

4-18 Open M/SQL Developer Guide

Editing Operations

Displaying Multiple Buffers

Procedure

The Full Screen Editor displays the contents of abuffer in awindow. Windowsin
the Full Screen Editor let you display up to two buffers simultaneously.

You can control the display of your buffers using the Windows Menu.

When displaying two buffers, the Full Screen Editor splits the display screen so
that one window occupies the top half of the screen and the other window occu-
pies the remaining area of the screen above the status line.

When two buffers are sharing the screen, you can cut and paste between them.

Editing commands function no differently for two windows than for one.
Because the position of the cursor determines the current window status, all edit-
ing commands function on the window in which the cursor is located.

To display and edit multiple buffers simultaneously:

1. Pressthe<GoO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffer Menu option.
You access the Buffers Menu.
3. From the Buffers Menu, select the Windows Menu option.
You access the Windows Menu.
4. From the Windows M enu, select the Two Windows option.
You see the following prompt in the bottom right-hand corner of the screen:
Use Buffer:

5. At the“UseBuffer” prompt, enter the name of the buffer you want to
display in the second window, and press <RETURN>.

The Full Screen Editor splits the screen into two halves, one half for each of
the two buffers being displayed.

Note: You can cut and paste between these two buffers.

Open M/SQL Developer Guide 4-19

Chapter 4—Full Screen Editor

Setting a Mark in Your Current Buffer

You can set amark in your current buffer to define alocation within the text.

Setting a mark does not affect the surrounding text in any way. Marks only serve
to define locations within the text.

Procedure To set a mark in the current buffer:

1.

Position the cursor at the placein your text where you want to set a
mark.

Pressthe <co To BOTTOM MENU> key to access the Horizontal Options
Menu.

From the Horizontal Options Menu, select the Mark Menu option.

You access the Mark Menu.

. From the Mark Menu, select the Set Mark option.

You see the following prompt in the bottom right-hand corner of the screen:

Mar k Nane:

At the“Mark Name” prompt, enter the name of the mark you want to
edit, and press <RETURN>.

This sets amark at the place in your text where the cursor is currently posi-
tioned.

You can relocate the cursor back to this position at any time by selecting the
Find Mark option on the Mark Menu and specifying the name of the mark
you want to find at the “Goto Mark” prompt.

You can also delete the mark at any time by selecting the Clear Mark option
on the Mark Menu and specifying the name of the mark you want to delete at
the “Clear Mark” prompt.

4-20 Open M/SQL Developer Guide

Editing Operations

Searching For Text Strings

You can search your buffer for atext string by using the following options on the
Horizontal Options Menu:

Option What It Does

Find String prompts you to specify a text string and searches for the string from the
current cursor position to the end of the buffer

Next Find searches from the current cursor position to the end of the buffer for the
next instance of the same text string

Prev Find searches from the current cursor position to the top of the buffer for the
previous instance of the same text string

ReplacingText Strings

You can use the Replace String option on the Horizontal Options Menu to specify
astring of text to search for (at the Replace prompt) and a string of text to replace
each instance of the search string (at the With prompt). The Replace String option
finds and replaces all instances of the search string from the current cursor posi-
tion to the end of the buffer.

Using Control Key Commands for Quicker Editing

Many commands in the Full Screen Editor are designated by <CTRL-letter> key-
stroke sequences.

The following table summarizes the keystrokes you can use to issue commands
for the Full Screen Editor. None of the information contained hereis terminal
specific. However, you may find that not all the <cTRL-letter> functions listed
here are available to you, as they tend to vary with operating system:

Table 4-8: <CTRL-letter> Commands

<CTRL-letter> Function

<CTRL-A> Advances cursor several lines of text.

<CTRL-B> Backs up cursor to first letter of previous word.

<CTRL-D> Deletes current character.

<CTRL-E>-<letter> Invokes option from primary menu beginning with specified
letter.

<CTRL-F> Advances cursor to first character of next word.

<CTRL-G>-<CTRL-H> Returns cursor to first character of current M code line.

<CTRL-G>-<CTRL-J> Moves cursor to end of last physical line displayed on screen.

<CTRL-G>-<CTRL-K> Moves cursor to end of current M code line.

Open M/SQL Developer Guide 4-21

Chapter 4—Full Screen Editor

Table 4-8: <CTRL-letter> Commands (Continued)

<CTRL-letter> Function

<CTRL-G>-<CTRL-U> Moves cursor to beginning of first physical line displayed on
screen.

<CTRL-G>-<CTRL-X> Undoes previous deletion.

<CTRL-H> Moves cursor one character to left.

<CTRL-J> Moves cursor down one physical line.

<CTRL-K> Moves cursor one character to right.

<CTRL-L> Deletes rest of line from current cursor position.

<CTRL-N> Next tag.

<CTRL-R> Moye_:s the cursor back 15 lines, maintaining the same cursor
position.

<CTRL-U> Moves cursor up one physical line.

<CTRL-W> Deletes to end of current word.

<CTRL-X> Undoes previous deletion.

Note For a complete listing of all keyboard-specific Full Screen Editor action commands
for each terminal type supported by InterSystems, see the Appendix to this man-

ual.

4-22 Open M/SQL Developer Guide

Getting Help

Getting Help

You may press the <ExXPLAIN> key at any time while the cursor islocated in the
Edit Field to access the Full Screen Editor Help Menu. The Help Menu is a hori-
zontal options menu that appears at the bottom of the screen.

Use the <LEFT ARROW> and <RIGHT ARROW> keys to navigate the menu, and
press <RETURN> to select an option.

The table below lists and describes the options on the Help Menu:

Table 4-9: Options on Help Menu

Option

Function

General

This option displays a list of all control sequence commands
currently defined for the Full Screen Editor.

Keys

This option is not currently implemented.

Options

This option is not currently implemented.

Action

This option lets you select an action on which you would like
more information.

When you select this option, you see the following prompt in the
bottom right-hand corner of the screen:

Acti on:

At the “Action” prompt, specify the name of an action on which
you would like more information, and press <RETURN>. The sys-
tem displays a help window that contains a description of the
specified action.

You may also perform lookups of actions at the “Action” prompt.
Enter the first letter or sequence of letters for an action and
press <RETURN> to see a lookup box that lists all actions with
matching names.

Open M/SQL Developer Guide 4-23

Chapter 4—

Full Screen Editor

Exiting the Full Screen Editor

When finish editing aroutine in the Full Screen Editor, you may press the <pPRE-
VvIous> key to access the Full Screen Editor Save Menu. The Save Menu letsyou
save edits to aroutine, compile aroutine, rename aroutine, and exit the Full
Screen Editor.

You may press the <PREVIOUS> key at any time while the cursor islocated in the
Edit Field. The Save Menu is a horizontal options menu that appears at the bot-
tom of the screen. Use the <LEFT ARROW> and <RIGHT ARROW> keys to navigate
the Save Menu, and press <RETURN> to select an option.

The table below lists and describes the options on the Save Menu:
Table 4-10: Options on the Save Menu

Option Function
Quit Exit the Full Screen Editor without saving or compiling the rou-
tine.

Note: If you select this option while there are unsaved edits
made to the routine, the Full Screen Editor displays the
following confirmation prompt before allowing you to exit
the Editor without saving your edits:

Quit without filing changes?

Save & Compile Save and compile routine. This option may disrupt any other pro-
cess that is running the routine. See the discussion on ZSAVE in
the Open M Programming Guide to learn the consequences of
saving a program that another process is executing.

Only Save Save but do not compile the contents of the current buffer.
Rename & Save Save but do not compile the contents of the current buffer as a
new routine.

Automatic Syntax Checking

Note

Whenever you compile a macro source or intermediate code routine, the Open
M/SQL Compiler automatically syntax-checks the code and records all errorsin
asequentia error log. The error log displaysto the screen upon the completion of
the compilation. In the Full Screen Editor, you can display the error log by select-
ing the Check Errors option on the Primary Menu. The error log displaysin its
own window located in the lower half of a split screen. This screen split enables
you to correct the routine while looking at the error report. To erase the error log
window and repaint the screen, type <CTRL-E><1>.

The Full Screen Editor does not support syntax checking for Open M/SQL sys-
tems running on non-ISM host M implementations.

4-24 Open M/SQL Developer Guide

Exiting the Full Screen Editor

Automatic Date and Time Stamps

The Full Screen Editor can automatically stamp the date and time in the form of a
comment on thefirst line of intermediate code routines whenever changes are
saved.

To enable this feature as the system-wide default behavior, the System Manager
must issue the following command from the System Manager's directory:

> set "% de(“ MARK") =1

Open M/SQL Developer Guide 4-25

CHAPTER

Developing Macro Source Routines

InterSystems recommends that you write all routines (even pure M routines) at
the top level — the macro source level. In order to create a macro source code
routine, you must use the Full Screen Editor.

This chapter describes how to develop macro source routines. Specifically, it
covers the following topics:

n Creating Macro Source Routines

n The Open M/SQL Macro Preprocessor

n Summary of Macro Preprocessor Commands
n Summary of Macro Preprocessor Functions

Open M/SQL Developer Guide 5-1

Chapter 5—Developing Macro Source Routines

Creating Macro Source Routines

To create and edit both macro source routines and include filesin Open M/SQL,
you must use the Full Screen Editor.

Note You can also create intermediate code routines using the Full Screen Editor, but
InterSystems recommends creating routines at the macro source level.

Macro source code permits the use of macros and embedded SQL statements
using a combination of ANSI-Standard M syntax, special macro preprocessor
commands, and ANSI-Standard SQL. Macro source routines can also refer to
include files, which are useful for standardizing the behavior of a set of programs
and for customizing a single source for different environments.

Macro source code can use preprocessor commands and keywordsto do all of the
following:

n Provide namesfor constants, expressions, and other arbitrary text, which can
be replaced at compile time without sacrificing run-time performance.

n Conditionally include lines of code.

n Include macro source code from named includefiles.

n Tailor asingle macro source routine to different environments.

n Execute SQL statements as part of a program.

Compiling Macro Source Routines

When you compile macro source routines, the Compiler worksin two phases.
First, the Compiler converts the macro source routine into pure M code, called
intermediate code. Thislevel of compilation is called the macro preprocessor
phase. Subsequently, the Compiler compiles the intermediate code routine into
executable code, called object code.

To compile a macro source routine, you may select the “ Save and Compile’
option of the Full Screen Editor after editing a macro source routine, or you may
compile the routine directly from the M programmer prompt using the %urcomp
utility.

5-2 Open M/SQL Developer Guide

Creating Macro Source Routines

Macro Source Routines and Include Files

Macro source code can use include files.

Include files contain definitions that are used in the preprocessor phase of compi-
lation to expand macros and determine whether optional lines of code should be
included. They can also be used to include a common block of code in several
routines, saving the overhead of callsto a common subroutine.

The table below summarizes the differences between include files and a macro
source routines:

Table 5-1: Macro Source Routines versus Include Files

Macro Source Routine Include File

Created using Full Screen Editor Created using Full Screen Editor

Named with suffix .MAC Named with suffix .INC

Compiler produces intermediate code Cannot invoke Compiler directly; must be ref-
from the macro source routine, then erenced in a macro source routine

translates intermediate code into execut-
able object code routines

Comments in source are included in the | Comments in include file are not included in
intermediate file the intermediate file unless specified by the
#show command

The Open M/SQL routine management utilities use the filename suffix to distin-
guish between include files (FILENAME.INC) and macro source routines
(FILENAME.MAC). The suffixes may appear in either lower or upper case.

Macro source routine and include file names may include up to 235 al phanumeric
characters. They must begin with an alphabetic character. Underscores are not
allowed. Caseis significant.

Macro Source Routines Are Portable Across M Implementations

Macro source routines are compl etely portable across Open M/SQL systems run-
ning on any of the following M implementations:

n ISM

n DTM
n DSM
n MSM

You may create macro source routines in Open M/SQL on any of these M imple-
mentations, compile the routine into intermediate code, and then run it on the
same or any other M implementation.

Open M/SQL Developer Guide 5-3

Chapter 5—Developing Macro Source Routines

The Open M/SQL Macro Preprocessor

The Open M/SQL macro preprocessor recognizes three kinds of constructs, as
shown in the following table:

Construct Symbol
Preprocessor Commands #
Preprocessor Functions Hit

or

&
Macro References $$$

Macro Preprocessor Commands

A preprocessor command can prompt the preprocessor to execute any of the fol-
lowing actions:

n Define or undefine amacro

n Includethe text of anincludefile

n Conditionally process consecutive lines in the current source
n Set amode of operation for the preprocessor

A preprocessor command must appear on aline by itself, at the left margin or
preceded by one or more space or tab characters, asin the following:

tag set x=5,y=10
#i ncl ude LI BNAME
qui t
The following isincorrect:
tag set x=5,y=10 #include LIBNAME quit

With the exception of the #define command, preprocessor commands can be fol -
lowed by acomment on the same line.

5-4 Open M/SQL Developer Guide

The Open M/SQL Macro Preprocessor

Macro Preprocessor Functions

A preprocessor function is an expandable construct that can appear anywhere
within aline of M code. When you compile the macro source code, the prepro-
cessor line “expands’ and is replaced by the designated code. The preprocessor
function, & sgl (or ##sql), is used to embed SQL statementsin an M program.

A preprocessor function can appear anywhere in the text of a macro source rou-
ting, asin:

set id=5 &sql (FETCH ecurs INTO :nane) wite !, nanme quit

Even if the function extends across two or more lines, it can be followed by code
onitslast line, for example:

set id=5 &sql (FETCH ecurs
INTO :nane) wite !, nane quit

The Compiler does not expand preprocessor functions when they are embedded
inside quoted strings, i.e., when enclosed in double quote characters (“”), or in
comments.

Macro References

A reference to a previously defined macro should consist of the macro name pre-
ceded by 3 dollar signs ($$%) and optionally followed by one or more arguments
in parentheses. When inserted, a macro reference is replaced by the definition of
the macro as established by a previoudy specified macro define (#define) state-
ment. If the macro has been defined to take arguments, argument substitution is
performed to generate the text value of the macro reference.

A macro reference must be preceded and followed by punctuation characters or
the beginning or end of the macro source line. The macro definition:

#define DATE $ZD($H, 2)

assignsthe value “$ZD($H,2)" to the macro “DATE". Thus, a subsequent occur-
rence of the macro source text, such as:

w!,“The date is ", $$SDATE

isreplaced by:
w !, “The date is ", $ZD($H, 2)

The following macro reference;

xyz$$$ver si on

isinvalid because it immediately follows an a phanumeric character.

Open M/SQL Developer Guide 5-5

Chapter 5—Developing Macro Source Routines

The source text:

$$$ver si onxyz

isinterpreted as areference to the macro named “versionxyz”. Since a macro ref-
erence cannot be adjacent to an alphanumeric character, you cannot use a macro
to generate part of an identifier name.

The Compiler does not expand macro references and preprocessor functions
when they are embedded inside quoted strings, i.e., when enclosed in double
guote characters (*"), or in comments.

References to undefined macros will produce error messages at compile time.
The “$$3$" preceding the macro name is left intact.

Macro source linesthat, after expansion, do not contain any characters other than
space and tab are omitted from the intermediate routine.

5-6 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands

Summary of Macro Preprocessor Commands

The following table lists and briefly describes the commands supported by the
Macro preprocessor:

Table 5-2: Macro Preprocessor Commands

Preprocessor

Command What It Does

#define Define a macro.

#undef Remove a macro definition.

#include ;_rlmlude macro source text from a specified, previously created include
ile.

#show Include comments from include files.

#noshow Don't include comments from include files. (Default)

#if Conditionally include the following macro source text if an expression is
true.

#ifdef Conditionally include macro source text if a specified macro is defined.

#ifundef Conditionally include macro source text if a specified macro is not

(#ifndef) defined.

#else Include macro source text if the previous #if, #ifdef, or #ifundef failed.

#elseif Include macro source text if the previous #if, #ifdef, or #ifundef failed

(#elif) and an expression is true.

#endif Terminate conditional text.

#; Define single-line, macro-only comment lines

#define and #undef

The #define statement can appear in severa forms and the #undef statement in

just one form:

#def i ne
#def i ne
#define

MACRONANME
MACRONANME VAL UE
MACRONAME(PARAMETERS) VALUE

#undef MACRONANME

where MACRONAME is avalid macro name (without the $$$) and VALUE,
separated from MACRONAME by at |east one space, consists of the rest of the
line. VALUE can be any arbitrary text. The macro preprocessor stripsleading and
trailing spaces from VALUE. If the line ends in a comment, the comment is
included in the macro value.

Open M/SQL Developer Guide 5-7

Chapter 5—Developing Macro Source Routines

#define MACRONAME

Thefirst form of #define causes MACRONAME to be defined with anull value.
Thisisuseful primarily in combination with the #ifdef and #fundef commands

(described below) that test whether or not a macro is defined.

#define MACRONAME VALUE

The second form of #define causes MACRONAME to be defined with the value

of VALUE, for example:

#define rel ease 3

A later reference to this macro, such as;

go: currel <$$%r el ease ol drel

expands into:

go:currel <3 oldrel

Another exampleis the definition:

#define var ““abc(qgsub”

for which the following references:

set x=$%$$$var_“,n)”
set y=$$$var_")"

expand into:

set x="abc(qgsub, n)
set y="abc(gsub)

#define MACRONAME() VALUE

The third form of #define defines a macro that takes arguments, also called a
function macro. The argument(s) may be one or more al phanumeric strings, each
beginning with percent signs and separated by commas. Each of the parameter
strings can occur one or more timesin VALUE, indicating a substitution.

A reference to a function macro takes the form $$$MACRONAME(), where the
argument(s) are any character strings separated by commas. Commas and right
parentheses can be passed as macro arguments only if they are part of quoted

strings. At expansion time, the macro preprocessor expands any

$$SMACRONAME references inside the parentheses, then substitutes the argu-

ments for the corresponding % parameters in the macro’s definition.

5-8 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands

For example, if the macro “version” is defined as:

#define version(%, %) % _".0"_ %
then the reference:

wite “VERSI ON=", $$$Sver si on($$$r el ease, “subrel ”)

causes the macro preprocessor to replace “ $$$release” with “3” (defined in the
exampl e above) and then substitute the arguments “3” and “subrel” into the text
to produce:

wite “VERSION=",3_“.0"_“subrel”

When amacro is defined to accept arguments, you must reference it with the cor-
rect number of arguments; otherwise, the macro preprocessor generates an error.

If amacro is defined without arguments, you may never include parenthesesin a
reference to that macro. For example, the following source text:

#define foo “precise”
$$$f 00() _u | yn

expands into:

precise()ly

In this case, the macro preprocessor will issue a warning message about the null
parentheses.

#undef MACRONAME

The #undef statement causes MACRONAME to have an undefined value. The
distinction between anull value and an undefined value isimportant to the #ifdef
and #ifundef commands.

Nested Expansion

Nested expansion occurs when one expandable property contains a second
expandable property within its expanded evaluation. Macro definitions, include
file names, and embedded SQL text can all contain $$$MACRO references.
When this happens, the macro preprocessor must resolve nested expansion.

A macro referenceis always expanded at the time that it is used to produce actual
text. For example, when the macro preprocessor encounters the #include com-
mand:

#include $$$system

it must evaluate the macro reference $$$system to decide which includefile to
use.

Open M/SQL Developer Guide 5-9

Chapter 5—Developing Macro Source Routines

Macro references inside embedded SQL are expanded before the SQL text itself
is evaluated. For moreinformation on using macro references in embedded SQL,
refer to the section entitled “ Referencing Macrosin Embedded SQL” in Chapter
8, Embedded SQL.

When amacro reference is expanded, the macro preprocessor scans the result for
additional macro references. If it finds another macro reference, the macro pre-
processor expandsit, then again scans the result for further macro references, and
so forth until no macro references remain.

If amacro reference islocated inside a#define statement, it is not evaluated until
the macro being defined is referenced. For example, the following define state-
ments:

#define rel ease 3
#define version(%) $$$release_“.0"_%

cause the function macro “version” to be defined with the value:

$$$rel ease “. 0" _%

where %a is the macro’s argument. The macro preprocessor expands the refer-
ence to $$$release only when the macro “version” is referenced. The source text:

wite $$$version(“subrel ™)

expands into:

wite $$$rel ease_“. 0" _“subrel”

and finally into:

wite 3_“.0"_“subrel”

If a#define statement later redefines “release” to be 4, then a subsequent occur-
rence of the statement “write $$$version(subrel)” in the macro source will
expand into:

wite 4 “.0" _“subrel”

5-10 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands

#ifdef, #ifundef, #if, #else, #elseif, and #endif

The #ifdef preprocessor command includes a block of sourcetext only if the
specified macro name has a defined value.

The #ifundef command (&l so abbreviated #ifndef for compatibility with the C
programming language) has the opposite meaning. It includes a block of source
text if the specified macro name does not have a defined value.

The #if command includes a block of sourcetext if the specified expression eval-
uates to true (i.e., anon-zero, numeric value). The expression consists of M
macro source that, after expansion, produces an M expression. Since this expres-
sion is evaluated at compile time (not at run time), any referencesto local vari-
ables or extrinsic functions are resolved in the environment in which the program
is compiled. Since the compilation environment is difficult to predict, you should
use caution when referencing local variables and extrinsic functionsinside #if
eXpressions.

The #else command specifies ablock of source text to beincluded if the previous
#ifdef, #ifundef, #if, or #elseif command was not satisfied.

The #elseif command (also abbreviated #elif) includes a block of source text if
the previous #ifdef, #ifundef, #if, or #elseif command was not satisfied and if the
specified expression evaluatesto true.

These statements have four syntax options, as described in the following sec-
tions.

Syntax 1

#i f EXPRESSI ON
(SOURCE TO | NCLUDE | F EXPRESSI ON | S TRUE)

#el se ; optional
(SOURCE TO | NCLUDE | F EXPRESSI ON |'S FALSE) ; opti onal
#endi f
For example:

#if $$$versi on<$$$Lat est Ver si on
do convert ($$$ver si on)
#endi f

Open M/SQL Developer Guide 5-11

Chapter 5—Developing Macro Source Routines

Syntax 2

#i f EXPRESSI ON A

(SOURCE TO I NCLUDE | F EXPRESSI ON A | S TRUE)

#el sei f EXPRESSI ON B

; optional

(SOURCE TO | NCLUDE | F EXPRESSION A | S FALSE AND

EXPRESSI ON B | S TRUE)
#el sei f EXPRESSI ON C

(SQURCE TO I NCLUDE | F EXPRESSIONs A & B ARE

FALSE AND EXPRESSION C | S TRUE)
#endi f

For example:

#if $extract ($$$application)="F
#i ncl ude FI NANCI AL

#el sei f $extract ($$$application)="5"
#i ncl ude SALES

#el sei f $extract ($$$application)="M
#i ncl ude MARKETI NG

#endi f

Syntax 3

#i f def MACRONANME

(SOURCE TO | NCLUDE | F MACRO DEFI NED)
#el se

(SOURCE TO I NCLUDE | F MACRO NOT DEFI NED)
#endi f

For example:

#i f def debug

i f dbnode="halt” do ~dbhalt
#el se

i f dbnode="go” do “dggo
#endi f

5-12 Open M/SQL Developer Guide

; optional
; optional

; optional

; optional
; optional

Summary of Macro Preprocessor Commands

#include

Syntax 4

#i fundef MACRONAME
(SOURCE TO I NCLUDE | F MACRO NOT DEFI NED)

#el se ; optional
(SOURCE TO | NCLUDE | F MACRO DEFI NED) ; optional
#endi f
For example:

#i fundef TERMIYPE

#defi ne BUFSI ZE 512
#el se

#defi ne BUFSI ZE 1024

#defi ne DECTYPE 220
#endi f

Notes

Note the following:

n

The source code conditionally included by #if, #ifdef, and #ifundef may
include preprocessor commands. Asis shown in the above examples, #if's,
#ifdef's, and #ifundef's may be nested.

The names of macros referenced inside #if expressions must be prefaced by
$53.

Indentation of preprocessor commands, asis used in the above examples, is
optional. It is used here to assist readability.

The preprocessor command:

#i ncl ude FI LENAME. | NC

causes the macro preprocessor to treat the contents of the include file FILE-
NAME.INC in the current directory as the next part of the macro source code.
Theinclude file can contain any kind of macro source text, including nested
#includes.

Open M/SQL Developer Guide 5-13

Chapter 5—Developing Macro Source Routines

The differences between an include file and a macro source routine are:

n Includefiles have the suffix .INC. Macro source routines have the suffix
.MAC.

n You cannot directly invoke the Compiler on an include file.

n Whereas comments in a macro source routine are included in the intermedi-
ate code routine, comments in an include file are not, unless otherwise speci-
fied by the #show command.

When you compile a macro source routine that references an includefile, the
macro preprocessor replaces the #include command with the text of the include
file. If the include file includes macro definitions, the macro preprocessor
expands those definitions as it encounters them. You may also have an #include
command within an include file. This causes nested inclusion.

#show, and #noshow

The #show command instructs the macro preprocessor to preserve all subsequent
commentsin an include file in the intermediate code routine.

The #noshow command restores the default condition of not preserving com-
ments in an include file in the intermediate code routine.

The macro preprocessor always preserves comments in the macro source codein
the intermediate code.

Advantages of Using Include Files

Include files are useful for standardizing the behavior of a set of programs and
for customizing a single source file for different environments.

More specifically, some of the advantages to using include files are;

n Processing asingle macro source with different include files isaway to cus-
tomize an application for different environments.

n Using macro names defined in a commonly shared include file to stand for
constant values ($$$MAXSIZE instead of 511, or $$SREPEATSW/(10,251)
instead of $p("mdd(1,10,2,251,3),$c(1),6)) reducesthe likelihood of errorsin
which two cooperating programs fail to use the same value, or look in differ-
ent placesfor an item of data. It also does not suffer the performance penalty
of using avariablein place of the constant.

n If several programs need to execute the same block of M code, without the
added overhead of callsto a centralized routine, you can put that code in an
include file and have each macro source routine reference that include file.
Doing so ensures that each program will execute exactly the same code.

5-14 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands

For exampl e, suppose you want to customize a single set of macro source rou-
tines for environments A, B, and C by having them all share the include file
“FILEA.INC", “FILEB.INC”, or “FILEC.INC".

You begin each macro source routine with the line:

#i ncl ude FlI LECHO CE

Theinclude file FILECHOICE.INC consists of the singleline:
#i ncl ude FI LENAME

where “FILENAME” is“FILEA”, “FILEB”, or “FILEC”. Each of theinclude
files“FILEA.INC”, “FILEB.INC", and “FILEC.INC" contains a set of #define
commands used to customize the environment for A, B, or C. To tailor all rou-
tines for a particular environment, you may edit the“FILENAME” valuein
“FILECHOICE.INC" and recompile all the macro source routines.

Indicating Comment Lines

You may use the #; preprocessor command to provide a single-line of comment
text within a macro source routine. The comment line appearsin the macro
source code but is suppressed by the macro preprocessor from the intermediate
code.
For example:

#;, This is an old version

The pound sign (#) and the semicolon (;) may be separated by any number of
spaces.

When you use this preprocessor command, your comment text must not exceed
oneline.

Open M/SQL Developer Guide 5-15

Chapter 5—Developing Macro Source Routines

Summary of Macro Preprocessor Functions

The following table lists and briefly describes the functions supported by the
Macro preprocessor:

Table 5-3: Macro Preprocessor Functions

Preprocessor Function What It Does

##sql Delimits embedded SQL code. Either symbol is accept-
&sql able.

##vendor InterSystems-specific preprocessor function used to make

macro source routines portable among Open M/SQL-sup-
ported host M systems (ISM, DSM, DTM, and Micronetics’
MSM).

&sql(...)

To embed an SQL statement within an M macro source routine, you must use the
Open M/SQL preprocessor syntax & sql(...) or ##sql(...). Either syntax is accept-
able.

The embedded SQL statement begins after the prefix & sgl(and concludes with
the matching right parenthesis. Embedded SQL can stretch across multiple lines
or can occupy just a portion of asingle line. However, you may not split SQL
keywords or tokens across lines.

The following is an example of a single-line embedded SQL statement where
SQL codeisintermixed with M code on the same line:

for i=1:1 &sql (fetch c into :x,:y) quit:SQLCODE=10020 do
out put

The following is an example of a multi-line embedded SQL statement:

&sql (DECLARE xcurs CURSOR FOR SELECT
Name, Age FROM Pati ents WHERE Age <12 AND
Var d="4D")

SQL statements, like the rest of the macro source code, can contain $$$MACRO
references. The macro preprocessor expands and replaces macro references
inside embedded SQL statements before evaluating the SQL statements them-
selves.

The macro preprocessor reports an error if it reaches the end of the macro source
routine without encountering the right parenthesis to match “ & sql(”.

For a description of how M routines can use embedded SQL to access an Open
M/SQL database, see Chapter 8, Embedded SQL.

5-16 Open M/SQL Developer Guide

Summary of Macro Preprocessor Functions

##vendor

#vendor is an InterSystems-specific preprocessor function used to make Open
M/SQL routines portable among the host M systems supported by Open M/SQL.
The Open M/SQL -supported host M systems include:

n ISM
n DTM
n DSM

n Micronetics MSM

You can observe the use of the ##tvendor(...) syntax throughout the Open M/SQL
system-generated code. For example, you can seeit in default-generated Internal -
to-External and External-to-Internal Conversion Code, Validation Code, field
length code, and hel p message code.

At the macro source level, you may use ##vendor to delimit vendor-specific M
constructs, thus producing vendor-independent code. This allows the macro pre-
processor to compile the routine into intermediate code for the specified target M
system.

I nterSystems reserves ##vendor for its own use.

Open M/SQL Developer Guide 5-17

Chapter 5—Developing Macro Source Routines

5-18 Open M/SQL Developer Guide

Routine Handling and Maintenance

CHAPTER

This chapter presents an overview of the Open M/SQL routine environment and
discusses topics related to routine handling and maintenance, including informa-
tion on referencing routines by name, extension, and version as well asinstruc-
tions for copying, compiling, and backing up routines.

Specifically, it covers the following topics:

n

n

Routine Environment

Routine Names, Extensions, and Version Numbers
Using Wildcard Syntax to Specify Routines
Referencing Routinesin Other Directories
Routine Sets

Compiling Routines

Backing Up Routines

Deleting Routines

Routine Copying and Compiling Synchronization

Open M/SQL Developer Guide 6-1

Chapter 6—Routine Handling and Maintenance

Routine Environment

In Open M/SQL, you can create routines at two levels:

n Macro source
n Intermediate code

The macro source level permits the use of macros and embedded SQL statements
using a combination of ANSI-Standard M syntax, special macro preprocessor
commands, and ANSI-Standard SQL. Macro source routines can refer to include
files, which are useful for standardizing the behavior of a set of programs and for
customizing asingle source for different environments.

You can also write pure M routines (routines that do not include embedded SQL
Or any macro preprocessor statements) at the macro source level.

When macro source code is compiled, it isfirst converted into M code with
embedded SQL, called intermediate code. Thislevel of compilation is called the
preprocessor phase. | ntermediate code routines are subsequently compiled into
executable object code.

Writing Routines

I nterSystems recommends that you create all routines (even pure M routines) at
the top level — the macro source level. In order to create a macro source code
routine, you must use the Full Screen Editor. Where macro source code exists,
you should always compile from the macro source level. When macro source
code is compiled, it produces both intermediate code and object code. When a
macro source routine contains embedded SQL or refersto an include file, or
both, intermediate and object code must always be regenerated from the macro
level. The macro source level allows you to save backup copies of routines. For
more information on writing routines at the macro source level, refer to Chapter
5, Devel oping Macro Source Routines.

You may also create routines directly at the intermediate code level. For informa-
tion on developing and editing intermediate code routines on an ISM system,
refer to the Open M/SQL M Programming Guide.

Converting Intermediate Code to Macro Source Code

Open M/SQL allows amixed environment in which some routines have macro
source versions and others have only intermediate code versions. You can copy
intermediate code routines to the macro source level using the %urcopy utility,
provided the intermediate code routines do not include embedded SQL. Thisisa
particularly useful feature if you are converting pure M applications to applica-
tions that make use of macros, SQL, and other relational database features.

6-2 Open M/SQL Developer Guide

Routine Names, Extensions, and Version Numbers

Routine Names, Extensions, and Version Numbers

When using the Full Screen Editor or any of the routine management utilities
provided by InterSystems, you may refer to routines and include files not only by
name but also by extension and version number.

The complete syntax for routine identification is:

NAME. EXTENSI ON. VERSI ON

For example:

ROU. MAC. 1
ROU. MAC. 2
ABC. INC. 1

Sometimes you may use the remote directory syntax to specify aroutine that
resides in adirectory other than the current directory, for example:

[“Dl R'] ROU. MAC. 2

Routine Names Must Be Unique

A routine may have the same name as an include file, but no two routinesin a

single directory may have the same name, and no two include files may have the
same name.

Case Sensitivity

Routine and include file names are case sensitive; thus, “ABC.INT” is not the
same as “abc.INT”.

Routine extensions are not case sensitive; thus, “ABC.INT” isthe same as
“ABC.int".

Routine Extensions

The following table lists the routine extensions:

Extension Meaning

.MAC For macro source routines
ANT For intermediate code routines
.INC For include files

.0OBJ For object code routines

Open M/SQL Developer Guide 6-3

Chapter 6—Routine Handling and Maintenance

For example, the routine “ROU” might have the following names:

Specification Meaning

ROU.MAC Macro source level for ROU
ROU.INT Intermediate level for ROU
ROU.OBJ The object code level for ROU

You can also create/edit include files using the Full Screen Editor aswell as
mani pulate them using the routine management utilities. To identify an include
files, you must specify the extension .INC, asin:

ABC. | NC
which specifiestheinclude file“ABC”.
When No Extension Is Specified

If you do not specify afile extension for aroutine, Open M/SQL assigns the
.MAC suffix by default. If no .MAC routine exists, Open M/SQL assignsthe
ANT suffix.

This allows M programmers who do not make use of the macro source level but
rather write routines that consist only of pure M code to use the routine manage-
ment utilities without adapting their routines or programming methods.

In amixed programming environment where some routines have a macro source
level and others do not, programmers can still use the routine utilities without
specifying extensions. In this case, when routines have a macro source level, pro-
cessing takes place at that level. When only intermediate code exists, processing
begins at the intermediate level.

6-4 Open M/SQL Developer Guide

Routine Names, Extensions, and Version Numbers

Version Numbers
Macro source routines and include files can have up to 9 backup versions.

Intermediate and object code routines cannot have backup versions. Therefore,
you never need to specify version numbers for .INT or .OBJ routines; their ver-
sion number isaways 1 implicitly.

The table below shows how you refer to multiple versions of a macro source rou-

tine called “ROU":
Specification Meaning
ROU.MAC.1 Current version
ROU.MAC.2 1st backup
ROU.MAC.3 2nd backup

etc., up to amaximum of ROU.MAC.9.

The table below shows how you refer to multiple versions of an include file

called“ABC”:
Specification Meaning
ABC.INC.1 Current version
ABC.INC.2 1st backup
ABC.INC.3 2nd backup

etc., up to amaximum of .INC.9.

You must explicitly specify the version number only when referring to versions
other than the current version (version 1). Thus, the following specifications are

equivalent:
.MAC = _.MAC.1
and
INC = INC. 1

Open M/SQL Developer Guide 6-5

Chapter 6—Routine Handling and Maintenance

Using Wildcard Symbols to Specify Routines

InterSystems provides a series of wildcard symbolsto assist you in specifying
sets of routines to be acted on by the routine management utilities. You may use
these wildcard symbols when specifying routines at the Routine(s): prompt.

Wildcards for Routine Names

When specifying routine names, you may use any of the specia character (“wild-
card”) symbols described in the table below:

Table 6-1: Wildcard Symbols for Use When Specifying Routine Names

Wildcard
Symbol Meaning
* Signifies zero or more characters. For example:
* means all names
AB*D means all names that start with AB and end with D
? Signifies one and only one wildcard character. For example:
A?C means all names that start with A, end with C, and have exactly
one character in between.
Signifies a range. For example:
AB:D means all names from AB through D inclusive.
‘ Signifies exclusion from a previously specified list. For example:
A*
‘ABC
means all names that start with A except for ABC. Similarly,
A*
‘AB:AD
‘AF*
means all names that start with A except for those in the range AB through
AD inclusively and those that start with AF.
= In utilities that use the two-column format (e.qg., %urcopy, where routines
in the first column are copied to those in the second), the equals sign (=)
can be used to signify the same routine name as specified in the “From”
column. If no directory is specified, Open M/SQL assumes the current
directory. If no extension is specified, Open M/SQL assumes “.MAC".
=.EXT The equals sign followed by an extension (=.EXT) can be used to signify
the same routine name as specified before with the specified extension.
= The equals sign followed by a colon and period (=:.) can be used to signify
the same routine and extension as in the “From” column.

Note Type a question mark (?) at the Routine(s) prompt to view help text with informa-
tion about the wildcard symbols. Type “?L" to see a list of the routines you have
chosen so far.

6-6 Open M/SQL Developer Guide

Using Wildcard Symbols to Specify Routines

Wildcards for Extensions

You may also use the asterisk symbol (*) in the file extension identifier. In this
case, it means all extensions for the specified routine name(s).

For example:

ROU. *
expands to:

ROU. MAC, ROU. I NT, ROU.INC, and ROU. OBJ
More specifically, it expands to:

ROU. MAC. 1, ROU.INT, RQU.INC 1, and ROU. OBJ

Wildcards for Version Numbers

It is necessary to specify aversion number only when the version you are refer-
encing is not the current version (version 1).

When no version number is specified, the version isimplicitly .1.

You may use the asterisk symbol (*) in the version identifier. In this casg, it
means all versions for the specified routine(s).

The table below shows several examples of the use of the asterisk symbol in the
version identifier:

Specification Meaning

ROU.MAC.* Means ROU.MAC.1, ROU.MAC.2, etc.

ROU.OBJ.* Means ROU.OBJ.1 (there are no backups)
ROU.INC.* Means ROU.INC.1, ROU.INC.2, etc.

ROU.*.* Means all versions of all extensions of routine ROU
x Means all versions of all extensions of all routines

Open M/SQL Developer Guide 6-7

Chapter 6—

Routine Handling and Maintenance

Referencing Routines in Other Directories

Note

Open M/SQL’s routine management utilities allow you to reference routines
located in directories other than the current directory, including directories on
other computers, where applicable.

To specify routines located in a directory other than your current directory, you
may use remote directory syntax at the Routine(s): prompt, as shown below:

[directory,directory_set_nane] routine. extension.version

where directory is the name of the target directory and directory_set name isthe
name given to the target computer in your M/NET networking configuration.

If your target directory isthe current directory, you do not need to specify remote
directory syntax at all. If your target directory is another directory on the same
computer, you may ignore the directory_set_name parameter.

If you are running Open M/SQL on a non-ISM host M system, the remote directory
syntax may be different. Consult your system guide for this information.

For example:
Routine(s): [“DIR’,”SYS"] ROU. MAC
Routine(s): [“DI R2"] ABC. I NT

This example selects the .MAC version of routine “ROU” in directory “DIR”,
directory set “SY S’ and the .INT version of routine “ABC” in directory “DIR2"
on the current computer.

To avoid repeatedly retyping remote directory information where alist of rou-
tinesisrequired, you may use the following syntax to reference the last explicitly
specified directory:

("]

Thefollowing example selectsroutines “AAA”, “BBB”, and “CCC” in directory
“DIR$SY SX”:

Routine(s): [“DI RESYSX'] AAA
Routine(s): [~]BBB
Routine(s): [~]CCC

For routine management utilities that use two-column format (e.g., %urcopy,
where routines from column one are copied to those in column two), the [*] syn-
tax is column-specific. In the following example, routine “AAA” in “DIR1" of
system “SYS” is copied to routine “BBB” in the current directory, then routine

6-8 Open M/SQL Developer Guide

Referencing Routines in Other Directories

“XXX" asoindirectory “DIR” of system “SYS’ iscopiedto“YYY” inthe cur-
rent directory:

Copy Routine(s): [“DIRL",”SYS'] AAA To: BBB
Copy Routine(s): [~]XXX To: YYY

Restrictions on Using Remote Directory Syntax

Use of remote directory syntax has the following restrictions:

1. Theroutine management utilities do not permit you to alter the contents of a
directory other than the current directory.

2. The utilities %urchange, %ourcomp, and %urdel do not support remote direc-
tory syntax.

3. The%urcopy utility lets you copy routines from a remote directory into the
current directory, but you cannot copy routines from the current directory
into aremote directory.

Open M/SQL Developer Guide 6-9

Chapter 6—Routine Handling and Maintenance

Routine Sets

The Open M/SQL Routine Set facility allows you to create alist of routines
under one name and reference that routine set name at the Routine(s): prompt for
any of the routine management utilities. This feature is useful when you have a
group of routines on which you commonly perform a particular function, such as
compiling all the routines in a particular application.

Creating a Routine Set

You may create aroutine set at the Routine(s): prompt of any of the routine man-
agement utilities.

Procedure To create aroutine set:

1. At theRouting(s) prompt for any of the routine management utilities,
specify all theroutinesyou want to include in theroutine set, either by
naming them explicitly or by using the wildcard syntax.

2. When you have named all theroutinesyou want to include, type“.F” at
the next appear ance of the Routing(s): prompt, and press <RETURN>.

The system prompts you to provide a name and description for the routine
Set, as shown below:

>d Mmrdir

Routine(s): test*.mac

Routine(s): .F
File as Routine Set: TESTSET
Wth Description: Routines for testing
K to File? Yes= <RETURN>

Filing ... done

Routine set names are case sensitive, so “ROUTINESET” is not the same as
“routineset”.

Using a Routine Set

To use a pre-defined routine set, type the routine set name preceded by the “ @”
character at the Routine(s): prompt, as shown in the example below:

>d Mrdir
Routi ne(s): @ESTSET

-- . MAG- -
testl.mac test2.mac test3.mac test4.nac test5.nac

6-10 Open M/SQL Developer Guide

Compiling Routines

Compiling Routines

You may use the %urcomp utility to compile either the macro source or interme-
diate code level of aroutine.

When you invoke %urcomp on a macro source routine, Open M/SQL compiles
the routine in two phases. First, the macro preprocessor phase of the Compiler
produces intermediate code, then the main Compiler produces object code.

If you invoke %urcomp on intermediate code routines, the main Compiler
directly produces object code.

Some intermediate code routines cannot be compiled. When the Compiler cannot
compile aroutine, it issues an abort compilation message and does not modify
the routine. The following two conditions can cause this to happen:

1. Source lines are missing from the intermediate code level of "ROUTINE.

2. Theintermediate code contains embedded SQL.
In either case, you must compile the routine at the macro source level.

Most M-level and SQL-level syntax errors do not cause the compiling processto
abort.

Other ways to compile aroutine include:

1. You may compile aroutine as aresult of executing the utilities %urchange
and %urcopy. These utilities prompt you to specify whether or not you want
to compile the specified routines.

2. You may elect to compile aroutine from within the Full Screen Editor.

Open M/SQL Developer Guide 6-11

Chapter 6—Routine Handling and Maintenance

Backing Up Routines

The Full Screen Editor and the utilities %urchange, %urcomp, and %urcopy all
provide the option of producing backup versions of macro source routines and
includefiles.

You can use the %urverma utility on a per-directory basis to set the maximum
number of versions to be maintained for macro source routines and include files.
The default number of versionsis four (one current version and three backups).
The maximum number of versions that Open M/SQL can maintain is nine (one
current version and eight backups).

Open M/SQL maintains backups for macro source routines and include files
only. It does not maintain backups for intermediate code or object code routines;
their version numbers are aways .1.

How Backups are Shuffled and Renumbered

6-12

Whenever Open M/SQL generates a backup version of a macro source routine or
include file, it shuffles the existing backups down. When the number of backups
exceeds the maximum number of versions to be maintained, which you may set
using the %urverma utility, Open M/SQL deletes the last backup on the list. For
exampl e, suppose the following backup versions of the macro source routine
“ABC" are maintained:

Routine Name Version
ABC.MAC.2 First backup
ABC.MAC.3 Second backup

ABC.MAC.4

Third backup

When you modify the current version of the routine and then save it, Open
M/SQL generates a new backup, and the other backups shuffle down, as shown
below:

Original Name New Name
ABC.MAC ABC.MAC.2
ABC.MAC.2 ABC.MAC.3
ABC.MAC.3 ABC.MAC .4
ABC.MAC.4 Deleted

You can use the utilities %urpurge and %urdel to delete old backup copies of
macro source routines and include files.

Open M/SQL Developer Guide

Backing Up Routines

The Full Screen Editor Generates Backups When You Save

Restoring

When editing amacro source routine or include file in the Full Screen Editor, the
Editor automatically generates a backup copy of the routine or file and shuffles
down its existing backups (in accordance with the per-directory backup maxi-
mum) whenever you elect to save and compile your edits. For example, when
you save and compile the macro source routine “ABC.MAC” after editingitin
the Full Screen Editor, the previous current version becomes“ABC.MAC.2", and
the version you are editing becomes the current version (“ABC.MAC"). Any
older versions of the routine (“ABC.MAC.3" through “ABC.MAC.9") are shuf-
fled down and/or out. If you have specified that a maximum of 2 backup versions
isto be maintained, the previous“ABC.MAC.1" version isrenamed to
“ABC.MAC.2", and the previous “ABC.MAC.2" version is deleted.

a Backup Version to the Current Version
To restore a backup version of a macro source routine or include file to the cur-
rent version, you may use the %urcopy utility. To do this, you copy fromthe

backup version you want to restore to the new version.

For example, copying from“ROU.MAC.2" to “ROU.MAC.1" effectively
restores the first backup, making “ROU.MAC.1" and “ROU.MAC.2” identical.

When you use %urcopy to copy one version of aroutine to another version of the
same routine and extension, the backups do not shuffle down.

Open M/SQL Developer Guide 6-13

Chapter 6—Routine Handling and Maintenance

Deleting Routines

%urdel

%urpurge

To delete routines and include files, you may use either of the two utilities
described below.

You may use the %urdel utility to delete routines and includefiles. To use this
utility, you must specify alist of the routines and include files with extensions
and version numbers that you want to delete. For example, if you want to delete
all the versions of the macro source routine and include file “ABC”, you specify:

Routine(s): ABC. *.*

As ancther example, you may specify the following:

Routine(s): DEF. MAC. *
Routine(s): GH .MAC. 2

to delete all .MAC versions of routine “DEF" and macro version 2 (the first
backup) of routine “GHI”. Deleting macro version 2 of routine “ GHI” causes
subsequent macro backups of “GHI” to be shuffled forward, hence the old
“GHI.MAC.3” becomes “GHI.MAC.2".

To delete all macro source and intermediate code routines in the current direc-
tory, leaving only object code, type:

Routine(s): *.MAC *
Routine(s): *.INT

To delete all levels of al routines and include files in the current directory, type:

Routine(s): *.*.*

You may use the %urpurge utility to delete some or all backups for macro source
routines and includefiles. This utility prompts you to specify a set of routines and
include files that you want to purge. You may only specify routines with .MAC
extensions or include fileswith .INC extensionsin thelist of routines and include
filesto purge. The utility also prompts you to specify how many versions of the
routine or include file to keep after the purge. The default valueis 1, meaning the
current version only and no backups.

6-14 Open M/SQL Developer Guide

Routine Copying and Compiling Synchronization

Routine Copying and Compiling Synchronization

It isthe programmer’s responsibility to keep the .MAC, .INT, and .OBJ levels of
aroutinein sync, or out of sync if desired. You keep the different levels of arou-
tine in sync by compiling the routine.

Copying or editing aroutine at either the . MAC or .INT level does not automati-
cally result in compiling that routine, although the utilities for copying and edit-
ing do give you the option of compiling. Thus, the responsibility for determining
when aroutine should be compiled is yours; Open M/SQL does not do it auto-
matically and does not attempt to keep compiled routines in sync with source
code.

Sometimes you may want to keep the different levels of aroutine out of sync. For
example, you may want to edit one or more macro source routines for several
days and not disturb the .INT and .OBJ levels until al editing is complete.

Although Open M/SQL does permit copying of .MAC file extensionsto .INT as
well as copying of .INT file extensionsto .MAC, InterSystems does not recom-
mend this. .INT files do not always contain all of the information necessary to
produce corresponding .MAC files—source lines may be missing or embedded
SQL code may exist (for which there is no source code). If a.MAC routine
includes preprocessor statements (such as#if statements or macros) or embedded
SQL, you should not copy it to the .INT level because it cannot be compiled
there.

Open M/SQL Developer Guide 6-15

Chapter 6—Routine Handling and Maintenance

6-16 Open M/SQL Developer Guide

CHAPTER

Open M/SQL Routine Management
Utilities

InterSystems provides a set of utilities for examining and manipulating routines
and include files. These utilities are collectively known as the Open M/SQL rou-
tine management utilities.

This chapter summarizes the routine management utilities, shows how to access
them, and then provides a detailed description with examples of how to use each
utility.

Specifically, it covers the following topics:

n Summary of Routine Management Utilities
n Accessing the Routine Management Utilities
n %uro

n %uri

n %url

n urprint

n %urload

n ourdir

n %urchange

n %urcomp

n %urcopy

n %urfind

n %urfand

n %urdel

n %urverma

n %urpurge

n Yurset

Open M/SQL Developer Guide 7-1

Chapter 7—Open M/SQL Routine Management Utilities

Summary of Routine Management Utilities

Thefollowing table lists and describes the routine management utilities provided
by Open M/SQL:

Table 7-1: Open M/SQL Routine Management Utilities

Utility Meaning Description

Y%urprint Routine Output Prints selected macro source routine(s) and include
file(s) from the current directory to a storage file or to
a specified output device.

%urload Routine Input Loads macro source routines and include files that
have been output to a file by the %urprint utility.

Yurdir Routine Directory Lists routines in the current directory.

%urchange | Routine Change Changes all occurrences of specified string(s) in

selected routine(s).

%urcomp Routine Compile Compiles macro source code into intermediate
code, and intermediate code into object code for a
specified set of routines.

%urcopy Routine Copy Copies macro source routines, itermediate code
routines, and include files from any directory into the
current directory.

%urfind Routine Search Searches through routines for occurrences of one of
a specified set of strings.

%urfand Routine Search Searches through routines for occurrences of all of a
specified set of strings.

%urdel Routine Delete Deletes routines and include files from the current
directory.

%urverma Set Maximum Num- | Specifies the maximum number of backup versions
ber of Backups maintained in the current directory for macro source
routines and include files.

%urpurge Routine Backup Deletes backup versions of macro source routines
Purge and include files.

%urset Select a Set of Rou- | Creates a set of routines to be used by other utilities
tines for other operations.

7-2 Open M/SQL Developer Guide

Accessing the Routine Management Utilities

Accessing the Routine Management Utilities

There are two ways to access the Open M/SQL routine management utilities:
1. You may call them directly from the M programmer prompt.

2. 'You may access them as menu options from within Open M/SQL.

Calling the Routine Utilities Directly from M

To call the routine management utilities directly from the M programmer prompt,
you issue the following command syntax:

do "mtility_name

For example, to call the %urcopy utility from the M programmer prompt, you
issue the following:

>do "%ur copy
You may use the same syntax to call the routine utilities from within M programs.

Accessing the Routine Utilities from within Open M/SQL

Alternatively, you may access the Open M/SQL routine management utilities by
selecting them as options from the Macro Routine Utilities menu, which is a sub-
menu of the Developer Utilities menu.

All the routine management utilities listed in the table on the previous page are
available as options on this menu, except the following:

n urprint
n %urload
n %urset

Procedure To access the routine management utilities via Open M/SQL.:

1. AttheM programmer prompt, type the following command to enter
Open M/SQL:

> do "%sql
You see the Termina Type prompt, as shown below:

Term nal Type: VI220 =>

2. At the Terminal Type prompt, enter the name of the terminal type you
are currently using.

You may press <RETURN> to accept the system-wide default terminal type.

Open M/SQL Developer Guide 7-3

Chapter 7—Open M/SQL Routine Management Utilities

You see the Open M/SQL User Identification window, as shown below:

SUAARAAAARAA ;2
8 Open M SQL User Identification B
3AA 3

3AU As
B WELCOVE TO OPEN M SQL B
33 33
3 Version F 3
4 Mai nt enance Rel ease F. 7 3

U 3

3AA Us
SUAARAAA ;2

3AU As
3 User Name Passwor d 3
33 33
33 33
= Language =
33 33
3A Us

3AA Us
AAU

User Login Press <Hel p> For Help
Enter a valid Open M SQ. usernane.

3. AttheUserNamefield on the Open M/SQL User Identification window,
enter your Open M/SQL User Name, and press <RETURN>.

4. At thePassword field on the Open M/SQL User Identification window,
enter the Password for your Open M/SQL User Name, and press
<RETURN>,

5. At theLanguagefield on the Open M/SQL User Identification window,
enter the language in which you want to run Open M/SQL.

To accept the system-wide default run-time language, press <RETURN>,

To choose a different run-time language, press <CTRL-L> to delete the sys-
tem-wide default language.

You may pressthe <LIST CHOICES> key to see alookup box that lists the run-
time languages supported by Open M/SQL.

7-4 Open M/SQL Developer Guide

Accessing the Routine Management Utilities

You see the Open M/SQL Main Menu, as shown below:

AAAAAAAAAAAAAAARAAAARAAAAAAAAAAAA CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAARAARAAAAAAA

UAAACpen M SQL MenuAAA;
3 3

3 Data Dictionary 3
3 Forms 3
3 Reports 3
3 Queries 3
3 Menu Cener at or 3
3 System Managenent 3
3 Privileges 3
3 Devel oper Wilities 3
3 User Utilities 3
3 Server Managenent 3
3 Relational Gateway 3
3 Hel p Options 3
3 3
AAAAAAAAARAAAAAAAAAAAAAD
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

Open M SQ Menu 03: 50PM Press <Hel p> For Help

6. From the Open M/SQL Main Menu, select the Developer Utilities
option.
Note: You may type v to select this option—it is a mnemonic accelerator.

You see the Devel oper Utilities menu, as shown below:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

UAAAAM SQL Devel oper UtilitiesAAAA;
3

Export/Inmport Options

Qoj ect Conpile Driver

M SQ Object Integrity Checking
Qbj ect String Search Wility
Full Screen Editor

Macro Routine Wilities

Query Object By Routine Prefix
National Language Reports

W W W ww e W e
W w W W W W W W

AAAAAAAAAAAAAAAAARARAAAAAAAAAAAAAAAU

Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

M SQL Devel oper Uilities 03:50PM Press <Hel p> For Help

7. From the Developer Utilities menu, select the Macro Routine Utilities
option.

Note: You may type r to select this option—it is @ mnemonic accelerator.

Open M/SQL Developer Guide 7-5

Chapter 7—Open M/SQL Routine Management Utilities

You see the M/SQL Routine Utilities menu, as shown below:

Rout i
Rout i
Rout i
Rout i
Rout i
Rout i
Rout i
Rout i
Rout i
Rout i

W W Ww W W W W W W w

3

M SQL Routine Uilities

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

Set Maxi mum No.

Qut put (%ro)

Lnput (%ri)

Lister (%rl)
Directory (%urdir)
Change (%rchange)
Conpi | e (%r conp)
Copy (%ur copy)
Search (%rfind)
Search Al (%urfand)
Del ete (%urdel)

of Backups (%urverng)
Routi ne Backup Purge (%ur purge)

03: 50PM

AAAAAAAAAAAAAAARARAARAAAAAAAAAAAA CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAA

UAAAAAAAAM SQL Routine WilitiesAAAAAAAA,

0w W 0w W W W W W W

AAU
Wednesday Jul 05, 1995 03:50PM
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

Directory: /us/land/

Press <Hel p> For Help

8. From the M/SQL Routine Utilities menu, you may select any option to

invoke the corresponding utility.

When you exit the utility, you return to the M/SQL Routine Utilities menu.

7-6 Open M/SQL Developer Guide

Y%urprint

%urprint

The %urprint utility lets you print selected macro source routing(s) and include
file(s) and send the output to a storage file or to a specified output device.

When called, %urprint displays the following prompt:

Rout i ne Qut put
Rout i ne(s):

Here you specify the routing(s) you want to output. You may enter a single rou-
tine name or a set of routine names with or without extensions. The only valid
extensions are .MAC and .INC, which you may specify either in upper or lower
case. If you do not specify an extension, %urprint assumes an extension of
.MAC.

Note %urprint does not accept intermediate code or object code routines.

Next, %ourprint prompts you to enter a description of the output file. Here you
may enter some text that describes the file.

Alternatively, you may type the carat character (") at the “Description:” prompt
to add an auto-load header asthe first record in the file. An auto-load header isa
line of executable M code that, when executed within an Open M/SQL system,
causes the contents of the file to be restored automatically. A typical M statement
to execute the auto-load header is shown below:

OPEN <devi ce>: () USE <devi ce> READ <code> XECUTE <code>
CLCSE <devi ce>

Selecting an Output Device
After you specify the routines you want to output, %urprint presents a ven-
dor-specific prompt that asks you to specify an output device. You may send out-
put to any valid device supported by your host M system.
Printing to the Screen
If you specify your current device as the output device, output automatically
appears in paged format. At the bottom of each page, the message “More”

appears to indicate that the report continues. You may continue the output by
pressing <RETURN>, or you may abort the output by typing Q or g or "

Open M/SQL Developer Guide 7-7

Chapter 7—Open M/SQL Routine Management Utilities

Example

Printing to a Printer

If you specify an output device other than your current device, you see the fol-
lowing prompt:

Printer Format?

If you are directing the output to a printer, you should answer Yes at this prompt.
Answering Yes causes the output to appear one page at atime in aformat appro-
priate for a printer.

Printing to a Storage File

If you specify an output device other than your current device, you see the fol-
lowing prompt:

Printer Format?

If you are directing the output to a storage file in a directory or on tape so that it
may be restored later using the %urload utility, you should answer No at this
prompt. Answering No causes the output to appear in aformat useful for backing
up the routine, including the appending of a self-loading header record to the
beginning of the output file.

In the example below, %urprint outputs the files“ABC.INC” and “ABC.MAC”
to astorage file called “/usr/msgl/abc.rtn”:

> do "wrprint
Routi ne | nput
Routine(s): ABC. *

Description: ~ (autol oad header added)

Qut put routines to

Device: /usr/msql/abc.rtn Parameters: "WNS'=> <RETURN>
Printer Format? No => <RETURN>

ABC. I NC ABC. MAC

>

You can now restore these files using the %urload utility.

7-8 Open M/SQL Developer Guide

%urload

%urload

The %urload utility lets you load macro source routines and include files that
have been output to a storage filein adirectory or on tape via the %urprint utility.

%urload prompts you to specify an input device, routinesto load, and whether or
not to compile loaded macro source routines.

When called, %urload displays the following prompt:

Enter input device:
Devi ce:

Here you must specify the name of a storage device to which routines and
include files were output by %urprint.

Routine Input Options
After you specify the input device, %urload displays the following prompt:
Routine Input Option: (A)Ill ==>
This prompt asks you to specify which routines from the input device to load.
Type ? to see alist of the load options.

The table below lists and describes the load options:

Table 7-2: Load Options for Routine Input Using %urload

Option Meaning

Al Loads all files on the input device, then prompts you to specify
whether or not you want to compile the macro source routines, as fol-
lows:

Conpi | e macro source routines? No=>
All is the default option.

(S)elect Prompts you to specify whether or not you want to compile the macro
source routines, as follows:

Conpi | e macro source routines? No=>

Then, prompts you file-by-file to specify whether or not to load each
file on the input device, as follows:

K to |l oad? No ==>

(E)nter Lets you manually specify the list of files to be loaded. When you
select this option, you see the following prompt:

Routine(s) To Load:

Open M/SQL Developer Guide 7-9

Chapter 7—Open M/SQL Routine Management Utilities

Table 7-2: Load Options for Routine Input Using %urload (Continued)

Option Meaning

(L)ist Lists all files on the input device, then redisplays the “Routine Input
Option:” prompt.

(Q)uit Quits %urload.

To select an option, type its first |etter, and press <RETURN>.

Compile Macro Source Routines

Example

When you select one of the load options “All”, “Select”, or “Enter”, %urload dis-
plays the following prompt:

Conpil e macro source routines? No ==>

to determine whether or not you want Open M/SQL to compile all macro source
routines as they are loaded.

No is the default response.

In the example below, %urload loads all files from the storage file “abc.rtn” into
the current directory and compiles them:

>do "%ur| oad
Enter input device:
Device: abc.rtn Par aneters: "R'=> <RETURN>

Routine Input Option: (Al ==> <RETURN>

Conpil e macro source routines? No ==> Yes

ABC. | NC (1 oaded) conpi ling...
ABC. MAC (1 oaded) conpi ling...
>

%urload displays alist of all macro source routines and include files from the
input device to the screen. It organizes the filesin alphabetical order. Beside
every filethat it loads, it displays the message “ (loaded)”. Beside every filethat it
does not load, it displays the message “ (skipped)”. Beside every macro source
routine that it compiles, it displays the message “compiling...”.

7-10 Open M/SQL Developer Guide

%urdir

%ourdir

Note

The %urdir utility lists routinesin the current directory.
On ISM systems the %urdir utility is also known as %RD.

The %urdir utility lets you do all of the following:

n List theroutinesin another directory.

n Specify any set of MAC, .INT, .INC, or .OBJroutines to display using the
wildcard syntax.

n Select the short or long display form. The short form displays the routine
names, extensions, and version numbers. The long form displays, in addition
to the short form information, the date and time when routines were last
saved, the size in bytes of each routine, and the block(s) that object code rou-
tines occupy.

n Specify the selection condition of arange of dates during which the routines
were last modified.

First, you see the following prompt:

Rout i ne(s)
Here you specify the routines that you want to include in the output list.

%urdir supports remote directory syntax, which lets you select routines from a
directory other than the current directory. To do this, you must type the name of
the source directory inside brackets and within quotation marks[“”], as shown
bel ow:

Routine(s): [“/us/ngr/tasks”] ABC. MAC

After you specify the routing(s) you want to list, %ourdir displays the following
prompt:

Long or Short form (L or §)? S=>

Here, you select a display format for outputting the routine list. You may chose
between Short Form and Long Form. Short Form lists each routine with its exten-
sion and version. Long Form organizes the output into tabular format and pro-
vides additional information, including date and time last modified, total number
of bytes, and total number of blocks. Short Form is the default choice.

Open M/SQL Developer Guide 7-11

Chapter 7—Open M/SQL Routine Management Utilities

Next, you see the following prompt:

Find routines | ast nodified since date:
and on or before date:

Thisis an optional feature that lets you limit the output list to those routines that
were modified within a specified date range. Enter a start-of-range date and an
end-of-range date, asfollows:

1/ 31/ 95
Example 1

In the example bel ow, %urdir uses the Short Form to display of all versions of all
macro source routines beginning with the letter "Y' in the current directory:

>do "%urdir

Routine(s): Y*.MAC
Routi ne(s): <RETURN>

Long or Short form (L or S)? S=> <RETURN>
Find routines last nodified since date: <RETURN>
and on or before date: <RETURN>
Di spl ay on
Devi ce: <RETURN> Ri ght margi n: 80=> <RETURN>

Short Listing of Selected Routine/lnclude Files
Directory: /usr/nsql
10 Jul 95 01:24PM Page 1

YAAA -- _NMAC --
YAAA -- .MAC.2 --
YAAA -- .MAC.3 --
YAAA -- .MAC.4 --
YBBB -- .MAC --
YCCC -- .MAC --
YDDD -- .MAC --
>

7-12 Open M/SQL Developer Guide

%urdir

Example 2

In the example below, %urdir uses the Short Form to display all versions of all
macro source and intermediate code routines that reside in the current directory,
begin with the letter “Y”, and were modified between January 21, 1995 and the
current date:

>do "ordir

Routine(s): Y*. MAC
Routine(s): Y*.INT
Routi ne(s): <RETURN>

Long or Short form (L or S)? S=> <RETURN>
Find routines last nodified since date: 1/21/95
and on or before date: t
Di spl ay on
Devi ce: <RETURN> Ri ght margin: 80=> <RETURN>

Short Listing of Selected Routine/lnclude Files
Modi fied Between 1 July 95 and 10 July 95
Directory: /usr/msql
10 Jul 95 01:24PM Page 1

YAAA -- .MAC --
YAAA -- .MAC.2 --
YAAA -- .MAC. 3 --
YBBB -- .MAC --
YDDD -- .MAC --
YAAA -- _INT --
YCCC -- JINT --
>

When the Short Form display extends across multiple screens, %urdir pauses on
each screen and displays the message “--more--" at the bottom of the screen. You
may press <RETURN> to move ahead to the next screen.

Open M/SQL Developer Guide 7-13

Chapter 7—Open M/SQL Routine Management Utilities

Example 3

In the exampl e bel ow, %urdir uses the Long Form to display of al versions of the
macro source, intermediate code, and object code routines and include files

called “abc” located in the current directory:

>do "rdir

Routine(s): abc.*
Routi ne(s): <RETURN>

Long or Short form (L or S§)? S=> L

and on or before date: <RETURN>
Di spl ay on

Directory /user/docunentation
10 Jul 95 01:25PM Page 1

abc .MAC. 1 10 Apr 91 10: 35AM 1234
abc . MAC. 2 15 May 91 02: 30PM 1255

abc . MAC. 3 25 Jun 91 08: 45AM 1196
abc . INT 25 Jun 91 08: 48AM 1268
abc . 0BJ 25 Jun 91 09: 00AM 1301

Total for Directory: /user/docunentation

-- .MAC -- 3 3685
-- .INT -- 1 1268
-- .0BI -- 1 1301

Find routines last nodified since date: <RETURN>

NAME . EXT.VER DATE TI ME #BYTES

Devi ce: <RETURN> Ri ght Margin: 80=> <RETURN>

Long Listing of Selected Routines/include Files

BLOCKS

706

706

When the Long Form display extends across multiple screens, %urdir pauses on
each screen and displays the message “--more--" at the bottom of the screen. You

may press <RETURN> to move ahead to the next screen.

7-14 Open M/SQL Developer Guide

%urchange

%urchange

Note

Note

The %urchange utility changes all occurrences of a specified string or stringsin
macro source routines, intermediate code routines, and include files to a new
value. The new value may be the null string.

On ISM systems the %urchange utility is also known as %RCHANGE.

When you invoke %urchange, the utility prompts you to specify a search string
and areplace string. You may specify multiple search strings with a correspond-
ing replace string for each.

Next, the utility prompts you to specify the routines you want to change.

%urchange does not support remote directory syntax. This means that you cannot
make changes to routines that reside outside your current directory.

In addition to searching for and replacing strings, the %urchange utility can also
perform several auxiliary functions on modified routines, including:

n Generate a backup copy for each changed routine

n Recompile each changed routine

n Display aconfirmation prompt for each change beforeit is made

Answer Yes at the appropriate prompt to enable any of these options. By defaullt,

%urchange recompiles all changed routines but does not generate backups or ask
you to confirm each change.

If you answer Yesto the “Verify Each Change?’ prompt, %urchange displays an
“Okay to change?’ confirmation prompt each time it reaches a line that contains
astring to be changed.

%urchange automatically stampsthe date and time when it modifiesintermediate
code routines.

Open M/SQL Developer Guide 7-15

Chapter 7—Open M/SQL Routine Management Utilities

Example

In the example bel ow, %urchange changes every occurrence of the global
“"ABD” to “~"ABC” in al routines that begin with the letter “Z” and are located
in the current directory.

>do ~%ur change

This routine changes all occurrences of a string in
routi nes/include files.

1. Change every: “"ABD to: “"ABC
2. Change every:

Routine(s): Zz*
Routi ne(s): <RETURN>

Gener at e backups? No=> <RETURN>
Reconpi | e? Yes=> <RETURN>
Verify Each Change? No=> <RETURN>

Di spl ay changes on
Devi ce: <RETURN> Ri ght Margin: 80=> <RETURN>

%urchang Jan 31 95 2:42 PM
Changi ng ""ABD' to "~ABC'

ZRR. | NC
ZRR+3 if "ABC(0)=41250 set id=x1

ZAA. | NT
ZAA+3 set "ABC(0)=100

ZBB. | NT
ZBB+5 set "ABC(0)=41250

ZBB. MAC
ZBB+5 set ~ABC(0)=41250

>

The utility outputs the routine name, the text of the change, and the lines contain-
ing the changed string.

7-16 Open M/SQL Developer Guide

%urcomp

%urcomp

Note

Note

The %urcomp utility compiles macro source and intermediate code routines.
On ISM systems the %urcomp utility is also known as %RCOMPILE.

If you invoke %urcomp at the macro source level, it produces both intermediate
and object code for the routine. Specifically, the macro preprocessor phase of the
Compiler produces intermediate code, then the main Compiler produces the
object code.

If you invoke %urcomp at the intermediate source code level, it directly produces
object code.

When macro source routines include embedded SQL statements or make use of
includefilesthat contain embedded SQL statements, %urcomp comments out the
SQL code. Thus, the intermediate code produced for a compiled macro source
routine that contains embedded SQL statements consists of pure M source code
with SQL statements as comments.

You should never compile routines that contain embedded SQL from the inter-
mediate code level. If you attempt to do this, the Compiler issues an error mes-
sage and aborts the compilation without modifying the routine. If a routine
contains embedded SQL statements, you must compile it at the macro source
level.

%urcomp does not support remote directory syntax. This means that you cannot
compile routines that reside outside your current directory.

Open M/SQL Developer Guide 7-17

Chapter 7—Open M/SQL Routine Management Utilities

Example

In the example below, %ourcomp compiles the macro source routine “EMPLIST”.

>do ~%ur conp

Routi ne(s): EMPLI ST. MAC
Routi ne(s): <RETURN>

Di spl ay on
Devi ce: <RETURN> Ri ght margi n: 80=><RETURN>
EMPLI ST. MAC
***xx%* DECLARE deptcurs CURSOR FOR SELECT Department, Name
* ok Kk k% I NTO : depti d, : dept nane
*okkokok ok FROM Depart nment
kxS VWHERE (%ALPHAUP (Nane) %STARTSW TH : nane)
x%xx DECLARE enpcurs CURSOR FOR SELECT Nane, Phone,

Hi reDat e
*ok ko k ok I NTO : enpnane, : enpphone, : enpdat e

koK Kk ok ok FROM Enpl oyee WHERE (Depart ment =: depti d)
***xxx SE| ECT Departnment, Name, COUNT(Depar t ment)
koK Kk ok k I NTO : depti d, : dept nane, : dept count

*ok kK kK FROM Depart ment

*okokwkk VWHERE %ALPHAUP(Nane) %STARTSW TH : nanme
x%xx OPEN deptcurs

**x%%xx EETCH deptcurs

xxx CLOSE deptcurs

***x%x OPEN enpcurs

***x%* FETCH enpcurs

***x%* CLOSE enpcurs

****%xx CLOSE deptcurs

For the full text of the macro source routine “EMPLIST”, see Chapter 8, Embed-
ded SQL.

7-18 Open M/SQL Developer Guide

%urcopy

%ourcopy

Note

Note

The %urcopy utility lets you copy existing routines and include files.
On ISM systems the %urcopy utility is also known as %RCOPY.

You may use the %urcopy utility to do all of the following:

n Copy macro source routines, intermediate code routines, and include files
within the current directory to other routine names and other extension
names,

n Copy macro source routines, intermediate code routines, and include files
from aforeign directory into the current directory;

Note: Since the routine management utilities do not permit you to alter
foreign directories, %urcopy does not allow you to copy routines
from the current directory into a foreign directory.

n Compile macro source and intermediate code routines in the current direc-
tory;

n Generate backup versions of macro source routines and include files;

n Copy intermediate code routines to the macro source level in order to
develop macro source code from routines that were created as pure M rou-
tines. Thisfeatureis particularly useful for userswho are converting to Open
M/SQL from earlier M versions,

When you invoke the %urcopy utility, you see the following prompt:
Copy routine(s):
Here you specify the name of the routine or include file you want to copy.
%urcopy supports remote directory syntax, which enables you to copy a routine
from a directory other than the current directory. To do this, type the name of the
source directory inside brackets and within quotation marks [*"], for example:
Copy routine(s): [“/us/nmgr/tasks”] ABC. MAC
If you wish to again reference the same outside directory, you may simply type the

carat character enclosed in brackets [*] at the next appearance of the “Copy Rou-
tine(s)” prompt. This recalls the name of the last explicitly referenced directory.

Open M/SQL Developer Guide 7-19

Chapter 7—Open M/SQL Routine Management Utilities

After you specify the routine/include file you want to copy, press <RETURN>. You
see the following prompt:

To:

Here you specify the name to be given to the copied routine/include file. You
may give the routine/include file any name (a new name or a name that already
existsin the current directory) and any of the following extensions:

n .MAC
n LINT
n .INC

You may copy as many routines/include files as you want.

After specifying the routines/include files to copy and the new names for the cop-
ied versions, %urcopy prompts you for the following auxiliary options:

n Generate backups for each copied routine

n Recompile each copied routine

n Display errors encountered during compilation

n Overwrite existing routines with identical names

Answer Yes at the appropriate prompt to enable any of these options. By defaullt,
%urcopy recompiles all copied routines, displaysall compilation errors, and

overwrites existing routines with identical names. It does not generate backups
by default.

Finally, %urcopy asks you to specify the device to which the routine names and
status information should be output as the routines are copied.

Note You can compile a routine using the %urcopy utility by copying it to itself with the
compile option enabled.

7-20 Open M/SQL Developer Guide

%urcopy

Example 1

In the example bel ow, %urcopy copies all macro source routines beginning with
theletter “A” located in directory “/USER/MSQL” into the current directory.

>do "%ur copy
Copy routine(s): ["/USER/ MsSQL"]A*. MAC To: A*. MAC
Copy routine(s): <RETURN>

Generate backups ? No=> <RETURN>

Conpi | e? Yes=> N

Di splay Errors? Yes=> <RETURN>

Overwite Existing Routines? Yes=> <RETURN>

Di spl ay routine nanes on

Devi ce: <RETURN> Ri ght margin: 80=> <RETURN>
AAA. MAC -> AAA. MAC
ABC. MAC -> ABC. MAC
ACC. MAC -> ACC. MAC
AFG MAC -> AFG. MAC
>

In this example, %urcopy does not compile the copied routines and does not gen-
erates backups for them. No routines are overwritten because the copied routines
did not previously exist in the current directory.

Open M/SQL Developer Guide 7-21

Chapter 7—Open M/SQL Routine Management Utilities

Example 2

In this example, %urcopy copies the intermediate code routine “ PRQ” to the
intermediate code routine called “PZZ" and compiles the copied routine.

>do "%ur copy
Copy routine(s): PRQINT To: PZZ.1NT
Copy routine(s): <RETURN>

Gener at e backups? No=> <RETURN>

Conpi | e? Yes=> <RETURN>

Di splay Errors? Yes=> <RETURN>

Overwite Existing Routines? Yes=> <RETURN>

Di spl ay routine nanes on
Devi ce: <RETURN> Ri ght margin: 79=> <RETURN>

PRQ | NT -> * PZZ.INT — COWPILED
>

This operation effectively replaces the previous contents of “PZZ” with the cur-
rent contents of “PRQ".

The asterisk shown in the output line of this example indicates that the copied
routine has overwritten the previous contents of the target routine. The output
line also displays the message “COMPILED” to indicate that the new routine has
been compiled.

7-22 Open M/SQL Developer Guide

%urfind

%urfind

The %urfind utility searches through macro source routines, intermediate code
routines, and include files and returns all routine lines that contain at least one
occurrence of any search string in alist of search strings. This contrasts with
%urfand, which returns any routine lines that contain occurrences of all search
stringsin the list of search strings. %urfind does not operate at the object code
level.

Note On ISM systems the %urfind utility is also known as %RFIND.

When you invoke %urfind, the utility prompts you to specify asearch string. You
may specify as many search strings as you want.

After specifying the search strings, %urfind displays the following prompt:

Exact Upper/Lowercase Match? Yes=>

Here you may answer Yes or No to indicate whether or not you want the search to
be case-sensitive. Yes (case-sensitive) is the default response.

Next, the utility prompts you to specify the routines through which you want to
search.

Open M/SQL Developer Guide 7-23

Chapter 7—Open M/SQL Routine Management Utilities

Example

In the example below, %urfind searches for occurrences of the strings “Hello”
and “Goodbye” in al macro source and intermediate code routines located in the
current directory whose names begin with the letter “A”.

>do "%urfind

Find routine lines that contain at |east one of a set of
strings.

1. Search for: Hello

2. Search for: Goodbye

3. Search for: <RETURN>

Exact Upper/Lowercase Match? Yes=> N
Routi ne(s): A*. MAC

Routine(s): A*.INT

Routi ne(s): <RETURN>

Di splay results on

Devi ce: <RETURN> Ri ght Margin: 80=> <RETURN>
ABC. | NT

ABC+4 S "ABC(x) = "Hello"

AQQ | NTAYY. | NT AZZ. | NT

AZ7+6 S “ABC(z) = "Goodbye"

ABC. MAC

ABC+4 S "ABC(x) = "Hello"

AQQ MACAYY. MAC AZZ. NAC

AZ7+6 S “"ABC(z) = "Goodbye"

The utility outputs the names of al routines through which it searches.

When it finds one of the specified search strings, it outputs the tag numbers and
linesin which the string is located.

7-24 Open M/SQL Developer Guide

%urfand

%urfand

Note

The %urfand utility searches through macro source routines, intermediate code
routines, and include files and returns routine lines that contain occurrences of all
search stringsin alist of search strings. This contrasts with %urfind, which
returns any routine linesthat contain an occurrence of at least one search string in
thelist of search strings. %urfand does not operate at the object code level.

On ISM systems the %urfand utility is also known as %RFAND.

When you invoke %urfand, the utility prompts you to specify a search string.
You may specify as many search strings as you want.

After specifying the search strings, %ourfind displays the following prompt:

Exact Upper/Lowercase Match? Yes=>

Here you may answer Yes or No to indicate whether or not you want the search to
be case-sensitive. Yes (case-sensitive) is the default response.

Next, the utility prompts you to specify the routines through which you want to
search.

Open M/SQL Developer Guide 7-25

Chapter 7—Open M/SQL Routine Management Utilities

Example

In the example below, %urfand searches for occurrences of the strings “Hello”
and “Goodbye” in al macro source and intermediate code routines located in the
current directory whose names begin with the letter “A”.

>do "%rf and

Find routine lines that contain all of a set of strings.
1. Search for: ~ABC

2. And Search for: Hello

3. And Search for: <RETURN>

Exact Upper/Lowercase match? Y=> N
Routi ne(s): A*. MAC

Routine(s): A*.INT

Routi ne(s): <RETURN>

Di splay results
Devi ce: <RETURN> Ri ght Margi n: 80=> <RETURN>

ABC. | NT
ABC+4 S MABC(z) = "Hell 0"

AQQ I NT AYY. | NT AZZ. | NT ABC. MAC
ABC+4 S "ABC(z) = "Hello"

AQQ MAC AYY. MAC AZZ. NAC

>

The utility outputs the names of all routines that it searches.

When it finds all of the specified search stringsin one line of aroutine, it outputs
the tag numbers and line in which the strings are located.

7-26 Open M/SQL Developer Guide

%urdel

%urdel

Note

Note

Example

You may use the %urdel utility to delete macro source routines, include files,
intermediate code routines, and object code routines from the current directory
and output alist of the deleted routines to a specified device.

On ISM systems the %urdel utility is also known as %RDELETE.

When you invoke %urdel, the utility prompts you to specify the routines you
want to delete.

%urdel does not support remote directory syntax. This means you cannot delete
routines/include files that reside outside your current directory.

When %urdel deletes one version of aroutine, it shuffles the remaining versions
forward. For example, suppose you maintain three versions of the macro source
routine“ABC.MAC”. When you delete version “ABC.MAC.1", the first backup
version (previoudly called “ABC.MAC.2") isrenamed to “ABC.MAC.1" and
becomes the current version, and the second backup version is renamed to
“ABC.MAC.2", while the second backup version ceasesto exist.

In the example below, %urdel deletes all versions of al routines ((MAC, .INT,
INC, .OBJ) located in the current directory that begin with the letter “Y”.

>do "%ur del

Del ete routines/include files.

WARNI NG When . MAC. 1 is del eted, backups are shuffled
forward, UNCOWPI LED.

Routine(s): Y*.*. *
Routi ne(s): <RETURN>

Cut put on
Devi ce: <RETURN> Ri ght margi n: 80=> <RETURN>

DELETE SELECTED ROUTI NES/ | NCLUDE FI LES
Jul 13 91 3:32 PM
DI RECTORY: / DUAO/ MARGARET
YAZ. MVAC.1 YPP.MAC.1 YZZ. MAC.1 YAZ NMAC. 2 YPP.NMAC 2

YZZ. NAC. 2 Y1.INC Y2. 1 NC Y3. I NC YAZ. | NT
YPP. | NT YZZ. | NT YAZ. CBJ YPP. OBJ YZZ. OB

Open M/SQL Developer Guide 7-27

Chapter 7—Open M/SQL Routine Management Utilities

Qurverma

Note

Example

The %urverma utility lets you set the maximum number of backup versions
maintained by the current directory for macro source routines and include files.

On ISM systems the %urverma utility is also known as %RVERMAX.

The default number of versionsto maintain isfour (one current version and three
backups). The maximum number of versions that Open M/SQL can maintainis
nine (one current version and eight backups).

Open M/SQL maintains backups for macro source routines and include files
only. It does not maintain backups for intermediate code or object code routines;
their version numbers are always .1.

In the example bel ow, %urvermais used to change the number of backup ver-
sions maintained for macro source routines and include files from the default
value of 4 to the maximum value of 9.

>do "%urver na

Number of versions to keep for . MAC. 4=> 9
Nunmber of version to keep for .INC. 4=> 9

>

7-28 Open M/SQL Developer Guide

%urpurge

%ourpurge

Note

Example

The %urpurge utility deletes backup versions of macro source routines and
include files and outputs a list of purged routines and their version numbersto a
specified device.

On ISM systems the %urpurge utility is also known as %RPURGE.

When you invoke %urpurge, the utility prompts you to specify the number of
backup versions to be maintained after the purge. The default number of versions
to be maintained is 1, the current version only. If you wish to keep any backup
versions, you must change the default.

Next, the utility prompts you to specify the routines whose backups you want to
purge.

In the example bel ow, %urpurge purges all backup versions of the macro source
routines“TEST” and “MATT” in the current directory.

>do ~%ur pur ge
Purge backups, keeping how many versions: 1=> <RETURN>

Routi ne(s): TEST. MAC
Routi ne(s): MATT*. MAC

Devi ce: <RETURN> Ri ght margi n: 80=> <RETURN>
PURGE SELECTED ROUTI NES/ | NCLUDE FI LES

RETAI NI NG 1 VERSI ON
Jul 15 91 12:22 PM

Dl RECTORY: / USER/ MSQL
TEST. MAC. 2 TEST. MAC. 3 MATT1.INC. 2 MATTL.INC. 3
MATTL. INC. 4 MATT2.INC. 2 NMATT2.INC. 3 MATT3.INC. 3

8 routines Purged.

>

%urpurge outputs alist of all routines and include files that it purges.

Open M/SQL Developer Guide 7-29

Chapter 7—Open M/SQL Routine Management Utilities

%ourset

The %urset utility is used by the other Open M/SQL routine utilities to select
routines.

You will likely never call this utility directly from the Open M/SQL programmer
mode prompt. You may, however, find it useful to make calls to %urset in order
to select routines from within a program.

Note On ISM systems the %urset utility is also known as %RSETN.
The Global *mtemp

Routines selected using %ourset are stored in the “mtemp global.

The “mtemp global has the following structure:

nt enp(%sub, syst em@i r ect ory, ext ensi on, ver si on, nane) =*"

Thefirst subscript of the “mtemp global is %msub, which isthe variable returned

by %urset.
The table below lists and describes the additional subscripts to the *mtemp glo-
bal:
Table 7-3: Subscripts of the *mtemp Global
Subscript Meaning
system@directory System and directory where the routine resides.
extension Extension of the routine (MAC, INC, INT, or OBJ).
version Version number of the routine.
name Name of the routine.

7-30 Open M/SQL Developer Guide

%urset

Parameters of %ourset

The %urset utility has the following syntax:

Aour set (pronpt, access, ext ensi ons, sort)

The following table lists and describes the four parameters accepted by %urset:

Table 7-4. Parameters of %urset

Parameter

Meaning

prompt

This parameter specifies the prompt used to ask for routines.
The default prompt is “Routine(s):”.
If this parameter is null, %urset uses the default prompt.

Note: If your program uses a two-column format (like the format used
by the %urcopy utility, with the “Copy From:” prompt in one col-
umn and the “Copy To:” prompt in a second column), you may
use the delimiter $C(1) to separate the first and second pieces
of the prompt.

access

This parameter specifies the type of access that is permitted for select-
ing routines. It may have the following three values:

n “D" — permits selecting of routines across directories on the same
system.

n “S” — permits selecting of routines across directories and systems.
n Null — permits selecting of routines in the current directory only.

extensions

This parameter specifies the routine extensions that are accepted as
valid. You may enter a list of the routine extensions, separated by com-
mas.

If this parameter is null, only routines with the extensions .MAC and .INT
are accepted as valid.

sort

This parameter specifies the order in which selected routines are
sorted. It may have either of the following two values:

n DEVN — sorts routines according to Directory/System, Extension,
Version, and Name.

n DNEV — sorts routines according to Directory/System, Name,
Extension, and Version.

DEVN is the default sort order.

Open M/SQL Developer Guide 7-31

Chapter 7—Open M/SQL Routine Management Utilities

Example

In the example below, %urset is called with the following parameters:

n The prompt to be displayed for selecting routinesis defined as:
Routi ne Nanes:

n A null valueis passed to the access parameter, meaning that access to rou-
tines across directories and systems is prohibited

n Avaueof “INT” is passed to the extension parameter to specify that .INT is
the only extension accepted as valid for selecting routines

n A vaueof “DEVN” is passed to the sort order parameter to specify that the
selected routines will be sorted by name

>do "omrset (“Routine Names: ”,“”,“INI”,"“DEVN)
Routi ne Nanes: AAA | NT

Routi ne Nanes: BBB. | NT

Routi ne Nanes: CCC.|NT

>D NG

G obal ~nt enp(%rsub)

Anmtenp(163," @, "I NT", 1, "AAA") =

"BBB") =
"occ) =

7-32 Open M/SQL Developer Guide

PART

SQL Language Implementation I I I

Chapter 8

Embedded SQL

Chapter 9

Open M/QSL Implementation of
SQL

Chapter 10

Generating Queries

Embedded SQL

CHAPTER

Open M/SQL supports the embedding of SQL statements in macro source code.

This chapter describes the rules and syntax for using embedded SQL in Open
M/SQL applications.

Specifically, it covers the following topics:

n

n

Preprocessor Syntax Delimits Embedded SQL

Open M/SQL Supports Two Kinds of Embedded SQL
Referencing Macros in Embedded SQL

Internal and External Values

Multi-line Values

Reserved Tag and Variable Names

Portability

Detailed Example

Open M/SQL Developer Guide 8-1

Chapter 8—Embedded SQL

Preprocessor Syntax Delimits Embedded SQL

To embed SQL in Open M/SQL macro source code, you must delimit each SQL
statement using the Open M/SQL preprocessor function & sgl(...) or, aterna-
tively, ##sql(...), for example:

&sql (DELETE *

FROM Enpl oyees
WHERE Termi nati onDate < 1/1/80)

The letters “sgl” may be upper or lower case.

Open M/SQL Supports Two Kinds of Embedded SQL

Open M/SQL supports the following two kinds of embedded SQL statements:

n Non-cursor-based SQL
n Cursor-based SQL

Non-cursor-based SQL consists of individual SELECT, INSERT, UPDATE, and
DELETE statements.

Cursor-based SQL is used for operations in which a program retrieves multiple
rows from atable. To do this, the program declares and opens a cursor on the
table, specifying one or more conditions on the rows to be retrieved. It then per-
forms a series of fetches on the cursor, retrieving one row each time, until all the
matching rows have been read.

Non-Cursor-Based SQL

A non-cursor-based embedded SQL SELECT statement query always returns a
single row of data. Non-cursor-based SELECT statement queries are appropriate
when you know that a single row of data matches the WHERE clause. If anon-
cursor-based SELECT statement query matches more than one row, the query
retrieves only the first of the matching rows and none of the rest, although it com-
putes any aggregate functions in the SELECT list over al the matching rows.

8-2 Open M/SQL Developer Guide

Open M/SQL Supports Two Kinds of Embedded SQL

Use the INTO Clause to Pass Retrieved Values to M Variables

A non-cursor-based SELECT statement query embedded in an M program
always communicates its retrieved values to the program by using an INTO
clause to read the valuesinto M variables. For example:

&sql (SELECT Name, Tel ephone
I NTO : nane, : tel
FROM Enpl oyees WHERE SocSec=: ssn)

This example returns information about the employee whose social security num-
ber equals the value of the M variable “ssn”. If there is no such row, the query
setsthelocal M variable SQLCODE to 100. If thereis amatching row, the values
of “Name” and “Telephone” are copied into the M variables “name” and “tel”.
The names “name”, “tel”, and “ssn” in the above query are prefixed by colons,
which indicates to the preprocessor that they are M variables.

Thefollowing example shows an embedded INSERT statement that addsasingle
row to the “Employee” table:

&sql (I NSERT | NTO Enpl oyee (Name, SocSec, Tel ephone)
VALUES(“ Boswel | 7, 333448888, “546-7989"))

UPDATE and DELETE Statements Can Operate on Multiple Rows

Non-cursor-based UPDATE and DELETE statement queries can operate on mul-
tiple rows, for example:

&sql (UPDATE Enpl oyee SET AgeSt at us="M NOR’
VWHERE Age<21)

which sets“ AgeStatus” to “MINOR” for every “Employee” row whose “Age’ is
less than 21, and:

&sql (DELETE FROM Product s
WHERE Supplier = :sup)

which deletes all “Products’ rows whose “Supplier” field equals the variable

“ 7

sup”.

For information on how to insert, update, and retrieve rows using arrays, see
Chapter 9, Open M/SQL Implementation of SQL.

Open M/SQL Developer Guide 8-3

Chapter 8—Embedded SQL

Cursor-Based SQL

When your application needs to access multiple rows of data, you must use a cur-
sor. A cursor acts like a pointer—it focuses on accessing and processing one row
at atime, then moves from that row to the next in the sequence.

Declaring a Cursor

Cursor-based SQL involves declaring one or more cursors on one or more base
tables or views.

Note You may declare two or more cursors on the same base table and position them
independently.

A cursor name may consist of any humber of alphanumeric characters, though
only thefirst six are significant. Thefirst character must be alphabetic. All cursor
operations for a given cursor name must reside in asingle M routine.

To declare a cursor, you use the SQL DECLARE statement. Since DECLARE
statements are not executable, I nterSystems recommends for the sake of clarity
that you place them at the beginning of aroutine.

Once it has been declared, a cursor can be used by one or more OPEN, FETCH,
and CLOSE statements. The DECL ARE statement for a cursor must precede any
other statements involving that cursor.

Below isan example of a DECLARE statement:

&sql (DECLARE Pat Cur CURSOR FOR
SELECT Nane, Tel ephone FROM Pati ents
WHERE Nane="Boswel | ")

This example declares a cursor “PatCur” that retrieves the names and tel ephone
numbers of all rowsin the “Patients’ table with the name “Boswell”. The
DECLARE statement does not itself execute any code.

Opening a Cursor

Before using a cursor in a program, you must open it, as follows:

&sql (OPEN Pat Cur)

Depending on the particular query, the amount of code executed by a cursor
OPEN can be very small or very large. When you finish using a cursor in apro-
gram, you should close it, asfollows:

&sql (CLOSE Pat Cur)

8-4 Open M/SQL Developer Guide

Open M/SQL Supports Two Kinds of Embedded SQL

Use FETCH to Retrieve Information into a Cursor

You use FETCH statements to retrieve information into a cursor. For example,
the statement:

&sql (FETCH Pat Cur | NTO : nanme, :tel)

fetches the next row as selected by the DECLARE statement for “PatCur” into
the variables “name” and “tel”. Note that the SELECT statement has already
been specified as part of the DECLARE statement.

Use the INTO Clause to Pass Retrieved Values to M Variables

Asin the non-cursor-based version, you must use an INTO clause to get values
from the query into the program. In cursor-based SQL, you may specify the
INTO clause as part of the DECLARE statement for a cursor, for example:

&sql (DECLARE Pat Cur CURSOR FOR
SELECT Nane, Tel ephone | NTO :nane, :tel
FROM Pat i ents WHERE Nane="Boswel | ")

&sql (FETCH Pat Cur)

In this example, the FETCH statement retrieves values into the variables “name”
and “tel”.

Or, you may specify the INTO clause as part of each FETCH statement that uses
the cursor, for example:

&sql (DECLARE Pat Cur CURSOR FOR
SELECT Nane, Tel ephone
FROM Pat i ents WHERE Nane="Boswel | ")

&sql (FETCH Pat Cur | NTO : name, :tel)
The ability to usethe INTO clause in a FETCH statement is provided by ANSI-
Standard SQL . The ahility to usethe INTO clausein aDECLARE statement isan

InterSystems extension. For more information on INTO clauses, see Chapter 9,
Open M/SQL Implementation of SQL.

Open M/SQL Developer Guide 8-5

Chapter 8—Embedded SQL

You may also use an INTO clausein a FETCH statement to override the INTO
clause in the corresponding DECL ARE statement, for example;

&sql (DECLARE Pat Cur CURSOR FOR
SELECT Nane, Tel ephone | NTO :nane, :tel
FROM Pat i ents WHERE Nane="Boswel | ")

&sql (FETCH Pat Cur | NTO : nl1, :t1)

Warning Do not specify %val as the host variable in the INTO clause for an SQL FETCH
statement—this causes the FETCH statement to produce empty values. You may
specify other “%” variables.

INSERT, UPDATE, and DELETE Operations Follow ANSI-Standard

Cursor-based INSERT, UPDATE, and DELETE operations follow ANSI-Stana
dard SQL, for example:

&sql (DELETE FROM Patients WHERE CURRENT OF Pat Cur)

which deletes the row that was last FETCH’d using the cursor “PatCur”.

8-6 Open M/SQL Developer Guide

Referencing Macros in Embedded SQL

Referencing Macros in Embedded SQL

Embedded SQL text may contain macro references. The Open M/SQL macro
preprocessor expands these macro references before it tranglates the SQL text.
Therefore, you may use macros to generate parts of the SQL text. The following
exampl e shows a series of macro definitions followed by an SQL statement that
references the macros:

#define TABLE Patients

#defi ne FI ELDS Nane, Phone

#define VARS :n,:p

#defi ne COND Nanme USTARTSW TH “JO

gsql (SELECT $$$FI ELDS | NTO $$SVARS
FROM $$$TABLE WHERE $$$COND)

Conversely, you may use a macro reference to insert the & sql preprocessor func-
tion, asin the following example:

#defi ne GETNEXT &sql (FETCH xcurs INTO :a,:y)
for i=1:1 $$SCGETNEXT quit: SQLCODE=100 do “process
When expanding the last line, the macro preprocessor first replaces the macro

reference “$$$SGETNEXT” with “& sql(FETCH...)" and then expands the embed-
ded SQL expression.

Open M/SQL Developer Guide 8-7

Chapter 8—Embedded SQL

Internal and External Values

Every value returned by an embedded SELECT query consists of the internal
value (the value as stored in the database) plus an optional external value (if the
Data Dictionary specifiesinternal-to-external conversion for the specific field).

If avalue has an external value, it is separated from the internal value by the
delimiter character $c(1). Therefore, every value returned by an embedded SQL
guery has one of two formats:

i nternal

or

i nternal _$c(1)_external

For a complete description of internal and external field values, see Chapter 9,
Open M/SQL Implementation of SQL.

Multi-Line Values

When an INTO clause retrieves a multi-line (repeating) field into avariable, it
puts the count of linesin the variable node and the value of each linein a num-
bered node under the variable.

For example, atwo-line field vaue is stored as follows in the variable x:
X=2
x(1)=first line
x(2)=second |ine

For a complete description of multi-line fields, see Chapter 9, Open M/SQL
I mplementation of SQL.

8-8 Open M/SQL Developer Guide

Reserved Tag and Variable Names

Reserved Tag and Variable Names

When Open M/SQL generates intermediate code for a macro source routine that
contains embedded SQL, it automatically generates tag and variable names.

For non-cursor-based SQL statements, all of the generated tag names begin with
%0, and al of the generated variable names begin with %smmmsql.

For cursor-based SQL statements (suppose that operations are performed on a
cursor called “PatCur”), all of the generated tag names begin with either %Pat-
Cur or %0, and all of the generated variable names begin with either %PatCur or
%mmmsg|.

Therefore, to avoid conflict with generated tag and variable names, macro source
routines containing embedded SQL should not begin any tag names with %0 or
any variable names with %emmmsgl. They should also not begin tag or variable
names with %PatCur, where PatCur is any cursor name used in the program.

Portability

Note

If amacro source routine contains embedded SQL statements, you must compile
the routine in the directory that contains the Data Dictionary definitions of all
base tables referenced by the SQL statements.

After compiling a macro source routine that contains embedded SQL SELECT
statements, you may copy the intermediate code and object code versions of the
routine to another directory or system and run there without copying any other
routines or globals, assuming the directory to which you copy uses a compatible
database structure.

You cannot copy the intermediate code and object code versions of a macro
source routine that contains any non-SELECT statement embedded SQL queries,
i.e., you cannot copy routines that contain INSERT, UPDATE, or DELETE state-
ments.

Open M/SQL Developer Guide 8-9

Chapter 8—Embedded SQL

Detailed Example

The macro source routine shown below lists the employees in a company depart-
ment. It asks the user to specify the first few characters of the department name.
If there are no department matches with the characters provided by the user, the
routine prints an error message and asks again. If there is one match, it lists the
employees for that department. If there is more than one match, it uses cur-
sor-based SEL ECT/FETCH operations to cycle through the department matches,
asking the user which match is desired.

EMPLI ST ; List the enployees in a given department

; Define macro “CAPITAL” to convert a string to uppercase and renpve
;punctuation. Calls the entry point al phaup®yraz as a
;function:

#define CAPI TALS(%) $$al phaup”yraz(%a)

;Define macro “EXTERNAL” to get the external value of a returned
;field:

#define EXTERNAL(%) $pi ece(%, $c(1), 2)

;Decl are cursor for accessing Departnment table. Selects fields
; "Department” and “Nane” from Departnent table and puts theminto
;Mvariabl es deptid and dept nane:

&sql (DECLARE dcurs CURSOR FOR SELECT Departnent, Nane
I NTO : depti d, : dept nane
FROM Depart nent
VHERE (%ALPHAUP(Nare) %STARTSW TH : nane))

;Decl are cursor for accessing Enployee table. Selects fields “Nane”
;,"Phone”, and “Hiredate” into Mvariables enpname, enpphone,
;and enpdat e:

lzsql (DECLARE ecurs CURSOR FOR SELECT Nane, Phone, Hi reDat e
I NTO : enmpnane, : enpphone, : enpdat e
FROM Enpl oyee WHERE (Depart nent =: deptid))

; For formatting:
kill set spaces=" “
; Pronpt user to select a department:

askd wite !, "Departnent name starts with: “ read name
qui t: nanme=""
set name=$$$CAPI TALS(nane); to conmpare with
Y%ALPHAUP(Nane) bel ow

; Non-cursor-based SELECT to get COUNT of Departnent rows whose
;nane field begins with the value of the Mvariable nane.

; COUNT goes into Mvariable deptcount, to be used bel ow.

;Get the field values, too, in case COUNT is one:

&sql (SELECT Depart ment, Nane, COUNT(Depart nent)
I NTO : depti d, : dept nane, : dept ct
FROM Depar t ment
WHERE %ALPHAUP(Nane) %STARTSW TH : nane)
go: +deptct =0 nonatch ;say “+deptct” because it mght be null

8-10 Open M/SQL Developer Guide

Detailed Example

R If there is only one, go to gotd and list the enpl oyees:
éo: deptct=1 gotd

jeeeme- O herwi se, |1 oop through the matching
e departnents, asking the user which one to use:

;S"sql (OPEN dcurs)

dl oop &sql (FETCH dcurs) if SQLCODE =0 &sql (CLOSE dcurs) go nonmatch
wite !,”Do you want the “_deptnane_" departnent?
read answer go:answer="" dl oop go:”Yy”'[$extract(answer) dl oop
&sql (CLCSE dcurs)

gotd ;S"sql (OPEN ecurs)
wite !,!,”"Enployees in the “_deptname_" departnent:”
wite!,” NAMVE PHONE H RE DATE’

wite!,”

el oop &sql (FETCH ecurs) ;get values for the next enployee in this dept
if SQLCODE =0 &sql (CLOSE ecurs) go askd
wite !,” “_enmpnane_$e(spaces, 1, 39-$lengt h(empnane))
write enpphone_$e(spaces, 1, 14- $l engt h(enpphone))
wite $SSEXTERNAL(enpdate) ; External val ue of
;hire date (MM DD YY)
go el oop

nonmat ch Write “ No mat chi ng departnents.” go askd

Open M/SQL Developer Guide 8-11

Chapter 8—Embedded SQL

8-12 Open M/SQL Developer Guide

CHAPTER

Open M/SQL Implementation of
SQL

This chapter describes extensions to ANSI-Standard SQL that have been incor-
porated into Open M/SQL. It assumes that you are already familiar with standard

SQL syntax and usage.
Specifically, it covers the following topics:

n Summary of Extensions

n Joins

n Aggregate Extensions

n Duplicate Rows

n Embedded SQL

n Using the INTO Clause

n Using the INTO Clause with Arrays
n VALUES Extension for INSERT and UPDATE Queries
n Multi-Line Fields

n Internal and Externa Vaues

n %INTERNAL and %EXTERNAL Functions
n M Operators

n Extensionsto SQL Operators

n %STARTSWITH

n LIKE Predicate

n Collation Sequence

n %NOCHECK

n SQL Transaction Processing

n Privilege Operators

n Using Subgqueries

n Query-Based Views

Open M/SQL Developer Guide 9-1

Chapter 9—Open M/SQL Implementation of SQL

Summary of Extensions

Open M/SQL’simplementation of Structured Query Language (SQL), referred to
throughout this chapter and this guide as InterSystems’ SQL, provides a variety
of useful extensionsto the ANSI-Standard SQL Data Manipulation Language
(DML). These extensions enhance the power of SQL itself and help to integrate
SQL with M.

The following list summarizes InterSystems’ extensions to ANSI-Standard SQL :
n One-way outer join (=* operator)

n Implicitjoin (-> arrow syntax)

n Aggregate extensions (YoFOREACH, %AFTERHAVING, DISTINCT BY)
n Embedded SQL

n Useof the INTO clausein cursor declaration

n SELECT INTO using mixed variables

n Array INSERT and UPDATE

n VALUES extension for INSERT and UPDATE queries

n Multi-linefields

n Internal and external values

n %INTERNAL and %EXTERNAL functions

n M operators

n LIKE predicate

n Startswith operator (%STARTSWITH)

n Collation sequence functions (%ALPHAUP,%UPPER,%EXACT)

n %NOCHECK keyword

n SQL Transaction processing keywords (Yo BEGTRANS, %INTRANS)

n Privilege operators (GRANT, REVOKE, %CHECKPRIV)

n Subgueries

n Query-based view operators (CREATE VIEW, ALTER VIEW, DROP
VIEW)

9-2 Open M/SQL Developer Guide

Summary of Extensions

Added Keywords and Symbols

Note

Keywords that represent InterSystems extensions to SQL begin with the percent

sign (%). These keywords include:

n

n

n

n

%AFTERHAVING
%ALPHAUP
%ALTER
%BEGTRANS
%CHECKPRIV
%EXACT
%EXTERNAL
%FOREACH
%FORM
%INTERNAL
%INTRANS
%MENU
%MEUNOBJ
%NOCHECK
%QUERY
%REPORT
%ROWCOUNT
%STARTSWITH
%THRESHOLD
%UPPER

The keywords listed above are all Open M/SQL reserved words. To see a com-
plete list of reserved words, refer to Appendix B of this guide.

Open M/SQL Developer Guide 9-3

Chapter 9—Open M/SQL Implementation of SQL

The symbols shown in the following table al so represent | nter Systems extensions

to SQL:

Table 9-1: SQL Extension Symbols

Symbol

Meaning

=%

One-way outer join

->

Implicit join

#

M scalar operators

?[

M comparison operators

&!

M AND and OR

]

M follows operator

InterSystems' SQL permits the use of the double quote characters (“..."”) to
delimit literal values, in addition to the apostrophe character (*...") used by ANSI-

Standard SQL.

InterSystems' SQL allows you to negate the comparison and logical operators by
prefixing them with “not” or “NOT”, for example:

not= (equivalent to < >)

not< (equivalent to >=)

not> (equivalent to <=

not ?
not &
not [
not |

not !

Note The syntax “I="is equivalent to “NOT=".

9-4 Open M/SQL Developer Guide

Joins

Joins

Joins provide the means of linking datain one table with datain another table and
are frequently used in defining reports and queries.

A join is an operation that combines two tables to produce a third, subject to a
restrictive condition. Every row of the new table must satisfy the restrictive con-
dition.

One-Way Outer Joins

With standard “inner” joins, when rows of one table are linked with rows of a
second table, arow in the first table that finds no corresponding row in the sec-
ond table is excluded from the output table.

With one-way outer joins, al rows from the first table are included in the output
table even if thereis no match in the second table. With one-way outer joins, the
first table pulls relevant information out of the second table but never sacrifices

itsown rows for lack of a match in the second table.

When specifying a one-way outer join, the order in which you name the tablesin
the FROM clauseisvery important. Thefirst table you specify isthe source table
for thejoin.

You specify an outer join by using the symbol =* in place of = in the WHERE
clause of the SQL query.

Asanillustration of the difference between aregular join and a one-way outer
join, consider the query:

SELECT Pati ent. PNane, Doct or . DNane
FROM Pat i ent, Doct or
WHERE Pati ent. Doct or = Doct or. Doct or

This query returns one row for each row of the“Patient” table that has a non-null
“Doctor” field. By contrast, examine the query:

SELECT Pati ent. PNane, Doct or. DNane
FROM Pat i ent, Doct or
WHERE Pati ent. Doctor =* Doctor. Doct or

Though it differsonly in the =* operator, this query returns all the rows of the
previous query plus the rows of the “Patient” table that have null value for the
“Patient.Doctor” field. For such rows, “Doctor.Name” isreturned asnull. Thisis
known as “null padding”—Open M/SQL automatically performs null padding.

Open M/SQL Developer Guide 9-5

Chapter 9—Open M/SQL Implementation of SQL

The one-way outer join condition expressed by the following syntax:

A x =% By

specifiesthat every row in A be returned. For each A row returned, if thereisaB
row such that A.x=B.y, all of the corresponding B values are also returned. If
there isno B row such that A.x=B.y, null padding causes all B values for that A
row to return as null.

One-way outer join conditions, including the necessary null padding, are applied
before other conditions. Therefore, a condition in the WHERE clause that cannot
be satisfied by a null-padded value (for example, arange or equality condition on
afield in B) effectively convertsthe one-way outer join of A and B into aregular
join.

For example, if you add the clause “ AND Doctor.Age < 45" to the two “ Patient”
table queries above, it makes them equivalent. However, if you add the clause
“AND Doctor.Age < 45" or “Doctor.Ageis null”, it preserves the difference
between the two queries.

Implicit Joins

Note

Implicit joins are pre-defined joins between tables which you specify in the Data
Dictionary. They allow you to define queries without specifying the WHERE
condition that is used to join tables.

On aninternal level, an implicit join causes an additional join condition to be
implicitly added (ANDed) to the WHERE clause and the joined table to be
implicitly added to the FROM clause of the SQL query.

By definition, the implicit join is a one-way outer join. However, conditions on
fields of the join table may cause thejoin to act as aregular join (as explained
above).

Open M/SQL supports two types of implicit joins, designative references and
characteristic relationships. Characteristic relationships can be either child-to-
parent references or parent-to-child references.

You may only define designative and characteristic relationships among tables
that reside within a single database.

9-6 Open M/SQL Developer Guide

Joins

Note

Arrow Syntax Specifies Implicit Joins

You use arrow syntax to specify implicit joins between tables. Arrow syntax
appears as a dash followed by a greater-than symbol (->).

In Open M/SQL, you may use arrow syntax in the following three cases:
1. Tosignify Designative References between tables

2. Tosignify Child-to-Parent References between tables

3. Tosignify Parent-to-Child References between tables

References to arrow syntax fields (such as a->b->c) may appear in the SELECT
clause of a general view definition without the use of an AS clause. This holds true
also for the SELECT clause of a subquery nested within the FROM clause of
another query. For example, the following syntax is valid in Open M/SQL:

SELECT ¢ FROM (SELECT a->b->c FROM d)
Designative References

A designative reference is a many-to-one link between tables in which one field
of the designating table contains the Row IDs of al rows in the designated table.
A designative reference is said to be a non-dependent link because rows in the
referenced table exist independently of rowsin the designating table. In relational
database terminol ogy, the designating table hasa“foreign key” on the referenced
table. In M terminology, the designating table has a*“ pointer” to the referenced
table. In Open M/SQL, afield that designates another tableis called a designative
reference field.

The value of adesignative reference field isthe Row ID of arow in the desig-
nated table. Designative references provide a means of accessing information
from arow of the designated table and using that information together with the
associated row of the designating table.

If thefield A.bisadesignative reference field that designatestable B and x isa
field in B, the reference:

A. b->x

points to the value of x in the row of table B that correspondsto A.b. It isinter-
preted as a reference to B.x with B added implicitly to the FROM clause and an
additional one-way outer join condition added implicitly to the WHERE clause,
of the form:

A b = B.Rowi D

Open M/SQL Developer Guide 9-7

Chapter 9—Open M/SQL Implementation of SQL

Note

For example, the following query is equivalent to the second query on page 9-4:

SELECT Pati ent. PNane, Pati ent. Doct or - >DNane
FROM Pat i ent

The following query retrieves patient's name and patient's doctor's name for
every patient who livesin Boston:

SELECT Pati ent. PNane, Pati ent. Doct or - >DNane
FROM Pat i ent
WHERE Patient.City = “Boston”

Assuming that “Patient.Doctor” is a designative reference to the “Doctor” table,
this query is equivalent to:

SELECT Pati ent. PNane, Doct or . DNane
FROM Pat i ent, Doct or

WHERE Patient.City = “Boston”

AND Pati ent. Doctor =* Doctor. Doct or

As another example, consider the query:

SELECT Pati ent. PNane, Pati ent. Docl- >DNane, Pati ent. Doc2->
DNane

FROM Pat i ent

WHERE Patient.City = “Boston”

This query is equivaent to:

SELECT Pati ent. PNane, Doct or X. DNane, Doct or Y. DNanme
FROM Pat i ent, Doct or X, Doct or Y
WHERE City = “Boston”

AND Docl =* Doct or X. Doct or

AND Doc2 =* DoctorY. Doct or

If it does not create ambiguity, A.b->x may be abbreviated as b->x.

9-8 Open M/SQL Developer Guide

Joins

Characteristic Relationships

In the Data Dictionary, you can create tables that are characteristic of other
tables. This type of relationship is appropriate when one or more rows in the
child table correspond to a single row in the parent table. For example, a parent
table “Invoices” might have a child table “Lineltems’ containing one or more
lineitemsfor each invoice. The child table contains a“parent reference’ field,
which is similar to a designative reference but points to the parent table.

A child table always designates its parent table. For this reason, a characteristic
relationship can be thought of as akind of designative reference. However, a
characteristic relationship is more restrictive than a designative reference since
the join condition specifies that all rows of the child table must designate the
same parent table row. In this way, a characteristic relationship satisfies the rela-
tional definition of an inner join.

Child-to-Parent References

If table P is the parent of table C and x isafield in P, the implicit join syntax:

C. Par ent Ref - >x

for agiven C row refersto the value of x in that row's parent row. It isinterpreted
as areference to Px with P added implicitly to the FROM clause and an addi-
tional one-way outer join condition added implicitly to the WHERE clause, of
the form:

C. Parent Ref =* P. Row D

For example, given a parent table “ Customer” with child table “Invoice”, the
query:
SELECT Cust oner - >Nane

FROM | nvoi ce
VWHERE Nunber = 51140

is equivalent to:

SELECT Cust orrer. Nane

FROM | nvoi ce, Cust oner

WHERE | nvoi ce. Nunber = 51140

AND | nvoi ce. Cust oner =* Cust oner. Cust oner

This query returns the name of the customer to whom invoice number 51140
belongs.

Open M/SQL Developer Guide 9-9

Chapter 9—Open M/SQL Implementation of SQL

Parent-to-Child References

If Pisthe parent of C and x isafield in C, theimplicit join syntax:
P. G >x

for agiven row in P refersto the value of x in achild row of that row. It isinter-
preted as areference to C.x with C added implicitly to the FROM clause and an
additional one-way outer join condition added to the WHERE clause, of the
form:

P. Row D =* C. Par ent Ref

Since there can be many children for a given parent, each child causes the query
to produce another row.

For example, if you have a parent table “ Customer” with child table “Invoice”,
the query:

SELECT | nvoi ce- >Nunber
FROM Cust oner
VWHERE Nane = “Snith”

is equivalent to:

SELECT | nvoi ce. Nunber

FROM Cust oner, | nvoi ce

WHERE Custoner.Nane = “Smth”

AND Cust oner. Custoner =* | nvoi ce. Cust oner

This query returns the numbers of all invoicesfor all customers with the name
“Smith”.

9-10 Open M/SQL Developer Guide

Aggregate Extensions

Aggregate Extensions

InterSystems provides extensions to the SQL aggregate functions AVG, COUNT,
MAX, MIN, and SUM to make them more powerful and more flexible. These
extensions simplify the relationship of the SQL aggregate functions with the
GROUPBY and DISTINCT operators, effectively making aggregates, grouping,
and duplicate elimination three orthogonal components of the SQL language.

Open M/SQL’s aggregate function extensions are:

n Aggregates alongside fieldsin SELECT and HAVING clauses
n %FOREACH

n %AFTERHAVING

n DISTINCT BY in aggregates

n SELECT DISTINCT BY

Aggregates as Query Columns

Thefirst extension allows aggregates to appear in a SELECT list or HAVING
clause alongside field values. In ANSI-Standard SQL, if a query contains an
aggregate, the SELECT and HAVING clauses cannot contain any field values
outside of aggregates (unless they are listed in the GROUP BY clause). For
example, the query:

SELECT Sal ary, AVH Sal ary)
FROM Enpl oyee

isinvalid in ANSI-Standard SQL because it selects both an aggregate and afield
value.

InterSystems' SQL treats an aggregate simply as another column in each returned
row, just asit treats afield or an expression composed of fields. In InterSystems
SQL, the above exampl e returns one row of output for each row contained in the
“Employee” table. The first column of each returned row is the salary of the cor-
responding employee. The second column isthe value of the aggregate AV G(Sal-
ary), which is the same for each row and is the average salary for all employees.
Thisfeature is also useful in conjunction with the %FOREACH extension (see
below).

The following query:

SELECT Narne, Sal ary, AVE Sal ary)
FROM Enpl oyee
HAVI NG Sal ar y>AVE Sal ary)

liststhe name, salary and average salary for all employees whose salary is greater
than the average salary. ANSI-Standard SQL does not accept such a query.

Open M/SQL Developer Guide 9-11

Chapter 9—Open M/SQL Implementation of SQL

If the SELECT list consists only of aggregates and neither %FOREACH nor
GROUPBY isused (in which case, the SELECT list is acceptable to ANSI-Stan-
dard SQL), Open M/SQL adds an implicit DISTINCT to the query so that it
returns only one row. Thisis done because the value of the aggregate is the same
for each selected row. For example, the query:

SELECT AV({ Sal ary)
FROM Enpl oyee
WHERE Departnment = “SALES’

returns the same value of AV G(Salary) for each “Employee” row, namely the
average salary for all employeesin the sales department.

Therefore, Open M/SQL adds an implicit DISTINCT to the query, asfollows:

SELECT DI STI NCT AVE Sal ary)
FROM Enpl oyee
WHERE Departnent = “SALES”

This reduces the output to a single row consisting of the average salary in the
sales department.

Two additional extensions generalize aggregates and make them more powerful.
The %FOREACH keyword allows queries to produce different aggregate values
for different groups of returned rows, and the DISTINCT BY feature provides a
high degree of control over duplicate elimination.

%FOREACH

Obtaining aggregate results along with data is especially useful when combined
with the InterSystems extension keyword %FOREACH, which can appear only
inside an aggregate. The %FOREACH keyword divides the rows returned by a
query into groups and calcul ates a separate aggregate value for each group.

%FOREACH uses the following syntax:
Aggregate (exprl %OREACH (expr2,expr3,...))

where alist of one or more arbitrary expressions follows the %FOREACH key-
word.

For example, the query:

SELECT Nane, Di vi si on, Depart nent,
AVG Sal ary %-OREACH(Di vi si on, Depart nment))
FROM Enpl oyee

returns four columns of information for each row in the “Employee” database.

9-12 Open M/SQL Developer Guide

Aggregate Extensions

The output columns for this query are shown in the table below:

Column Value

1 Employee's name

2 Employee's division (call it DV)

3 Employee's department (call it DP)

4 Average salary for employees in division DV and department DP

ANSI-Standard SQL uses the keyword GROUP BY for a similar purpose.
Whereas GROUP BY operates on an entire query, %FOREACH is more flexible
because it only affects the value of a particular aggregate. Therefore, although
Open M/SQL also supports ANSI-Standard SQL's implementation of GROUP
BY, InterSystems recommends that you use %FOREACH and DISTINCT in all
cases.

For another example of %FOREACH, the query:

SELECT PNane, War d, Age, AVE Age %OREACH(Ward)), Sex,
AVG Age %-OREACH(Sex))
FROM Pat i ent

returns, for each patient, the average age of al patientsin that patient’s ward and
the average age of al patients of that patient’s sex:

The output columns for this query are shown in the table below:

AVG(Age) AVG(Age)
PName Ward Age By Ward Sex By Sex
Smith 6 59 62 F 59
Jones 5 16 37 M 29
Clark 5 42 37 M 29
Baker 6 65 62 F 59
Mulligatawny 5 53 37 F 59

Open M/SQL Developer Guide 9-13

Chapter 9—

Open M/SQL Implementation of SQL

%AFTERHAVING

Note

The %AFTERHAVING keyword is another InterSystems extension that can
appear inside aggregates within a SELECT clause.

%AFTERHAVING uses the following syntax:
Aggregate (... YAFTERHAVI NG

When Open M/SQL encounters an aggregate with %AFTERHAVING, it com-
putes the aggregate only for those rows that satisfy the query’s HAVING clause.

For example, the query:

SELECT Nare, Sal ary, AV@ Sal ary), AVE Sal ary %AFTERHAVI NG
FROM Enpl oyee

WHERE City = “Boston”

HAVI NG Sal ary > AVE Sal ary)

computes two different salary averages. The aggregate “ AV G(Salary)” computes
the average salary for all Boston employees. The aggregate “AV G(Saary
%AFTERHAVING)” computes the average salary for those Boston employees
whose salary is greater than the average of al salaries for Boston employees.

Since InterSystems’ SQL allows aggregates and fields to appear together in
SELECT and HAVING clauses, you may compare the field “Salary” with the
aggregate “AVG(Salary)” in the HAVING clause.

DISTINCT BY

InterSystems SQL follows ANSI-Standard SQL by permitting the use of the
keyword DISTINCT in a SELECT clause to remove duplicate rows from the out-
put of aquery. For example, the query:

SELECT DI STI NCT Ward FROM Pat i ent
returns one row for each distinct value of the field “ Patient. Ward”.

InterSystems' SQL also follows ANSI-Standard SQL by permitting the use of
DISTINCT for aggregatesina SELECT clause, thus eliminating duplicate values
from those used to compute the aggregate. For example, the query:

SELECT COUNT(DI STINCT City) FROM Pati ent
returns the number of distinct valuesin “Patient.City”.

InterSystems SQL provides an extension that allows you to eliminate just the
rows that have duplicate values for specific expressions.

9-14 Open M/SQL Developer Guide

Aggregate Extensions

This extension is the use of DISTINCT followed by the keyword “BY” and a
parenthesized list of expressions, specifying which fields and expressions should
be distinct in the returned rows. Rather than eliminating rows that are duplicates
in their entirety, it eliminates rows that have duplicate values for these expres-
sions.

DISTINCT BY usesthe following syntax:

DI STINCT BY (exprl, expr2, ...)

For example, the query:

SELECT DI STINCT BY(City) Myor, Phone
FROM Preci nct s

returns the “Mayor” and “Phone” of one of the rows for each value of “City”.
Note that the value of City itself is not selected by this query.

An example of DISTINCT BY with an aggregate function is:

SELECT SUM DI STI NCT BY(Nane) | nsurance)
FROM Enpl oyee

This query returns the sum of values for “ Employee.Insurance’, including in the
sum only one insurance value for each employee name.

The following is an example of DISTINCT BY using an expression:

SELECT DI STI NCT BY(Sal ary + Commi ssion) Sal ary, Conmi ssi on
FROM Enpl oyee

This query returns one salary and commission for each value of salary + commis-
sion.

Open M/SQL Developer Guide 9-15

Chapter 9—Open M/SQL Implementation of SQL

Duplicate Rows

ANSI-Standard SQL allows tables to contain multiple identical rows, i.e. rows
that have the same values for all fields. InterSystems’ SQL, however, does not
permit identical rows. In accordance with most relational models, InterSystems’
SQL requires that each table have a unique RowID field.

This extension eliminates potential problems with querying tables. Duplicate
rows can cause otherwise well-defined queries and aggregates to return varying
results depending on the order of the SQL clauses.

The functionality of duplicate rowsis essentially preserved in Open M/SQL by a
table design that allows rowsto beidentical except for aunique Row ID field that
isautomatically generated by the system (and may be custom-defined). This
approach allows the creation of duplicate rows for otherwise unique fields such
as social security numbers or company names, as they may be needed for look-
ups, while still preserving the unique row concept of the relational model.

9-16 Open M/SQL Developer Guide

Embedded SQL

Embedded SQL

Open M/SQL allows the embedding of SQL statementsin M programs. Thisfea-
ture replaces and enhances the Module Language (ML) of ANSI-Standard SQL.

You may embed SQL at the macro source code level only.

To embed SQL in Open M/SQL macro source code, you must delimit each SQL
statement using the Open M/SQL preprocessor function &sgl(...) or, alterna-

tively, ##sal(...)
References to M variables within embedded SQL must begin with a colon.

Embedded SQL communicates retrieved information to M programs by using an
INTO clause to read the values into M variables. For example, the embedded
SQL query:

&sql (SELECT PNane, Phone | NTO : nane,:tel
FROM Pat i ent
VWHERE SSN=: num)

uses the M variable “num” as input for the WHERE clause and the M variables
“name” and “tel” to retrieve the output of the query.

For a complete description of how embedded SQL usesthe INTO keyword to
read query valuesinto M variables, refer to Chapter 8, Embedded SQL.

An INTO clause may include both subscripted and unsubscripted M local vari-
ables aswell as a mixture of both.

Embedded SQL statements can modify the M if-switch. Keep thisin mind when
embedding SQL inside an #if statement.

Open M/SQL Developer Guide 9-17

Chapter 9—

Open M/SQL Implementation of SQL

Using the INTO Clause

Note

Both ANSI-Standard SQL and InterSystems SQL permit the use of the INTO
keyword in queries.

In non-cursor-based SQL queries, you may use the INTO clause with the
SELECT statement, for example:

&sql (SELECT Name, Age INTO :n,:a
FROM Enpl oyee WHERE SocSec = 555997777)

selects arow from the “Employee” table and puts the values of the “Name” and
“Age’ fieldsinto the M variables“n” and “a”".

Since this is a non-cursor-based embedded SQL query, it can retrieve only one
row, even if more than one row matches the WHERE clause.

In cursor-based SQL queries, you may use the INTO clause with the FETCH
statement, for example:

&sql (FETCH ¢ INTO : x,:y,:2)
where “c” isacursor name.

By using its own INTO clause each FETCH can read the same cursor into differ-
ent sets of variables.

You May Use INTO in Cursor Declaration

An InterSystems SQL extension permitsthe use of the INTO clause in the cursor
declaration statement, for example:

&sql (DECLARE ¢ CURSOR FOR
SELECT Date, Tine, Result INTO :d, :t, :r
FROM Test s)

&sql (FETCH cursor)

Putting the INTO clause in the DECLARE statement (rather than the FETCH
statement) produces slightly faster code and prevents having to repeat the INTO
clausein each FETCH. However, you must be careful not to modify the variables
referenced in the INTO clause while the cursor is open.

If you put an INTO clause in the DECLARE statement, you may override it with
an INTO clausein a FETCH statement.

9-18 Open M/SQL Developer Guide

Using INTO with Arrays

Using INTO with Arrays

InterSystems' SQL allows you to use the INTO clause with M arraysto do all of
the following:

n Retrieve valuesfrom a SELECT query into an array
n INSERT vauesfrom an array into atable
n UPDATE atable with values stored in an array

SELECT INTO Using Arrays

InterSystems' SQL allowsthe INTO clause in a SELECT statement to retrieve
valuesinto an array.

This applies only to queries where all of the fields in the SELECT clause yield
from asingle table specified in the FROM clause.

To do this, the INTO clause must retrieve values into a subscripted M variable,
and you must leave the last subscript of the M variable unspecified, for example:

I NTO : a()
puts each retrieved field value into the array element:
a(col)

where “col” isthe field's column number in the base table, as defined in the Data
Dictionary. Similarly, the INTO clause:

I NTO :a("foo",)

puts each retrieved field value into the array element:

a(“foo”, col)

For example, if the “Employee” table has the following fields:

Column Name

Employees (RowlID)

Name

Address (multi-line)

Location

1
2
3
4 Department
5
6

Telephone

Open M/SQL Developer Guide 9-19

Chapter 9—

Open M/SQL Implementation of SQL

Caution

the following embedded SQL query:

&sql (SELECT * | NTO : enp()
FROM Empl oyee
VWHERE Nane = "Smith")

reads the “Employees’ field into emp(1), “Name” into emp(2), etc.

Since“Address’ isamulti-linefield, emp(3) is set to the number of addresslines,
emp(3,1) is set to thefirst line of “Address’, emp(3,2) to the second, and so on.

Open M/SQL does not support use of the INTO clause to retrieve fields from a
view into a local array. It only supports use of the INTO clause to retrieve fields
from a base table into a local array.

SELECT INTO Using Mixed Variables

You can also mix subscripted and unsubscripted variablesin the INTO clause of
an SQL SELECT query. Thisallows you to use the array notation in a query
involving expressions and/or fields from other tables. In this case, you must
include additional scalar variablesinthe INTO clause to retrieve the values of
expressions and fields from other tables.

When combining an array with other variablesin an INTO clause, the array refer-
ence must always appear first. The array receives all values for fields from the
table specified in the FROM clause. The remaining variablesin the INTO list
match up one-by-one with the expressions and fields from referenced tablesin
the SELECT clause. For example, the query:

SELECT PNane, Doctor->DNanme, Sex, AVG Age)
INTO :p(“items”,),: X,y
FROM Pat i ent

where “PName” iscolumn 2 in “Patient” and “Sex” is column 5 in the “ Patient”
table, returns the following values:

p(“itens”, 2) =PNane
p(“itens”, 5) =Sex
x=Doct or - >DName
y=AVQ Age)

9-20 Open M/SQL Developer Guide

Using INTO with Arrays

INSERT and UPDATE INTO Using Arrays

InterSystems SQL allows you to use a variable reference with unspecified last
subscript to pass an array of values into an embedded SQL INSERT or UPDATE

query.
For example, the embedded SQL query:

&sql (I NSERT | NTO Enpl oyee
VALUES :enp(“profile”,))

causes each field in the inserted “ Employee” row to be set to:

enp(“profile”, col)

where “col” isthe field's column number in the “Employee” table, as defined in
the Data Dictionary.

Note that whereas ANSI-Standard SQL requires the table name to be followed by
alist of field names, asin:

I NSERT | NTO Enpl oyee (Name, Tel ephone)
VALUES (: nane, :tel)

InterSystems SQL does not require that you provide alist of field names after
the table name when you use an array reference. The presence and absence of
array elements determines the fields into which the query inserts values. This
enables the contents of the array to dictate which fields receive insert values.

Using an Array Reference with an INSERT Query

ForINSERT queries, if an array entry is missing (undefined as opposed to null)
and the corresponding field has an explicitly defined default value, the default
value becomes the value of that field. However, if an array entry is explicitly
defined as null, the default value does not override the null setting.

In the emp(“ profile”) example above, if the “Employee” table has the following
fields with corresponding default values as defined in the Data Dictionary:

Column Name Default

Employee (Row ID)

Name

Address

Location

1
2
3
4 Department S
5
6

Telephone

Open M/SQL Developer Guide 9-21

Chapter 9—Open M/SQL Implementation of SQL

and the array values defined are:

enp(“profile”,2)="Snith”

enmp(“profile”, 3)=2

emp(“profile”, 3,1)="1441 Main St.”
emp(“profile”, 3,2)="Cableton, IL 60433"
emp(“profile”, 5)=""

emp(“profile”, 7) =25

enp(“profile”, "next”)="F

the inserted “Employee” row has “Name” set to “ Smith”, “Address’ set to a
two-line value, “ Department” set to the default “S’, and “Location” set to null.
The default value for “Location” is not used since the corresponding array ele-
ment is defined with anull value. The array elements“7” and “next” do not cor-
respond to column numbersin the “Employee” table, therefore the query ignores
them.

Using an Array Reference with an UPDATE Query

An UPDATE query can also reference an array with unspecified last subscript.
Whereas INSERT uses the presence and absence of array elementsto assign val-
ues and default valuesto a newly created row, UPDATE uses the presence of an
array element to indicate that the corresponding field should be updated. For
example, consider the following embedded SQL statement:

&sql (UPDATE Enpl oyee
VALUES :emp(“profile”,)
WHERE Enpl oyee = 379)

Given the above definitions and array values, this statement will update the val-
ues of the“Name” and “Location” fields of the “Employee” row for which Row
ID = 379.

You may also use an array reference with an UPDATE query that targets multiple
rows, for example:

&sql (UPDATE Enpl oyee
VALUES :enp(“profile”,)
VWHERE Type = “PART-TIME")

Aswith INSERT, the contents of the array dictate which fields receive update
values.

9-22 Open M/SQL Developer Guide

VALUES Extension for INSERT and UPDATE Queries

VALUES Extension for INSERT and UPDATE Queries

Note

Typically, INSERT queries use the following syntax:

I NSERT | NTO <t abl enanme> (<fi el dnane>, <fi el dnane>, ...)
VALUES (...,...)

and UPDATE queries use the following syntax:

UPDATE <t abl enane> (<fi el dname>, <fi el dnane>, ...)
VALUES (...,...)

where the elements in the VALUES clause correspond in sequence to the fields
specified after the table name.

If there is only one value element specified in the VALUES clause, it is not neces-
sary to enclose the element in parentheses.

InterSystems' SQL allows INSERT and UPDATE queries to use either syntax
above without requiring you to explicitly specify alist of field names after the
table name.

In order to skip the step of specifying alist of field names after the table name,
your query must meet the following two criteria:

1. The number of values specified in the VALUES clause is the same as the
number of fieldsin the table.

2. Thevauesinthe VALUES clause are listed in order of the internal column
numbers of the fields.

For example, the query:

I NSERT I NTO tabl 1 VALUES (5, ”John")
is equivalent to the query:

I NSERT I NTO tabl 1 (age, nane) VALUES (5, ”John")
if the table “tabl1” has exactly two fields.

In this example, the value 5 is assigned to the field with the lower column num-
ber, and the value “ John” is assigned to the other field.

Open M/SQL Developer Guide 9-23

Chapter 9—Open M/SQL Implementation of SQL

Multi-Line Fields

Open M/SQL extends the relational database model by permitting the creation of
multi-valued fields, commonly called multi-line fieldsby M programmers. Such
fields are useful for storing information about a single entity where that informa-
tion spans several lines. A typical multi-line field might be used for an address or
ablock of comment text. While such structures are useful, they violate the First
Normal Form relational precept and, therefore, are not relationally correct. The
user should be aware that SQL contains no operators for manipulating multi-line
fields, and that it isimpossible to perform comparisons or row ordering with
multi-line fields.

InterSystems SQL allows you to use multi-line fields in both output queries
(SELECT) and input queries (INSERT and UPDATE).

Using Multi-Line Fields in SELECT Queries

Note

In SELECT queries, you may reference multi-line fieldsin the SELECT state-
ment by using an INTO clause to copy the contents of the field into avariable.

You may not use multi-line fields with comparison operators in the WHERE clause
or in any of the row ordering clauses. If you attempt to use a multi-line field in a
WHERE clause or in a row ordering clause, Open M/SQL returns an error mes-
sage when it tries to process the query.

When an INTO clause copies a multi-line field into a variable, it creates an array
by putting the count of lines in the variable node and the value of each linein a
descendant node under the variable. For example, if the field “ Patient. Address”
for patient row 758 contains the following three lines:

426 Sunday Drive
Apt. 12C
Roberta, CA 90126

the embedded query:

&sql (SELECT Address INTO :a
FROM Pat i ent
WHERE Patient = 758)

places the following valuesin “a’;

a=3

a(1l)="426 Sunday Drive”
a(2)="Apt. 12C
a(3)="Roberta, CA 90126”

9-24 Open M/SQL Developer Guide

Multi-Line Fields

Similarly, the query:

&sql (SELECT Address | NTO :b(“addr”)
FROM Pat i ent
WHERE Patient = 758)

places the following valuesin “b":

b(“addr”)=3

b(“addr”, 1)="426 Sunday Drive”
b(“addr”, 2)="Apt. 12C

b(“addr”, 3)="Roberta, CA 90126”"

Using Multi-Line Fields in INSERT and UPDATE Queries

You may also target multi-line fields with INSERT and UPDATE queries by
using an array in the VALUES clause as input to the INSERT or UPDATE state-
ment. For example, the query:

&sql (UPDATE Doct or s(Addr ess)
VALUES : b(“addr”)
WHERE Doctors = :doc)

which usesthe “b” values listed above as input to the multi-line field “ Doc-
tors.Address’.

Since “Doctors.Address’ isamulti-line field in this example, the variable
b(*addr”) must contain a multi-line value as above. If, however, theinput valueis
not avariable (for example, if it isa constant), it isused as thefirst line of a
multi-line value. For example, the query:

&sql (UPDATE Doct or s(Addr ess)
VALUES “Main Street”
WHERE Doctors = :doc)

sets “Doctors.Address’ to aone-line value whose first lineis“Main Street”.

Open M/SQL Developer Guide 9-25

Chapter 9—Open M/SQL Implementation of SQL

Internal and External Values

The concept of internal and external values pertainsto fields that are defined in
the Data Dictionary to have External-to-Internal and/or Internal-to-External Con-
version Code. The“internal” valueisthe value that is stored in the database. The
“external” value is aprintable or user-readable form.

By default, the following Open M/SQL field types have conversion code and
maintain both internal and external values:

n Number
n Date

n Time

n Yes/No

And, the following field type has the option to generate conversion code for
maintaining both internal and external values.

n Multiple Choice

For example, the internal value for afield of data type Date has the M format of
$H and the external valueis a printed representation that depends on which of six
date formats the application devel oper chooses for that field. Furthermore, you
can explicitly specify additional conversion code by inserting M code.

In SQL queries, the following rules apply concerning internal and external val-
ues:

1. For agivenfield, theinternal valueisthe first piece of $c(1) and the external
value is the second piece of $C(1), asfollows:

I nternal _$c(1)_External

2. Variables and constants are neither internal nor external and have no data
types. Their use depends on context. When comparing afield with avariable,
the variable should contain a value suitable for comparison with the field's
internal value.

3. Asanexceptionto rule 2, constants are treated specially in conditions such
as.

Fi el d <Op> Const ant
or
Constant <Op> Field

where <Op> is any comparison operator or where <Op> specifiesinput to a
field in an INSERT or UPDATE statement.

9-26 Open M/SQL Developer Guide

Internal and External Values

In this context, the field's external-to-internal conversion code is applied to
the constant. This allows a comparison such as:

StartDate > “06/ 01/ 86"

to test whether or not theinternal value of thefield “ StartDate” is greater than
the internal representation of “06/01/86”, i.e. whether “ StartDate” is after
06/01/86.

. Variables are also treated specially in the same two conditions, namely:
Field <Op> Vari abl e

or
Variable <Qp> Field

where <Op> is any comparison operator or where <Op> specifiesinput to a
fieldin an INSERT or UPDATE statement.

In this context, the variable can optionally be given an internal and external
value by using the delimiter character $c(1). If the variable'svalueis:

I nternal _$c(1)_External
or smply:
I nt er nal

where “Internal” has anon-null value, “Internal” istaken as the internal
value for either comparison with afield or input to afield.

If thevalueis:
$c(1) _External

the field’s external-to-internal conversionis applied to “ External” to produce
aninternal value.

. For dl fields that have internal-to-external conversion code defined in the

Data Dictionary, each value returned by an embedded SELECT query also
takes the form:

I nternal _$c(1) _External

If thereis no internal-to-external conversion code defined in the Data Dictio-
nary, the value returned is simply

| nt er nal

In either case, the internal valueis:

$pi ece(val ue, $c(1), 1)

Open M/SQL Developer Guide 9-27

Chapter 9—Open M/SQL Implementation of SQL

The following example uses both internal and external values returned by a
query:

&sql (SELECT HireDate I NTO : hiredate
FROM Enpl oyee
WHERE SocSec = 426713280)
set intdate=$pi ece(hiredate, $c(1))
set extdat e=$pi ece(hiredate, $c(1), 2)
if intdate>$h wite !,”Not hired until”, extdate

6. Each value returned by a non-embedded SELECT query is the result of
applying any applicable internal-to-external conversion code.

9-28 Open M/SQL Developer Guide

%INTERNAL and %EXTERNAL Functions

%INTERNAL and %EXTERNAL Functions

InterSystems' SQL supports the following two SQL unary functions:

n Y%EXTERNAL
n %INTERNAL

When applied to afield for which Internal-to-External conversion codeis
defined, %EX TERNAL returns the external value for that field.

When applied to afield for which Internal-to-External conversion codeis
defined, %INTERNAL returnstheinterna value for that field.

You may reference the %EXTERNAL and %INTERNAL keywordsin the
SELECT, WHERE, and ORDER BY clauses of an SQL query, using the follow-
ing syntax:

SELECT YEXTERNAL(Fi el dName)

Or, you may specify the field by its column number, as follows:

SELECT %EXTERNAL(Fi el dCol urmNunber)

For example:

SELECT 9% NTERNAL(Fi el dNang), . ..

FROM Tabl e

WHERE % NTERNAL(Fi el dNane) = 'sone val ue'
ORDER BY 9% NTERNAL(Fi el dNan®)

%EXTERNAL enables you to retrieve and manipul ate the external value of a
field. For example, you might define conditions based on the external value of a
field, or you might define afield to sort by its external value. Thisis especially
useful for Multiple Choice fields, where the internal value is a number, but you
need to test or sort by the external value.

%INTERNAL enables you to retrieve and manipulate the internal value of a
field. For example, you might define conditions based on the internal value of a
field, or you might define afield to sort by itsinternal value. Thisis especially
useful for Multiple Choice fields, where the external value is a number, but you
need to test or sort by the internal value.

If the field does not have a separate external value (i.e., Internal-to-External con-
version code is not defined), %INTERNAL and %EXTERNAL both return the
field'sinternal value. This makes it possible to use these keywords even when
you do not know whether or not a field has Internal-to-External conversion code
defined for it.

Open M/SQL Developer Guide 9-29

Chapter 9—Open M/SQL Implementation of SQL

M Operators

InterSystems has extended SQL to support several M operators. Thisincreases
the expressive power of SQL and helps to better integrate the two languages.

The table below lists and describes the M operators supported by InterSystems’

SQL:

Table 9-2: M Operators Supported By InterSystems’ SQL

Operator

Usage

(space followed
by underscore)

Concatenates two strings wherever it is not part of an identifier. You
must use a space to prevent ambiguity.

The expression:
A B
is the name A_B containing an underscore.
While the expression:
A B
is the concatenation of A with B.

& For compatibility with the M language, InterSystems’ SQL allows “&”
| as a synonym for AND and “!" as a synonym for OR.

? InterSystems’ SQL also recognizes the following M operators:

n ?— pattern match

/ n #— modulo (remainder)

\ n | —division

[n \ —integer division

] n [— string contains

n] — follows

InterSystems’ SQL implements the equals sign in accordance with
the M convention rather than the ANSI-Standard SQL convention for
comparing text strings of unequal length. Whereas ANSI-Standard
SQL pads the shorter text string with blank spaces, InterSystems’
SQL does not. Therefore, (“a “ ="“a") is false.

9-30 Open M/SQL Developer Guide

M Operators

Table 9-2: M Operators Supported By InterSystems’ SQL (Continued)

Operator Usage

NOT You may negate comparison and boolean operators by prefixing
or them with the word “not” or “NOT” (without intervening spaces).

You may also use the word “not” as a prefix for an entire condition.
The expressions:
WHERE NOT Age < 5
and
WHERE Age NOT < 5
are synonymous.

Note: You cannot use the M apostrophe (') to signify NOT because
SQL uses the apostrophe to signify quotation marks for lit-
eral strings.

not

1= InterSystems’ implementation of SQL supports the syntax “I=". This
syntax is equivalent to “NOT=".

Pattern Match Operator Can Test Variables

InterSystems' SQL allows you to use the pattern match operator (?) against user-
defined variables.

To do this, you must prefix the variable name with the indirection symbol “@".

For exampl e, suppose you set the variable “namevar” to a pattern match condi-
tion, asfollows:

S nanevar =" 1. 10A1*, " 1. 5A”

You could use the pattern match operator to reference this pattern match condi-
tion in the WHERE caluse of a query, asfollows:

SELECT Nane
FROM Enpl oyees
VWHERE Nane ? : @anevar

This query retrieves names from the “ Employees” table for all rows where the
“Name” field has the form:

<1- 10 al phabetic characters>, <1-5 al phabetic characters>

such as:

Sm t h, John

but not:

Washi ngt on, Geor ge

Open M/SQL Developer Guide 9-31

Chapter 9—Open M/SQL Implementation of SQL

Extensions to SQL Operators

Open M/SQL provides extensions to several SQL operators, as described bel ow.
[NOT] IN Operator

InterSystems SQL supports the use of the [NOT] IN operator with fields of data
type Date and Time in WHERE clause conditions. The [NOT] IN operator tests
whether or not a date or time falls within a specified date/time range.

For Datefields, the [NOT] IN operator uses the following syntax:
Date_Field [NOT] IN (Start_Date, End_Dat e)

where Sart_Date is a start date in external format, and End_Date is an end date
in external format.

For Time fields, the [NOT] IN operator uses the following syntax:
Time_Field [NOT] IN (Start_Ti me, End_Ti ne)

where Sart_Time isa start time in external format, and End_Time is an end time
in external format.

For example:

SELECT *
FROM Tabl e
VWHERE Date_Field IN ('10/25/1994"','01/26/93") AND
Time_Field IN ('10: 25PM, "' 11: 35AM)

Concatenation Operator

InterSystems SQL supports the use of the SQL concatenation operator (||).

For example, if thefields“F1” and “F2" have the following values:

F1 = “Part One”, F2 = “Part Two”

the query:
SELECT F1,F2,F1||' & ‘||F2 INTO :val1,:val2,:val3
FROM Tabl e
WHERE F1||' & ‘||F2="Part One'||‘ & '||‘Part Two’

yields the following results:

vall = “Part One”
val2 = “Part Two”
val3 = “Part One & Part Two”

9-32 Open M/SQL Developer Guide

%STARTSWITH

NSTARTSWITH

InterSystems SQL provides the extension keyword %STARTSWITH.

%STARTSWITH is a comparison operator that tests to determine whether one
character string is a prefix of another.

%STARTSWITH uses the following syntax:
exprl YSTARTSW TH expr2

where the expressions can be any valid SQL expressions.

For example, a query that contains the WHERE clause:

WHERE Product Code %STARTSW TH “S”

returns al rows where the value of the “ ProductCode” field starts with the char-
acter “S’.

%STARTSWITH treats fields of data type Name somewhat differently. With
fields of datatype Name, %STARTSWITH can match both the last name and
first name strings on either side of the comma.

For example, if “EmpName” isafield of datatype Name, then a query that con-
tains the WHERE clause:

VWHERE EnpNane %STARTSW TH “ SM J”

returns al rows for which $PIECE(EmpName,“”,“" 1) startswith “SM” and
$PIECE(EmpName,"” *",2) startswith “J’. For example:

EnpNane = “SM TH, JANE’

EnpNane = “ SMOOT, JERRY”
but not:

EnpNane = “SM TH, HERM ONE”

The %STARTSWITH operator and other comparison operators are modified by
collation sequences as described in the section entitled “ Collation Sequence’ on
page 9-37.

Open M/SQL Developer Guide 9-33

Chapter 9—Open M/SQL Implementation of SQL

LIKE Predicate

Note

Note

Open M/SQL supportsthe ANSI Standard SQL-2 LIKE predicate for performing
comparison tests on two values.

The LIKE predicate uses the following syntax:

<mat ch val ue> [NOT] LIKE <search pattern> [ESCAPE <escape
char act er >]

Where the syntax elements have the following meanings:

1. Thevauefor <match value> may be afield or alitera string. If itisaliteral
string, it must be enclosed in single quotes.

2. Thevauefor <search pattern> can be either aliteral string or ahost variable.
If itisaliteral string, it must be enclosed in single quotes. Literal strings may
reference the special pattern matching characters “%” and “_”

3. If the ESCAPE clause is specified, the value for <escape character> must be
one and only one character. Also, if the escape character is present in the
search pattern string, then the character following the escape character within
the pattern string must be one of the special pattern matching characters,
either “%" or “_".

Below isasample SQL query that uses the LIKE predicate in the WHERE

clause:

SELECT Fi el dA, FieldB, FieldC
FROM Tabl e
VWHERE Fi el dA LI KE ‘ abc%

This query retrieves“FieldA”, “FieldB”, and “FieldC” from “Table” for all rows
where “FieldA” starts with the character string “abc” and has any number of
charactersin length.

By default, the LIKE predicate always uses the external value of a field for com-
parison purposes.

The LIKE predicate uses the collation function (EXCAT, ALPHAUP, UPPER) used
by the match value on the left side of the equation to perform the comparison test.

Special Pattern Matching Characters

9-34

The LIKE predicate supports the following two special pattern matching charac-
ters:

w on

(underscore symbal)

n “%" (percent sign)

Open M/SQL Developer Guide

LIKE Predicate

These specia pattern matching characters are defined as follows:

‘o You may use this specia character in the search pattern string to match
any single character in the same position in the match value string.

Examplesinclude;

‘>Match This' LIKE ‘' _Match This’ (Mat ch)
“>>Match This' LIKE ‘ _Match This’ (No Match)
“Match This' LIKE ‘_Match This’ (No Match)

“" You may use this specia character in the search pattern string to match
any number of characters (zero or more) between the last exact match-
ing character and the next exact matching character in the match value
string.

Examplesinclude;

‘>Match This’ LIKE ‘ %vatch This’ (Mat ch)
‘>>Match This’ LIKE *%atch This’ (Mat ch)
‘Match This’ LIKE ‘%atch This’ (Mat ch)
“Match This!’ LIKE ‘%atch This’ (No Mat ch)
“Mat ch??? This!!!’ LIKE ‘* Mat ch% Thi s% (Mat ch)

Specifying a Host Variable as the Search Pattern

The search pattern you specify after the LIKE predicate does not always have to
be a string literal. You may also specify a search pattern that references a host
variable, for example:

‘Match This’ LIKE :hostvar
ESCAPE Qualifier
Open M/SQL's implementation of the LIKE predicate supports the ESCAPE
qualifier. The ESCAPE qualifier lets you suppress the meaning of the specia
characters“ %" and“_" in the search pattern string and treat them instead as lit-
eral characters.

For example, the following SQL statement:

“Match This’ LIKE *$_Match This’ ESCAPE *$’

evaluates to the following M code;

“Mat ch This”?1” Match This”

which is not true.

Open M/SQL Developer Guide 9-35

Chapter 9—Open M/SQL Implementation of SQL

However, the following SQL statement:

“Match_This’ LIKE ‘ Match$_This’ ESCAPE * §

evaluates to the following M code:

“Mat ch_Thi s” 21" Mat ch_Thi s”
which istrue.
Error Handling

If the syntax of the LIKE predicate contains a mistake, Open M/SQL returns the
error code SQL CODE=-63, and you see the following error message:

Dat a Exception - invalid escape character

9-36 Open M/SQL Developer Guide

Collation Sequence

Collation Sequence

EXACT

Note

Collation sequence is the ordering of character strings.

Open M/SQL supports six collation sequence functions:

n EXACT

n ALPHAUP
n UPPER

n Plus(+)

n Minus(-)

n Space()

These collation sequence functions determine the ordering of the output values
produced by SELECT queries aswell as the behavior of comparison operations.

The EXACT collation sequence orders pure numeric values (values for which
x=+X) in numeric order first, followed by all other charactersin string order.
EXACT uses the same collation sequence for strings as the ANSI-Standard
ASCII collation sequence. According to the ASCII collation sequence, digits are
collated before uppercase al phabetic characters and uppercase a phabetic charac-
ters are collated before |owercase a phabetic characters. Punctuation characters
occur at several placesin the sequence.

Numbers that are not canonic (e.g., 02 or 1.30) collate as strings rather than num-
bers.

The following example shows several strings listed in EXACT collation
sequence:

String

A'Ha
ARNOLD
Adams
a'Choo

aaronson

Note that “*” (apostrophe) collates before“A”.

EXACT isthe default collation sequence function. If you prefer another collation
sequence, you may choose one of the collation sequences described bel ow.

Open M/SQL Developer Guide 9-37

Chapter 9—Open M/SQL Implementation of SQL

ALPHAUP

The ALPHAUP collation sequence function converts all stringsto ALPHAUP
format and then collates or compares according to the EXACT collation
sequence.

ALPHAUP format removes all punctuation (non-alphanumeric) characters
except commas and question marks and converts all a phabetic charactersto
uppercase.

The following exampl e shows the same strings as above listed in ALPHAUP col-
lation sequence:

String Compared As
aaronson AARONSON
a'Choo ACHOO
Adams ADAMS

A'Ha AHA
ARNOLD ARNOLD

UPPER

The UPPER collation sequence function converts all strings to UPPER format
and then collates or compares according to the EXACT collation sequence.

UPPER format converts all alphabetic characters to uppercase but leaves punctu-
ation characters intact.

The following example shows the same strings as above listed in UPPER colla-

tion sequence:
String Compared As
a'Choo ACHOO
AHa AHA
aaronson AARONSON
Adams ADAMS
ARNOLD ARNOLD

9-38 Open M/SQL Developer Guide

Collation Sequence

Plus, Minus, and Space

The Plus, Minus, and Space collation sequence functions are directed towards the
collation of numeric values.

The table below describes the Plus, Minus, and Space collation sequence func-
tions:

Table 9-3: Plus, Minus, and Space Collation Sequence Functions

Function | Effect On Collation Sequence Index Map Syntax

Plus (+) Deletes leading character zeros so that numeric val- | +{field}
ues with leading character zeros collate as numbers
rather than as character strings.

Minus (-) | Reverses the collation sequence for numeric values. | -{field}
This causes numeric values to collate in descending
order (highest to lowest) instead of ascending order
(lowest to highest).

Space () | Forces all values to collate as character strings. This | “”_{field}
causes all numeric values to collate after all character
strings.

Field Collation Sequence

In Open M/SQL, all fields of datatype Name and Text use one of the six colla
tion sequence functions described above (EXACT, ALPHAUP, UPPER, Plus,
Minus, or Space).

Whenever you define a base table field in the Data Dictionary of datatype Name
or Text, you assign a collation sequence function to it. The default collation
sequence for all Name and Text fieldsis EXACT.

The collation sequence function you assign to afield affects the results of SQL
ORDER BY clausesinvolving that field. Choice of collation sequence also
affects comparisons on that field using any of the comparison operators, listed
below:

v A

>=

<=

| =

not >

not <
YSTARTSW TH

Open M/SQL Developer Guide 9-39

Chapter 9—Open M/SQL Implementation of SQL

Collation Sequence and ORDER BY

When an SQL query has an ORDER BY clause that names one field with a data
type of Text or Name, asin:

SELECT EnpNane ...
ORDER BY EnpNane

the query uses the collation sequence function defined for the order-by field to
determine the order in which it returns matching rows.

If aquery hasan ORDER BY clause that names any other field or expression, as
in:

SELECT Dat eEnd- Dat eSt art

ORDER BY 1

the query collates its output according to the EXACT collation sequence func-
tion.

If the field “EmpName” uses the ALPHAUP collation sequence function, the
example;

SELECT Dat eEnd- DateStart, EnpNane . ..
ORDER BY 1, 2

ordersthe returned rowsfirst by “ DateEnd-DateStart” in EXACT collation order,
and within that by “EmpName” in ALPHAUP order.

Collation Sequence and Comparisons

When performing comparisons of character string values, Open M/SQL typically
uses the EXACT collation sequence function.

If either side of a comparison operator isafield of datatype of Name or Text,
Open M/SQL uses the collation sequence function defined for the field in the
Data Dictionary. For example, if “EmpName” is defined to use the ALPHAUP
collation sequence function, the comparison:

EnmpName > “j o”

tests “EmpName” in ALPHAUP format to determine whether it is greater than
(followsin collation sequence) the string “ JO”. In effect, Open M/SQL implicitly
applies the ALPHAUP function (see %ALPHAUP below) to both sides of the
comparison to convert each sideto ALPHAUP format. After the conversion, it
performs the comparison based on the EXACT collation sequence.

9-40 Open M/SQL Developer Guide

Collation Sequence

If both sides of a comparison are fields of data type Name or Text, Open M/SQL
uses precedence order to choose the collation sequence for the comparison. The
precedence order is:

1. ALPHAUP (highest)
2. UPPER
3. EXACT (lowest)

Open M/SQL chooses the collation sequence with the higher precedence.
%ALPHAUP, %UPPER, and %EXACT

InterSystems' SQL supports three extension functions to force the conversion of
avaueto ALPHAUR UPPER, or EXACT format, as described above.

These extension functions are:

n %ALPHAUP
n %UPPER
n %EXACT

Suppose that the field “EmpName” is defined to use the ALPHAUP collation
seguence. The example:

%ALPHAUP(EnpNane) > “j o”

compares“EmpName” converted to ALPHAUP format with the lowercase string
“jo". Since %ALPHAUP(EmpName) is an expression rather than afield, Open
M/SQL usesthe EXACT collation sequence to perform the comparison.

Similarly, the example:
YEXACT(EnpNanme) > “jo”
compares the EXACT value of “EmpName” with the lowercase string “jo”.

In other contexts, the %ALPHAUP and %UPPER functions simply convert indi-
vidual values. The SELECT clause:

SELECT %ALPHAUP(EnpNane) “ -- " Phone

returns a value consisting of the “EmpName” field converted to ALPHAUP for-
mat concatenated with the constant “ -- ” concatenated with the EXACT value of
the “Phone” field, for example:

RADCLI FF, CHRI S -- 723-8255

Open M/SQL Developer Guide 9-41

Chapter 9—Open M/SQL Implementation of SQL

Changing the Default Collation Sequence

Under some circumstances, you may want to change the default M collation
seguence to be something other than EXACT. Though it is possible, you should
do this only with extreme caution. Three possible reasons for changing the
EXACT collating sequence are:

1. Tohandle global datathat was created previously with a particular collation
sequence.

2. Tobuild an application that uses a national character set different from the
default character set.

3. To build an application requiring non-standard ordering of strings containing
numbers.

Changing Collation Sequence on ISM Systems

Collation sequence consists of two components:

1. Character set — Thisisastring of ASCII character codes that givesthe
members of the set and their collation order.

2. String collation switch — If ON, the collation order appliesto all strings
including numbers. If OFF (default), canonic numeric strings (x=+x) are col-
lated first in numeric order followed by all other strings in collation order.

You can change these two components independently, as follows:

n For aparticular process, the $2U(23) function changes the character set and
string collation switch for the M variable] (“follows”) operator and for
$ORDER on local variables.

n For aparticular global, you may use the %GCREATE utility to createn M
global with arevised character set and string collation switch. You cannot
change this again later for the created global.

You may use the System Manager's Modify System Parameters (MSP) utility to
definetheinitial $2U(23) setting for processes and to define the character set and
string collation switch associated with a particular directory. The character set
and string collation switch of adirectory are used as the default values for newly
created globalsin the directory. Also, when aprocess switches to anew directory
using $ZU(5), the $2U(23) setting for the process is set to the new directory’s
character set and string collation switch.

You may also use the MSP utility to define a system-wide default for the charac-
ter set and string collation switch.

9-42 Open M/SQL Developer Guide

Collation Sequence

To avoid inconsistent results from SQL queries on a database, you must define
the collation sequencesfor all of the globalsin the database aswell as $2U(23) to
beidentical.

Changing Collation Sequence on Non-ISM Systems
If you are running Open M/SQL on anon-ISM host M system, please consult

your M vendor's system management guide for information on changing the M
collating sequence.

Open M/SQL Developer Guide 9-43

Chapter 9—Open M/SQL Implementation of SQL

%NOCHECK

InterSystems' SQL supports the use of the %NOCHECK keyword in SQL
INSERT, UPDATE, and DEL ETE statements to suppress the following valida-
tion checking:

n Field Validation Code

n Base Table Validation Code

n Checking for required fields

n Checking for field uniqueness

%NOCHECK does not suppress External-to-Internal Conversion Code nor does
it suppress the execution of filing triggers when appropriate.

The syntax for using the %NOCHECK keyword is:

| NSERT 9%NOCHECK . . .

UPDATE 9%NOCHECK . ..

DELETE 9NOCHECK . ..
Use of the %oNOCHECK keyword is appropriate in an application that reads rows
from one table and writes them directly to another. If the validation and conver-
sion code is the same for both tables, there is no need to check arow that is read

from the first table before filing it to the second.

Similarly, you may want an application to do its own validation checking and
conversion, and bypass the code built into the Data Dictionary to avoid redundant
checking.

9-44 Open M/SQL Developer Guide

SQL Transaction Processing

SQL Transaction Processing

ANSI-Standard SQL supports two transaction processing statements, COMMIT
and ROLLBACK.

In ANSI-Standard SQL, unlike Open M/SQL, every operation (SELECT,
UPDATE, etc.) automatically begins atransaction if oneisnot already in
progress.

InterSystems SQL gives explicit control of transactions to the application pro-
grammer and provides two extension keywords for this purpose:

n Y%BEGTRANS — begins atransaction
n %INTRANS — setsthe variable SQL CODE to one of the following values:

Return Value Meaning
0 Transaction not in progress
-1 Transaction in progress (but journalling was not

enabled when the transaction started)

>0 Transaction in progress (and journalling was enabled
when the transaction started)

In order to perform aROLLBACK operation, journalling must be enabled for the
system (i.e., %INTRANS must return a non-negative value) as well asfor every
global whose modifications are to be considered part of the transaction (i.e.,
whose modifications need to be rolled back as part of the ROLLBACK opera-
tion).

The following example of embedded SQL uses the %INTRANS keyword to
determine whether a transaction isin progress and, if not, begins one:

new ol dtrans
&sql (% NTRANS) set ol dt rans=SQ.CODE
if "oldtrans &sql (¥BEGTRANS)

if failed &gl (ROLLBACK) go done

if "oldtrans go done
&sql (COW T)
done

If atransaction was not previously in progress, this code begins a new one and
commitsit at the end. If atransaction aready was in progress, this code does not
commit it. If an error occurs during processing, the code performs a rollback
instead of a commit.

Open M/SQL Developer Guide 9-45

Chapter 9—Open M/SQL Implementation of SQL

Transactions include not only SQL modifications but also any direct global sets
and kills performed by aM program.

Open M/SQL supports SQL transaction processing only on those platforms that
support M transaction processing. Currently, Open M/SQL supports transaction
processing when running on the following host M systems:;

n ISM
n DSM

9-46 Open M/SQL Developer Guide

Privilege Operators

Privilege Operators

InterSystems SQL supports the SQL keyword USER in accordance with ANSI-
Standard SQL.

InterSystems' SQL also supports the SQL GRANT and REV OKE statements, as
defined in ANSI-Standard SQL, with several extensions specific to Open

M/SQL.

ANSI-Standard SQL permits the granting and revoking of privileges only on
base tables. InterSystems’ SQL extends ANSI-Standard by allowing the granting
and revoking of privilegeson all of the following objects:

n BaseTables
n Views
n Forms

n Menu Objects

n Menus (Old-Style)
n Reports

n Queries

GRANT

You may use the SQL GRANT statement to grant access privileges on specified
objectsto Open M/SQL users. The GRANT statement has an option to allow the
user to grant access to other users.

Note The owner of an object automatically holds all privileges on that object.

The GRANT statement uses the following syntax:

GRANT <list of actions>
ON [<obj ect type>] <object nane>
TO <grantees> [WTH GRANT OPTI ON]

For example:

GRANT %ALTER, SELECT, | NSERT
ON Patients
TO Chris WTH GRANT OPTI ON

Open M/SQL Developer Guide 9-47

Chapter 9—Open M/SQL Implementation of SQL

The table below describes the elements of the GRANT statement syntax:

Table 9-4: GRANT Statement Syntax Elements

Syntax Element

Meaning

<list of actions>

Here you specify a list of Open M/SQL privileges actions, delimited
by commas. You may specify an asterisk (*) or ALL PRIVILEGES to
indicate privileges on all actions, or you may list one or more of the
privilege actions shown in the table below.

<object type>

Here you specify the type of object on which you want to grant privi-
leges.

The default object type is base table. Omit this parameter to specify
base table as the object type.

Alternatively, you may specify any of the following object types:

n %FORM

n %MENUOBJECT

n %MENU

n %REPORT

n %QUERY

You may grant privileges only on one object type at a time.

Note: A view is also a valid object type on which privileges may be
granted. SQL treats views as tables.

<object name>

Specify the name(s) of the specific object(s) on which you want to
grant privileges, or an asterisk (*) to indicate all object names of the
specified object type. If you specify a list of individual objects, you
must delimit the object names by commas.

You may grant privileges on multiple objects at once (though they
must all be the same object type).

<grantees>

Specify IDs for the user(s) to whom you wish to grant privileges.
These IDs may be any of the following:

n Role name(s)

n UserName(s) of user(s) registered in the User table

n UserName(s) of user(s) not registered in the User table

You may also enter an asterisk (*) or _PUBLIC to grant privileges to
all users. When you do this, Open M/SQL assigns the privileges to
the UserName “_PUBLIC”, which means unrestricted access for all
users.

[WITH GRANT
OPTION]

You may optionally specify the WITH GRANT OPTION keyword to
allow the user(s) to whom you are granting these privileges to grant
the same privileges to other users.

9-48 Open M/SQL Developer Guide

Privilege Operators

REVOKE

The table below lists and describes the privilege actions you can grant to or
revoke from Open M/SQL users on Open M/SQL objects:

Table 9-5: Open M/SQL Privilege Actions

Privilege Action Meaning

%ALTER Privileges to modify the definition of an object

SELECT Privileges to retrieve information from a base table or view, or to
run an object such as a form

INSERT Privileges to insert a row

UPDATE Privileges to update an existing row

DELETE Privileges to delete an existing row

REFERENCES Privileges to create designative references to a table

You may use the SQL REV OKE statement to revoke access privileges on speci-
fied objects from Open M/SQL users. Only the grantor of privileges has the
authority to revoke those privileges.

The SQL REVOKE statement uses the following syntax:

REVOKE [GRANT OPTION FOR] <list of actions>
ON [<obj ect type>] <object name>
FROM <gr ant ees> [CASCADE]

For example:

REVOKE %ALTER, SELECT, | NSERT
ON %-ORM Patientlnfo
FROM Chri s CASCADE

The <list of actions>, <object type>, <object name>, and <grantees> syntax ele-

ments have the same meaning in the REV OKE statement as they do in the
GRANT statement.

Open M/SQL Developer Guide 9-49

Chapter 9—Open M/SQL Implementation of SQL

The table bel ow describes the two optional keywords supported by the REVOKE
statement:

Table 9-6: REVOKE Statement Syntax Elements

Keyword Meaning

[GRANT You may optionally specify this keyword to revoke only the GRANT
OPTION FOR] option (the user’s ability to grant the privileges to other users) for the
specified privileges and not the privileges themselves.

[CASCADE] You may optionally specify this keyword to strip the privileges on the
specified object from all users who received them from the revokee
(or via the revokee).

For example, if you revoke privileges from user A, and user A had
previously granted those same privileges to user B, then under the
Cascade option you also revoke those privileges from user B (as well
as from any users to whom user B may have granted the privileges).

%CHECKPRIV Keyword

The %CHECKPRIV keyword is an InterSystems SQL extension that allows an
Open M/SQL user to check whether or not s/he holds a specified privilege on a
specified Open M/SQL object.

The syntax for using %CHECKPRIV is:

% CHECKPRI V [GRANT OPTION FOR] <action>
ON <obj ect type> <object nane>

For example:

UCHECKPRI V YALTER
ON %ORM Pati ent | nformation

If the user holds the specified privilege, the query returns an SQL CODE value of
0 (success). If the user does not hold the specified privilege, the query returns an
SQLCODE value of 100.

%CHECKPRIV may check only one action on only one object at atime.

The <action>, <object type>, and <object name> syntax elements have the same
meaning in the %oCHECK PRIV statement asthey do inthe GRANT and

REV OKE statements.

The GRANT OPTION FOR keyword isoptional. If you specify this keyword, the

query checks whether or not the user holdsthe GRANT privilege on the specified
privilege— not whether or not the user holds the specified privilege itself.

9-50 Open M/SQL Developer Guide

Privilege Operators

In order to run a%CHECKPRIV query, you must ensure that an Authorization
ID isestablished prior to executing the query. You can establish an Authorization
in any of the following ways:

n By executing the query from any of the following locations within Open

M/SQL:

* Interactive Query Editor

« A menu option of action type SQL

» A trigger item of action type SQL
When Open M/SQL is running, the Authorization ID is always defined.

n By issuing an M command with the following syntax prior to running the
query:

> do setai d*%msql (“<User Nanme>")
where <UserName> is a UserName that isregistered in the User Table.
For example:

> do setai d*%msql (“Zeus”)
SQLCODE Values

After a%CHECKPRIV query, the SQLCODE variable hasthe value 0 if the user
holds the tested privilege, or 100 if the user does not hold the tested privilege.

GRANT and REVOKE queries set the SQL CODE variable to 0 when they suc-
cessfully complete the intended operation. If aGRANT or REVOKE query is
inapplicable because a user aready held (or did not hold in the case of
REVOKE) the specified privileges, the query sets SQL CODE to 100.

For acomplete listing of other SQL error messages and their meanings, refer to
Appendix A: SQL Error Messages.

Open M/SQL Developer Guide 9-51

Chapter 9—Open M/SQL Implementation of SQL

Using Subqueries

InterSystems' SQL allows the use of subqueriesin accordance with ANSI-Stan-
dard SQL.

A subquery isan SQL SELECT statement query embedded within another SQL
SELECT statement query.

According to ANSI-Standard SQL ., a subquery must be embedded within a
WHERE clause or a FROM clause. When embedded within a WHERE clause,
the result of the subgquery must be an atomic data value (one column, aggregate,
or expression) or atruth value. When embedded within a FROM clause, the
result of the subquery isavirtual table that may consist of many columns and
many rows.

In addition to permitting subqueries in WHERE clauses and FROM clause, Inter-
Systems’ SQL also permits subqueries to be embedded within the SELECT
clauses.

You may nest all subqueries may to any number of levels.

Subqueries normally appear as complete queries enclosed within parenthesesin a
WHERE clause. An SQL query that has the form:

SELECT. ..
FROM . .
WHERE. . .

may contain a subquery in the WHERE clause, thus the form:

SELECT. ..
FROM . .
VWHERE. .. (SELECT... FROM .. WHERE...)

Using a Subquery in a WHERE Clause

The set of rows yielded by a subquery is used to restrict the outside query. Below
are some examples of various ways to use subqueriesin logical conditionswithin
WHERE clauses.

Note Currently, Open M/SQL supports only correlated subqueries—queries in which
the result of the subquery depends on the value of the specific row of the outer
query. Non-correlated subqueries, in which the outer and inner queries are com-
pletely independent, are not supported at this time.

9-52 Open M/SQL Developer Guide

Using Subqueries

Expression Matches Some Value in Subquery Output

In the example:

WHERE <expr> I N (SELECT... FROM .. VHERE...)

the subquery retrieves one column for some set of rows, and the predicate isthe
truth value of <expr> being equal to the data value of the column for any of the
retrieved rows.

Expression Does Not Match Any Value in Subquery Output

In the example:

VWHERE <expr> NOT IN (SELECT... FROM .. VWHERE...)

the subquery retrieves one column from some set of rows, and the predicateisthe
truth value of <expr>NOT being equal to the data value of the column for any of
theretrieved rows.

Subquery Retrieves At Least One Row

In the example:

WHERE EXI STS (SELECT... FROM .. WHERE...)

the predicate tests for the existence of one or more rows specified by the sub-
query. Typically, the subquery takes the form:

SELECT *
FROM . .
WHERE. . .

Expression Compares With Values in Subquery Output

In the example:

WHERE <expr> <Conpar-op> (SELECT... FROM .. WHERE...)
the subquery must retrieve an atomic value (one column or aggregate), and the

predicate is the truth value of the comparison operation of <expr> with rows
from the subquery output.

Open M/SQL Developer Guide 9-53

Chapter 9—Open M/SQL Implementation of SQL

Expression Compares with Some Values in Subquery Output

In the example:

VWHERE <expr > <Conpar-op> SOMVE (SELECT... FROM .. WHERE...)

the subquery retrieves some set of rows, and the predi cate tests the truth value of
the comparison operation of <expr> with any row from the subquery output.

Expression Compares with All Values in Subquery Output

In the example:

WHERE <expr> <Conpar - op> ALL (SELECT... FROM .. WHERE...)

the subquery retrieves some set of rows, and the predicate tests the truth value of
the comparison operation of <expr> with all rows from the subquery output.

Using a Subquery in a FROM clause

When you use a subquery in a FROM clause, the results of the subquery define
the virtual table on which the outer query is based. Thisvirtual table may consist
of many columns and many rows.

You must observe the following restrictions when defining subqueriesin the
FROM clause:

1. You may not put anything else in the FROM clause of the outer query—the
subquery must be alone

2. The subquery may not have a subquery in its FROM clause.

However, it may have subqueries anywhere else (in its WHERE clause or in
its SELECT clause), and those subqueries may have subqueries anywhere
(including in their FROM clauses).

3. The subquery may not contain aggregates or DISTINCT.

Note The use of query-based views in a FROM clause is equivalent to specifying the
view’s query as a subquery in the FROM clause. Therefore, the above restrictions
also apply to query-based views. For more information on query-based views, see
the section of this chapter entitled “Query-Based Views” on page 9-57.

9-54 Open M/SQL Developer Guide

Using Subqueries

Open M/SQL Subquery Extensions

InterSystems SQL provides two extensions to the ANSI-Standard SQL specifi-
cations for subqueries:

1. While ANSI-Standard SQL permits subqueries to be embedded only within
WHERE clauses, Open M/SQL adds the ability to embed subqueries within
SELECT clauses, in the form shown below:

SELECT (SELECT... FROM .. WHERE...)
FROM . .
WHERE. . .

2. InterSystems SQL supports two logical operators, FOR SOME and FOR
ALL, which enable you to invoke subqueries more succinctly.

Subquery Embedded in SELECT Clause

Subqueries embedded within a SELECT clause are scalar subqueries—they
always return one scalar value.

The following SQL query contains a scalar subquery embedded in the SELECT
clause:

SELECT Snum Snane, Sci ty, (SELECT Count (Pnum
FROM Parts WHERE Suppliers. Scity=Parts. Pcity)
FROM Suppliers

This query yields the following output table:

Snum Sname Scity Count
S1 Klein Provo 1

S2 James Daytona

S3 Travers Boston 1

S4 Martin Provo 1

In the following examples, note the use of the “patientnum” field, which isthe
Row ID of the “Patients’ table and the parent reference within the child table
“Tests’.

Open M/SQL Developer Guide 9-55

Chapter 9—Open M/SQL Implementation of SQL

FOR ALL Operator

The FOR ALL logical operator tests whether every value of one expression satis-
fies the condition(s) of a second embedded expression. Essentially, FOR ALL
provides a shorthand version of a subquery.

FOR ALL usesthe following syntax:
FOR ALL expr1(expr?2)

For example, the following query usesthe FOR ALL operator:

&sql (SELECT Pati ent Name, Age
FROM Pati ents
WHERE FOR ALL tests (tests.Result="Positive”
AND patients. patient nunrt ests. pati ent nunj)

and is equivalent to:

&sql (SELECT Pati ent Nane, Age
FROM Pati ents
WHERE NOT EXI STS (SELECT * FROM Tests
WHERE NOT (tests.Result “Positive”
AND patients. patientnum = test.patientnum))

FOR SOME Operator

The FOR SOME logical operator tests whether at |east one value of one expres-
sion satisfiesthe condition(s) of a second embedded expression. Essentially, FOR
SOME provides a shorthand version of a subquery.

FOR SOME uses the following syntax:
FOR SOVE expr 1(expr2)

For example, the following query uses the FOR SOME operator:

&sql (SELECT Pati ent Name, Age

FROM Pat i ent s

WHERE FOR SOME Tests (Tests. patientnuneTests. pati entnum
AND Tests. Resul t="Positive"))

and is equivalent to:

&sql (SELECT Pati ent Name, Age
FROM Pat i ent s
VWHERE pati ent num =SOVE (SELECT pati ent num
FROM Test s
WHERE Tests. Result="Positive”))

9-56 Open M/SQL Developer Guide

Query-Based Views

Query-Based Views

InterSystems SQL supports the following SQL DDL statements for use in creat-
ing, editing, and deleting query-based views:

n CREATEVIEW

n ALTERVIEW
n DROPVIEW

When you create a query-based view, you are explicitly defining the query that
joins the base table in the view.

You may issue SQL queries using these DDL statements in either of two places:

n Viathe Interactive Query Editor
n Asembedded SQL in M macro source code
You may compile these SQL statements in any directory with the same resuilt.

Open M/SQL performs no referential integrity checking on these SQL statements
at compiletime. It checks referential integrity only at run time.

CREATE VIEW

The CREATE VIEW statement uses the following syntax:
CREATE VI EW <vi ewnanme> AS SELECT. .. FROM .. WHERE. . .

For example:

CREATE VI EW Qut st andi ng_Char ges AS
SELECT Pati ent _Nane, Date, Anount_Due FROM Billing
WHERE (Billing.Lab_Charges! ="Pai d”
OR (Billing. O fice_Visit_Charges!="Paid")
ALTER VIEW

The ALTER VIEW statement uses the following syntax:
ALTER VI EW <vi ewnane> AS SELECT. .. FROM .. WHERE. . .

ALTER VIEW uses exactly the same syntax as CREATE VIEW.

When you use ALTER VIEW, you delete and recreate the entire view, retaining
the same view name and internal view number.

Open M/SQL Developer Guide 9-57

Chapter 9—Open M/SQL Implementation of SQL

DROP VIEW

The DROP VIEW statement uses the following syntax:
DROP VI EW <vi ewnane>
Restrictions on Defining Query-Based Views

You must observe the following restrictions when defining query-based views:

n Thequery may not contain aggregates or DISTINCT.
n Thequery may not itself reference another query-based view.

You May Name Query-Based Views in FROM Clause

InterSystems SQL allows you to name query-based viewsin the FROM clause
of SQL SELECT statement queries.

However, a query that names a query-based view in its FROM clause cannot
name any additional itemsin the FROM clause.

Furthermore, a query-based view cannot appear in the FROM clause of a query
asreport data source.

9-58 Open M/SQL Developer Guide

Query Generation and Processing

CHAPTER

Open M/SQL providestwo facilitiesfor creating SQL queries on an ad hoc basis,
the Query Generator and the Interactive Query Editor.

This chapter describes how to use these query generation facilities to create, run
save, and copy queries.

Specifically, it covers the following topics:

n

n

Facilities for Creating SQL Queries
Using the Query Generator

Using the Interactive Query Editor
Running Queries

ASCII-Delimited Output for Queries
Copying Queries

List Queries Report

Detailed Query Listing Report

Open M/SQL Developer Guide 10-1

Chapter 10—Query Generation and Processing

Facilities for Creating SQL Queries

The table below summarizes the capabilities and rel ative advantages of the two
Open M/SQL query generation facilities:

Table 10-1: Query Generation Facilities

Facility

Description

Advantages

Query Generator

Provides an easy-to-use template
of SQL SELECT statement syntax
equipped with fields for the appro-
priate SQL clauses, including
SELECT, FROM, WHERE, ORDER
BY, GROUP BY, and HAVING.

You can define a SELECT
query by simply filling in the
template.

You do not need to know SQL
syntax rules.

Interactive Query
Editor

Provides a free-form SQL editor
environment (similar to the Full
Screen Editor) where you can cre-
ate and run any valid SQL query.

Provides full screen editing capabili-
ties.

You can define any valid SQL
query, making the Interactive
Query Editor more flexible
than the Query Generator.

Both the Query Generator and the Interactive Query Editor can compile the fin-
ished query and execute it on your command.

The output of SEL ECT-statement queries appears in standard tabular report for-
mat. You may print this output in any of the following ways:

n TOYyour screen

n Toahard copy printer
n Toafilein ASCII-delimited output format

Accessing the Query Generation Facilities

The Open M/SQL query generation facilities (Query Generator and Interactive
Query Editor) aswell as several query management utilities are available as
options on the SQL menu.

Procedure To access the SQL menu:

1. AttheM programmer prompt, type the following command to enter

Open M/SQL:

> do "%rsql

10-2 Open M/SQL Developer Guide

Facilities for Creating SQL Queries

You see the Open M/SQL Main Menu, as shown below:

AAAAAAAAAAAAAAARAAAARAAAAAAAAAAAA CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAARAARAAAAAAA

UAAACpen M SQL MenuAAA;
3 3

3 Data Dictionary 3
3 Forms 3
3 Reports 3
3 Queries 3
3 Menu Cener at or 3
3 System Managenent 3
3 Privileges 3
3 Devel oper Wilities 3
3 User Utilities 3
3 Server Managenent 3
3 Relational Gateway 3
3 Hel p Options 3
3 3
AAAAAAAAARAAAAAAAAAAAAAD
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

Open M SQ Menu 03: 50PM Press <Hel p> For Help

2. From the Open M/SQL Main Menu, select the Queries option.

Note: You may type q to select this option—it is @ mnemonic accelerator.

You see the SQL Menu, as shown below:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA OPEN M SQ
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
UAAAAAAAAAAASQLAAAAAAAAAAA
3
3 Define Queries
3 1nteractive SQL Queries
3 Run Existing Queries
3 Copy Query
3 List Queries
3 Detailed Query Listing

W W w W W W e W

3
AAAAAAAAAAAAAAAAAAAAAAAAAAU

Friday Jul 14, 1995 01:14PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

SQL 01: 14PM Press <Hel p> For Hel p

The table below lists and describes the options on the SQL menu:

Open M/SQL Developer Guide 10-3

Chapter 10—Query Generation and Processing

Table 10-2: Options on SQL Menu

Option

Description

Define Queries

Select this option to access the Query Generator, which pro-
vides a template for defining SQL SELECT statement queries.

Interactive SQL Que-
ries

Select this option to access the Interactive Query Editor, which
provides a full screen editing environment for creating and exe-
cuting SQL statements using any valid syntax.

Run Existing Queries

Select this option to access the Run Existing Queries utility,
which allows you to select any query defined via the Query Gen-
erator or Interactive Query Editor and run it.

Copy Query Select this option to access the Copy Query utility, which allows
you to select any query defined via the Query Generator or
Interactive Query Editor and copy its definition to create a new
query.

List Queries Select this option to print the List Queries report, which displays

an alphabetical listing of all queries defined within the current
database.

Detailed Query Listing

Select this option to print the Detailed Query Listing report,
which displays various information about one or more specified
queries.

10-4 Open M/SQL Developer Guide

Using the Query Generator

Using the Query Generator

Procedure

The Query Generator provides an easy-to-use template for defining SQL
SELECT statement queries. The template is equipped with fields for the appro-
priate SQL clauses, including SELECT, FROM, WHERE, ORDER BY, GROUP
BY, and HAVING. This enables you to create a SELECT query by simply filling
in the template.

The Query Generator automatically generates your query as a cursor-based
SELECT statement query, meaning it can retrieve multiple data rows into the
output table.

Since the Query Generator automatically generates the cursor-based SELECT
statement syntax, you do not need to use any of the following SQL commands:

n DECLARE CURSOR
n OPEN CURSOR

n FETCH CURSOR

n CLOSE CURSOR

n INTO

To define a SELECT statement query using the Query Generator:
1. From the SQL Menu, select the Define Queries option.

You see the Query Definition lookup window, as shown below:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQuery
Def i ni ti onAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Query Nane Descri ption

AR R
WO W W W W WwWW W0 EW W0

3
AAAAAAAAAAAAAAAARAAAARAAAARAAAARAAAARAAAAAAAAAAAAAAAAAARAAAAAAAAAA
AAAAAAAAAAAU

Query Definition Sel ecting Press <Hel p> For Help

2. AttheQuery Namefield in the Query Definition lookup window, enter a
query name, and press <RETURN>,

Open M/SQL Developer Guide 10-5

Chapter 10—Query Generation and Processing

3. AttheQuery Description field, enter a query description, and press
<RETURN>,

You can retrieve an existing query to edit or create anew one.

a. Toretrieve an existing query, enter acomplete or partial query namein
the Query Name field and/or a complete or partial query description in
the Query Description field, and press <RETURN>. You see a lookup box
that lists all matching entries.

To see alookup box that lists all queries defined in the current database,
leave the Query Name and Query Description fields blank and press the
<SEARCH CURRENT TABLE> key. Use the cursor positioning keys to navi
gate within the lookup box, and press <RETURN> to select an entry.

b. To create a new query, enter anew query name (it must not match the
name of any existing query) in the Query Name field, optionally enter a
query description in the Query Description field, and press <RETURN>.

You seethe “ISTHIS A NEW QUERY ?’ dialog box, as shown below:.

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJer
Definiti 0nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc

Query Nane patientsl . Description Average Age By Ward, Sex _

W w W W w e

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4, 3
I'S TH'S A NEW QUERY? 3

3 3 3
B s ves > < No> S ¢
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU 3

AR

WO w W W W W w

AAAAAARAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAA
AAAAAAAAAAAU

Query Definition Sel ecting Press <Hel p> For Help

Here, you may create a new query by pressing <RETURN> on the <Yes>
action field.

10-6 Open M/SQL Developer Guide

Using the Query Generator

When you have entered a query name (either new or existing), the Query
Definition window fills out with the full template for defining a SELECT
statement query:.

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQuery
Def i ni ti onAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,
2 Display Fields from Tables Advanced Features Conpile & Run . 3%
SAAA
AAAAAAAAAAAZ

3

Query Nane patientsl__ Description Average Age By Ward, Sex__ 3

3
Sel ect 3
(00/1) 3

3
From (one table nane per line)3
3

Were
(00/1)

Order By Goup By
(00/1) (007 1)

ww e e w
w

PR

Havi ng 3

¢ (01/1) -
AA
AAAAAAAAAAAU

Query Definition Press <Hel p> For Help

The table below lists and describes the fields located on the Query Definition
window’s SELECT statement template:

Table 10-3: Fields on Query Definition Window

Field Description

Query Name This is the name that identifies the query. The name may range from
1 to 30 characters in length and may include any alphanumeric char-
acters, including the underscore character. The name must always
begin with an alphabetic character.

This is a required field.

Query Description | Here you may enter a brief description for the query. The description
may be up to 60 characters in length and may include any alphanu-
meric characters, including underscores and blank spaces.

SELECT Here you may enter one or more expressions, separated by commas,
that specify the data columns to appear in the query output. The
expressions may contain field names, aggregate functions, and the
InterSystems’ SQL extension keywords %FOREACH, %AFTERHAV-
ING, and DISTINCT BY. (For more information on these and other
SQL extensions, see Chapter 9, Open M/SQL Implementation of
SQL).

The SELECT clause may also contain subqueries.

All field names specified in the SELECT clause must originate in a
base table or view that is listed in the From clause. Each line of this
field scrolls to right and can accommodate up to 250 characters. If
you continue the expression onto the next line, you must end the pre-
vious line with a comma.

Open M/SQL Developer Guide 10-7

Chapter 10—Query Generation and Processing

Table 10-3: Fields on Query Definition Window (Continued)

Field

Description

FROM

Here you may specify the data source of the query. You may specify
one or more base tables or views as the data source, or you may
specify one query-based view.

You may select only base tables/views that are defined in the current
database. To see a list of all base tables/views defined in the current
database, you may press the <LIST CHOICES> key.

Each new base table or view name you enter must occupy a separate
line. After a base table name you may optionally specify an alias for
the base table, separated by a space from the base table name.

WHERE

Here you may enter one or more conditional expression(s) that quali-
fies or disqualifies specific rows from the query output. You must link
multiple expressions together by AND or OR.

Use this clause to restrict the query's data capture to very specific
sets of information. The WHERE clause accepts all comparison oper-
ators and the BETWEEN, LIKE, NULL, IN, EXISTS, FOR ALL, and
FOR SOME predicates, but may not contain any aggregate functions.
You may also embed subqueries in the WHERE clause.

ORDER BY

Here you may specify one or more field(s) or expression(s), sepa-
rated by commas, to designate the sort order for rows in the query
output.

You may specify field(s) and/or expression(s) that do not appear in
the SELECT clause, as well as those that do. You may reference a
field either by name or by its ordinal number in the SELECT clause, if
it appears there. If you specify multiple items, each successive item
has lesser precedence in the sort evaluation. Sorts may be per-
formed in ascending (the default) or descending order, as specified

Note: If you enter one ORDER BY field name per line, it is not nec-
essary to enter a comma at the end of each line.

GROUP BY

Here you may specify one or more fields, separated by commas, that
will be used to break up the final query output into groups. For each
distinct group, the query will return only one row.

For example, if you group by the field “sex”, and “sex” contains only
the two values “Male” and “Female”, the query will discern two groups
and output only one row for each of them. In such case, a name field
listed in the SELECT clause is rendered not meaningful, as the query
will output only one name corresponding to each value of “sex”.

The GROUP BY clause is conceptually similar to the Open M/SQL
extension %FOREACH, but GROUP BY operates on an entire query,
while %FOREACH allows selection of aggregates on sub-popula-
tions without restricting the entire query population.

Note: If you enter one GROUP BY field name per line, it is not nec-
essary to enter a comma at the end of each line.

10-8 Open M/SQL Developer Guide

Using the Query Generator

Table 10-3: Fields on Query Definition Window (Continued)

Field Description

HAVING Here you may enter a conditional expression that determines
whether or not a given group should be included in the query output.
This field enables you to set restrictions on data groups. The HAVING
clause operates on groups of data in much the same fashion as the
WHERE clause operates on individual rows of data. By specifying the
HAVING clause, you can effectively isolate very specific sets of infor-
mation.

Unlike the WHERE clause, the HAVING clause may contain aggre-
gate functions.

4. Enter the appropriate text into the fields of the Query Definition tem-
plateto definea SELECT-statement query that queriesthe database for
the information you are seeking.

5. When you havefinished defining your query, pressthe <PROCEED> key
to saveyour query definition and exit the Query Definition template.

You return to a blank Query Definition lookup window, where you may cre-
ate or select another query.

6. Toreturntothe SQL menu, pressthe <PREVIOUS> key.
Example

Below is a sample query defined in the Query Definition template:.

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQuery =

Def i ni ti onAAAAAAAAAAAAAAAAAAAAAAAAAAARAAA

2 Display Fields from Tables Advanced Features Conpile & Run 3%
SAAAAAAAAAAAAAAAAAAAAAAAARAA
AAAAAAAAAAAS

Query Nane patientsl__ Description Average Age By Ward, Sex__

Sel ect ward, sex, AVE age)
(00/1)

From Patients (one tabl e nane per |ine)

Wher e
(00/1)

Order By ward, sex Group By ward, sex
(00/1) (00/ 1)

Having AVE age) < 62
 (01/1) -
AA
AAAAAAAAAAAU

Query Definition Press <Hel p> For Help

PR R
Ww R w W W e W W www

Open M/SQL Developer Guide 10-9

Chapter 10—Query Generation and Processing

This query considers all patientsin the “Patients” table. It yields groups that cor-
respond to each sex within each ward where the average age of that group is less
than 62. It orders the output rows first by ward, then by sex.

The query shown in the Query Definition template above can be written out as
follows:

SELECT war d, sex, AVG age)
FROM Pat i ents
GROUP BY war d, sex
ORDER BY war d, sex
HAVI NG AVG(age) < 62

The following table shows a sample output for this query. Each column repre-
sents a SELECT clause expression, and each row represents a distinct GROUP
BY row:

Table 10-4: Sample Query Output

Ward Sex Average Age

43.53

47.21

17.33

59.69

35.46

1 F
1 M
2 F
2 M 18.10
4 F
6 F
6 M

36.71

This example omitswards 3 and 5 because both sex groups within each ward fail
to satisfy the condition in the HAVING clause, i.e. the average age of each group
is greater than 62. The table omits the row corresponding to “Male” inward 4 for
the same reason.

Note ANSI-Standard SQL does not support column title control and other output format-
ting features. Therefore, query output will not appear as neatly formatted as
shown in the above example. To query the database and produce neatly format-
ted reports, you should the Open M/SQL M/PACT report writer tool.

10-10 Open M/SQL Developer Guide

Using the Query Generator

Query Definition Menu Bar

Located at the top of the Query Definition template is the Query Definition menu
bar, which contains options that provide additional functionality to the Query
Generator environment.

To access the Query Definition menu bar, press the <ENHANCE> key twice from
within the Query Definition main window.

To select an option from the Query Definition menu bar, use the <RIGHT ARROW>
and <LEFT ARROW> keys to position the select bar on a desired option and press
<RETURN>, or type the highlighted |etter in the name of a desired option.

The table below lists and describes the three options on the Query Definition
menu bar:

Table 10-5: Options on Query Definition Menu Bar

Name Description

Display Fields from Select this option to see a list that displays all fields located on

Tables all base tables and views specified in the FROM clause of the
query

Advanced Features Select this option to access the Query Definition Advanced Fea-

tures window, which displays various information about the
guery and allows you to define parameters for printing the query
in ASCIlI-delimited output format.

Compile & Run Select this option to compile and run the query

Displaying Fields From Tables and Views

You may use the Display Fields from Tables option on the Query Definition
menu bar to seealist of al fieldslocated on all base tables and views specified in
the query’s FROM clause.

Thelist displays all fields located on the table/view specified on the first line of
the FROM clausefollowed by all fields on the table/view specified on the second
line of the FROM clause, and so on.

Thislist may help you identify which fields are available for use in other clauses
of the query.

Thelist isfor informational purposes only; you cannot select items from it.

Open M/SQL Developer Guide 10-11

Chapter 10—Query Generation and Processing

Procedure To display alist of all fields located on the base tables/views specified in
the FROM clause:

1. From the Query Definition main window, pressthe <ENHANCE> key
twiceto access the Query Definition menu bar.

2. From the Query Definition menu bar, press <RETURN> to select the Dis-
play Fields from Tables option.

You see adisplay similar to the following:

Fiel d Nane Descri ption Rel ati on

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAA,

3 addressl Home Address Patients 3

3 address2 Work Addr ess Patients 3

3 adm t Adnmi ttance Date Patients 3
lage o Age . Patients . %
AA
AAAAAANDr ey

3. Usethe<up ARROW> and <DOWN ARROW> keysto scroll up or down in
order to see more field names.

The tag “more” appearsin the bottom right-hand corner of the display box to
indicate the presence of more fields below and in the upper right-hand corner
of the display box to indicate the presence of more fields above.

Note: This option does not list fields from designated tables that are
pointed to by Designative Reference fields within the listed base
tables. You may, however, reference such fields within the query
using proper join (arrow) syntax. For more information on how to do
this, refer to the section entitled “Implicit Joins” in Chapter 9, Open
M/SQL Implementation of SQL.

4. Pressthe <PrRevIOUS> key toreturn to the Query Definition menu bar.

10-12 Open M/SQL Developer Guide

Using the Query Generator

Procedure

Query Definition Advanced Features

You may use the Advanced Features option on the Query Definition menu bar to
access the Query Definition Advanced Features window.

The Query Definition Advanced Features window displays the following infor-
mation about your query:

n Owner (thisvalueisread-only)
n Run-Time Measure (this value is read-only)
n Routine Name (this value is modifiable)

The Query Definition Advanced Features window also lets you define parame-
tersfor printing your query in ASCII-delimited output format.

Open M/SQL supports the output of queriesto ASCII-Delimited text files, which
are formatted for import into many PC software packages.

To access and use the Query Definition Advanced Features window:

1. From the Query Definition main window, pressthe <ENHANCE> key
twiceto access the Query Definition menu bar.

2. From the Query Definition menu bar, type a to select the Advanced Fea-
tures option.

You see the Query Definition Advanced Features window, as shown below:

A AAQuery
Def i ni ti onAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,

¢ Display Fields from Tables Advanced Features Conpile & Run 3
SAAA
AAAAAAAAAAAZ
3 3
3 Query Name patientsl _ DescUAAAAAAAAAAAAdvanced
Feat ur esAAAAAAAAAA
3
Sel ect ward, sex, AVE age) _ 3 Query Owner Run Ti ne Measure
(00/ 1) 3 _SYSTEM 1195

From Patients Rout i ne Nanme ng9

ASCI | -Delinited Files Only? No__

WO W W W W e W

W w e e e

Where
(00/ 1)

W w e www o e

SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG
3 3
3Order By ward, sex
3 (00/1)
3

Quote Character *

End O Field Delimter ,

w W W w

3
3
3
3 Having AVGlage) <62__ 3
: (00/1) 3 End Of Record Delimter 13,10 ___ °
AAAAAAAARAAAAAAARRRARRARAAARAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAA
AAAAAAAAAAAU

Advanced Features Press <Hel p> For Help

Open M/SQL Developer Guide 10-13

Chapter 10—Query Generation and Processing

The following table lists and describes the fields located on the Query Defi-
nition Advanced Features window:

Table 10-6: Fields on Query Definition Advanced Features Window

Field

Description

Query Owner

This field shows the UserName of the user who created (and
therefore owns) the query. You cannot edit this field.

Run Time Measure

This field provides a relative measure of the system cost associ-
ated with running the query. The number shown is based on the
complexity of both the query and the database. Typically, the larger
the number, the more slowly the query executes. Open M/SQL cal-
culates the run-time measure when you compile the query and
recalculates it every time you recompile. This value is read-only
and cannot be altered in any way.

Routine Name

This field displays the prefix for all routine names generated by the
query.

Open M/SQL assigns a default prefix, such as “mq9” in the above
example. You may optionally override the default prefix by replac-
ing it with a string of 1 to 7 alphanumeric characters (first character
must be alphabetic) to serve as the override prefix.

All routines generated for the query consist of this prefix followed
by a single character (1-9, then A-Z, then a-z), which is appended
by the compiler.

Specifying your own routine prefix may help you to remember it
when attempting to call the query directly from M using the query
call syntax, as described in the section of this chapter entitled
“Running a Query from M Code” on page 10-31.

ASCII-Delimited
Files Only?

Here you may specify ASCII-Delimited as the only allowable output
format for the query, i.e. no printed format is allowed.

Answer Yes to specify ASCII-Delimited as the only allowable out-
put format for the query. This enables you to download an unlim-
ited number of fields to the ASCII-Delimited file.

Answer No to not restrict output of the query to ASCII-delimited for-
mat only. If you answer No, you can still send query output to an

ASCII-Delimited file, but the number of fields you may select is lim-
ited to the number of fields supported by a standard printed query.

No is the default response.

For more information on sending query output to ASCII-delimited
files, see the section of this chapter entitled “ASCII-Delimited Out-
put for Queries” on page 10-36.

Quote Character

Here you may specify the character(s) used to enclose field values
when using ASCII-delimited output format. You may specify any
text of ten characters or less.

The default is the double quote character (*).

10-14 Open M/SQL Developer Guide

Using the Query Generator

Table 10-6: Fields on Query Definition Advanced Features Window

Field

Description

End of Field Delim-
iter

Here you may specify the character(s) used to act as the separator
between field values when using ASCII-delimited output format.
You may specify any text of ten characters or less.

The default is the comma character (,).

End of Record

Here you may specify the character(s) used to act as the separator

Delimiter between records (rows) when using ASCII-delimited output format.

You may specify a list of ASCII values (numbers) separated by
commas.

The default value is the ASCII sequence 13,10 (same as
<CR><LF>).

. At the Routine Namefield, you may optionally replace the default rou-
tine prefix assigned to your query by Open M/SQL with an overriderou-
tine prefix.

The routine prefix may be 1 to 7 charactersin length and may include any
aphanumeric characters, except for the first character, which must be apha-
betic.

. At the ASCII-Delimited Files Only? field, answer Yesor No to indicate
whether or not you want to restrict thequery to ASCI1-Delimited output
format only.

No is the default response.

. At the Quote Character field, specify the character (s) used to enclose
field valueswhen using ASCI | -delimited output format.

The default is the double quote character (*).

. At the End of Field Delimiter field, specify the character (s) used to act as
the separator between field values when using ASCI I -delimited output
format.

The default is the comma character (,).

. At the End of Record Delimiter Field, specify the character (s) used to act
asthe separator between records (rows) when using ASCI I -delimited
output format.

The default value is the ASCII sequence 13,10 (same as <CR><LF>).

. When you complete your work in the Query Definition Advanced Fea-
tures window, press the <PROCEED> key to save your definitionsand
exit.

Open M/SQL Developer Guide 10-15

Chapter 10—Query Generation and Processing

Note

Compile and Run the Query

You may use the Compile & Run option on the Query Definition menu bar to
compile and run your query.

When you select this option, you see the following prompt at the bottom of the
screen:

Parse, Optim ze and Conpile in the Background? No__

Press <RETURN> at this prompt to compile the query in the foreground. Compil-
ing in the foreground means that you see compiler messages as they scroll onto
the screen. It also means that Open M/SQL automatically propmts you to run the
query after it has been compiled.

To compile the query in the background, delete the default No response, replaceit
with Yes, and press <RETURN>. If you elect to compile the query in the back-
ground, you return to the Query Definition template and may continue working
while Open M/SQL compiles the query underneath. Open M/SQL does not
prompt you to run the query after it has been compiled.

InterSystems recommends that you always compile in the foreground.

If you elect to compile the query in the foreground, a series of informational mes-
sages will scroll onto the screen as the Compiler moves through its sequence of
operations. These messages include alist of the names of the M routines into
which the query is being compiled. When the compilation is complete, the Com-
piler will briefly display the message “...DONE”.

After compiling the query (in the foreground), Open M/SQL displays the device
selection script to request information about where to send the query output.

You may press the <PREVIOUS> key to back out and not run the query at thistime,
or you may provide device selection information and proceed with running the

query.

For more information on running queries, see the section of this chapter entitled
“Running Queries’ on page 10-29.

After compiling the query (if you back out before running it) or after running the
guery, you return to the Query Definition template.

10-16 Open M/SQL Developer Guide

Using the Interactive Query Editor

Using the Interactive Query Editor

The Interactive Query Editor provides an alternative, less restrictive way to spec-
ify SQL queries.

Unlike the Query Generator, the Interactive Query Editor does not limit you to
SELECT-only queries nor doesit place you within a prescribed template for
query definition. Rather, it provides afree-form SQL editor environment (similar
to the Full Screen Editor) where you can create and run any syntactically valid

SQL query.

Like the Query Generator, the Query Editor lets you save query definitions for
future reuse and save a compiled version of the query to be run at alater time.

Query Types

The table below lists and describes the types of SQL queries supported by Open
M/SQL. You may issue queries of any of these statement types viathe Interactive
Query Editor:

Table 10-7: Query Types Supported By Open M/SQL

Statement Type | Description

ALTER VIEW Alters the definition of a query-based view. ALTER VIEW queries
essentially delete and recreate an existing query-based view, while
retaining the same view name and internal view number.

%CHECKPRIV This query type is an InterSystems SQL extension.

Allows a user to check whether or not s/he holds a specified privilege
on a specified Open M/SQL object. If the specified privilege exists,
the query returns an SQLCODE value of 0 (success). If the privilege
does not exist, the query returns an SQLCODE value of 100 (failure).

For more information on %CHECKPRIV, see Chapter 9, Open
M/SQL Implementation of SQL.

CREATE VIEW Creates a query-based view.

DELETE Deletes rows from a base table.

Note: DELETE operates on the entire table, unless a WHERE
clause is specified to restrict the scope of the delete.

DROP VIEW Deletes a query-based view.

GRANT Grants access privileges on specified objects (base table, view, form,
menu object, menu, report, query) to Open M/SQL users with an
option to allow the user to grant access to other users.

INSERT Inserts new rows into a base table.

REVOKE Revokes access privileges on specified objects (base table, view,
form, menu object, menu, report, query) from Open M/SQL users.
Only the grantor of privileges has the authority to revoke those privi-
leges.

Open M/SQL Developer Guide 10-17

Chapter 10—Query Generation and Processing

Table 10-7: Query Types Supported By Open M/SQL (Continued)

Statement Type

Description

SELECT

Retrieves a row or multiple rows from a table and outputs them in
standard tabular format.

There are two types of SELECT-statement queries:
n Non-cursor-based queries (retrieve a single row of data)
n Cursor-based queries (retrieve multiple rows of data)

The Query Editor automatically converts the syntax of your SELECT
statement into a cursor-based SELECT (with all the required SQL
DECLARE, OPEN, FETCH, and CLOSE statements).

Note: You may also use the Query Generator to create cursor-
based SELECT statement queries.

UPDATE

Updates column values for one or more existing base table rows.

Note: UPDATE operates on the entire base table, unless a
WHERE clause is specified to restrict the scope of the
UPDATE.

Note With the exception of %CHECKPRIV, Open M/SQL implements all of these query
statement types according to ANSI-Standard SQL. For information about Open
M/SQL-specific extensions and limitations to the syntax for these statements, see
Chapter 9, Open M/SQL Implementation of SQL.

Creating a Query in the Interactive Query Editor

Using the Interactive Query Editor you may create queries of any statement type
supported by Open M/SQL.

You must give each query you create a query definition name for identification

purposes.

Each query definition may consist of only one SQL statement.

Procedure To create a query using the Interactive Query Editor:

1. From the SQL menu, select the Interactive SQL Queries option.

10-18 Open M/SQL Developer Guide

Using the Interactive Query Editor

You see the Query Editor lookup window, as shown bel ow:

UAAAASel ect Interactive QueryAAAA;
3 3

3 Query Nane
3

Descri ption

w W w W w

3
3
3
3 3
A

ARAAARAAAAAAAAAAAAAAAARAAAAAAAAAAU

Sel ect Query Sel ecting Press <Hel p> For Help

2. At the Query Namefield in the Query Editor lookup window, enter a
query name, and press <RETURN>,

3. AttheDescription field, you may optionally enter a brief description for
the query, and press <RETURN>.

You can retrieve an existing query to edit or create anew one.

a. Toretrieve an existing query, enter acomplete or partial query namein
the Query Name field and/or a complete or partial query description in
the Description field, and press <RETURN>. You see alookup box that
lists al matching entries.

To see alookup box that lists all queries defined in the current database,
leave the Query Name and Description fields blank and press the
<SEARCH CURRENT TABLE> key. Use the cursor positioning keys to navi-
gate within the lookup box, and press <RETURN> to select an entry.

b. To create a new query, enter anew query name (it must not match the
name of any existing query) in the Query Name field, optionally enter a
query description in the Description field, and press <RETURN>.

Open M/SQL Developer Guide 10-19

Chapter 10—Query Generation and Processing

You seethe “ISTHIS A NEW QUERY?’ dialog box, as shown below:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA(,
3 I'S TH'S A NEW QUERY?

3 3

3 < Yes > < No > 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

3 Descrl ption
3

3 3

ARAAAARAAAAAAAAARAAAAAAAAARAAAARAU

Sel ect Query Sel ecting Press <Hel p> For Help

Here, you may create a new query by pressing <RETURN> on the <Yes>
action field.

When you have entered a query name (either new or existing), you see the
Select Query window, as shown below::

UAAAAAAAAAASel ect Quer yAAAAAAAAAA,
3

Query Nane
tstqgl

@0 W ww e

3
3
3
3 Description
3 3

ARRRAARARRARARAARARAARAARAAAAAAAAAU

Sel ect Query Sel ecting Press <Hel p> For Hel p

10-20 Open M/SQL Developer Guide

Using the Interactive Query Editor

The table below lists and describes the fields |ocated on the Select Query
window:

Table 10-8: Fields on Select Query Window

Field Description

Query Name This is the name that identifies the query. The name may range from
1 to 30 characters in length and may include any alphanumeric char-
acters, including the underscore character. The name must always
begin with an alphabetic character.

This is a required field.

Description Here you may enter a brief description for the query. The description
may be up to 60 characters in length and may include any alphanu-
meric characters, including underscores and blank spaces.

4. Pressthe <PROCEED> key to invokethe I nteractive Query Editor.

The Interactive Query Editor appears as a blank screen, into which you may
type your SQL statement.:

I NTERACTI VE SQL QUERY: :tstql

Hel p Save Conpi | e Advanced
& Run Options

At the bottom of the Query Editor Screenisastatusline. On the far right, the
status line displays the name of the query you are creating.

Below the statuslineisthe Query Editor horizontal options menu. See below
for more information about the options on this menu.

5. Typein your SQL code without any preprocessor syntax.

SQL commands and identifiers are not case-sensitive, meaning that you may
enter them in upper or lower case, or in a mixture of both.

You may enter only one SQL statement per query definition.

Open M/SQL Developer Guide 10-21

Chapter 10—Query Generation and Processing

The example below shows an UPDATE-statement query called “tstql”
entered via the Query Editor:

UPDATE 9%NOCHECK pati ents
set age_st at us="Seni or”
where age > 64

I NTERACTI VE SQL QUERY: :tstql

Hel p Save Conpi | e Advanced
& Run Options

Note: You may type the query all on one line, or break it up into any
number of lines.

6. Tosaveyour query definition, pressthe <co TO BOTTOM MENU> key to
access the Query Editor horizontal options menu, and select the Save
option from thismenu.

7. Toexit thecurrent query definition, pressthe <PREVIOUS> key.

Be sure to save the query definition before exiting. If there are unsaved
changes in your query definition when you attempt to exit, the Query Editor
displays the following prompt:

Quit Wthout Saving Changes?
Type Y (to quit) or N (to return to the Editor), and press <RETURN>.

When you exit the Query Editor, you return to the Query Editor lookup win-
dow, where you may create or retrieve another query definition.

8. From the Query Editor lookup window, pressthe <PREVIOUS> key again
toreturn tothe SQL menu.

10-22 Open M/SQL Developer Guide

Using the Interactive Query Editor

Editing Commands

The table below lists and describes the editing capabilities supported by the Inter-
active Query Editor:

Table 10-9: Editing Capabilities Supported by the Interactive Query Editor

Function | Description Keystrokes to Use
Select Selects a block of text for cutting and | Press the <LIST CHOICES> key, or
pasting. <CTRL-E> <S>
Cut Deletes a block of selected text. Press the <REMOVE> key, or
<CTRL-E> <C>
Paste Pastes a block of selected text at the Press the <INSERT> key, or
point where the cursor is located. <CTRL-E> <C>

Query Editor Horizontal Options Menu

Located at the bottom of the Query Editor display screen isthe Query Editor hor-
izontal options menu, which contains options that provide additional functional-
ity to the Query Editor environment.

To access the Query Editor horizontal options menu, press the <Go To BOTTOM
MENU KEY> key from within the Query Editor.

To select an option from the Query Editor horizontal options menu, use the
<RIGHT ARROW> and <LEFT ARROW> keys to position the select bar on a desired
option and press <RETURN>, or type thefirst |etter in the name of adesired option
to position the select bar, and press <RETURN>.

The table below lists and describes the options on the Query Editor horizontal
options menu:

Table 10-10: Options on Query Editor Horizontal Options Menu

Options Description

Help Select this option to invoke a submenu of on-line help options

Save Select this option to save your query definition in its current form.
After saving, this option returns you to the Query Editor to continue
working.

Compile & Run Select this option to compile and run the query.

Advanced Options Select this option to access the Query Definition Advanced Fea-
tures window, which displays various information about the query
and allows you to define parameters for printing the query in
ASCII-delimited output format.

Note: Output formatting is applicable to SELECT-statement
queries only.

Open M/SQL Developer Guide 10-23

Chapter 10—Query Generation and Processing

Using On-line Help

The Interactive Query Editor provides aHelp submenu for accessing on-line help
on any of the following topics:

n Genera Help
n SQL Syntax
n SE" eCt

n Insert

n Update

n Delete

n Grant & Revoke
n %CHECKPRIV

Procedure To access the Help submenu:
1. From the Query Editor screen, pressthe <co TO BOTTOM MENU> key.

The Help submenu replaces the top-level Query Editor horizontal options
menu at the bottom of the screen, as shown below:

UPDATE 98NOCHECK patients
set age_st at us="Seni or”
where age > 64

| NTERACTI VE SQL QUERY: : tstqgl
Gener al SQL Sel ect I nsert Updat e Del ete Gant & %CHECKPRIV
Hel p Synt ax Revoke

2. Toselect an option from the Help submenu, usethe <RIGHT ARROW> and
<LEFT ARROW> keysto position the select bar on a desired option and
press<RETURN>, or typethefirst letter in the name of adesired option to
position the select bar, and press <RETURN>.

This displays a series of on-line help screens that provide detailed informa-
tion on the selected topic.

3. Toexit an on-line help screen, pressthe <PREVIOUS> key.

10-24 Open M/SQL Developer Guide

Using the Interactive Query Editor

Procedure

Query Editor Advanced Options

You may use the Advanced Options option on the Query Editor horizontal
options menu to access the Query Editor Advanced Options window.

The Query Editor Advanced Options window displaysthe following information
about your query:

n Owner (thisvalueisread-only)
n Run-Time Measure (this value is read-only)
n Routine Name (this value is modifiable)

The Query Editor Advanced Options window also lets you define parameters for
printing your query in ASCII-delimited output format.

Open M/SQL supports the output of SEL ECT-statement queries to ASCII-
Delimited text files, which are formatted for import into many PC software pack-

ages.
To access and use the Query Editor Advanced Options window:

1. From the Query Editor screen, pressthe <Go To BOTTOM MENU> key to
accessthe Query Editor horizontal options menu.

2. From the Query Editor horizontal options menu, select the Advanced
Options option.

You see the Query Editor Advanced Options window, as shown below.

UPDATE 9NOCHECK patients
set age_st at us="Seni or”
where age > 64

UéAAAAAAAAAAAdvanced Opt i onsAAAAAAAA;&AAg
z Query Owner _SYSTEM
i Rout i ne Narme mll__
iASCII-DeIim'ted Files Only? No
i Quot e Character
3

End O Field Delimter
3

W W W R e W W e

oS End O Record Delimiter 13,10
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

Advanced Features Press <Hel p> For Hel p

Open M/SQL Developer Guide 10-25

Chapter 10—Query Generation and Processing

The following table lists and describes the fields |ocated on the Query Editor
Advanced Options window:

Table 10-11: Fields on Query Editor Advanced Options Window

Field

Description

Query Owner

This field shows the UserName of the user who created (and
therefore owns) the query. You cannot edit this field.

Run Time Measure

This field provides a relative measure of the system cost associ-
ated with running the query. The number shown is based on the
complexity of both the query and the database. Typically, the larger
the number, the more slowly the query executes. Open M/SQL cal-
culates the run-time measure when you compile the query and
recalculates it every time you recompile. This value is read-only
and cannot be altered in any way.

Routine Name

This field displays the prefix for all routine names generated by the
query.

Open M/SQL assigns a default prefix, such as “mq11” in the above
example. You may optionally override the default prefix by replac-
ing it with a string of 1 to 7 alphanumeric characters (first character
must be alphabetic) to serve as the override prefix.

All routines generated for the query consist of this prefix followed
by a single character (1-9, then A-Z, then a-z), which is appended
by the compiler.

Specifying your own routine prefix may help you to remember it
when attempting to call the query directly from M using the query
call syntax, as described in the section of this chapter entitled
“Running a Query from M Code” on page 10-31.

ASCII-Delimited
Files Only?

Here you may specify ASCII-Delimited as the only allowable output
format for the query, i.e. no printed format is allowed.

Answer Yes to specify ASCII-Delimited as the only allowable out-
put format for the query. This enables you to download an unlim-
ited number of fields to the ASCII-Delimited file.

Answer No to not restrict output of the query to ASCII-delimited for-
mat only. If you answer No, you can still send query output to an

ASCII-Delimited file, but the number of fields you may select is lim-
ited to the number of fields supported by a standard printed query.

No is the default response.

Note: Output formatting is applicable to SELECT-statement
queries only.

For more information on sending query output to ASCII-delimited
files, see the section of this chapter entitled “ASCII-Delimited Out-
put for Queries” on page 10-36.

Quote Character

Here you may specify the character(s) used to enclose field values
when using ASCII-delimited output format. You may specify any
text of ten characters or less.

The default is the double quote character (*).

10-26 Open M/SQL Developer Guide

Using the Interactive Query Editor

Table 10-11: Fields on Query Editor Advanced Options Window (Continued)

Field

Description

End of Field Delim-
iter

Here you may specify the character(s) used to act as the separator
between field values when using ASCII-delimited output format.
You may specify any text of ten characters or less.

The default is the comma character (,).

End of Record

Here you may specify the character(s) used to act as the separator

Delimiter between records (rows) when using ASCII-delimited output format.

You may specify a list of ASCII values (numbers) separated by
commas.

The default value is the ASCII sequence 13,10 (same as
<CR><LF>).

. At the Routine Namefield, you may optionally replace the default rou-
tine prefix assigned to your query by Open M/SQL with an overriderou-
tine prefix.

The routine prefix may be 1 to 7 charactersin length and may include any
aphanumeric characters, except for the first character, which must be apha-
betic.

. At the ASCII-Delimited Files Only? field, answer Yesor No to indicate
whether or not you want to restrict thequery to ASCI1-Delimited output
format only.

No is the default response.

. At the Quote Character field, specify the character (s) used to enclose
field valueswhen using ASCI | -delimited output format.

The default is the double quote character (*).

. At the End of Field Delimiter field, specify the character (s) used to act as
the separator between field values when using ASCI I -delimited output
format.

The default is the comma character (,).

. At the End of Record Delimiter Field, specify the character (s) used to act
asthe separator between records (rows) when using ASCI I -delimited
output format.

The default value is the ASCII sequence 13,10 (same as <CR><LF>).

. When you complete your work in the Query Editor Advanced Options
window, pressthe <PROCEED> key to save your definitions and exit.

Open M/SQL Developer Guide 10-27

Chapter 10—Query Generation and Processing

Compile and Run the Query

You may use the Compile & Run option on the Query Definition menu bar to
compile and run your query.

When you select this option, Open M/SQL automatically (re)compiles the query.

As the Compiler moves through its sequence of operations, informational mes-
sages will scroll onto the screen. These messages include alist of the names of
the M routines into which the query is being compiled. When the compilationis
complete, the Compiler will briefly display the message “...DONE”.

After compiling the query, Open M/SQL runsiit.

INSERT, UPDATE, DELETE, GRANT, REVOKE, CREATE VIEW, ALTER
VIEW, and DROP VIEW statement queries produce no examinable output.
When you run aquery of any of these types, Open M/SQL returns a success mes-
sage (if the query has completed successfully) or an error message (if the query
has failed) to your screen, for example:

‘tstgl’ Query Successfully Conpleted

%CHECKPRIV queries return a message to the screen that indicates the exist-
ence/nonexistence of the queried privilege, for example:

The Requested Privil ege Exists

SEL ECT-statement queries generate examinable output that must be directed to a
specified destination. Open M/SQL displays a device selection script to request
information about where to send the query output.

You may press the <PREVIOUS> key to back out and not run the query at thistime,
or you may provide device selection information and proceed with running the

query.

For more information on running SEL ECT-statement queries (output device
selection and output formatting), see the section of this chapter entitled “ Running
Queries’ on page 10-29.

After compiling the query (if you back out before running it) or after running the
guery, you return to the Query Editor screen.

10-28 Open M/SQL Developer Guide

Running Queries

Running Queries

You can run a query from any of three locations:

n From within its definition environment (Query Generator or Query Editor)
n Using the Run Existing Queries utility on the SQL menu
n From M code

Privileges Required to Run Queries

In order to run any query, you must hold SELECT privileges on the query defini-

tion.

Furthermore, in order to run certain query types you must hold certain privileges
on the base tables named in the query, as described in the table below:

Table 10-12: Privileges Required to Run Query Types

Query Type

Privileges Required

SELECT

Must have SELECT privileges on each of the base tables named in the
query.

INSERT

Must have INSERT privileges on each of the base tables named in the
query.

UPDATE

Must have %ALTER privileges on each of the base tables named in the
query.

DELETE

Must have DELETE privileges on each of the base tables named in the
query.

Running a Query From its Definition Environment

You can run queries directly from the Query Generator or the Query Editor.

Procedure To run a query from within the Query Generator:

1. From the Query Definition template, pressthe <ENHANCE> key twice to
access the Query Definition menu bar.

2. Fromthe Query Definition menu bar, type cto select the Compile& Run

option.

Open M/SQL automatically (re)compiles the query, and then displays a
device selection script to request information about where to send the query
output (see below for adiscussion of the Device Selection window). Remem-
ber that all queries defined using the Query Generator are SEL ECT-statement
queries, and therefore produce examinabl e output.

Open M/SQL Developer Guide 10-29

Chapter 10—Query Generation and Processing

Procedure To run a query from within the Query Editor:

1. From the Query Editor screen, pressthe <Go To BOTTOM MENU> key to
access the horizontal options menu.

2. Select the Compile& Run option from the Horizontal Options menu and
press <RETURN>.

Open M/SQL automatically (re)compiles the query and then runsit.

If itisan UPDATE, INSERT, DELETE, GRANT, REVOKE, %CHECK -
PRIV, CREATE VIEW, ALTER VIEW, or DROP VIEW statement query, the
query returns a success/fail message to the screen when it finishes.

If itisa SELECT statement query, Open M/SQL displays adevice selection
script to request information about where to send the query output (see below
for adiscussion of the Device Selection window).

Using the Run Existing Queries Utility

You can use the Run Existing Queries utility to select any query defined viathe
Query Generator or Query Editor and run it.

Procedure To use the Run Existing Queries utility:
1. From the SQL menu, select the Run Existing Queries option.

You see the Run Query lookup window, as shown below:

UAAAAAAAAAAAAAAAAAAARUN Quer yAAAAAAAAAAARAAAAAAA,
3 3

3 Query Name Descri ption 3
3 3
3 3

ARAAARAAAARAAAARAAAARAAAARAAAAAAAAAAAAAAAAAAAAAAU

Run Query Sel ecting Press <Hel p> For Help
2. Toselect aquery, enter acompleteor partial query namein the Query

Name field and/or a complete or partial query description in the
Description field, and press <RETURN>.

10-30 Open M/SQL Developer Guide

Running Queries

4,

You see alookup box that lists all matching entries.

To see alookup box that lists all queries defined in the current database,
|eave the Query Name and Description fields blank and press the <SEARCH
CURRENT TABLE> key.

Usethe <up ARROW> and <DOWN ARROW> keys to navigate within the
lookup box, and press <RETURN> to select an entry.

When your have selected a query, pressthe <PROCEED> key to executeit.

If the query has not been recompiled since changes were last saved, Open
M/SQL will automatically recompile the query before executing it.

Running a Query from M Code

It isalso possible to run aquery by calling it directly from M code.

To do this, you use the M query call syntax. You may use this entry point to
invoke a query in any of the following ways:

n

n

n

n

From atrigger item of action type M Code
From menu option of action type M code
From within an M routine

From the M programmer prompt

The M query call syntax is asfollows:

do query™%rsql (querynane, user, devi ce, f or mat, bat chsw)

The following table lists and describes the parameters associated with the M
query call syntax:

Table 10-13: Parameters Associated with M Query Call Syntax

Parameter Meaning

gueryname The name of the query you want to run. This is a required parame-
ter.

user This is a moot parameter; Open M/SQL no longer uses this infor-

mation. Enter the null indicator (“”) to skip this parameter.

device The optional name of an output device.

Open M/SQL Developer Guide 10-31

Chapter 10—Query Generation and Processing

Table 10-13: Parameters Associated with M Query Call Syntax (Continued)

Parameter

Meaning

format

The optional name of a device format.

batchsw

An optional flag that specifies whether to run the query in the fore-
ground or in the background.

Set to 1 display the query results in the background.
Set to 0 to display the results in the foreground.
0 is the default setting.

10-32 Open M/SQL Developer Guide

Running Queries

Selecting an Output Device

When you run a SEL ECT-statement query, Open M/SQL invokes a device selec-
tion script to request information about where to send the query output. You must
specify an output device aswell as print format parameters for the device.

The appearance of device selection script differs across the various M systems
supported by Open M/SQL. When you run Open M/SQL on top of aDSM,
DTM, or Micronetics MSM host M system, Open M/SQL calls out to the device
handling routine supported by your M system. Refer to your implementation-spe-

cific M programming manual for information on how your device handling rou-
tine works.

Procedure To select an output device for a SELECT-statement query:
1. Run a SELECT-statement query.

If you are running Open M/SQL on an ISM system, you see the Device
Selection window, as shown below:

UAAAAAAAAAAAAAAAAAAARUN Quer yYAAAAAAAAAAAAAAAAAAA,
3 3
3 Query Name Descri ption 3
®patients2___ Patients with name *S’________ 3 P
oo UAAAAAAAADevi ce Sel ecti onAAAAAAAAY
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG Devi ce 3
3 /dev/ttyp6
3

Descri ption
dpv 15 Dec 94

wow e e w

3
3
3
3 Print Format
3 Nor mal 3

AAAAAAAAARRRRARARAAARRAAAAAAAAAAAAY

Devi ce Sel ection Press <Hel p> For Hel p
Exit Wthout selecting

Open M/SQL Developer Guide 10-33

Chapter 10—Query Generation and Processing

Thefollowing table lists and describes the fiel ds located on the Open M/SQL
for ISM Device Selection window:

Table 10-14: Fields on Open M/SQL for ISM Device Selection Window

Field Description

Device This field always defaults to your current device (the current value of

$10). You may change the default to any valid output device to which
your device is linked.

Description This field reflects the description given to the specified device in the
device table.
Print Format Here you may select any print format defined for the specified device.
2. Inthe Devicefield, enter the name of the device to which you want to

send the query.

You can send the query to any valid output device that is linked to your cur-
rent device.

The default device is your current device.
To send the query to your screen, press the <PROCEED> key.

To send the query to another device (such as aprinter), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>

key.

When you have entered a device name and the appropriate print format
parameters, pressthe <PROCEED> key.

This executes the query.

10-34 Open M/SQL Developer Guide

Running Queries

The example below shows sample output for the following query:

SELECT nane, sex, age, AVE age %OREACH(sex))
FROM Pati ents
VWHERE nanme ¥%STARTSW TH “S”
ORDER BY nane

Nane Sex Age expressi on
Sal i sbury, Harvey Mal e 51 49
Sander son, Ceorge Mal e 63 49
Sawyer, El eanor Female 77 57
Schni dt, Mtchell Mal e 44 49
Scott, Denise Femal e 46 57
Scott, M chael Mal e 33 49
Shapi ro, Oscar Mal e 79 57
Silva, Louise Female 61 57
Si mons, Virginia Female 84 57
Smith, Charlotte Female 91 57
Snmith, Joe Mal e 49 49
Smi th, Tinothy Mal e 19 49
Snyder, Estelle Femal e 67 57
Spring, Jonat hon Mal e 79 49
St evens, Charles Mal e 60 49
St evens, Theresa Femal e 22 57
Stewart, Frederick Mal e 37 49
Stone, Julia Female 31 57
Sul livan, Betty Femal e 42 57
Sul i van, Wayne Mal e 46 49
Sweeney, Terrence Mal e 28 49
Press <Return> to continue, <Options> to scroll, <Exit>to Exit

Note: When output to the screen, the query displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

Device Selection for ASCII-Delimited Output Format

To print aquery in ASCII-Delimited output format, enter “ ASCII-Delimited” at
the Print Format field.

If you designated the query for ASCII-Delimited output only (this optionis
located in the Advanced Options window), the Print Format field in the Device
Selection window automatically defaults to “ ASCII-Delimited” and cannot be
changed.

Note that Open M/SQL does not require that you specify afile as the output
devicein order to generate ASCII-Delimited output. You may find it useful to
send ASCII-Delimited records to a terminal device, such as an asynchronous
communications line, or to a spooler device.

Open M/SQL Developer Guide 10-35

Chapter 10—Query Generation and Processing

ASCII-Delimited Output for Queries

Open M/SQL supports the ability to direct the output from SEL ECT-statement
gueries defined via the Query Generator or Interactive Query Editor to ASCII-
Delimited text files. These files are formatted for import into many PC software
packages.

Contents of an ASCII-Delimited File

Inan ASCII-Delimited file, each record consists of one or more field(s) enclosed
in a user-defined quotation character and delimited by a user-defined delimiter
character. A user-defined end-of-record sequence follows each record. A sample
record might appear as follows:

“3”,"Sm th,John”,”12345" ,"Mal e”,”675.2","","", " Fract ur ed
Ti bi a” <CR><LF>

where the Quote Character is (*), the End of Field Delimiter is(,), and the End of
Record Delimiter is (KCR><LF>).

All occurrences of the Quote Character will be stripped from your data prior to
the formatting of output records.

For each detail line output, Open M/SQL generates a sequential record identifier,
which may be used as a key field to identify the record within your application.
Thefirst field of each record will always be the record identifier. All other fields
are output in the order they were specified in the query definition. If a SELECT
statement query was used, the output columns are ordered by table column num-
ber.

Open M/SQL does not restrict the maximum length for ASCII-Delimited output
records. However, you should be aware of any record length limitations imposed
by the application importing the ASCII-Delimited file.

Queries Support Dual Output Formats

In Open M/SQL, asingle query definition can produce both standard printed out-
put and ASCII-Delimited file output.

For standard printed queries, Open M/SQL currently restricts the maximum num-
ber of fields that can you can select. To surmount this limitation you may desig-
nate the query for ASCII-Delimited output only. By choosing this option you
relinquish all formatting control over the output, but gain the privilege of includ-
ing an unlimited number of fieldsin the ASCII-Delimited output file. This choice
isalsoreversible, i.e., you may initialy designate a query for ASCII-Delimited
output only and later modify it to allow both types of output. However, if you do
this you may need to reduce the number of query fieldsin order to permit printed
output.

10-36 Open M/SQL Developer Guide

Copying Queries

Copying Queries
You may use the Copy Query utility to make a copy of a query definition.

This utility creates a copied query that is virtually identical to the source query.

As soon as the copy is made, the copied query relinquishes all tiesto its source
guery. You may use the copied query in all the same ways you use aregular
query. Specifically, you may:

n Editit

n Runit

n Useit asthe data source of aview or report

n Useitinthe FROM clause of another query

You may copy any query, regardless of whether or not you hold privileges oniit.
However, in order to run a copied query, you must hold SELECT privileges on

the source query. And in order to edit a copied query, you must hold %ALTER
privileges on the source query.

Procedure To copy a query:
1. From the SQL menu, select the Copy Query option.

You see the Copy Query Selection lookup window, as shown below:

UAAAAAACopy Query Sel ection W ndowAAAAAA;
3
Copy Query

W W R e we® e e W
W W e e W W e

AAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAU

Copy Query Sel ection W ndow Sel ecting Press <Hel p> For Hel p

2. Atthe Copy Query field, enter the name of the source query (the query
you want to copy), and press <RETURN>.

Open M/SQL Developer Guide 10-37

Chapter 10—Query Generation and Processing

You may select any query defined via the Query Generator or the Query Edi-
tor.

To select aquery, enter the complete or partial name of an existing query, and
press <RETURN>. You see alookup box that lists all matching entries.

To see alookup box that lists all queries defined in the current database,
|leave the Copy Query field blank and press the <SEARCH CURRENT TABLE>

key.

3. Usethecursor positioning keysto navigate within the lookup box, and
press <RETURN> to select an entry.

The Copy Query Selection window fills out with its compl ete set of fields, as
shown below:

UAAAAAACopy Query Sel ection W ndowAAAAAA;

3
Copy Query
patientsl

To Query

Run New Query Yes_

W W W R ww W W e W
W W W R ww Y e e W

* o Query Type Is FormDefined o %
AAU

Copy Query Sel ection W ndow Press <Hel p> For Help

4. AttheTo Query field, enter the name of the new query to be created.

A query name may range from 1 to 30 charactersin length and may include
any alphanumeric characters, including the underscore character. The name
must always begin with an alphabetic character.

This name must not already be in use by another query.

5. At the Run New Query? field, answer Yesor Noto indicate whether or
not you want to compile and run the new query as soon asit is copied.

Answer Yes to compile and run the new query immediately after creating it.

No is the default response.

10-38 Open M/SQL Developer Guide

Copying Queries

The Query Type Isfield shows the type of query that you have specified as
the source query. This field may have either of the following two values:

» Interactive (defined in the Query Editor)
» Form-Defined (defined using the Query Generator)

. Pressthe <PROCEED> key to copy the query.

When the copy is complete, Open M/SQL displays the following message at
the bottom of the screen:

Query Copy Successful
If you typed No in the Run New Query? field, you return to the SQL menu.

If you typed Yes in the Run New Query? field to request Open M/SQL to
compile and run the query immediately after creating it, you see the follow-
ing message at the bottom of the screen:

Conpi | ing and runni ng Query <query nane>

After compiling the query, Open M/SQL displays the appropriate device
selection script for your M system to request information about where to
send the query output.

. Enter adevice nameand appropriate print format parameters, then
pressthe <PROCEED> key to execute the query.

Open M/SQL Developer Guide 10-39

Chapter 10—Query Generation and Processing

List Queries Report

The List Queries utility letsyou generate a screen or hard copy report that lists all
queries defined in the current database (via the Query Generator and Interactive
Query Editor) and provides the following information about each one.

n Query Name — Name of the query (queries are listed in alphabetical order)
n Query Description — Description given to the query
Procedure To run the List Queries report:
1. From the SQL menu, select the List Queries option.
You see the device selection script native to your host M system.

If you are running Open M/SQL on an ISM system, you see the Device
Selection window.

2. Enter the name of the output device to which you want to send this
report and specify the appropriate print format parameters.

3. When you have entered a device nameand the appropriate print format
parameters, pressthe <PROCEED> key.

This executes the report.

Below isa sample List Queries report:

Query Query

Nane Descri ption

ages

Census1994 Census for year 1994
CensusMay95 Count Patients for May 95
Count _Adnmi ssi ons Total Nunmber of Admi ssions
Count Pati ents Count of Nunber of Patients
Li st MRN Li st Current Medical Rec. #s
Mal es65 Li st Males over 65
Qccupancy Cal cul ate Cccupancy

ol dpat s

Pat i ent _Count Count of Patient Entries
patientsl Average Age by Ward, Sex
patients2 Patients with name “S”

Pat St at es

per sonnel

Revenue1994 Revenue for Year 1994
RevenueMay94 Revenue for May 1994
States

tstql Test Query

Press <Return> to Exit

Note: When output to the screen, this report displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

4. Pressthe <PREVIOUS> key to exit the List Queriesreport and return to
the SQL menu.

10-40 Open M/SQL Developer Guide

Detailed Query Listing Report

Detailed Query Listing Report

The Detailed Query Listing utility lets you generate a screen or hard copy report
that lists a specific query, al queries, or arange of queries whose query names
begin with asimilar character string.

The Detailed Query Listing Report provides the following information about
each query:

n

n

n

n

n

Query Name — Name of the query (queries are listed in alphabetical order)
Query Description — Description given to the query
Query Owner — UserName of the user who created the query

Routine Prefix — Name of the routine prefix used by all routines generated
for the query by Open M/SQL

SQL Text — Text of the query

All queries defined in the current database (via the Query Generator and Interac-
tive Query Editor) are available to this report.

Procedure To run the Detailed Query Listing report:

1.

3.

From the SQL menu, select the Detailed Query Listing option.
You see the device selection script native to your host M system.

If you are running Open M/SQL on an ISM system, you see the Device
Selection window.

Enter the name of the output device to which you want to send this
report and specify the appropriate print format parameters.

When you have entered a device name and the appropriate print format
parameters, pressthe <PROCEED> key.

Open M/SQL Developer Guide 10-41

Chapter 10—Query Generation and Processing

You see the Detailed Query Listing Run-Time Conditions window, as shown
below:

UAAAAAAAAAAAARAAAARAAAARAAAARAAAAARAAAARAAAAAAAAAAAAAAAAAARAAAARAAA
AAAAAAAAAAA;

3 Run Tinme Conditions 3
2 For Report: Detailed Query Listing i
zQJeryNama Starts Wth i
2 (Fromtable: Query with description Query Nane) 2
AA

AAAAAAAAAAAU
Run Ti me Conditions Press <Hel p> For Help

4. Inthe Sarts With field specify the query or queriesyou want tolist in
thereport.

To specify all queries defined in the current database, |eave the Starts With
field blank.

To specify just the “patientsl” query, type the literal string “ patientsl”.
To specify all queries that begin with the letter “P”, type the letter “P”.

5. Pressthe <PROCEED> key to execute thereport.

10-42 Open M/SQL Developer Guide

Detailed Query Listing Report

Below isasample Detailed Query Listing report for al queries that begin
with the letter “P":

Date: 17 Jul 95 Page: 1

I nterSystens Corporation
Detail ed Query Listing

Query: patientsl Description: Average Age By Ward, Sex
Owner: _SYSTEM Rout i ne: g9

SQL: SELECT ward, sex, AVGE age)
FROM Patients
GROUP BY ward, sex
ORDER BY ward, sex
HAVI NG AV age) < 62

Query: patients2 Description: Patients with nane “S’
Owner: _SYSTEM Rout i ne: ngl0

SQL: SELECT nane, sex, age, AVE age %OREACH(sex))
FROM Pat i ents

VWHERE Nane %STARTSW TH “S”
ORDER BY nane

Press <Return> to continue, <Options> to scroll, <Exit>to Exit

Note: When output to the screen, this report displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

6. Pressthe <PREVIOUS> key to exit the Detailed Query Listing report and
return to the SQL menu.

Open M/SQL Developer Guide 10-43

Application Programming V

Chapter 11

Programmer Interface to
Applications

Chapter 12

Open M/SQL Developer Utilities

CHAPTER

Programmer Interface to
Applications

In Open M/SQL, you can insert M and SQL code at designated |ocations within
object definition windows to customize forms, reports, and the underlying base
table operations of lookup and filing to your precise specifications. Specificaly,
thisinserted code can customize base table and window triggers, lookup queries,
filing routines, and operations that calculate, validate, and convert datafields. In
each case, the inserted code must observe specific conventions for communicat-
ing with the application that callsit.

Open M/SQL supplies entry pointsthat enable you to call forms, reports, queries,
and menus from routines as well asfrom the M programmer prompt. Other utility
entry points perform functions that emulate forms. All entry points observe spe-
cific conventions for parameter passing.

Embedded SQL provides away for an M program to operate the machinery of
retrieval and filing within Open M/SQL base tables.

This chapter discusses the following topics:

n Open M/SQL Variables

n Entry Pointsto the %msgl Routine

n Open M/SQL Globals

n Inserting Code into Open M/SQL Applications

n Calling Open M/SQL Objects from M Programs

n Emulating Form Behavior from M Programs

n Establishing Authorization ID from Programmer Mode

n Intermixing Open M/SQL Objects with User-Defined M Routines
n Contents of Applications

Open M/SQL Developer Guide 11-1

Chapter 11—Programmer Interface to Applications

Open M/SQL Variables

All local variables used by Open M/SQL begin with the percent sign (%) and
have all-lowercase names. A list of these variable names appears below. Do not
use these names for any other purpose than what is documented. | nterSystems
reserves the right to add to thislist of percent variables in future releases, and
therefore strongly advises that you do not use any user-defined variables that
begin with the percent sign.

Open M/SQL uses variables with lowercase names to run forms and reports. To
avoid the possihility of conflict, InterSystems recommends that you do not use
all-lowercase variable namesin any M code you insert into your Open M/SQL
applications or in any routines called by your applications.

Embedded SQL usesits own percent variables without protecting them by a
NEW command. These variables all begin with the prefix %6mmm and thus do
not run a high risk of conflict. When defining variables in a program containing
embedded SQL, make sure your variables do not begin with %ommm.

List of Open M/SQL Percent (%) Variables

The following table lists and describes the percent variables used by Open
M/SQL to communicate with applications, or used by programs that call applica-
tions.

You will note that some of these percent variables are enclosed in curly braces,
such as {%action} . The curly brace syntax indicates that these are not raw M
variables, but rather Open M/SQL interpreted variables. Variables of this syntax
remain the same even when the names of the underlying variables they represent
change.

Table 11-1: Open M/SQL Percent (%) Variables

%variable Function Where Used

%msq| Stores the current UserName and Ter- | General
minal Type, as well as other user pref-
erences.

%is() array Stores terminal-specific command General
strings to be executed by routines.

%mode() array Stores terminal-specific appearance General
attributes to be written by routines.

Y%val Stores the data value of a field for use | Data Dictionary

in external-to-internal and internal-to- | o Form Generator
external conversion and user-defined
additional validation code.

%ok Flag that can be set to 0 to disallow Data Dictionary
the filing of an invalid field value. & Form Generator

11-2 Open M/SQL Developer Guide

Open M/SQL Variables

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable

Function

Where Used

%msg

Stores text message returned by vali-
dation code when rejecting an invalid
field value.

Data Dictionary
& Form Generator

%data(icol)

Stores the data value of the current
field of the current row, whether saved
or unsaved.

Form Generator

%edit(icol)

Stores the disk value of the current
field of the current row when that field
has been edited but not saved. Unless
%data(icol) is unsaved, %edit is unde-
fined.

Form Generator
(for database fields only)

%new

Stores the new value of an edited field.
This variable is used to allow valida-
tion code to examine the new field
value.

Form Generator

Y% newext

Stores the new external value of an
edited field. This variable is used to
allow validation code to examine this
value.

Form Generator

%old

Stores the old value of an edited field.
This variable is used to allow valida-
tion code to examine the old field
value.

Form Generator

%oldext

Stores the old external value of an
edited field. This variable is used to
allow validation code to examine this
value.

Form Generator

{%parent_reference}

For forms based on child tables,
{%parent_reference} holds the parent
reference ID (the RowID of the current
row in the parent table).

For forms not based on child tables,
the value of {%parent_reference} is “.

Form Generator

Specifically:

n All form trigger loca-
tions

n Variable Window
Placement

n Form-only Field Com-
pute Code

{%caller}

Stores the current value of the Caller
ID.

Form Generator

Specifically:

n All form trigger loca-
tions

n Variable Window
Placement

n Menu Object Defini-
tion

Open M/SQL Developer Guide 11-3

Chapter 11—Programmer Interface to Applications

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable

Function

Where Used

{%action}

Stores the last keyboard action
entered by the user. It can have any of
the following values:

n PROCEED

n PREVIOUS

n GETOUT

n GETOUTALL
n Up Arrow

n Down Arrow
n Return

n Tab

Form Generator
Specifically:

n Post-Form triggers

n Post-Field triggers

n Post-Window triggers

{%filetype}

Stores the type of filing currently in
effect. Possible values are:

n “Update” — indicates that the cur-
rent form is in data entry mode.

n “Inquiry” — indicates inquiry mode.

n “Insert”— indicates that you have
just confirmed insertion of a row.

Form Generator
Specifically:

n Post-Form triggers

n Post-Window triggers
n Post-Field triggers

n Pre-Row triggers

n Post-Row triggers

n Variable Window
Placement

{%presave}

Flag that indicates whether or not data
ha been saved within the current form.
If %savedata is 1, data has been
saved. If itis 0, no data has been
saved.

Form Generator
Specifically:

n Post-Form triggers

n Post-Window triggers
n Post-Field triggers

n Variable Window
Placement

{%savedata}

Flag that indicates whether or not the
current form contains unsaved data. If
%savedata is 1, there is unsaved data
within the current form. If it is O, there
is no unsaved data.

Form Generator
Specifically:

n Post-Form triggers

n Post-Window triggers
n Post-Field triggers

n Variable Window
Placement

{%timeout}

Flag that indicates whether or not the
form was exited as the result of a time-
out action. If %timeout is 1, the form
did time out, If it is 0, the form did not
time out.

Form Generator
Specifically:

n All form trigger loca-
tions

11-4 Open M/SQL Developer Guide

Open M/SQL Variables

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable

Function

Where Used

{%return_action}

Stores the value of %action from the
form that was last exited. It can have
any of the following values:

n PROCEED

n PREVIOUS

n GETOUT

n GETOUTALL
n Up Arrow

n Down Arrow
n Return

n Tab

Form Generator
Specifically:

n All form trigger loca-
tions

{%return_filetype}

Stores the value of %filetype from the
form that was last exited.

Form Generator
Specifically:

n All form trigger loca-
tions

{%return_presave}

Stores the value of %presave from the
form that was last exited.

Form Generator
Specifically:

n All form trigger loca-
tions

{%return_savedata}

Stores the value of %savedata from
the form that was last exited.

Form Generator
Specifically:

n All form trigger loca-
tions except Pre-Row
triggers

{%return_timeout}

Stores the value of %timeout from the
form that was last exited.

Form Generator
Specifically:

n All form trigger loca-
tions

{%inquiry_mode}

Flag that indicates whether or not the
form is currently in inquiry-only mode. |
%inquiry is 1, the form is in inquiry-
only mode. litis O, the form is not in
inquiry-only mode.

Form Generator

Specifically:

n All form trigger loca-
tions

n Menu Object Defini-
tion

{%linenum}

Stores the line number of the current
line in a multi-line field.

Form Generator
Specifically:

n Field Definition for
multi-line fields

Open M/SQL Developer Guide 11-5

Chapter 11—Programmer Interface to Applications

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
{Yoretrieved} Flag that is set to 1 if any rows are Form Generator
retrieved_when a multi-row form is run, Specifically:
0 otherwise.)
])) . n All form trigger loca-
This variable applies to multi-row tions except Pre-Form
forms only. and Pre-Window trig-
gers
{%menubar} Stores the name of the currently active | Form Generator

menu bar.

Specifically:

n All form trigger loca-
tions except Pre-Row
and Post-Row trig-
gers

n Menu Object Defini-
tion

{%menuid}

Stores the internal identification num-
ber of currently active menu bar.

Form Generator

Specifically:

n All form trigger loca-
tions except Pre-Row
and Post-Row trig-
gers

n Menu Object Defini-
tion

{%menutype}

Stores the type of the currently active
menu object. Its value is either “menu
bar” or “pop-up menu”.

Form Generator
Specifically:

n Menu Object Defini-
tion

{%cellar_tuple}

Flag that is set to 1 when the user of a
multi-row form inserts a row at the bot-
tom of the form.

Form Generator
Specifically:
n Pre-Row triggers

{%date} Stores the current date in an M/PACT | M/PACT
report.

{%time} Stores the current time in an M/PACT | M/PACT
report.

{%agg} Stores the calculation for the aggre- M/PACT
gate function you have specified.

{%pagenum} Stores the current page number in an | M/PACT
M/PACT report.

{%newpage} Forces a page feed in an M/PACT M/PACT

report.

11-6 Open M/SQL Developer Guide

Open M/SQL Variables

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
{%report-end} Flag to indicate whether or not a report | M/PACT
ran to completion. Specifically:

If user exits report before completion
by pressing the <PREVIOUS> key,
{%report-end} is set to “user abort”.

If the report ran to completion, it is set
to NULL (*").

n Post-Report triggers

{%background}

Flag to indicate whether or not a report
is being run in the foreground.

If the report is being run in the fore-
ground, {%background} is set to 0.

If a report is being run in the back-
ground, it is set to a number greater
than 0.

M/PACT

Specifically:

n Pre-Report triggers
n Post-Report triggers

Open M/SQL Developer Guide 11-7

Chapter 11—Programmer Interface to Applications

Entry Points to the %msqgl Routine

The %msqgl routine supports severa utility entry points, which you may usein M
programs to perform the following functions:

n Call Open M/SQL objects
n Emulate various aspects of form behavior
n Establish an Authorization ID

The following tables list and briefly describe these utility entry points to %emsqg|.

Use the following entry pointsto call Open M/SQL objects from an M program:
Table 11-2: Entry Points For Calling Open M/SQL Objects

Entry Point Function

orm™%msq|l Calls a form
menu’%msq| Calls an old-style menu
query"%msq|l Calls a pre-defined query
report"%msq| Calls a report

Use the following entry points to emulate various aspects of form behavior:

Table 11-3: Entry Points For Emulating Form Behavior

Entry Point Function

help”"%msq| Displays scrolling help text

write’%msq| Writes a message on the screen

$$read"%msq| Reads a data value

windcIn?%msq| Cleans up screen by erasing the residual display of windows after
they have been exited

Use the following entry point to establish an Authorization ID (identify a user to

Open M/SQL):
Table 11-4: Entry Point for Establishing an Authorization ID
Entry Point Function
setaid"%msq| Establishes an Authorization ID (identifies a user to Open M/SQL)

For more information about these entry points, refer to the sectionsfound later in
this chapter entitled “Calling Open M/SQL Objects from M Programs” on page
11-27, “Emulating Form Behavior from M Programs” on page 11-34, and
“Establishing Authorization ID from Programmer Mode” on page 11-39.

11-8 Open M/SQL Developer Guide

Open M/SQL Globals

Open M/SQL Globals

There are two groups of globals used by Open M/SQL, object definition globals
and percent (%) globals.

Object Definition Globals

The object definition globals are located in each development direc-
tory/UCl/namespace.

Caution Do not delete these globals. Doing so will delete your object definitions.
Most of the object definition globals begin with the letter “m”.
Note InterSystems reserves the syntax “m* for its own use.

The following table lists the Open M/SQL object definition globals and briefly
describes the information stored in each:

Table 11-5: Open M/SQL Object Definition Globals

Global Contents

A"ROUTINE Macro source and intermediate code routines (for Open M/SQL on
ISM systems only)

Amroutine Macro source and temporary intermediate code routines (for Open
M/SQL on ISM systems only)

AUTILITY Scratch information for utilities (for Open M/SQL on ISM systems
only)

~mcompd Object compile driver configuration definitions

mconv Information about which conversion programs have been run on the
major objects in this directory

“mdd Base table definitions and view definitions

mddc Information for compiled base tables

mexpnew Export/import definitions (for the new-style Export/Import utility)

Amexport Export/import definitions (for the old-style Export/Import utility)

~mform Form definitions

Amformc Information for compiled forms

Amhelp Information for the Open M/SQL Help Menu

~mlock Locking information for rows

Ammenu Old-style menu definitions

Ammisc Routine name prefixes

Open M/SQL Developer Guide 11-9

Chapter 11—Programmer Interface to Applications

Table 11-5: Open M/SQL Object Definition Globals (Continued)

Global

Contents

~mobject

Menu object definitions, help document definitions, help topic defini-
tions, and video attribute definitions

Ampriv

Privilege allocation definitions for Open M/SQL objects

mq|

Pre-defined query definitions

~mreport

M/PACT report definitions

mreportc

Information for compiled M/PACT reports

mtemp*

Miscellaneous run-time information

mterm

Saved terminal specifications to be restored upon exiting Open
M/SQL

Amutil

Miscellaneous utility definitions

Amxdd

Base table definitions queued for export using the Export/Import util-
ity

Amxform

Form definitions queued for export using the Export/Import utility

mxreport

Report definitions queued for export using the Export/Import utility

Amxql

Query definitions queued for export using the Export/Import utility

mxmenu

Old-style menu definitions queued for export using the Export/Import
utility

Amxmenob

Menu object definitions queued for export using the Export/Import
utility

Amxdoc

Help document definitions queued for export using the Export/Import
utility

~mxhtop

Help topic definitions queued for export using the Export/Import util-
ity

11-10 Open M/SQL Developer Guide

Open M/SQL Globals

Caution

Object Definition Globals Located in Common Directory

The following object definition globals are also located in the common direc-
tory/UCl/namespace (/usr/msgl/common):

n ~mdd

n “mddc

n “mform
n “mformc
n “mhelp
n“mmenu
n “mmisc

n “mobject
n “mpriv

n mreport
n “mreportc

If you are using the Open M/SQL Relational Server, you will also find the fol-
lowing globalsin the common directory/UCI/namespace (/usr/msgl/common):

n mroutine
n “mtemp

Do not delete these globals from the common directory under any circumstances.
If you do so, you will have to reinstall Open M/SQL.

Open M/SQL Developer Guide 11-11

Chapter 11—Programmer Interface to Applications

Open M/SQL Percent (%) Globals

Caution

The percent (%) globals are located in the Open M/SQL System Manager’s

directory.

Do not delete these globals from the System Manager’s directory. If you do so,
you may have to reinstall Open M/SQL.

Also, do not change the default global protection status of these globals, and do
not edit these globals by hand (with the exception of %rakeys).

The following table lists the Open M/SQL percent (%) globals and briefly
describes the information stored in each:

Table 11-6: Open M/SQL Percent (%) Globals

Global

Contents

"%RDE

Full Screen Editor information

pdafmlog

Results of FileMan->Open M/SQL links and updates

~%mmsg

Information for the “Message of the Day”

%mobject

System help objects

Aomsql Miscellaneous Open M/SQL information

AYmuser Open M/SQL UserName definitions. Default protection status allows
users to read/write/delete this global. To edit the contents of this global,
use the User Security Definition window

%%omc Relational Gateway information

Apoms Open M/SQL Server configuration information.The System Manager

can edit the contents of this global by editing Server configuration
parameters

Y%garmisc

Miscellaneous M/PACT information

"%rakey Open M/SQL keyboard definition information

prakeys Open M/SQL keyboard definition information. Default protection status
allows users to read/write/delete this global. This is the only % global
that you might have occasion to edit by hand (see the Open M/SQL
Database Administrator’s Guide for more information).

"%rde Full Screen Editor information

Nprekey Open M/SQL keyboard definition information

"%sys Open M/SQL system information

"optask Open M/SQL Task Manager information. Default protection status

allows users to read/write/delete this global. To edit the contents of this
global, use the M/SQL Task Queue window

11-12 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

Inserting Code into Open M/SQL Applications

Open M/SQL provides a variety of locations where you may directly insert M
code or SQL codeinto an application. This enables you to customize the applica-

tion to your exact specifications.

The following table lists the locations within the Open M/SQL application devel-
opment environment where inserted code is supported and shows what type of

code you can insert:

Table 11-7: Locations Where M/SQL Permits Inserted Code

Location

Type of Code

Triggers in base tables
(Action Types: M Code, SQL Code, Routine)

M code lines
SQL statement

Triggers in forms
(Action Types: M Code, SQL Code, Routine, Set Field)

M code lines
SQL statement

Triggers reports
(Action Types: M Code, Routine)

M code lines

Override queries for base table and form lookups

SQL WHERE and ORDER
BY statements

Computed fields in base tables, forms, and reports

M code lines
M IF conditions

Internal-to-External and External-to-Internal Conversion M code lines
Code in base tables and forms
Additional Validation Code in base tables and forms M code lines

Conditions for Required-Maybe fields in base tables and
forms

M IF conditions

Conditions for executing variable window placement

M IF conditions

Expressions for map subscripts and pieces

M expressions

NEXT Subroutine in maps

M code lines

Conditions for conditional maps

M IF conditions

General Mapping

M code lines

Menu object options
(Action Types: M Code, SQL Code, Routine)

M code lines
SQL statement

Code to use mnemonic as accelerator in stand-alone menu
bar attributes

M expressions

Conditions for exiting menu bar after invoking menu option

M expression

Conditions for setting the Active flag for a menu option

M expression

Conditions for suppressing display of a menu option

M expression

Open M/SQL Developer Guide 11-13

Chapter 11—Programmer Interface to Applications

Table 11-7: Locations Where M/SQL Permits Inserted Code (Continued)

Location Type of Code
Defining the Caller ID for a menu action M expression
Conditions for executing variable menu placement (for M IF conditions

menu objects only)

Code to clear the screen before menu option invocation M expression
and restore the screen after option invocation

Conditions for exiting the Pop-Up Menu after invocation of | M expression
a menu option

Conditions for collapsing all Pop-Up Menus, or the current | M expression
Pop-Up Menu after the menu option is invoked

Menu options (for old-style menus) M code lines
Action types: M Code, Routine

Specification for Row ID for the form to call (when the tar- | M expression
get form is a single-row form)

Specification for the parent reference (when the source M expression
table of the target form is a child table with a known parent)

The types of inserted code referenced in the Type of Code column in the preced-
ing table have the following meanings:

n M code — consists of one or more lines of valid M commands and argu-
ments, without tags.

n M expression — M code that contains no commands and evaluatesto a
value.

n M IF condition — one or more M expressions separated by commas, as
would follow an M IF command.

n SQL statement — SQL codethat performsasingle operation, e.g. SELECT,
INSERT, UPDATE, DELETE, etc.

Inserted Code Can Reference Fields

Inserted M code can reference single-line as well as multi-line fieldsin the cur-
rent base table.

To reference single-line fields, use the curly brace syntax, asfollows:

{fi el dnane}

To reference multi-line fields, use the following syntax:

{fi el dnane(expression)}

11-14 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

This syntax requires that you specify an expression to indicate which line of the
multi-line field you are targeting.

For example, the following code:
SET AddLi ne2={ Address(2)}
setsthe variable “ AddLine2” to the second line of the “Address” field.

The expression cannot contain any of the following:

n Other fields
n Thewildcard character “*”
n Curly braces

Open M/SQL does not check the expression for correctness. An incorrect expres-
sion may cause the code to fail.

Inserted Code Can Reference Variables and Globals

Inserted M code can reference local variables and globals. For each type of
inserted code, certain percent (%) variables are uniquely applicable, while others
are not applicable. Thistopic is discussed in more depth in the following sec-
tions.

To avoid potential conflicts with system code, your inserted M code should not
reference variables with all-lowercase names, unlessthe inserted codeisatrigger
action (and therefore called as a subroutine) and protectsits variables with a
NEW command.
Anywhere you can insert M code you can also insert macro source code.

Open M/SQL Performs Syntax Checking on Inserted M Code
Open M/SQL automatically performs syntax checking on all inserted M code
throughout the Open M/SQL environment, with the exception of the General
Mapping facility in the Data Dictionary (where you may define a customized
physical structure for a base table).

Whenever you exit aline of inserted M code, Open M/SQL checksit for proper
syntax and reports any errors at the bottom of the screen.

Open M/SQL does not check SQL code for proper syntax.

Note Open M/SQL supports syntax checking for ISM systems only.

Open M/SQL Developer Guide 11-15

Chapter 11—Programmer Interface to Applications

Triggers

Triggers are sequences of actions that you may define to automatically take place
at various points during the execution of an Open M/SQL application.

You may define triggers at the following levels within the Open M/SQL applica-
tion devel opment environment:

n Basetable
n Form
n Report

Trigger Action Types
A trigger may consist of onetrigger item or a sequence of multiple trigger items.

Each trigger item must have an action type, which specifies the kind of action the
trigger item will execute. The set of action types available to atrigger definition
depends on where in the Open M/SQL environment the trigger is located.

For each trigger item, you may define an associated condition in the form of an
M IF expression to control its execution. When the condition associated with a
trigger item evaluates to TRUE, the specified trigger action executes. When the
condition associated with atrigger item evaluates to FAL SE, the specified trigger
action does not execute.

Base Table Triggers

Base table triggers are defined in the Data Dictionary. They are sequences of
database actions initiated by an INSERT, UPDATE, or DELETE action per-
formed on a base table. These triggers help to maintain integrity constraints and
other data dependencies.

There are six types of base table triggers, including:

n Prefiling INSERT Triggers

n Preffiling UPDATE Triggers
n Prefiling DELETE Triggers
n Post-filing INSERT Triggers
n Post-filing UPDATE Triggers
n Post-filing DELETE Triggers

11-16 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

Base Table Trigger Action Types

Base table triggers support the following action types:

n M Code
n Routine
n SQL code

Each of these action types permits you to insert your own code.
Form Triggers

Form triggers extend the conventional notion of triggers to form, window, and
field interaction. They are defined in the Form Generator to perform various
operations tailored to the needs of the application end-user. Form triggers can
execute at the form, window, and field levels of an application and are often used
to define the control structure for application processing.

There are nine types of form triggers, including:

n Pre-Form Triggers (one per form)

n Post-Retrieval Triggers (one per form)

n Post-Form Triggers (one per form)

n Pre-Row Triggers (one per form, for multi-row forms only)
n Post-Row Triggers (one per form, for multi-row forms only)
n Pre-Window Triggers (one per window)

n Post-Window Triggers (one per window)

n Pre-Field Triggers (one per field)

n Post-Field Triggers (one per field)

When used to file data, aform invokes the filing operations of base tables, thus
causing base table triggers to be pulled.

Form Trigger Action Types

Form triggers support a very long list of action types, many of which emulate
very specific programming functions (e.g., invoke a specified form, window, or
menu). Most form trigger action types do not permit you to insert your own code.

For acomplete list of all action types supported by form triggers, see the Open
M/SQL User Interface Programming Guide.

Open M/SQL Developer Guide 11-17

Chapter 11—Programmer Interface to Applications

The form trigger action types that permit you to insert your own code include:

n M Code
n SQL Code
n Routine

n Set Field (which lets you set a specified field equal to an M expression).
Report Triggers

Report triggers are defined in M/PACT. They may be used to execute lines of M
code, call pre-defined M routines, or invoke forms either before or after the exe-
cution of areport, with the resultant action usually depending on the evaluation

of some M/PACT percent (%) variable.

There are two types of report triggers:

n Pre-Report Triggers
n Post-Report Triggers

Pre-Report triggers are pulled before the report runs, but after the report output
deviceis opened and used. Any output from a Pre-Report trigger is sent to the
output device for that run of the report.

Post-Report triggers are pulled after the report runs, but before the device has
been closed, so that output from a Post-Report trigger is also sent to the output
device for that run of the report.

Report Trigger Action Types

Report triggers support the following action types:

n M Code
n Routine
n Form

The M Code and Routine action types permit you to insert your own code.

You should only the Form action type if you intend to send the report to atermi-
nal.

11-18 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

Note

Referencing Fields in a Trigger

When defining triggers, you may reference any fields associated with the current
base table in the following places:

n M IF condition expression associated with any trigger item

n M Code window for atrigger item of action type M Code

n Set Field window for atrigger item of action type Set Field

n Parametersto the routine specified for atrigger item of action type Routine

To reference afield, enclose the field namein curly braces, for example;
SET NAME={ Nane}

setsthe M local variable “NAME” equal to the (internal) value of the “Name”
field in the current base table.

The syntax {Table.Field} is not allowed in triggers.
Referencing Open M/SQL Percent (%) Variables in Triggers

When defining triggers, you may reference Open M/SQL percent (%) variables
in the following places:

n M IF condition expression of any trigger item
n M Code window of atrigger item of action type M Code
The Open M/SQL percent (%) variables store information about system mode

and recent user actions. You may use them to set up execution conditions for nav-
igation actions or other programmer-defined operations.

For a complete list of the Open M/SQL percent (%) variables, see Table 12-1,
“Open M/SQL Percent (%) Variables'.

Many percent variables appear enclosed in curly braces, a syntax used to denote

internally stored system information. These variables are interpreted by Open
M/SQL at run time.

Open M/SQL Developer Guide 11-19

Chapter 11—Programmer Interface to Applications

A few of the percent variables you may find most useful when defining triggers
are:

n {%action}

n {%filetype}

n {%presave}

n {%savedata}

n {%timeout}

n {%caller}

n {%inquiry_mode}

n {Y%retrieved}

n {%parent_reference}

For example, the M |F condition expression of atrigger item might test the value

of the { %presave} variable, whichis 1 if the current row has been filed, O other-
wise.

Open M/SQL also supportsthe alist of return prefix percent variables that corre-
spond to certain non-prefixed percent variables, as shown in the table below:

Table 11-8: Return Prefix Percent Variables

Percent Variable Return Prefix Percent Variable
{%action} {%return_action}

{%filetype} {%return_filetype}

{%presave} {%return_presave}

{%savedata} {%return_savedata}

{%timeout} {%return_timeout}

Whereas the non-prefixed percent variables store current val ues, the return prefix
percent variables store the same values for the form that was last exited (i.e., the
values that were active at the time of the last Post-Form Trigger).

Triggers can also make use of other Open M/SQL variables for avariety of pur-
poses. For more information on defining triggers, see the Open M/SQL Data Dic-
tionary Guide (base table triggers) or the Open M/SQL User Interface
Programming Guide (form triggers).

11-20 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

Note

Using SQL Code in a Trigger

A trigger item of action type SQL Code may contain asingle SQL statement,
occupying one or more lines. The SQL statement can be any of the following:

n SELECT
n INSERT
n UPDATE
n DELETE
n GRANT
n REVOKE

n %CHECKPRIV

n CREATEVIEW

n ALTERVIEW

n DROPVIEW

An example of atrigger item of action type SQL Code occursin the pre-filing

deletetrigger for aparent table. Thistrigger item deletes all child rows belonging
to a parent row when the parent row is deleted. It uses the following SQL syntax:

DELETE FROM Chi | dTabl e
WHERE Chi | dTabl e. Parent Ref = :parid

where “parid” isavariable set to the Row ID of the parent table currently being
deleted. Thistrigger item ensures referential integrity by making sure that there
are no orphan child rows.

When entering SQL code for a trigger item, you must insert a space character
between consecutive lines that should be separated by a space. The SQL Code
definition window does not embed a space when it wraps from one line to the
next.

Using M Code in a Trigger

A trigger item of action type M Code may contain one or more lines of M code.
Each line may be up to 255 charactersin length.

The M code lines you define are called as a subroutine. Therefore:

n Youmay use a QUIT statement to exit the trigger item and move on to evalu-
ate the next item (if one exists) in the sequence.

n You may use a NEW statement to protect local variables referenced in the
trigger so that they do not affect the caller.

The M Code defined in triggers may contain DO statements and may therefore
call user-defined M routines.

Open M/SQL Developer Guide 11-21

Chapter 11—Programmer Interface to Applications

Override Queries for Lookups

Open M/SQL lets you define lookup specifications at both the base table and
form levels.

When you define |ookup specifications, Open M/SQL automatically generates a
default SQL query for each lookup query you define. You can optionally modify

this default SQL query to customize lookup selection logic to your exact specifi-
cations.

Specifically, you can modify the WHERE and ORDER BY clauses of each gen-
erated lookup query. When you modify a generated lookup query you create an
override lookup query. You must always use valid SQL syntax when modifying a
generated lookup query.

You can modify a generated lookup query to do the following:

n Change an exact match lookup query to a partial match, or vice versa,

n Useadifferent transformation function from the standard for a given data
type (ALPHAUPR, UPPER, or your own function),

n Make alookup query more restrictive by excluding rows that do not satisfy
some set of criteria,

n Maodify the order in which the rows are displayed in the lookup box.

Computed Fields

A computed field is afield whose value is cal culated by one or more lines of M
statements. The M statements may reference other fields within the current base
table using the curly brace syntax, and may use M $ functions. Computed fields
may also include embedded SQL statements delimited by the ##sql preprocessor
function. Open M/SQL lets you define computed fields for base tables, forms,
and reports.

A computed field must always set itself equal to the value of the cal culation spec-
ified in the M statement(s). You may reference the computed field itself by
enclosing an asterisk in curly braces, {*}. For example:

SET {*}={Qy}*{Price}
SET {*}=$SELECT({City}="Dal | as”: “LOCAL", 1: “ REMOTE")

You may also define IF conditions associated with the computed field that cause
the field to produce aNULL result. An IF condition consists of one or more M
expressions separated by commas and can contain field namesin curly braces.
When an |F condition evaluates to true, the computed field is NULL.

11-22 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

Internal/External Conversion Code

You may define external-to-internal and internal-to-external conversion code for
fields. This code converts field values between external display format and inter-
nal storage format. It consists of M statements that modify the value of %val.

External-to-Internal Conversion Code

External-to-internal conversion code finds the external value of afield in %val
and sets %val to an internal value. In addition, if it detects a problem with the
external value, it can set %0k to zero and %msg to an error message, as described
below in the section entitled “ Additional Validation Code”. For example, the fol-
lowing conversion code trans ates a date from external format to internal ($H)
format:

SET %S=%al do | NT"YDATE SET %val =%ON
I F %val =-1 set % k=0, %vsg="Invalid date”

the entry point INTA"%DATE receives input from the variable %DS and sends
output to the variable %DN.

Internal-to-External Conversion Code

Internal-to-external conversion code finds the internal value of afield in %val
and sets %val to the external value. The following code trandates a date from
internal format to external format:

set %al =$zd(Wal)
The variable %0k has no effect in internal-to-external conversion code.
Other Conversion Code Variables

Conversion code can also reference the following variables:

n %old — internal value of afield asit existed when last retrieved from the
base table.

n %oldext — external value of afield asit existed when last retrieved from the
base table.

n %new — internal value of afield asit currently appears.
n %newext — external value of afield asit currently appears.

For example, to prevent the field “WasSeen” from being changed from Yesto
No, the conversion code for “WasSeen” might include the following line;

I F %l dext[“Y”, Ymewext[“ N set %ok=0, %rsg="Can't...”

Open M/SQL Developer Guide 11-23

Chapter 11—Programmer Interface to Applications

Additional Validation Code

Open M/SQL automatically performs some validation checking of base table and
form-only fields based on the specified data type and information associated with
the data type. For example, Open M/SQL testsadate for valid syntax. It also tests
date fields to make sure that an entry is not earlier than the earliest allowable
date, as mandatorily specified in Date Field Definition window.

The author of a base table or form can specify additional validation code to fur-
ther refine the scope of allowable entries. Additional validation code consists of
M statements that may optionally reference field names using the curly brace
syntax. The internal value of afield residesin the variable %val. Additional vali-
dation code can be used to reject an invalid value for %val by setting %ok to zero
and %msg to atext error message, as follows:

| F %val >$H SET %0ok=0, %rsg="No future dates please.”

Additional validation code can reference the variables %old, %oldext, %onew,
and Y%newext, as described above in the section entitled “ Internal/External Con-
version”.

Required-Maybe Fields

Required-Maybe is an option for base table and form-only fields that allows you
to specify an M condition that determines whether or not the field is required.
When the M condition you specify evaluates to TRUE, the field becomes
required. When the M condition you specify eval uates to FALSE, the field
becomes not required.

The M condition can be any sequence of M expressions separated by commas. It
can also contain field names using curly brace syntax.

For exampl e, suppose you want the base table field “ Employees.LicenseNum-
ber” to become required whenever the field “ Employees.ParkingSpot” is not null.
To do this, you can make “Employees.LicenseNumber” a Required-Maybe field
based on the status of the “ Employees.ParkingSpot” field, by specifying the fol-
lowing Required-Maybe condition:

{ Enmpl oyees. Par ki ngSpot }' =""

This condition evaluates to TRUE unless “ Employees.ParkingSpot” is null or
contains anull internal and external value separated by $C(1).

11-24 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications

Map Subscripts and Pieces

In the Open M/SQL General Mapping facility where you map base tables to
underlying global structures, you can specify subscripts and pieces in base table
maps as M expressions. These M expressions may contain field namesin curly
braces.

For example, a constant subscript “DATA” is specified as:

“ DATA"

A subscript consisting of the value of the “Dept” field in the base table is speci-
fied as:

{ Dept }
A subscript can also be an expression, such as:

$sel ect ({Dept } =" SALES” : “ MARKETI NG', 1: { Dept })

Open M/SQL also allows master map subscripts to be expressions. In master map
subscripts, fieldsin curly braces{} are limited to the RowID and fields on which
the RowlID is based.

See the Open M/SQL Data Dictionary Guide for more information on master
map subscripts.

NEXT Subroutine

If you want a particular map subscript to be traversed by M code other than the
default SORDER on the subscript value, you can define an override NEXT sub-
routine for that subscript. A NEXT subroutine consists of one or more lines of M
code that set the value of:

{Li}
wherei isthe number of the subscript.

You can skip a subscript value by executing a GOTO the label “NEXT". For
example, the following NEXT subroutine for subscript 2:

SET {L2} =$ORDER(~({L2})) GOTO NEXT: { L2} #100=0
skips values that are multiples of 100.
Since anull subscript value indicates that there are no more rows, you should not

use anull condition for the NEXT test. Also, do not use an |F command to per-
form the test.

Open M/SQL Developer Guide 11-25

Chapter 11—Programmer Interface to Applications

The NEXT subroutine can execute a QUIT statement and use a NEW statement
to protect any local variablesthat it uses.

Conditional Map

A conditional map isamap that Open M/SQL appliesto base table dataif a spec-
ified M condition evaluates to true.

The M condition consists of one or more M expressions separated by commas
and can contain field namesin curly braces.

For example, suppose you wanted to create an index of female patients only. You
might define an IF condition for a conditional map, as follows:

I F {Patients. Sex}="F"

11-26 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs

Calling Open M/SQL Objects from M Programs

The following sections describe how to call forms, reports, queries, menu
objects, and old-style menus from within an M program or directly from the M
programmer prompt using the M call syntax.

The M call syntax lets you invoke Open M/SQL objects from any of the follow-
ing locations:

n From atrigger of action type M Code

n From menu option of action type M Code
n From within an M routine

n Fromthe M programmer prompt

Calling Forms

Programmer-defined M code, including routines and inserted M code, can invoke
Open M/SQL forms using the M form call syntax. There are two waysto use the
form call syntax:

n Using the form’s name or internal identification number
n Using the form’s routine prefix

When calling forms that are compiled as NEW, you may use either syntax.

When calling forms that are compiled as OLD, you must use the name/I D# syn-
tax.

Calling a Form By Its Name/ID#

To call aform by its form name or internal identification number, use the follow-
ing syntax:

do formt%sql (formuser,row d, parentid,inquiry, nol oop,
update, callerid, default_array, currrent_array,
edit_array, scroll)

where formisthe name or internal identification number of the form you want to
invoke. It isthe only required parameter

Open M/SQL Developer Guide 11-27

Chapter 11—Programmer Interface to Applications

Calling a Form By Its Routine Prefix

To call aform by its routine prefix, use the following syntax:

do ~<routine_prefix>1(row d, user, parentid,inquiry,
nol oop, updat e, cal l eri d, defaul t _array, currrent _array,
edit_array, scroll)

where <routine_prefix> isthe routine prefix associated with the form you want
toinvokeand “1” isthe system supplied identifier appended to the prefix of the
entry point routine.

Note You may find a form’s routine prefix in the Routine Prefix field of the form-level
Advanced Features window for that form.

Form Call Syntax Parameters

Both versions of the form call syntax use approximately the same parameter list.
The only difference isthe order of the rowid and user parameters, whichis
switched.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign avalue to the third param-
eter, etc.

A null value will mark aplace.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The entire parameters list is optional. You may type empty parentheses () to skip
theentirelist.

Thefollowing table lists and describes the parameters associated with the M form
call syntax:

Table 11-9: Parameters Associated with M Form Call Syntax

Parameter Meaning

rowid The Row ID of a row in the form's base table. This causes the form
to invoke the specified row. If null, the row selection window will
appear (for single-row forms).

user This is a non-meaningful parameter; Open M/SQL no longer uses
this information. Enter the null value (*”) to skip this parameter.

Note: Open M/SQL stores UserName information in the %msq|l
variable.

11-28 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs

Table 11-9: Parameters Associated with M Form Call Syntax (Continued)

Parameter

Meaning

parentid

If the target form is associated with a child table and the form is
designed to be called from a known parent, this parameter must
reflect the Row ID of a row in the parent table. Otherwise, it is
ignored.

inquiry

Set this flag to 1 to specify that the form is to be run in inquiry
mode. Set to O for data entry mode. O is the default.

noloop

Set this flag to 1 to turn form looping OFF. Set to 0 to turn form
looping ON. 0 is the default. This parameter applies to single-row
database forms only.

updatestatus

You may set this flag as follows:

“u” — forces an update of a single row. If set to “u”, you must
specify the RowlID of a current row or a parent refer-
ence using the “rowid” or “parentid” parameters
(parameters 2, 4).

i — forces row insert. If set to “i”, the “rowid” parameter is
optional, and Open M/SQL will assign it if none is spec-
ified.

“d” — displays a form. If set to “d”, you must specify the

RowlID or parent reference of the row you want to dis-

play, unless the form is a form-only form.

callerid

Set this flag to the name of a caller to activate specifications for
variable window placement or other uses of the {%caller} variable.

default_array

Here you may specify an array (actual name is your choice) to
pass in field defaults. For database forms, this applies exclusively
to database fields. For non-database forms, it applies to form-only
fields.

current_array

Here you may specify an array (actual name is your choice) that
will hold current field values on file after the form is exited.

For database forms, this applies exclusively to database fields.

For non-database forms, it applies to form-only fields but only
when the non-database form files data.

edit_array

Here you may specify an array (actual name is your choice) that
will hold the original values of fields that were edited. For database
forms, this applies exclusively to database fields. For non-data-
base forms, it applies to form-only fields but only when the non-
database form transacts filing.

scroll

Set this flag to 1 to activate roll-and-scroll mode, 0 or NULL for
normal windowing mode. You can only activate roll-and-scroll
mode if it is enabled for the current form in the form-level
Advanced Features window.

Open M/SQL Developer Guide 11-29

Chapter 11—Programmer Interface to Applications

Calling Reports

Programmer-defined M code, including routines and inserted M code, can invoke
M/PACT reports using the M report call syntax, as shown below:

do report”%rsql (report_name, user, devi ce, format, bat chsw)
where “report_name” isthe only required parameter.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark aplace.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The table below lists and describes the parameters associated with the M report
call syntax:

Table 11-10: Parameters Associated with M Report Call Syntax

Parameter Meaning

report_name | Specify the name or internal report identification number of the report you
want to run.

user This is a non-meaningful parameter; Open M/SQL no longer uses this
information. Enter the null value (*”) to skip this parameter.

Note: Open M/SQL stores UserName information in the %msql vari-

able.

device Here you may optionally specify the name of any valid output device to
which your system is linked.

format Here you may optionally specify the name of an output format for the
specified device.

batchsw Set this flag to 1 to specify that the report is to be run in the background.
Set to 0 to specify that the report is to be run in the foreground. The
default is 0.

11-30 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs

Calling Queries

Programmer-defined M code, including routines and inserted M code, can invoke
Open M/SQL queries using the M query call syntax, as shown below:

do query™%rsql (query_nane, user, devi ce, f or mat, bat chsw)
where “query_name” isthe only required parameter.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark aplace.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The table below lists and describes the parameters associated with the M query
call syntax:

Table 11-11: Parameters Associated with M Query Call Syntax

Parameter Meaning

query_name Specify the name or internal report identification number of the query you
want to run.

user This is a non-meaningful parameter; Open M/SQL no longer uses this

information. Enter the null value (*”) to skip this parameter.
Note: Open M/SQL stores UserName information in the %msql vari-

able.

device Here you may optionally specify the name of any valid output device to
which your system is linked.

format Here you may optionally specify the name of an output format for the
specified device.

batchsw Set this flag to 1 to specify that the query is to be run in the background.
Set to 0 to specify that the query is to be run in the foreground. The
default is 0.

Open M/SQL Developer Guide 11-31

Chapter 11—Programmer Interface to Applications

Calling Old-Style Menus

Programmer-defined M code, including routines and inserted M code, can invoke
old-style menus using the M menu (old-style) call syntax, as shown below:

do nmenu™%sql (menu_nane, user, | ogi nsw, cal | eri d)
where “menu_name” isthe only required parameter.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark aplace.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The table below lists and describes the parameters associated with the M menu
call syntax:

Table 11-12: Parameters Associated with M Menu Call Syntax

Parameter Definition

menu_name Specify the name or internal report identification number of the old-style
menu you want to invoke.

user This is a non-meaningful parameter; Open M/SQL no longer uses this
information. Enter the null value (*”) to skip this parameter.

Note: Open M/SQL stores UserName information in the %msql vari-
able.

loginsw This is an optional flag that controls the appearance of the User Identifi-
cation window. Set this flag to 1 to invoke the User Identification window
before running the menu. Set it to 0 to skip the User Identification win-
dow. The default is 0.

callerid You may optionally set this parameter to a particular CallerID to activate
any conditions associated with the menu that are based on a certain
value being held by the {Y%caller} variable.

Calling Menu Objects

Programmer-defined M code, including routines and inserted M code, can invoke
menu objectsin either of two ways:

n Using amenu call entry point
n Using the menu object’s routine name

11-32 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs

Calling Menu Objects Using a Menu Call Entry Point
The menu call entry point uses the following syntax:
do menuobj ~*raznnB(i m, f ntype, t nt ype)

The following table lists and describes the parameters associated with the menu
call entry point;

Table 11-13: Parameters Associated with the Menu Call Entry Point

Parameter Meaning

imn This parameter is required. Enter either the internal identification num-
ber or the name of the menu object you want to invoke.

Note: If you identify the menu object by its name, you must use quo-
tation marks to delimit the string.

fmtype This is an optional parameter that you may use to declare the type of
menu from which the menu you are calling is being called. You may
enter the following:

0 or NULL — Pop-Up Menu

1 — Menu Bar
This is useful when you have programmed a menu to respond in certain

ways depending on the menu type of its calling menu, a value which is
stored in the {%menutype} system variable.

tmtype This is an optional parameter that you may use to declare the mode in
which you want to invoke this menu. You may enter the following:

0 or NULL — Pop-Up Menu
1 — Menu Bar

Calling a Menu Object By Its Routine Name

Alternatively, you may call amenu object directly from M code using its routine
name. To do so, you must know the routine prefix for the menu object (the rou-
tine name isformed by the concatenation of the routine prefix and the number 1.)

When you call a menu object by its routine name, you may optionally passin a
value for the Caller ID.

To call amenu object by its routine name, use the following syntax.

do ~<routine_prefix>1(callerid)

For example, if your pop-up menu prefix is“mpl”, and you want to passin a
Caller ID of “Admissions’, you would issue the following:

> do "npll(“Adni ssions”)

Open M/SQL Developer Guide 11-33

Chapter 11—Programmer Interface to Applications

Emulating Form Behavior from M Programs

Open M/SQL provides severa utility entry points to the Open M/SQL routine
%msgl that allow programmer-defined M code to emulate the behavior of Open
M/SQL forms.

The table below lists and describes these entry points to %omsql:

Table 11-14: Entry Points For Emulating Form Behavior

Entry Point Function

help”"%msq|l Displays scrolling help text in a box.

write’%msq| Writes a message on the screen.

$$read"%msq| Reads a data value.

windcIn?%msq| Cleans up screen by erasing the residual display of windows
after they have been exited.

Likethe entry pointsfor invoking Open M/SQL objects, these utility entry points
allow you to pass certain required and non-required parameters.

In all cases, the parameters are position-sensitive, which means that you must
assign some value to the first parameter before you can assign a value to the sec-

ond parameter, and to the second parameter before you can assign a value to the
third parameter, etc.

A null value will mark a place.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

Displaying Help Text in a Help Text Box

You may use the help"%msgl utility entry point to display one or more lines of
help text in a bordered box at a specified location on the screen.

This entry point uses the following syntax:

do hel pr%sql (hel pref, x,y)

where “helpref” isthe only required parameter.

11-34 Open M/SQL Developer Guide

Emulating Form Behavior from M Programs

The table below lists and describes the parameters associated with the
help"%msql utility:

Table 11-15: Parameters Associated with help”%msql Utility

Parameter Meaning

helpref Here you must specify a reference to the variable or global node that
contains the lines of help text you want to display.

X,y Here you may optionally specify the coordinates for drawing the upper
left corner of the help box.

The value of x can range from 1 to 80, and the value of y can range from
1 to 24. The upper left corner of the screen is represented by the coordi-
nates (1,1).

The x and y coordinates must both be non-null, or they must both be null.
If they are both null, the utility uses the current cursor position, as
reflected in the variables $x and 3y, i.e. x=$x+1, y=$y+1.

The help"%msql utility automatically draws a box that islarge enough to accom-
modate all the help text that you provide, unless there is insufficient space on the
screen below the starting position of the box to accommodate the help text. If
there isinsufficient space, the help text will scroll.

Inascrolling help text box, users may use the <up ARROW> and <DOWN ARROW>
aswell as <PREVIOUS SCREEN> and <NEXT SCREEN> keystrokes to navigate the
help text lines.
For example, the following call to help*"%msql:

>do hel pr%rsql (“~rh(12,6)", 20, 10)

displays help text lines as follows:
Arh(12,6,1)=first line

Arh(12, 6,2)=second |ine
in as large abox as necessary with its upper |eft corner at screen position (20,10).
Writing Message Text

The write®%msqgl utility entry point writes a message to the screen using the
same conventions for timeout and erase as used by Open M/SQL forms.

This entry point uses the following syntax:

do witenr%rsql (message, ti meout sec, erasesw, X, Yy)

where “message” isthe only required parameter.

Open M/SQL Developer Guide 11-35

Chapter 11—Programmer Interface to Applications

The table below lists and describes the parameters associated with the
write"%msqgl utility:

Table 11-16: Parameters Associated with write®*%msql Utility

Parameter

Meaning

message

Here you must specify the text of the message you want to write to the
screen.

You must enclose the message text in quotation marks.

timeoutsec

Here you may optionally specify a number of seconds to wait for a read
after the message is printed.

If you set the timeout to a number greater than 0, the cursor will pause
for the specified number of seconds (or until the user presses a key), and
then return.

If you set the timeout to 0 or null, the cursor will return immediately after
printing the message.

erasesw

Here you may set a flag to specify whether the utility should erase the
message before returning.

Set this flag to 1 to erase the message before returning.

Note: You should use this parameter in conjunction with a timeoutsec
value greater than 0.

X,y

Here you may optionally specify the coordinates for the cursor position at
which to start the message.

The value of x can range from 1 to 80, and the value of y can range from
1 to 24. The upper left corner of the screen is represented by the coordi-
nates (1,1).

The x and y coordinates must both be non-null, or they must both be null.
If they are both null, the utility uses the current cursor position, as
reflected in the variables $x and 3y, i.e. x=$x+1, y=$y+1.

Reading Fields

The $$read%msg| utility entry point mimics the behavior of afield on an Open
M/SQL form. This function displays a text caption and a data entry slot of defin-
ablelength to the screen at specified coordinates. It then reads in the data value
input by the user. It supports both editing and horizontal scrolling capabilities.

This entry point uses the following syntax:

set <gl vn>=3r ead”%rsql (pronpt, X, y, scrl en, naxl en, def aul t)

where <glvn> isaglobal or variable name and “prompt” is the only required

parameter.

The table below lists and describes the parameters associated with the
$Pread"%omsgl utility:

11-36 Open M/SQL Developer Guide

Emulating Form Behavior from M Programs

Table 11-17: Parameters Associated with $$read”%msql Utility

Parameter Meaning

prompt Here you may specify the text of the caption that precedes the field’s
data entry slot.
This is a required parameter, though you may set it to null to not display a
caption.
Note: Open M/SQL automatically draws the data entry slot using

underscores.

X,y Here you may optionally specify the coordinates for the cursor position at
which to start displaying the caption text.
The value of x can range from 1 to 80, and the value of y can range from
1 to 24. The upper left corner of the screen is represented by the coordi-
nates (1,1).
The data entry slot begins one space after the prompt or, if prompt is null,
at the specified (x,y) coordinates.
The x and y coordinates must both be non-null, or they must both be null.
If they are both null, the utility uses the current cursor position, as
reflected in the variables $x and 3y, i.e. x=$x+1, y=$y+1.

scrlen Here you may optionally specify the length of the field’s data entry slot on
the screen.
This value cannot exceed the value for the maxlen parameter. It also
cannot exceed the value of 80 minus the length of the prompt parameter.
If this value is less than the value for the maxlen parameter, the field
allows horizontal scrolling.
If this value is null, maxlen is assumed to be null also.

maxlen Here you may optionally specify the maximum length for a field value.

default Here you may specify an optional default value for the field.

Open M/SQL Developer Guide 11-37

Chapter 11—Programmer Interface to Applications

Cleaning Up Windows

You can use the Window Cleanup function (windcln"%msql) to erase windows
from the screen after they have been exited. This function helps to resolve prob-
lemsrelated to the residual display of window graphics after a window has been
exited.

In Open M/SQL, whenever a user exits awindow, the system schedules the win-
dow to be erased at the next opportune moment. Opportune moments normally
occur before a new window is painted, or when the cursor is sitting on a prompt
waiting for user input. While thisis sufficient in most situations, sometimes it
causes the erasure of windows to be delayed. This can be especially troubling if
you are using M code or routines as an intermediary between Open M/SQL
objects.

For example, suppose amenu object callsan M routine, and in turn the M routine
makes callsto various form routines. As each of the formsisexited, it is possible
for residual instructions that erase windows on the form to be left unresolved
until such time as another formis called. This can cause strange behavior, such as
windows transiently flashing on the screen, or portions of windows from the pre-
vioudly called form remaining unerased.

The Window Cleanup function erases all window graphics associated with any
object that has been exited and is, therefore, waiting in the erase queue.

The Window Cleanup function uses the following syntax:

do wi ndcl n"%rsql

There are two cases after a window/menu object is exited where the Window
Cleanup function does not have any effect:

1. Thewindow/menu object is set to not erase upon exit

2. A user exitsviathe GETOUTALL action

In these cases, Open M/SQL does not schedule any windows for erasure, there-
fore the Window Cleanup action has no effect.

Note Whenever you call a form or menu object directly from M code, you should always
check the value of the %r variable upon returning to the M routine. If %r>103, this
indicates that the user exited via a GETOUTALL action, in which case the M rou-
tine should quit immediately. This is important because when a user exits via a
GETOUTALL action, Open M/SQL does not schedule any windows to be erased.
Therefore, if the M routine calls another form or menu object, it may encounter
unerased screen clutter from the previous form/menu object.

11-38 Open M/SQL Developer Guide

Establishing Authorization ID from Programmer Mode

Establishing Authorization ID from Programmer Mode

Note

Open M/SQL requires that each user have an Open M/SQL Authorization ID in
order to use the system. The Authorization ID is a character string that identifies
the current user to Open M/SQL and recalls the Open M/SQL privileges and
setup parameters assigned to that user. All Open M/SQL security is based on the
Authorization ID.

Open M/SQL stores the Authorization 1D of the current user in the %omsqgl vari-
able.

Typically, users establish their Authorization IDs by entering a UserName and
Password into the User | dentification window, which Open M/SQL displays dur-
ing login. However, users may also establish their Authorization IDs by setting
%msgl directly from M.

To passthe Authorization ID directly into %msql, issue acommand using the fol-
lowing syntax at the M prompt before entering Open M/SQL:

> do setai d*%rsql (“<User Nanme>")
where <UserName> is a UserName that isregistered in the User Table.

For example:

> do setai d*%sql (“Zeus”)

When setting the Authorization ID this way, you do not need to specify a pass-
word.

After issuing this command, user “Zeus’ canlog in to Open M/SQL by typing
the following command:

> do "%sql

If the value passed into %msql corresponds to a valid UserName, Open M/SQL
acknowledges all development environment access privileges and object-level
privileges assigned to that user.

If the value passed into %emsgl does not correspond to avalid UserName, Open
M/SQL gives the user an Authorization ID of “unknown.” Users classified as
“unknown” are limited to minimal devel opment environment access privileges
(basically, run-time access only) and have object privileges only for those objects
on which privileges are granted to user “_PUBLIC".

If auser passes his’her Authorization ID directly into %emsgl, Open M/SQL does
not display the User Identification window at user login.

Open M/SQL Developer Guide 11-39

Chapter 11—Programmer Interface to Applications

Intermixing Open M/SQL Objects with User-Defined M
Routines

Open M/SQL provides a programmer utility called %msglutl that helps to pre-
vent potential conflicts between user-defined M routines and critical Open
M/SQL variables.

Currently, %omsqglutl supports three functions called by the following entry
points:

n pushvars*%msglutl
n popvars*%msglutl
n $$msglvars"%emsglutl

pushvars”%msqlutl

The pushvars®%msqlutl function protects critical Open M/SQL variables by
pushing them out onto a stack.

You should use this entry point prior to invoking any user-defined M code that
might potentially kill or overwrite some of these variables. You can call thisentry
point in either of two modes:

1. Local Variablesmode

In Loca Variables mode, pushvars*%msglutl pushes only those variables
which are local to specific Open M/SQL objects, while leaving intact Open
M/SQL global variables, which are needed to communi cate between various
Open M/SQL objects.

To call pushvars*¥msglutl in Loca Variables mode, use the following syn-
tax:

do pushvars®%msql utl (0)
Or, when running Open M/SQL on aDTM system, use the following syntax:
do pushvar s"%vBQLUTL(0)

You may want to use this mode when your application is executing some
combination of user-defined routines and Open M/SQL objects, as for exam-
plein the following sequence of events:

User Routine --> Menu Object --> User Routine --> Form

11-40 Open M/SQL Developer Guide

Intermixing Open M/SQL Objects with User-Defined M Routines

2. All Variables mode

In All Variables mode, pushvars*%msglutl pushes not only the local Open
M/SQL variables but the global variables aswell.

To call pushvars*¥%msglutl in All Variables mode, use the following syntax:
do pushvars®%sql utl (1)

Or, when running Open M/SQL on a DTM system, use the following syntax:
do pushvar s"%vBQLUTL(1)

You may want to use this mode when your application is calling from an
Open M/SQL object into a user-defined routine and does not invoke any
other Open M/SQL objects, as for example in the following sequence of
events:

Menu (bject -> UserRtnl -> UserRtn2 -> User Rtn3
popvars®%msqlutl

The popvars™¥msglutl function reinstates the Open M/SQL variables which
have been pushed out onto a stack.

You should use this entry point when returning from user-defined code after a
previous call to pushvars*%msglutl.

popvars®*%msglutl accepts no arguments.

To call popvars*%msglutl, use the following syntax:

do popvars”%sql ut |

Or, when running Open M/SQL on aDTM system, use the following syntax:
do popvar s*%vBQLUTL

Open M/SQL Developer Guide 11-41

Chapter 11—Programmer Interface to Applications

$$msqlvars”%msqlutl

The $$msglvars*%msqlutl function displaysalist of critical Open M/SQL global
variables which must never bekilled or overwritten by user-defined M code.

You might use this function as an argument for an exclusive kill list, for example:

SET 1ist=$$nsql var s"%sql ut |
KILL(1i st)

Thelist of critical Open M/SQL variables stored by the $$msglvars*%msgl utl
function includes the following:

db, IR %lir,fro, h, kt, % s, | ang, %ode, %rsql , %rst ack, %nw,
%o, % , % dsm r epai nt, % r ans, %ol set, %a, %bvat s, %e,
of t, %h, i pe, %wurb, %, Yms

11-42 Open M/SQL Developer Guide

Contents of Applications

Contents of Applications

The remainder of this chapter describes the routines and globals that comprise
base tables, forms, menu objects, old-style menus, reports, and queries.

Routine Names

Note

Each form, menu object, report, or pre-defined query must be compiled before it
can be run.

Old-style menus do not require compilation.

Furthermore, each base table associated with aform, report, or query must be
compiled before the form, report, or query can be compiled.

Compilation generates a set of executable routines. These routines perform func-
tions such as lookup and filing for a base table, drawing windows for aform, and
printing output and cal culating totals for areport.

M achine reguirements limit the maximum size of asingle routine. If more codeis
needed than can fit in asingle routine, Open M/SQL generates multiple routines.
To ensure compatibility across implementations, InterSystems recommends that
you limit the maximum size of a single routine to 8KB, though this limit is not
universal.

Each base table, form, menu object, report, and query has aroutine prefix used to
produce the names of all of its associated routines when it is compiled. The rou-
tine prefix is an a phanumeric name (leading character al phabetic) with a maxi-
mum length of 7 characters. When defining an object, you have the option of
specifying a customized routine prefix or accepting the default routine prefix.
Open M/SQL creates full routine names by appending a single character to this
prefix. The following table shows the default routine name prefixes for al com-
pilable objects:

Table 11-18: Default Routine Name Prefixes

Object Default Prefix
Table mtn
Form mwn
Menu Bar mbn
Pop-Up Menu mpn
Report mrn
Query mgn

where n is a one-character unique identifier appended by the compiler.

Open M/SQL Developer Guide 11-43

Chapter 11—Programmer Interface to Applications

Note

The compiler generates the one-character unique identifier in the sequence 1-9,
followed by uppercase A-Z, followed by lowercase a-z. This amounts to a maxi-
mum of 61 distinct routine names that can be associated with a particular base
table, form, menu object, query, or report.

For example, given a base table with the routine prefix “rtname”, the compiler
generates the following consecutive routine names:

rtnanel

rt name9

rt naneA

rtnanez

rtnanea

rtnanez
If you change the routine prefix of a base table, form, menu object, report, or
query, you must be sure that the routine names generated from the new routine

prefix do not cause conflicts with any existing user-defined routine names. Open
M/SQL will not detect these conflicts.

For example, you should not assign the routine prefix “rdf” to any objectin a
directory that contains user-defined routine names such as “rdf1”, “rdff”, or
“rdfX”, etc. You may, however, assign the routine prefix “rdf” to an object in a
directory that contains a user-defined routine called “rdf11, since the compiler
generates routine names by appending only one character to the routine prefix.

When you change a routine prefix, Open M/SQL does NOT delete the routines
with names that begin with the old prefix.

Contents of Base Table Routines

The compiled routines for an Open M/SQL base table contain all of the follow-
ing:

n Filing code for INSERT, UPDATE, and DEL ETE operations, including data
type and other validation checking and internal/external conversion code.

n A compiled SQL query for retrieving the old values for arow, which is used
during UPDATE operations to determine which values have changed. This
query is called the Update Query for the base table.

n A compiled SQL query for each base tablefield specified as“Unique” in the
base table definition, which is used to determine whether another row exists
with anidentical value. This query is called the Uniqueness Query for a base
table field.

11-44 Open M/SQL Developer Guide

Contents of Applications

n Compiled SQL queries for default lookup specifications (row selection crite-
ria), which are used by forms to select rows from the base table.

n Compiled M code or an SQL statement for each base table trigger item.
Entry Points to Primary Base Table Routine

The first compiled routine for a base table, whose name is the table’s routine pre-
fix concatenated with 1, contains three entry pointsto the filing operationsfor the
base table (insert, update, and delete). These filing entry points operate on base
table rows by calling the associated SQL statement, e.g. INSERT, UPDATE, or
DELETE. You should not call these entry pointsdirectly fromthe M programmer
prompt.

The tags for the three filing entry points are:
Table 11-19: Filing Entry Points to Primary Base Table Routine

Entry Point Function

insert M code that validates and then inserts a new row into the base
table.

update M code that validates and then updates a base table row.

delete M code that validates and then deletes a row from the base table.

Base Table Definition Globals

Open M/SQL stores additional information about base tablesin the “mdd and
~mddc globals, as described in the following table:

Table 11-20: Storage of Base Table Information

Global Contents

Amdd(1,irn) Stores base table information, where irn is a unique identifying num-
ber for the base table.

Amddc(1,irn) Stores information about the compiled base table routines.

Open M/SQL Developer Guide 11-45

Chapter 11—Programmer Interface to Applications

Contents of Form Routines

The compiled routines for an Open M/SQL form contain all code necessary to
run the form, including the following:

n Code to draw each window in the form and handle user interaction with data
entry fields.

n Compiled SQL queries for lookup specifications (row selection criteria) to
select rows from the base table associated with the form.

n Compiled M code or an SQL statement for each form, window, and field trig-
ger.

Form Definition Globals

Open M/SQL stores additional information about forms in the “mform and
Amformc globals, as described in the following table:

Table 11-21: Storage Of Form Information

Global Contents

Amform(iform) Stores form, window, and form field information for the form,
where iform is a unique form identifier.

Amformc(iform) Stores information about the compiled form routines.

Contents of Menu Object Routines

The compiled routines for an Open M/SQL menu object contain the following:

n Codeto draw menu bars or pop-up menus and handle user interaction with
dataentry fields.

Menu Object Definition Globals

Open M/SQL stores additional information about menu objects in the “mobject
global, as described in the following table:

Table 11-22: Storage Of Menu Object Information

Global Contents
~mobject(“object”, Stores information about the compiled menu object routines.
“menu”,imn)

11-46 Open M/SQL Developer Guide

Contents of Applications

Contents of Old-Style Menu Routines

Old-style menus do not require compilation; therefore Open M/SQL does not
generate any compiled routines for them.

Open M/SQL stores all information about old-style menus in the global
~mmenu(imenu), where imenu is a unique menu identifier.

Contents of Report Routines
The compiled routines for an M/PACT report contain compiled SQL queries and
the necessary code to calculate subtotals, totals, and all user-defined code (e.g.
computed fields) and to print headers, trailers, and all data.

Report Definition Globals

Open M/SQL stores additional information about reports in the “mreport and
~mreportc globals, as described in the following table:

Table 11-23: Storage Of Report Information

Global Contents

Amreport(ireport) Stores report information where ireport is a unique report
identifier.

~mreportc(0,ireport) Stores information about the compiled report routines.

Contents of Query Routines

The compiled routinesfor a pre-defined query created viathe Query Generator or
Interactive Query Editor contain compiled SQL queries and the necessary codeto
print the query results.

Open M/SQL stores additional information about the query in the global
~mgl(iquery), where iquery is aunique query identifier.

Open M/SQL Developer Guide 11-47

Chapter 11—Programmer Interface to Applications

11-48 Open M/SQL Developer Guide

Open M/SQL Developer Utilities

CHAPTER

Open M/SQL provides a group of utilities to help application programmers man-
age their Open M/SQL applications. These utilities are available on the Devel-
oper Utilities menu, which is accessible via an option on the Open M/SQL Main
Menu.

This chapter describes how to use each of the utilities on this menu.

Specifically, it covers the following topics:

n

n

Accessing the Developer Utilities Menu

Using the Object Compile Driver Utility
Checking the Integrity of Open M/SQL Objects
Searching for Strings in Open M/SQL Objects
Invoking Macro Source Routine Utilities
Querying Objects by Routine Prefix

Nationa Language Reports

Open M/SQL Developer Guide 12-1

Chapter 12—Open M/SQL Developer Utilities

Accessing the Developer Utilities Menu

The Developer Utilities menu contains utilities that can help you manage your

Open M/SQL applications.

Procedure To access the Developer Utilities menu:

1. AttheM programmer prompt, type the following command to enter

Open M/SQL:

> do "%sql

You see the Open M/SQL Main Menu, as shown below:

3 Data Dictionary
Forns

Reports

Queries

Menu Gener at or
Syst em Managenent
Privil eges

Devel oper UWilities
User Uilities
Server Managenent
Rel ati onal Gateway
Hel p Options

W W W W W W e W

3

Open M SQ Menu 03: 50PM

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

UAAACpen M SQL MenuAAA
3 3

3
3
3
3
3
3
3
3
3
3
3
3
3

AAAAAAAAARAAAAAAAAAAAAD
Wednesday Jul 05, 1995 03:50PM
Li censed to Devel opnent Testing. Copyright (c) 1993 -

Directory: /us/land/
InterSystens Corporation

Press <Hel p> For Hel p

2. From the Open M/SQL Main Menu, select the Developer Utilities

option.

Note: You may type v to select this option—it is a mnemonic accelerator.

12-2 Open M/SQL Developer Guide

Accessing the Developer Utilities Menu

You see the Devel oper Utilities menu, as shown below:

AAAAAAAAAAAAAAARAAAARAAAAAAAAAAAA CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAARAARAAAAAAA

UAAAAM SQL Devel oper UtilitiesAAAA;
3

3
3 Export/Inport Options

3 o) ect Conpile Driver

3 MSQ Object Integrity Checking
3 oject String Search Wility

3 Full Screen Editor

3 Macro Routine Uilities

3 Query Object By Routine Prefix
3 National Language Reports

3
A

WO w W W W W W

ARAAARAAAAAAAAARAAAAAAAAARAAAAAAAU

Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

M SQ. Devel oper Utilities 03:50PM Press <Hel p> For Help

Note: The Database Administrator can restrict users from accessing the
Developer Utilities menu by disabling the Developer Utilities option
in the User Security Definition form.

The following table lists and describes the options located on the Devel oper
Utilities menu:

Table 12-1: Options on Developer Utilities menu

Option Description

Export/Import Options | Select this option to use the Export/Import utility (EIU), an auto-
mated, window-based utility that allows you to port Open M/SQL
object definitions between different directories and different
computers.

We do not document the use of the Export/Import utility in this
guide. For complete documentation on how to use this utility,
see the Open M/SQL Database Administrator’s Guide.

Object Compile Driver | Select this option to use the Object Compile Driver utility, which
utility allows you to define compilation configurations for groups of
multiple objects or entire applications. When you run a compila-
tion configuration, it batch-compiles the code for all included

objects.
Object Integrity Select this option to use the Object Integrity Checker utility. This
Checker utility utility checks the integrity of specified object definitions or

groups of object definitions in the current directory and gener-
ates a report of all integrity errors that it finds. You can also set
the Integrity Checker to automatically correct some of the integ-
rity errors it finds.

Open M/SQL Developer Guide 12-3

Chapter 12—Open M/SQL Developer Utilities

Table 12-1: Options on Developer Utilities menu (Continued)

Option

Description

Object String Search
utility

Select this option to use the Object String Search utility. This util-
ity searches through specified object definitions for a specified
text string.

Full Screen Editor

Select this option to enter the Full Screen Editor environment,
where you may create and edit routines. When you exit the Full
Screen Editor, you return to the Developer Utilities menu.

Macro Routine Utilities

Selecting this option invokes a submenu called Routine Utilities.
The Routine Utilities submenu displays a list of Open M/SQL
routine utilities. You may select any option on the Routine Utili-
ties submenu to invoke and use the corresponding routine utility.
When you exit the routine utility, you return to the Routine Utili-
ties menu.

Query Object By Rou-
tine Prefix

Select this option to access the Object Routine Prefix utility. This
utility lets you look up any Open M/SQL routine prefix to obtain
information about where the routine is being used.

National Language
Reports

Select this option to print the National Language Report, which
displays the translations provided for all system-generated mes-
sages, key labels, menu titles, and menu option text throughout
the Open M/SQL environment.

12-4 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

Using the Object Compile Driver Utility

The Object Compile Driver utility lets you define and store lists of Open M/SQL
objects for serial compilation.

Using this utility, you can recompile large sections of your application or all of
your application, with a single command.

To use the Object Compile Driver utility, you create and store compilation con-
figurations. Each compilation configuration can include multiple objects of al of
the following types:

n BaseTables

n Forms

n Menu Objects
n Reports

n Queries

n Routines

When you compile an Object Compile Driver configuration, you batch-compile
all included objects.

The Object Compile Driver utility is available as an option on the Devel oper
Utilities menu.

Procedure To use the Object Compile Driver utility:

1. From the Developer Utilities menu, select the Object Compile Driver
option.

You see the Object Compile Driver lookup window, as shown below:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAD] ect Conpil e
Driver AAAAAAAAAAAAAAAAAAAAAAAAAA

Configuration Name

W W W www e
W W W www e

AAAAAAAAAAARAAAARAAAARAAAARAAAARAAAARAAAAAAAAAAAAAAAAAARAAAAAAAAAA
AAAAAAAAAAU

Open M/SQL Developer Guide 12-5

Chapter 12—Open M/SQL Developer Utilities

Obj ect Conpile Driver Sel ecting Press <Hel p> For Help ‘

2. At the Configuration Namefield in the Object Compile Driver lookup
window, enter a configuration name, and press <RETURN>.

You can retrieve an existing compilation configuration to edit or create anew
one.

To retrieve an existing compilation configuration, enter a complete or partial
name, and press <RETURN>. You see alookup box that lists all matching
entries. To see alookup box that lists all existing entries, leave the Configura-
tion Name field blank and press the <SEARCH CURRENT TABLE> key. Usethe
cursor positioning keys to navigate within the lookup box, and press
<RETURN> to select an entry.

To create a new compilation configuration, enter a new configuration name
(it must not match the name of any existing compilation configuration). You
seethe “Isthisa NEW Object Compilation Configuration?’ dialog box, as
shown below: .

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAD] ect Conpil e
Driver AAAAAAAAAAAAAAAAAAAAAAAAAAA,

Configuration Name Sanple Configuration

W w W W w e

UAAARAAAARAAAAAAAAAAAAAAAAAARAAAARAAAARAAAARAAARAA,,

PR

AAAAAAAAAAAAAA® |'s this a NEW Object Conpilation Configuration?
SAAAAAAAAAAAAU
3 3
oo sYes > S Noo> S
AAU

Obj ect Conpile Driver Sel ecting Press <Hel p> For Hel p

Here, you may create a new compilation configuration by pressing <RETURN>
on the <Yes> action field.

12-6 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

When you have entered a configuration name (either new or existing), the
Object Compile Driver window fills out with its complete set of fields, as
shown below:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAD] ect Conpil e

Dri ver AAAAAAAAAAAAAAAAAAAAAAAAAAA,

2 Set Conpilation Qption Defaults 3
SAAA
AAAAAAAAAAAZ
3 3
3 Configuration Name Sanple Configuration 3
3 3
3 < Edit Configuration > < Conpile Configuration > < Last Conpile Results >3
3 3

AA
AAAAAAAAAAAU

Obj ect Conpile Driver Unsaved Dat a Press <Hel p> for Help

The table below lists and describes the fields |ocated on the Object Compile
Driver window:

Table 12-2: Fields on Object Compile Driver window

Field Description

Configuration Name Here you may edit the name specified for compilation config-
uration in the lookup window. Names may range from 1 to 40
characters in length and may contain any alphanumeric or
punctuation characters, including underscores and blank
spaces.

This is a required field.

<Edit Configuration> Press <RETURN> on this action field to access the Object
Compile Driver ltems window, where you may define the con-
tents of your compilation configuration.

<Compile Configuration> | Press <RETURN> on this action field to run the compilation
configuration.

<Last Compile Results> Press <RETURN> on this action field to access the Object
Compile Driver Results window, where you review the results
from the last time the current compilation configuration was
compiled.

Open M/SQL Developer Guide 12-7

Chapter 12—Open M/SQL Developer Utilities

Setting Compilation Option Defaults

For each compilation configuration you create, you may set up a series of compi-
lation option defaults to control how Open M/SQL compiles the various objects
inthelist.

These compilation option defaults operate on a configuration-wide basis, i.e.,
they affect either all objects defined in the entire compilation list or all objects of
acertain object type defined in the list.

You can edit these compilation option defaults at any time.

Procedure To set defaults for compilation options:

1. From the Object Compile Driver window, pressthe
<ENHANCE><ENHANCE> keystroke sequence to access the Object Com-
pile Driver menu bar.

2. From the Object Compile Driver menu bar, select the Set Compilation
Option Defaults option.

Note: This is the only option on the Object Compile Driver menu bar.

You see the Compilation Options window, as shown below:

UAAAUAAAAAAAAAAAAAAAAAAAAAAACOoMp | ation
Opt i onsAAAAAAAAAAAAAAAAAAAAAARAAARRA,

3 Sez 3 3
SAAA3 Configuration Wde Settings SAAAAS3
3 3 3 3
33 Conpil e for Vendor |nterSystens o 3 3
3 3 3 3

3

<SAAA

AAxs >3
SR Form Conpi | ati on Default Options s %
AAAA3 SAAAAU

3 Conpi | e Using Local Storage? Sane as Last Conpile 3

3 Conpil e Tied Menu Obj ects? Sane as Last Conpile 3
SAAARAA
AA3

3 Menu Cbj ect Conpilation Default Options 3

3 3

3 Menu Cbj ect Conpile Type? Sanme as Last Conpile__ 3

3 3

Conpi |l e Using Local Storage? Yes_

SAAA
AA3
Routi ne Conpil ation Default Options

Check Routine's Syntax? Yes_
File Routine's hject Code? Yes_

w W W W
w W W W

AAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAU

Enter the vendor to conpile the objects for. Press <CHO CE> for |ist.

12-8 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

The following table lists and describes the fields on the Compilation Options
window:

Table 12-3: Fields on Compilation Options Window

Objects

Field Definition Affected
Compile for | Here you specify the name of the M implementation for which | Allobjects
Vendor you want to compile the objects in your compilation list. You in list

may choose among the following M implementations:

n DSM

n DTM

n InterSystems

n MSM

The host M system on which you are currently running is the
default response.

When you run a compilation configuration, Open M/SQL gen-
erates intermediate code for the M implementation you spec-
ify here.

This option gives you the ability to compile the objects in your
compilation list for an M implementation other than the one
you are currently using.

You can use this option to generate intermediate code for an
application before moving it to a run-time environment on
another M system. For example, you might want to develop
your application on an InterSystems UNIX platform and run
your application on a PC with DTM. To do this, you could build
a compilation configuration for the complete application and
compile it for DTM, then move the globals and the .INT code
for the compiled routines from the UNIX machine to the PC.

Compile The Local Storage option is designed to help you avoid situa- | Forms
Using Local | tions where <STORE> errors occur during the compilation of | only
Storage? a form due to the building of large queries.

If you answer No to this field, Open M/SQL compiles all forms
included in the compilation list using globals and not in local
storage. This protects against <STORE> errors but slows
compilation time.

If you answer Yes to this field, Open M/SQL compiles all
forms included in the compilation list using local arrays. This
makes the compilation faster. When the forms you are com-
piling are not unusually large or complex, you can safely cap-
italize on the speed advantages of using local storage. If,
however, you encounter a <STORE> error while compiling in
local storage, you should change your response to No.

If you answer Same as Last Compile, Open M/SQL compiles
every form the same way it was last compiled.

Same as Last Compile is the default response.

Open M/SQL Developer Guide 12-9

Chapter 12—Open M/SQL Developer Utilities

Table 12-3: Fields on Compilation Options Window (Continued)

Objects
Field Definition Affected
Compile Here you may answer Yes, No, or Same as Last Compile to Forms
Tied Menu indicate whether or not you want Open M/SQL to recompile only
Objects? menu objects that are tied to the forms in your compilation list.
In order to be recompiled under this option, a menu object
must be explicitly tied to the form, not just attached to it.
Note: This option only applies to forms that are compiled
as NEW.
Same as Last Compile is the default response.
Menu Object | Here you may specify how you want Open M/SQL to compile | Menu
Compile the menu objects in your compilation list. Objects
Type Press the <LIST CHOICES> key to see a list of the menu object | O
compilation options from which you may choose. They
include:
n Pop-Up Menu — Compile all menu objects as pop-up
menus.
n Menu Bar — Compile all menu objects as menu bars.
n Both Pop-Ups and Menu Bars — Compile all menu
objects as both pop-up menus and menu bars.
n Same as Last Compile — Compile all menu objects the
same way as they were last compiled.
The default option is Same as Last Compile.
Compile Here you may answer Yes or No to indicate whether or not Menu
Using Local | you want to compile the menu objects included in your compi- | Objects
Storage? lation list using local storage. only
Answer Yes to compile menu objects using local arrays. This
makes the compilation faster but may cause <STORE> errors
to occur.
Answer No to compile menu objects using globals. This pre-
vents space allocation errors but makes the compilation
slower.
Yes is the default response.
Check Rou- | Answer Yes or No to specify whether or not you want Open Routines
tine’s Syn- M/SQL to perform syntax checking on the routines included in | only
tax? your compilation list.
Yes is the default response.
File Rou- Answer Yes or No to specify whether or not you want Open Routines
tine's Object | M/SQL to file the object code generated by compiling the rou- | only
Code? tines included in your compilation list.
Yes is the default response.

12-10 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

. Inthe Compilefor Vendor field, specify the name of the M implementa-
tion for which you want to compile the objectsin your compilation list.

The host M system on which you are currently running is the default
response.

Note: You may compile for an M implementation other than the one you
are currently using.

. At theUse Local Sorage During Compilefield, answer Yes, No, or Same
as Last Compile to indicate whether you want to compile theforms
included in your compilation list using local arraysor globals.

Thisfield applies only to forms being compiled as NEW.
Same as Last Compileis the default response.

. At the Recompile Any Tied Menu Objects? field, answer Yes, No, or
Same as Last Compile to recompile menu objectsthat are explicitly tied
totheformsin your compilation list.

Same as Last Compileis the default response.

. At the Menu Object Compile Typefield, select an option to indicate how
you want Open M/SQL to compile the menu objectsincluded in your
compilation configuration.

You may press the <LIST CHOICES> key to see alookup box that lists the
menu object compilation options from which you may choose. They include:

¢ Pop-Up Menu

* Menu Bar

» Both Pop-Ups and Menu Bars

* SameasLast Compile

Same as Last Compileis the default response.

. At the Compile Using L ocal Storage? field, answer Yesor No toindicate
whether you want to compile the menu objectsincluded in your compila-
tion list using local arraysor globals.

Yes is the default response.

. At the Check Routine Syntax? field, Answer Yesor No to specify
whether or not you want Open M/SQL to perform syntax checking on
theroutinesincluded in your compilation list.

Yes is the default response.

Open M/SQL Developer Guide 12-11

Chapter 12—Open M/SQL Developer Utilities

9.

10.

At the File Routine’'s Object Code? field, Answer Yesor No to specify
whether or not you want Open M/SQL to file the object code generated
by compiling the routinesincluded in your compilation list.

Yes is the default response.

When you finish defining the compilation optionsfor your compilation
configuration, pressthe <PROCEED> key to save your definitionsand exit
the Compilation Options window.

Defining the Contents of a Compilation Configuration

Your compilation configuration can include multiple objects the following types:

n

n

n

n

n

n

Base Tables
Forms

Menu Objects
Reports
Queries
Routines

You may add as many objects to your compilation configuration as you wish.

You do not need to have privileges on an object to include it in your compilation
configuration.

Procedure To define the contents of a compilation configuration:

1. From the Object Compile Driver window, press <RETURN> on the <Edit

Configuration> action field.

12-12 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

You see the Object Compile Driver Items window, as shown below:

AQbj ect Conpile
AAAAA.

3 Set Conpilation Option Defaults 3
SAAA
AAAAAAAAAAAS
3

3

Configuration Name Sanple Configuration 3

3

3 3
3 < Edit Configuration > < Conpile Configuration > < Last Conpile Results >3
UAAAAAAAAAAAAAAAAAAAAAAAAACb] ect Conpile Driver

I t emsAAAAAAAAAAAAAAAAAAAAAAAA,

3 3
3 (bj ect Type Object Nane Conpi | e? 3
3 ___ <Advanced Opts> <Edit>3
3 ____ <Advanced Opts> <Edit>?
3 ____ <Advanced Opts> <Edit>3
3 ____ <Advanced Opts> <Edit>?
3

3

3

3

3

____ <Advanced Opts> <Edit>3
____ <Advanced Opts> <Edit>?
____ <Advanced Opts> <Edit>3
<Advanced Opts> <Edit>?
<Advanced Opts> <Edit>3
AA
AAAAAAAAAAAAU

Obj ect Conpile Driver ltens Press <Hel p> For Help

The table below lists and describes the fields |ocated on the Object Compile
Driver Items window:

Table 12-4: Fields on Object Compile Driver Items window

Field Description

Object Type Here you specify the type of the object you want to add to the
compilation list.

Press the <LIST CHOICES> key to see a list of the object types
from which you may choose. They include:

n Base Tables
n Forms

n Menu Objects
n Reports

n Queries

n Routines

Object Name Here you specify the name of the particular object you want to
add to your compilation list.

Press the <LIST CHOICES> key to see a list of all objects (of the
specified object type) defined in the current database.

Note: When specifying the name of a routine, you must
explicitly specify a routine extension, either .MAC or
INT.

Open M/SQL Developer Guide 12-13

Chapter 12—Open M/SQL Developer Utilities

Table 12-4: Fields on Object Compile Driver Items window (Continued)

Field

Description

Compile?

Here you may enter Yes or No to indicate whether or not you
want to compile the current object when you run the compilation
configuration.

Enter Yes to compile it, No to not compile it.
Yes is the default response.

You can change the setting of this switch back and forth to
selectively include or exclude objects from the compilation list.

<Advanced Opts>

This field is only accessible if the object you are specifying is a
form, menu object, or routine. For all other objects, the cursor
cannot land on this field.

When specifying a form, menu object, or routine, you may press
<RETURN> on this action field to access a small popup window
that lets you define several compilation options associated with
the current object. These options override any default options
specified in the configuration-wide Compilation Options window.

<Edit>

Press <RETURN> on this action field to access the object defini-
tion form for the current object. Within the object definition form,
you may edit the definition of the current object however you
wish. When you exit the object definition form, you return to the
Object Compile Driver Items window.

Note: To skip ahead to the next field on the Object Compile Driver Items
window, use the <TAB> key or the <RIGHT ARROW> key. To move
back to the previous field, use the <LEFT ARROW> key.

2. AttheObject Typefield, specify thetype of the object you want to add to
the compilation list.

You may press the <LIST CHOICES> key to see alookup box that lists all
object types from which you may choose.

3. At the Object Namefield, specify the name of the particular object you
want to add to the compilation list.

You may pressthe <LIST CHOICES> key to seealist of all objects (of the spec-
ified object type) defined in the current database.

Note: When specifying the name of a routine, you must explicitly specify a
routine extension, either .MAC or .INT.

4. At the Compile? field, enter Yesor No toindicate whether or not you
want the current object to be compiled when you run the compilation

configuration.

Yes is the default response.

12-14 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

Note

5. If theaobject you are currently enteringisaform or menu object, you
may press <RETURN> on the <Advanced Opts> action field to access a
small popup window that letsyou specify compilation options specifi-
cally associated with the specific abject (see “ Advanced Options for
Compilation List I1tems’ below).

6. You may press <RETURN> on the <Edit> action field to activate a direct
link into the current object’s definition form, where you may view or
edit the definition (see “ Editing an Object Definition” below).

7. Continue entering additional objectsto the compilation list in the same
way as described above.

8. When you have entered all objectsthat you want to beincluded in your
compilation configuration, pressthe <PROCEED> key to save your defini-
tions and exit the Object Compile Driver 1temswindow.

Advanced Options for Compilation List Items

The <Advanced Options> action field on the Object Compile Driver Itemswin-
dow isonly accessible if the object you are currently defining isaform, amenu
object, or aroutine. For all other objects, thisfield is skipped.

For forms, menu objects, and routines, you may use this option to access awin-
dow that lets you specify compilation options specifically associated with the
current object.

The options you specify in this window override the configuration-wide compilation

options specified in the Compilation Options window (accessed via the Object
Compile Driver menu bar).

Open M/SQL Developer Guide 12-15

Chapter 12—Open M/SQL Developer Utilities

Advanced Optionsfor Forms

When adding a form to the compilation list, you may press <RETURN> on the
<Advanced Options> action field to access the Form Advanced Options popup
window, as shown below:

AAAAAAAAAAAAAAAAAAAAAACLH] ect Conpile
Driver AAAAAAAAAAAAAAAAAAAAAAAAAARA,
3 Set Conpilation Qption Defaults 3
SAAA
AAAAAAAAAAAS
3 3
3 Configuration Name Sanple Configuration 3

3 3
3 < Edit Configuration > < Conpile Configuration > < Last Conpile Results >3
UAAAAAAAAAAAAAAAAAAAAAAAAAO] ect Conpile Driver

I t ensAAAAAAAAAAAAAAAAAAAAAAAA,
3

3 (bj ect Type Object Nane Conpi | e? 3
3 Base Table_ Doctor Yes <Advanced Opts> <Edit>?
3 Form_ Doctors Yes <Advanced Opts> <Edit>3

3 Query Sort_Query Yes_ <Advanced Opts> <Edit>3
3 Report____ Residents Yes_ <Advanced Opts> <Edit>3
3 Menu Object Doctors Menu Yes_ <Advanced Opts> <Edit>3
3 Form_ Patients Yes_ <Advanced Opts> <Edit>3

<Advanced Opts> <Edit>?
<Advanced Opts> <Edit>3
<Advanced Opts> <Edit>?

UARARAAAARRAAAAARARRAAAAARARRAAFor m Advanced
Opt i onsAAAAAAAAAAAAAAAAAAAAAAAAAAA,

P

*Conpi | e Type NEW Use Local Storage?No_ Conpi l e Tied Menu Objects Yes_ 3
AAAAAAARAAAAAAAAAAAAAARAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAU

For m Advanced Options Press <Hel p> For Help

The table below lists and describes the options located on the Form Advanced
Options window:

Table 12-5: Options on Form Advanced Options window

Field Description

Compile Type This is an output-only field that shows the type of the last compi-
lation, i.e., the version of the Forms Compiler last used to com-
pile the form. This field can have either of the following two
values:

n NEW (post-Vesrion D version of the Forms Compiler)
n OLD (pre-Version E version of the Forms Compiler)
The cursor cannot land on this field.

Use Local Storage? Here you may answer Yes or No to indicate whether or not you
want to compile the current form using local storage.

Answer Yes to compile the form using local arrays. This makes
the compilation faster but may cause <STORE> errors to occur.

Answer No to compile the form using globals. This prevents
space allocation errors but makes the compilation slower.

No is the default response.

12-16 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

Table 12-5: Options on Form Advanced Options window (Continued)

Field Description
Compile Tied Menu Here you may answer Yes or No to indicate whether or not you
Objects? want Open M/SQL to recompile any menu objects that are tied

to the current form.

In order to be recompiled under this option, a menu object must
be explicitly tied to the form, not just attached to it.

Note: This option only applies to forms that are compiled as
NEW.

Yes is the default response.

When you finish specifying compilation instructions on the Form Advanced
Options window, press the <PROCEED> key to save your definitions and exit the
window.

Advanced Optionsfor Menu Objects
When adding a menu object to the compilation list, you may press <RETURN> on

the <Advanced Options> action field to access the Menu Object Advanced
Options popup window, as shown below:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAACI)J ect Conpile

Driver AAAAAAAAAAAAAAAAAAAAAAAAARA,

3 Set Conpilation Qption Defaults 3
SAAA
AAAAAAAAAAAZ

3 3
3 Configuration Name Sanpl e Configuration 3
3 3
3 < Edit Configuration > < Conpile Configuration > < Last Conpile Results >3
UAAAAAAAAAAAAAAAAAAAAAAAAACb] ect Conpile Driver

It ensAAAAAAAAAAAAAAAAAAAAAAAA,

3

Obj ect Type Object Name Conpi | e? 3
Base Table_ Doctor Yes <Advanced Opts> <Edit>?
Form_ Doctors Yes <Advanced Opts> <Edit>3

Query Sort_Query Yes_ <Advanced (pts> <Edit >3
Report _ Resi dents Yes_ <Advanced Opts> <Edit >3
Menu Chj ect Doctors Menu Yes_ <Advanced Opts> <Edit>3

<Advanced Opts> <Edit>?
<Advanced Opts> <Edit>3
<Advanced Opts> <Edit>?
<Advanced Opts> <Edit>3

W W eew e w e

UARRARARRAAARRRARARRAAAARANENU Obj ect Advanced

Opt i onsAAAAAAAAAAAAAAAAAAAAAAAA,

3 Conpi |l e Type? Both Pop-Ups and Menu Bars Use Local Storage? Yes 3
AAAAAAAAAAAAAAAARAAAAAAAAARAAAARAAAARAAAAAAAAARAAARAAAARAAARAAAAAA
AAAAAAAAAAAU

For m Advanced Options Press <Hel p> For Help

Open M/SQL Developer Guide 12-17

Chapter 12—Open M/SQL Developer Utilities

The table below lists and describes the options located on the Menu Object
Advanced Options window:

Table 12-6: Options on Menu Object Advanced Options window

Field

Description

Compile Type

Here you may specify how you want Open M/SQL to compile

the current menu object. Press the <LIST CHOICES> key to see a

list of the menu object compilation options from which you may

choose. They include:

n Pop-Up Menu — Compile all menu objects as pop-up
menus.

n Menu Bar — Compile all menu objects as menu bars.

n Both Pop-Ups and Menu Bars — Compile all menu objects
as both pop-up menus and menu bars.

The default option is Both Pop-Ups and Menu Bars.

Use Local Storage?

Here you may answer Yes or No to indicate whether or not you
want to compile the current menu object using local storage.

Answer Yes to compile the menu object using local arrays. This
makes the compilation faster but may cause <STORE> errors to
occur.

Answer No to compile the menu object using globals. This pre-
vents space allocation errors but makes the compilation slower.

Yes is the default response.

When you finish specifying compilation instructions on the Menu Object
Advanced Options window, press the <PROCEED> key to save your definitions

and exit the window.

12-18 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

Advanced Optionsfor Routines

When adding a routine to the compilation list, you may press <RETURN> on the
<Advanced Options> action field to access the Routine Advanced Options popup
window, as shown below:

AAAAAAAAAAAAAAAAAAAN] ect Conpil e
Driver AAAAAAAAAAAAAAAAAAAAAAAAAAA,
3 Set Conpilation Qption Defaults 3
SAAA
AAAAAAAAAAAS
3 3
3 Configuration Name Sanple Configuration 3
3 3
3 < Edit Configuration > < Conpile Configuration > < Last Conpile Results >3
UAAAAAAAAAAAAAAAAAAAAAAAAACH) ect Conpile Driver
I t emsAAAAAAAAAAAAAAAAAAAAAAAA

3

3 (bj ect Type Object Nane Conpi | e? 3
3 Base Table_ Doctor Yes <Advanced Opts> <Edit>?
3 Form_ Doctors Yes <Advanced Opts> <Edit>3

3 Query Sort_Query Yes_ <Advanced (pts> <Edit >3
3 Report____ Residents Yes_ <Advanced Opts> <Edit >3
3 Menu Object Doctors Menu Yes_ <Advanced Opts> <Edit>3

<Advanced Opts> <Edit>3
<Advanced Opts> <Edit>?
<Advanced Opts> <Edit>3
<Advanced Opts> <Edit>?

UARARAAAARRAAAAARRRRAAARARAARoUt ne Advanced
Opti 0nsAAAAAAAAAAAAAAAAAAAAAAAAAAg,

3 Check Routine’ s Syntax? Yes File this Routine' s Object Code? Yes 3
AAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAU

For m Advanced Options Press <Hel p> For Help

The table below lists and describes the options located on the Routine Advanced
Options window:

w W W w

Table 12-7: Options on Routine Advanced Options window

Field Description

Check Routine’s Syn- | Here you may answer Yes or No to indicate whether or not you
tax want Open M/SQL to perform syntax checking on this routine
when it is compiled.

Answer Yes perform syntax checking.
Answer No to skip syntax checking.
Yes is the default response.

File this Routine’s Here you may answer Yes or No to indicate whether or not you
Object Code want to file the object code associated withthis routine when it is
compiled.

Answer Yes to generate and file the object code for the routine.

Answer No to generate only intermediate (.INT) code for the
routine.

Yes is the default response.

Open M/SQL Developer Guide 12-19

Chapter 12—Open M/SQL Developer Utilities

When you finish specifying compilation instructions on the Routine Advanced
Options window, press the <PROCEED> key to save your definitions and exit the
window.

12-20 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

Important

Editing an Object Definition

The Object Compile Driver utility lets you directly view or edit the definition of
any object you include in the compilation configuration.

By pressing <RETURN> on the <Edit> action field you activate adirect link into
the current object’s definition form. Once you have accessed the object definition
form, you may view or edit the definition.

You must have %ALTER privileges on an object in order to activate the direct link
into its object definition form

When you exit alink-accessed object definition form, you return to the Object
Compile Driver Items window, exactly where you activated the link.

For example, if you include the form “Doctors’ in the compilation configuration
and then you press <return> on the <Edit> action field, you see the Form Defini-
tion form for the “Doctors’ form, as shown below::

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFOrm
Def i ni t i onAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,

Form Nane Doct ors

Dat a Source Doctor

Form Type Single Row_

< Wndows >
< Lookups >
< Filing Code >

PR
W W W R R WwE YW e W

3
AA
AAAAAAAAU

Form Definition Press <Hel p> For Help

Create/ Edit Pre Form Post Retrieval Post Form Advanced
Field Tri gger Tri gger Trigger Feat ures

Open M/SQL Developer Guide 12-21

Chapter 12—Open M/SQL Developer Utilities

Compiling the Configuration

To compile a compilation configuration, press <RETURN> on the <Compile Con-
figuration> action field.

Open M/SQL sequentially compiles each object in the list. While the compilation
is happening, you see a compilation monitor window. For each object being com-
piled, the compilation monitor window displays the following information:

n Object Type
n Object Name

n Compilaton results message (either “ Compiled Successfully” or “Compiled
with Errors”)

When all objectsin thelist have been compiled, the compil ation monitor window
prompts you to press <RETURN>.

A sample compilation monitor window is shown bel ow:

Conpi | i ng Tabl e: Doctor. .. Conpi | ed Successful ly
Conpi ling Form Doctors. .. Conpiled Wth Errors

Conpi | i ng Query: Sort_Doctors. .. Conpi | ed Successful ly
Conpi | i ng Report: Resi dents. .. Conpi | ed Successfully
Conpi ling Menu Cbject: Doctors Menu... Conpi | ed Successful ly
Conpi ling Form Patients... Conpi | ed Successful ly
Conpi | i ng Tabl e: Patient... Conpi | ed Successful ly

Press <RETURN> to Conti nue

Press <RETURN> to return to the Object Compile Driver main window.

12-22 Open M/SQL Developer Guide

Using the Object Compile Driver Utility

Viewing the Results of the Last Compilation

The <Last Compile Results> option on the Object Compile Driver main window
lets you view the results from the last time the current compilation configuration
was compiled.

Press <RETURN> on the <L ast Compile Results> action field to access the Object
Compilation Driver Results window, as shown below:

AAAAAAAAAAAAAAAAAD] ect Conpil ation Driver
Resul t SAAAAAAAAAAAAAAAAAAAAA

3

Conpi | ati on 3

Obj ect Type Obj ect Nane St atus 3
Base Tabl e Doct or Success___ <View Err>3
Form Doct or s Failure___ <View Err>3
Query Sort_Doctors Success___ <View Err>3
Repor t Resi dent s Success___ <View Err>3
Menu Qbj ect Doct ors Menu Success___ <View Err>3
Form Patients Success___ <View Err>3
Base Tabl e Pati ent Success___ <View Err>3

<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
o <View Err>3
AARARARRRAAAAAAAAAAAAA
AAAAAAAAAAAG
UAAAAAAAAAAAAAAAAAAAAAAAAAACONDI | ation Error
MessageAAAAAAAAAAAAAAAAAAAAAAAAA,,

3

AR

3

AARRRARAAAAAARAAAAAARAARAAARAARARAAAAAAARARAAAARARAARAAARARAAARAAAR
AAAAAAAAAAAU

Obj ect Conpilation Driver Results I nquiry Press <Hel p> For Hel p

The Object Compile Results window lists all objectsin the compilation list by
object type and object name and display a message in the Compilation Status col-
umn to indicate the results of compilation. This message can be either “ Success’
or “Failure’.

Compilation Error Messages

For objects whose Compilation Status message is “ Failure”, you may view the
error message associated with the failure of the compilation.

To do this, use the <uP ARROW> and <DOWN ARROW> keys to position the cursor
on the <View Err> field corresponding to the failed object.

Open M/SQL Developer Guide 12-23

Chapter 12—Open M/SQL Developer Utilities

The error message displays the Compilation Error Messages window at the bot-
tom of the screen, as shown below:

UAAAAAAAAAAAAAAAAAAAAAAD] ect Conpil ation Driver
Resul t SARAAAAAAAAAAAAAAAARAAA

3

Conpi | ati on 3

Obj ect Type Obj ect Nane St atus 3
Base Tabl e Doct or Success___ <View Err>3
Form Doct or s Failure___ <View Err>3
Query Sort_Doctors Success___ <View Err>3
Report Resi dent s Success___ <View Err>3
Menu Qbj ect Doct ors Menu Success___ <View Err>3
Form Patients Success___ <View Err>3
Base Tabl e Pati ent Success___ <View Err>3

<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
<View Err>3
o <Miew Err>3
AA

PR

UAAAAAAAAAAAAAAAAAAAAAAAAAAGONDI | ation Error
MessageAAAAAAAAAAAAAAAAAAAAAAAAA

3 STORE 3
-V:9.9.9.Y.Y.9.9.9:9:9:V:V:V.V.V.V.V-V-V-V:V:V:V:V-V.V.V.V.V-V-V:V:V:V:V:V-V.V.V.-V-V-V:V:V:V:V:V-V-V-V.-V-V-V:V:V:V:V:V-V.V.V.V.V.V.\
AAAAAAAAAAAU

Obj ect Conpilation Driver Results I nquiry Press <Hel p> For Help

See your system guide for an explanation of Open M/SQL error messages.
Press the <PrREVIOUS> key to return to the Object Compile Driver main window.
Compiling a Compilation Configuration from M Program Code

You can run predefined compilation configurations directly from M program
code using the “objcd” entry point to the %emcompil utility.

To do this, use the following syntax:

do obj cd*%rconpi |l (Ccd_ldentifier)

where Ocd_ldentifier is the name or ID# of a compilation configuration.

12-24 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects

Checking the Integrity of Open M/SQL Objects

The Object Integrity Checker utility checks the integrity of various object defini-
tionsin the current directory and prepares a report of al integrity errors that it
finds. This utility enables application developersto easily identify and repair
integrity errorsin their applications.

I nter Systems recommends that you run the Integrity Checker utility on your
applications at aregular interval, such as once aweek. You also should run it
before exporting objects to a new database.

You can use the Object Integrity Checker to check any of the following objects:

n All Objects
n Base Tables

n Views
n Forms
n Reports

n Menu Objects
n Triggers

It checks all objects of the specified type that reside in the current directory and
generates areport of integrity errors. You can send this report to aflat file or
printer.

You can set the Object Integrity Checker to automatically correct some of the
integrity errorsit finds. When it corrects an error, it reports the correction in the
Integrity Check Results report. The Integrity Checker cannot fix al errorsit
finds. When it encounters an error that it cannot fix, it also reportsthisin the
Integrity Check Results report.

When correcting object integrity problems, the Object Integrity Checker does not
check privileges on the objects it modifies. It assumes that the Database Admin-
istrator is running the utility.

The following sections list the checks made by the Integrity Checker on each
supported object.

Open M/SQL Developer Guide 12-25

Chapter 12—Open M/SQL Developer Utilities

Checks on Base Tables

For base tables, the Integrity Checker makes sure that:

n

n

n

n

n

The base table has aname
Thefield definition for each field in the base table is intact
The base table does not have any pointers to non-existent triggers

Any Designative Reference fieldsin the base table point to adesignated table
that exists

All fieldsthat are referenced in the computation code for computed fields are
valid

All fieldsthat are part of the “ Computation producesa NULL result IF’ code
for computed fields are valid

All fields that are referenced in the “ Update field when following field
changes’ list are valid

The base table definition stores alist of all views the base table is defined on.
The Integrity Checker makes sure all the views in thislist actually exist.

The base table definition stores alist of all forms for which it serves as the
data source. The Integrity Checker makes sure all the formsin this list actu-
aly exist.

The“ifn” index is defined for each field in the base table
All base tables defined in the “m” index exist

All base tables defined in the “rv” index exist

All indexed fields defined in the “ifn” index exist

All indexed fields defined in the “field name” index exist

Checks on Views

For views, the Integrity Checker makes sure that:

n

n

The view's starting table isvalid (it must be a base table or view)

All table links in the *mdd(3,ivn,10) tree are valid (Note: These links are not
mapped; they are set up in Y%daview.)

All fields in the view are valid base table fields.

All view link tables are valid

The view field linksindex (“f1 index”) are valid base table fields
All fields in the view have field names

12-26 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects

Checks on Forms

For forms, the Integrity Checker makes sure that:

n

n

The form’'s data sourceis valid (if the form has a data source)
All database fields exist

All form-only fields exist

The form does not have any pointers to non-existent triggers
All Designative Display fields have valid field names.

All form-only fields have field names that do not duplicate the field names of
database fields on the same form.

All fields in the window-order list exist (if the form is a window-ordered
form)

All fieldsthat are referenced in the computation code for computed fields are
valid

All fieldsthat are part of the “ Computation producesa NULL result IF’ code
for computed fields are valid

All fields that are referenced in the “ Update field when following field
changes’ list are valid

Checks on Reports

For reports, the Integrity Checker makes sure that:

n

The report’s data source is valid (the data source may be base table, view, or
query)

Each report column isavalid field (base table, view, report, or query field)
Each report sort field isavalid field (base table, view, report, or query field)
Each sort trailer field isavalid field (base table, view, report, or query field)

All report summary computed fields are valid fields. Checks the FieldName,
Within, and ForEach fields (base table, view, report, or query fields)

Report data selection conditions reference valid fields Checks FieldName
and CompField fields (base table, view, report, or query fields.)

Report header, report trailer, page header, and page trailer fields are valid
fields (base table, view, report, or query fields.)

All field references in the M code lines for report computed fields are valid.
If it isareport chain, all members of the chain are valid reports

Open M/SQL Developer Guide 12-27

Chapter 12—Open M/SQL Developer Utilities

Checks on Menu Objects

For menu objects, the Integrity Checker utility makes sure that:

n The menu object has aname
n If the menu object istied to aform, the parent form exists
n Themenu object has at least one option

Checks on Menu Object Options

For menu object options, the Integrity Checker utility makes sure that:

n Theoption text is not null
n Theoption has an action type
n Theoption has an action name (if required)

If the menu object option action calls another object, the I ntegrity Checker makes
the following checks:

Table 12-8: Integrity Checks Made When a Menu Option Calls Another

Object
If the called objectis a ... Make sure that ...
Form The form exists
Report The report exists
Query The query exists
Pop-Up Menu The menu object exists
Menu Bar Menu The menu object exists
Help Topic The help topic exists
Window n Itis atied form
n The form the menu is tied to is the same as the menu
the window is on
n The window exists on the form

12-28 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects

Checks on Triggers

The Integrity Checker checks all triggers to make sure that:

n All base table trigger pointers exist
n All form trigger pointers exist

n All report trigger pointers exist

n All trigger definitions are valid

n All trigger items are valid

Base Table Trigger Checks

For all base tables, the Integrity Checker checks the validity of:

n All Pre-Filing INSERT, UPDATE, and DELETE triggers
n All Post-Filing INSERT, UPDATE, and DEL ETE triggers

Form Trigger Checks

For all forms, the Integrity Checker checks the validity of:

n All Pre-Form triggers

n All Post-Retrieval triggers

n All Post-Form triggers

n All Pre-Row triggers (for multi-row forms only)
n All Post-Row triggers (for multi-row forms only)
n All PreWindow triggers

n All Post-Window triggers

n All Pre-Field triggers

n All Post-Field triggers

Report Trigger Checks

For all reports, the Integrity Checker checks the validity of:

n All Pre-Report triggers
n All Post-Report triggers

Open M/SQL Developer Guide 12-29

Chapter 12—Open M/SQL Developer Utilities

Trigger Definition Checks

For all trigger definitions, the Integrity Checker checksto make sure:

n

n

n

n

n

The trigger definition isvalid

Integrity from trigger definitions back to their host objectsis valid

If the trigger calling typeisaform, the form exists.

If the trigger calling typeis a base table, the base table exists.

If the trigger calling typeis areport, the report exists

Trigger Items

The Integrity Checker makes the following checks on the validity of form trigger
items:;

Table 12-9: Trigger Items Verified by the Integrity Checker

If the trigger action type is ...

The Integrity Checker checks the existence of ...

Menu The menu
Form The form
Query The query
Window The window
Go To Field The target field
Set Field The target field
Erase Form The target form

Erase Window

The target window

Display Window The target window
Display Form The target form

Pop-up Menu The target menu object
Menu Bar The target menu object

12-30 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects

Running the Integrity Checker Utility

Procedure

When running the Integrity Checker utility, your Open M/SQL database must be
perfectly idle. No activity that affects the Open M/SQL objects being checked is
allowed to occur.

To ensure that this is the case, the Integrity Checker will not run if it detects that
the “mlock global is defined. The presence of the “mlock global indicates that
Open M/SQL objectsarein use.

Al users must exit Open M/SQL before you can run this utility.

Once the Integrity Checker starts, users may not enter Open M/SQL or run any
Open M/SQL aobjects.

When correcting object integrity problems, the Object Integrity Checker does not
check privileges on the objects it modifies. It assumes that the Database Admin-
istrator is running the utility.

To run the Open M/SQL Integrity Checker utility:

1. From the Developer Utilities menu, select the M/SQL Object I ntegrity
Checking option.

You see the M/SQL Integrity Check Utility menu, as shown below:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA . CPEN M SQL
AAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAA

UAAM SQL Integrity Check UtilityAA;
3
3Al MSQ Objects

ports

TI;
[=)
=
W w W W Wwww e W

3

3

3

3

3_

3 Triggers
3

A

AAAAAAAAAAAAAAAARRAAAAAAAAAAAAAAAU

Monday Aug 21, 1995 12: 19AM Directory: /us/land/
Li censed to Devel opment Testing. Copyright (c) 1993 - InterSystens Corporation

M SQ Integrity Check Utility 12:19AM Press <Hel p> For Hel p

Open M/SQL Developer Guide 12-31

Chapter 12—Open M/SQL Developer Utilities

Note: If your Open M/SQL database is not completely idle, you see the
following message:

The "“m ock global is defined in this database
whi ch indicates OPEN M SQ. is in use. Please run
the OPEN M SQ integrity checkers when the OPEN
M SQL objects are not in use in this database.

You cannot run the Integrity Checker utility while there are users in
Open M/SQL.

2. Fromthe M/SQL Integrity Check Utility menu, select the appropriate
option for the objects you want to check.

If you selected “Trigger Definitions’, you see following window:

THI'S UTILITY WLL CHECK FOR | NOCONSI STENCI ES I N ALL OPEN M SQL TRI GGER
DEFI NI TI ONS. YOU HAVE THE OPTI ON OF JUST PRI NTI NG THE ERRORS, OR
HAVI NG OPEN M SQL FI X THE PROBLEMS | T CAN AUTOVATI CALLY.

Do You Want The Integrity Checker To Fix Errors?

3. Answer Yesor No at the prompt “Do You Want The Integrity Checker
To Fix Errors?’ toindicate whether or not you want the Integrity
Checker to correct some of theintegrity errorsit finds.

Note: You may type Q or " to exit the Integrity Checker utility.

The Object Integrity Checker can correct some but not all of the integrity
errorsit finds. When it corrects an error, it reports the correction in the Integ-
rity Check Results report. When it encounters an error that it cannot fix, it
aso reportsthisin the Integrity Check Results report. You must correct these
errors manually.

12-32 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects

If you answer Yes at the “Do You Want The Integrity Checker To Fix
Errors?’ prompt, you see the following prompt asking you to specify which
error fixing mode you want the Integrity Checker to use:

Sel ect Error Fi xi ng Mode:

1- Fixall errorswi thout pronpting

2- Pronpt for permissiontofixeacherror
Sel ect Error Fixing Mde:

Type 1 to specify “Fix without prompting” mode, where the Integrity
Checker automatically fixes any errorsthat it can fix.

Type 2 to specify “Prompt before fixing” mode, where the Integrity Checker
displays each error, indicates whether or not it can be fixed automatically,
and prompts the user with to “confirm” before fixing it.

Note: When correcting object integrity problems, the Object Integrity
Checker does not check privileges on the objects it modifies. It
assumes that the Database Administrator is running the utility.

If you answer No at the “Do You Want The Integrity Checker To Fix Errors?”’
prompt, the Integrity Checker will not correct any errorsthat it finds, though
it still reportsall errorsin the Integrity Check Results report.

You see the Device Selection window, as shown below:

UAAAAAAAADevi ce Sel ecti onAAAAAAAA
3 Device 3
3 /dev/tty07_ o
Descri ption
Laser Printer

wowww W w
W oW W W e w

Print Format
Nor mal For mat

ARAAAARAAAAAAAAARAAAAAAAAAAAAAARAU

Devi ce Sel ection Press <Hel p> For Hel p

Open M/SQL Developer Guide 12-33

Chapter 12—Op

en M/SQL Developer Utilities

Thefollowing table lists and describesthe fields|ocated on the Device Selec-
tion window:

Table 12-10: Fields on Device Selection Window

Field Description

Device This field always defaults to your current device (the current value of

$10). You may change the default to any valid output device to which
your device is linked.

Description This field reflects the description given to the specified device in the

device table.

Print Format Here you may select any print format defined for the specified device.

4,

5.

In the Devicefield, enter the name of the device to which you want to
send thisreport.

You can send the report to any valid output device that is linked to your cur-
rent device. The default device is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as a printer), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>

key.

When you have entered a device name and the appropriate print format
parameters, pressthe <PROCEED> key.

This executes the Integrity Check Results report.
Below isasample Integrity Check Results report for Trigger Definitions:

TYP

frm

frm

???

???

frm

OBJ NAMVE TRI G# | TEM ERROR

Doctors o1 1 FORM Trigger calls an undefined form
Trigger Location - PostFld Trig: field3
This must be fixed manual ly.

Bi g Test ... 166 1 POPUP MENU Trigger calls an undefined
menu object. Trigger Location - PostFld
Trig: BigPopUpTest This nust be fixed
manual | y.

ReportTri ggers 225 Pre-Report Trigger not called from
report. Trigger Location - Pre-Report

ReportTri ggers 226 Post - Report Trigger not called from
report. Trigger Location - Post-Report

JLD237 ... 289 1 FORM Trigger calls an undefined form
Trigger Location - PostFld Trig:
d ucoseTest This nust be fixed manual ly.

MORE ("~' or 'Q to quit) >

12-34 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects

Note: When output to the screen, the report displays one screen of errors
at a time and prompts you to press <RETURN> to scroll ahead to the
next screen.

The Integrity Check Results report for Trigger Definitions provides the fol -
lowing information about each integrity error it finds:

» Object Type — type of object to which the trigger belongs. It may be a
form (frm), abase Table (tbl), or a Report (rpt). Sometimes, the object to
which the trigger belongs is not know (?7?7?)

» Object Name — name of the specific object to which the trigger belongs
(if the object is known)

» Trigger #— internal identification number of the trigger in which the
integrity error was found

» Trigger Item # — number of the particular item in the trigger item
seguence in which the integrity error was found

» Error Message — message that describes the integrity error

. Pressthe <PrReviOUS> key to exit thereport.

Open M/SQL Developer Guide 12-35

Chapter 12—Open M/SQL Developer Utilities

Error Fixing Mode

If you have enabled error fixing, the Integrity Checker can automatically correct
some of the errorsiit finds.

Error fixing has two modes:
1. Fix errorswithout prompting

2. Prompt before fixing errors

The behavior of the Integrity Checker depends on which of these modes you
select.

Fix Errors Without Prompting

In this mode, the Integrity Checker displays one error per screen and automati-
caly fixesal errorsthat it can fix.

If it fixes the error, you see the message:

Fi xed

If it cannot fix the error, you see the message:

This error nust be nmanually fixed
Prompt Before Fixing Errors

In this mode, the Integrity Checker displays one error per screen and prompts the
user to confirm afix before it fixes an error.

If it can fix the error, you see the message:

K to fix this error?

If it cannot fix the error, you see the message:

This error nust be nanually fixed

12-36 Open M/SQL Developer Guide

Searching for Strings in Open M/SQL Objects

Searching for Strings in Open M/SQL Objects

Procedure

The Object String Search utility searches through Open M/SQL object defini-
tions for specified text strings.

The Object String Search utility can search any of the following object types:

n BaseTables
n Views

n Queries

n Reports

n Forms

n Menus (Old Style)
n Menu Objects

n Help Topics

n Help Documents

The utility can search through all objectsin the current directory, or it can search
through selected objects. You may select objects by object type, and you may fur-
ther select objects by specific object name within a certain object type.

The utility can search for one string or many different strings.

To use the Object String Search utility:

1. From the Developer Utilities menu, select the M/SQL Object I ntegrity
Checking option.

You see the Device Selection window, as shown below:

UAAAAAAAADevi ce Sel ecti onAAAAAAAA

3 Device 3
3 /dev/tty07_ o 3
Descri ption

Laser Printer

Print Fornat
Nor mal For mat

W w W W e w
W w W W e w

AAAAAAAAAAAAAAAAAARRAAAAAAAAAAAAAD

Devi ce Sel ection Press <Hel p> For Hel p

Open M/SQL Developer Guide 12-37

Chapter 12—Open M/SQL Developer Utilities

2. Inthe Devicefield, enter the name of the device to which you want to
send thisreport.

You can send the report to any valid output device that islinked to your cur-
rent device. The default device is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as aprinter), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>

key.

3. When you have entered a device nameand the appropriate print format
parameters, pressthe <PROCEED> key.

4. You seethefollowing prompt:
Search String #1 (~to quit):
Here, you may enter the text of the first search string, and press <RETURN>.

You may enter any number of search strings.

Note: The list of search strings is an inclusive OR list, which means that if
the utility finds ANY one of the specified search strings within an
object definition, it returns a “string found” message.

Each time you enter a new search string, you see the following prompt:
EXACT MATCH? No==>

5. Atthe EXACT MATCH prompt, press <RETURN> to accept the No
default, or type Y and press <RETURN>.

Answer Yesto indicate that you want the Object String Search utility to
search for an EXACT match (case sensitive) of the specified string.

Answer No to indicate that you want the Object String Search utility to
search for an ALPHAUP match (case insensitive) of the specified string.

The utility continues to prompt you to enter additional search strings.

6. When you havefinished entering search strings, press <RETURN> at the
Search String prompt.

You see the following prompt:
oj ect Type To Search (~to quit, ? for list):

7. At theObject Type To Search prompt, you may specify the abject type(s)
you want to search.

12-38 Open M/SQL Developer Guide

Searching for Strings in Open M/SQL Objects

To search all object types, enter *. Otherwise, enter a number from 1 to 9to

represent the object type you want to search. Type ? to see alist of the object
type choices and their numbers. The table below shows the number that cor-
responds to each object type:

Object Type

Base Tables
Views

Queries

Reports

Forms

Menus (old-style)
Menu Objects

Help Topics

© 00 N o g M W N P #H

Help Documents

*

All object types

You may specify one object type or al object types.
When you select an object type, you see the following prompt:
<Cbj ect Type> (enter nane or * for all)

. At the Object Name prompt, you may enter the names of the specific
objectsyou want the utility to search.

For example, if you specified Base Tables as the object type, you may enter
any number of specific base table names. Or, to search through all objects of
the specified type, you may type * at this prompt.

When selecting object names, you may type the first few characters of an
object name, then press the <SEARCH CURRENT TABLE> key to see alookup
box that lists all matching entries for the specified object type.

Note: If you are searching through all object types, the utility automatically

searches through all object names within each object type. You
cannot restrict this search.

Open M/SQL Developer Guide 12-39

Chapter 12—Open M/SQL Developer Utilities

9. When you havefinished entering object names, press <RETURN> at the
Object Name prompt.

The utility sends output to the specified device.

The Object String Search utility outputs a header page that lists each search
string and all of its criteria, including the string matching criteria ([EXACT]
or [ANY]).

A sample of the Open M/SQL Object Text Search header page is shown
below:

OPEN M SQL OBJECT TEXT SEARCH PRI NTOUT

Search Criteria:
1) [ANY] | eo
<PRESS RETURN>

10. Press<RETURN> to view the Sring Search report.

Following the header page, the utility outputs adetailed listing of all matches
found. For each match, the report provides the following information:

» Object Type

e Object Name

e Sub-object Type (when applicable)

» Sub-object Name (when applicable)
 Location (attribute) where the match was found
e Text string in which the match was found

12-40 Open M/SQL Developer Guide

Searching for Strings in Open M/SQL Objects

For example, you might see the following entry for an EXACT match on
string “*ABC” found in the INSERT Validation Code for Base Table

“Patients”:
Base Table - 'Patients'
LOCATI ON: Insert Validation Code
TEXT: i {Status}="" s %k=0 d "ABC({Patient})

Typically, the report identifies the exact location of the matching text string.
For example, if it finds a match within Additional Validation Code for afield
(which can have any number of text lines defined), the report prints only the
matching text lines. In the case of individual trigger actions and individual
lookup specifications, the report prints the entire trigger action specification
or entire lookup specification, in order to provide a meaningful context for
the text match.

Below isa sample of the String Search report:

Base Table: 'jld087
LOCATI ON = Base Tabl e Nane
TEXT = j1dos7

Base Table: 'jldo87
LOCATI ON = Base Tabl e Description

TEXT = j1d087 Test (irn = 1)
Base Table: 'j1d087" - Field: 'jldos7
LOCATION = Field Name

TEXT = j1do87

Base Table: 'j1d087" - Field: 'jldos7

LOCATI ON = Fi el d Description

TEXT = j1d087 Row ID

Base Table: 'j1d087' - Map: 'Data Master Map' - Access Level: L3
LOCATI ON = Map Access Level Expression
TEXT = {j1do87}

MORE ('~' or 'Q to quit) >

11. Pressthe <PREVIOUS> key to exit thereport.

Open M/SQL Developer Guide 12-41

Chapter 12—Open M/SQL Developer Utilities

Invoking Macro Source Routine Utilities

Open M/SQL provides a number of utilities for examining and manipulating M
macro source code routines and include files. These utilities are useful for both
developing and maintaining Open M/SQL applications.

The Open M/SQL routine utilities include:

n Routine Output (Yourprint)

n Routine Input (Yourload)

n Routine Directory (Yourdir)

n Routine Change (%urchange)

n Routine Compile (%urcomp)

n Routine Copy (%urcopy)

n Routine Search (%urfind)

n Routine Search All (%urfand)

n Routine Delete (%ourdel)

n Set Maximum Number of Backups (%ourverma)
n Routine Backup Purge (%urpurge)

You may invoke and use these utilities via the Devel oper Utilities menu.

Procedure To run macro source routine utilities from the Developer Utilities menu:

1. From the Developer Utilities menu, select the M acro Routine Utilities
option.

You see the M/SQL Routine Utilities menu, as shown below:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR OPEN M SQU
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

UAAAAAAAAM SQL Routine UtilitiesAAAAAAAA,

Routine Qutput (%urprint)
Routine Input (%rload)

Routine Directory (%urdir)
Routi ne Change (%urchange)
Routi ne Conpil e (%rconp)

Routi ne Copy (%urcopy)

Routine Search (%urfind)
Routine Search Al (%urfand)
Routine Delete (%urdel)

Set Maxi mum No. of Backups (%urverma)
Routi ne Backup Purge (%ur purge)

W W W W W W W W W W W
WO W W W W W W W W W W e

3
AAAAARAAAARAAAARAAAAAAAAAAAAARAAAARAAAAAU

Wednesday Aug 09, 1995 03:50PM Directory: /us/land/
Li censed to Devel opnent Testing. Copyright (c) 1993 - InterSystens Corporation

M SQL Routine UWilities 03:50PM Press <Hel p> For Help

12-42 Open M/SQL Developer Guide

Invoking Macro Source Routine Utilities

2. From the M/SQL Routine Utilities menu, select the routine that you
want to run.

Open M/SQL runs the selected routine utility in awindow.

For example, if you selected the Routine Search utility (%urfind), you would
see the following screen:

This routine changes all occurrences of a string in
routines/include files.

1. Change every:

3. Answer all promptsasappropriate.

Note: For complete information on how to use all of the Open M/SQL
routine utilities, see Chapter 7, Open M/SQL Routine Management
Utilities.

When you exit the selected routine utility, you return to the Routine Utilities
menu.

Open M/SQL Developer Guide 12-43

Chapter 12—Open M/SQL Developer Utilities

Querying Objects by Routine Prefix

The Object Routine Prefix utility lets you look up any routine prefix that is asso-
ciated with an Open M/SQL object in the current directory.

When you look up aroutine prefix, the utility displaysinformation about where
that routine is being used. Specifically, it provides the following information:

n Routine Prefix

n Object Type

n Object Identification #

n Object Name

When compiling large applications, you may receive warning and error messages
that cite routine names. These messages do not always specify which object the
routine belongs to. For example, the message “ Syntax error in mp3261” does not
provide any information about routine “mrp3261”. In order to correct this error,

you need to find out where thisroutine is located. The Object Routine Prefix util-
ity enables you to do this.

This utility isalso useful when deleting routines to clean up your directory

Procedure To use the Object Routine Prefix utility:

1. From the Developer Utilities menu, select the Query Object By Routine
Prefix option.

You see the Object Lookup by Routine Prefix 1ookup window, as shown
below:

UAAAAAAAAAAAAAAAAAAH] ect Lookup By Routine
Prefi xAAAAAAAAAAAAAAAAAA:
3

Routine Prefix _

www e e e
W W W W e w

AAAAAAARAAAARAAAARAAAARAAAARAAAARAAAARAAAAAAAAAAAAAAAAAARAAAAARAAAAA
AAU

12-44 Open M/SQL Developer Guide

Querying Objects by Routine Prefix

Obj ect Routine Prefix Sel ecting Press <Hel p> For Hel p ‘

2. AttheRoutinePrefix field, enter the name of theroutine prefix you want
tolook up.

You may perform both unqualified and qualified lookups on the directory of
routine prefix names.

To perform an unqualified lookup, press the <SEARCH CURRENT TABLE> key
with the Routine Prefix field blank. You see alookup box that lists all routine
prefixes.

To perform aqualified lookup, enter the first one or more characters of the
routine prefix you want to find, and press the <SEARCH CURRENT TABLE>
key. You see alookup box that lists all matching entries.

3. Within thelookup box, use the <up ARROW> and <DOWN ARROW> keys
to position the cursor on theroutine prefix you want to examine, and
press <RETURN> to select it.

You see the Object Routine Prefix window, as shown below:

UAAAAAAAAAAAAAAAAAAAAAAAD] ect Routine
Pref i xAAAAAAAAAAAAAAAAAAAAAAA
3
Routine Prefix nmt1l
Obj ect Type table
1

Ooject Id
Obj ect Nane Doct or

ww e e w

3

3

3

3

3

3

3
AAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAA<
proceed >U

Obj ect Routine Prefix Press <Hel p> For Help

The Object Routine Prefix window displays information about the routine
prefix you selected.

All fields on this window are read-only.

4. Toexit the Object Routine Prefix window, press <RETURN>.

Open M/SQL Developer Guide 12-45

Chapter 12—Open M/SQL Developer Utilities

You return to an empty Object Lookup By Routine Prefix window, where
you may select another routine prefix to examine.

12-46 Open M/SQL Developer Guide

National Language Reports

National Language Reports

The National Language Reports utility lets you generate a screen or hard copy
report that displays the translations provided for all system-generated messages,
key labels, menu titles, and menu option text throughout the Open M/SQL envi-
ronment.

The report is organized a phabetically by message. For each message, the report
provides the following information:

n

n

n

The English text for the message, key label, menu title, or menu option text
The maximum translation length (based on the length of the English text)

List of supported languages with the appropriate translation of the message
(if supplied)

Procedure To print the National Language report:

1. From the Developer Utilities menu, select the National L anguage

3.

Reports option.
You see the Device Selection window.

In the Device field, enter the name of the device to which you want to
send thisreport.

You can send the report to any valid output device that islinked to your cur-
rent device. The default device is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as aprinter), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>
key.

When you have entered a device name and the appropriate print format
parameters, pressthe <PROCEED> key.

This executes the National Language report.

Open M/SQL Developer Guide 12-47

Chapter 12—Open M/SQL Developer Utilities

Below is a sample page from the National Language Report:

Enter Transl ations For System MPage: 3

WARNI NG Ensure that |ength of translations for system nessages does not
exceed the length of the English text being translated. Call
InterSystenms if this limtation is unacceptable.

Also, if no English text is provided, it is not necessary
to enter translations.

MESSAGE CONTEXT: ALTER
Engli sh Message: %ALTER
Maxi mum Length: 15

Enter Transl ations:
Dansk (Dani sh)

Deut sch (Ger man) - Y%ALTER
Dutch (Netherlands) -
Espanol (Spani sh) -
Fi nska (Finnish) -
Francai s (French) - Y%ALTER
Italiano (ltalian) - %l tera
Nor sk (Norwegi an) - %-orandere
Port uguese - Atere
Svenska (Swedi sh) - %\ndra
Press <Return> to continue, <Options> to scroll, <Exit>to Exit

Note: When output to the screen, this report displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

4. You may pressthe <PREVIOUS> key at any timeto exit the National Lan-
guage Report and return to the Developer Utilities menu.

12-48 Open M/SQL Developer Guide

APPENDIX

SQL Error Messages

Whenever you issue an SQL statement, it returns a non-descriptive numerical
message to the variable SQLCODE.

The message indicates one of the following:

n Successful completion
n Error

Thetablesin this Appendix list all message codes that can be returned to the
SQL CODE variable and describes the meaning of each code.

Open M/SQL Developer Guide A-1

Appendix A — SQL Error Messages

Successful Completion Messages

The following table lists the codes for successful completion:

Table A-1: Codes Returned on Successful Completion

Error Code
Number

Meaning

0

Query completed successfully

100

Query completed successfully, but no row was found to satisfy the query

A-2 Open M/SQL Developer Guide

Error Messages

Error Messages

The following table lists the codes for errors found during parsing:

Table A-2: SQL Error Messages

Error Code

Number Function

-1 Invalid SQL statement

-2 Exponent digits missing after 'E'

-3 Closing quote (") missing

-4 A term expected, beginning with either of: identifier, constant, aggregate,
%ALPHAUP,%UPPER, %EXACT, $$, :, +, -, (, NOT, or EXISTS

-5 Column-number specified in ORDER does not match the SELECT list

-6 ORDER must specify column number, not names, when after UNION

-7 ORDER column is not in SELECT list

-9 Incompatible SELECT lists used in UNION

-10 The SELECT list of the query must have exactly one item

-11 A scalar expression expected, not a condition

-12 A term expected, beginning with either of: identifier, constant, aggregate,
$$, (, i, +, -, or WALPHAUP, %UPPER, or %EXACT

-13 An expression other than a subquery expected here

-14 A comparison operator is required here

-15 A condition expected after NOT

-16 A qualifier SOME or ALL expected after the FOR in the for-expression

-17 A for-condition expected after the (in the for-expression

-18 IS (IS NOT) NULL predicate can be applied only to a field

-19 An aggregate function cannot be used in a WHERE clause

-20 Name conflict in the FROM list over label <label>

-22 ORDER must specify column names, not numbers, when after 'SELECT *'

-23 Label <label> is not listed in FROM

-25 Input (<token>) encountered after end of query

-26 Missing FROM clause

-27 Ambiguous labels for field <name>

-28 Host variable name must begin with either % or a letter, not <symbol>

-30 Table <tablename> not found

Open M/SQL Developer Guide A-3

Appendix A — SQL Error Messages

Table A-2: SQL Error Messages (Continued)

Error Code
Number

Function

Field <fieldname> not found in table(s) <tablename>

Outer join symbol (=*) must be between two fields

No fields found for table <tablename>

Contradictory conditions: 'f is NULL' vs. 'f=constant’

Contradictory conditions: 'f IS NULL' vs. 'f in range'

Contradictory conditions: 'f IS NULL' vs. 'f=expression’

Contradictory conditions: constants should satisfy <condition>

No master map for table <tablename>

No Row ID field for table <tablename>

An extrinsic function call must have the form $$tag”rou(...

Closing quotes (") missing following pattern match

An SQL statement expected, <token> found

Cursor <cursorname> already DECLAREd or not DECLAREd

Constant or variable expected as new value

Array designator (last subscript omitted) expected after VALUES

Invalid GRANT <role> to or revoke <role> from

Action not applicable to an object of this type

Object type not found

Cannot have more than one field

An action (%ALTEr, SELECT, UPDATE, etc.) expected

Cursor not updatable

Additional new values expected for INSERT/UPDATE

Data exception - invalid escape character

Incorrectly defined RowID

Privilege violation

OPEN attempted on a cursor that is already open

Cursor operation (FETCH, CLOSE, UPDATE, DELETE) attempted on an
unopened cursor

Positioned UPDATE or DELETE attempted but the cursor is not positioned
on any row

Field validation failed in INSERT

A-4 Open M/SQL Developer Guide

Error Messages

Table A-2: SQL Error Messages (Continued)

Error Code

Number Function

-105 Field validation failed in UPDATE
-106 Row to DELETE not found

-107 Table validation failed

-108 Required field missing; INSERT or UPDATE not allowed
-109 Cannot find the row designated for UPDATE
-110 Locking conflict in filing

-111 Operation not licensed on this system
-112 Access violation

-113 %THRESHOLD violation

-201 Table or view name not unique

-212 Unrecognized or invalid input device
-213 Keyword ON expected

-214 Left parenthesis expected

-215 Right parenthesis expected

-216 Comma expected

-217 Unexpected End-of-Field

-218 Unexpected End-of-Query

-219 Incorrect or missing field name

-220 Incorrect or missing data type

-221 Invalid length/scale specification

-222 Default value exceed field length

-223 Datatype/qualifier mismatch

-224 Unrecognized or conflicting qualifiers
-225 Multiple primary key specification
-226 Incomplete primary fields specification
-227 Missing quote introducing or ending description
-228 Missing or illegal global name

-229 Query rejected

-230 Bad column constraint

Open M/SQL Developer Guide A-5

Appendix A — SQL Error Messages

Table A-2: SQL Error Messages (Continued)

Error Code
Number Function
-231 SQL reserved word not allowed
Note: For a list of Open M/SQL reserved words, see Appendix B.
-232 Single quotation expected instead of double quotation
-233 Repeated key definition or conflict constraints
-234 Bad default value
-235 Repeated index definition
-236 Data type error
-237 More than one index defined at the same time here
-238 More than one CREATE TABLE statement in one SQL macro
-239 More than one DROP TABLE statement in one SQL macro
-240 The field is required and can’'t have NULL value
-242 General DDL parsing error
-243 Scales with character data types
-244 Scales with integer data types
-245 Specifying length for this data type not allowed
-246 Decimal part with integer default value
-248 Default value is not allowed for this data type
-1000 Maximum open cursors exceeded
Note: Up to 255 cursors are permitted for a given connection
-1001 Invalid cursor
-1002 Fetch out of sequence
-1003 No statement parsed
-1006 Bind variable does not exist
-1007 Variable not in select list
-1008 Not all variables bound
-1012 Not logged on
-1013 User requested cancellation of current operation
-1017 Invalid user name/password
-1024 Invalid data type in ‘obndrv’, ‘obndrn’, or ‘odefin’ call
-1031 Insufficient privileges
-1405 Warning: Fetched column value is NULL

A-6 Open M/SQL Developer Guide

Error Messages

Table A-2: SQL Error Messages (Continued)

Error Code

Number Function

-1406 Warning: Fetched column value was truncated

-1454 Cannot convert select item value to numeric data type
-1455 Value overflows specified integer data type

-1459 Invalid length specified for variable character string
-1483 Invalid length for DATE or NUMBER bind variable

Note Error codes used by the Open M/SQL Relational Client and Server are docu-
mented in the Open M/SQL Relational Client User Guide.

Open M/SQL Developer Guide A-7

Appendix A — SQL Error Messages

A-8 Open M/SQL Developer Guide

Open M/SQL Reserved Words

APPENDIX

Open M/SQL reserves certain keywords for its own use.

This means that you cannot use these words as identifiers (names of database
objects such as base tables, forms, fields, etc.).

The following table lists the Open M/SQL reserved words:

Table B-1: Open M/SQL Reserved Words

%AFTERHAVING %ALPHAUP %ALTER
%BEGTRANS %CATALOG %CHECKPRIV
Y%EXACT %EXTERNAL %FOREACH
%FORM %INTALL %INTERNAL
%INTOBUILD %INTRANS %LEVEL
%MENU %MENUOBJ %NOCHECK
%QUERY %REPORT %ROWCOUNT
%STARTSWITH %THRESHOLD %UPPER
ADMIN ALL ALTER

AND ANY AS

ASC AUTHORIZATION AVG

BEGIN BETWEEN BY

CASCADE CHAR CHARACTER
CHECK CLOSE COBOL
COMMIT CONSTRAINT CONTINUE
COUNT CREATE CURRENT
CURSOR DATE DEC

Open M/SQL Developer Guide

B-1

Appendix B — Open M/SQL Reserved Words

Table B-1: Open M/SQL Reserved Words (Continued)

DECIMAL DECLARE DELETE
DESC DISTINCT DOUBLE
DROP END ESCAPE
EXEC EXISTS FETCH
FILE FLOAT FOR
FOREIGN FORTRAN FOUND
FROM GO GOTO
GRANT GROUP HAVING

IN INDEX INDICATOR
INSERT INT INTEGER
INTO IS LANGUAGE
LIKE MAX MIN
MODULE NOT NULL
NUMERIC OF ON

OPEN OPTION OR

ORDER PASCAL PLI
PRECISION PRIMARY PRIVILEGES
PROCEDURE PUBLIC REAL
REFERENCES RELATION REVOKE
ROLE ROLLBACK SCHEMA
SECTION SELECT SET
SMALLINT SOME SQL
SQLCODE SQLERROR SOME
TABLE TIME TO

UNION UNIQUE UPDATE
USER VALUES VARCHAR
VARYING VIEW WHENEVER'®
WHERE WITH WORK

Note Some of these reserved words are used for the SQL Data Definition Language

(DDL), which is currently under implementation by InterSystems.

B-2 Open M/SQL Developer Guide

Open M/SQL Supported Terminal

Types

APPENDIX

Open M/SQL supports the following terminal types:

Table C-1: Open M/SQL Supported Terminal Types

Type Name Description
Video ALTOS 5 Altos 5 Terminal
Video ANSI ANSI Terminal
Video ANSI Color ANSI Color Terminal
Video CIT-500 CIT-500 (Emulates VT 132)
Video COBRA COBRA Terminal
Video D200 General Dasher Terminal D214 & D215
Video D200 Gen/Perfect Dasher Terminal D214 & D215
Video D470C Dasher Terminal DG mode
Video DTM PC DTM PC Console

(Supported for Open M/SQL

on DTM)
Video DTM PC Color DTM PC Color Console
Video FALCO Falco Emulating a VT 220
Video Generic Pure Roll-and-Scroll
Video IBM 3151 IBM 3151 ASCII Display Station
Video IBM 6091 IBM 6091-19 Terminal
Video LANSI Long ANSI Terminal
Video MSM PC MSM PC Console

(Supported for Open M/SQL

on MSM)
Video MSM PC Color MSM PC Color Console

Open M/SQL Developer Guide C-1

Appendix C—Open M/SQL Supported Terminal Types

Table C-1: Open M/SQL Supported Terminal Types (Continued)

Type Name Description
Video PC IBM PC Terminal
Video PC Color IBM PC Terminal With Wired Color
Video QUME QUME Terminal
Video SUN SUN Terminal
Video TV9320 TeleVideo 9320 Terminal
Video VT100 DEC VT 100 Terminal
(Supported for Open M/SQL
on DSM & MSM)
Video VT220 DEC VT 220 Terminal
(Supported for Open M/SQL
on DSM & MSM)
Video VT240 DEC VT 240 Terminal
(Supported for Open M/SQL | (Regis-md)
on DSM & MSM)
Video VT420 DEC VT 420 Terminal
(Supported for Open M/SQL
on DSM & MSM)
Video WYSE30 WYSE30
Video WYSEG0 (D210) WYSEG0
(Emulating Dasher D210)
Video WYSEG0ON WYSEG60 Native Mode Terminal
Video WYSE85 C-WYSE-85
(DEC VT 220 Emulation)
Hard Copy DEC
Video
Printer HPIII Hewlett-Packard LaserJet Ill
Printer LASER Generic Laser Printer
Printer LNO3 Digital LNO3
Printer LT100 DEC Letterprinter 100
Printer SQ Sunquest PostScript Printer
Printer TI Texas Instruments Printer

C-2 Open M/SQL Developer Guide

Open M/SQL for DSM

Open M/SQL supports the following terminal types for use in the DSM environ-
ment:

n DEC VT 100 and compatibles
n DEC VT 220 and compatibles

Open M/SQL for DTM

Open M/SQL supports the DTM-PC Console terminal type for usein the DTM
environment. The Console device should always use this terminal type.

Open M/SQL also supports dumb terminalsin the DTM environment. If you
invoke DTM in multi-user mode, you can log on to adumb terminal. The default
terminal type for adumb terminal is“VT100", though you may select any sup-
ported terminal type at the “ Terminal Type”’ prompt.

Open M/SQL for MSM Environment

Open M/SQL supports the following terminal types for usein the MSM environ-
ment:

n DEC VT 100 and compatibles

n DEC VT 220 and compatibles

n DEC VT 240 and compatibles

n DEC VT 420 and compatibles

n FALCO

n GENERIC

n MSM PC Console

n WYSES5

Open M/SQL supports the MSM PC Console terminal type for usein the Open
M/SQL MSM-PC/386 environment. In order to connect terminals other than the
MSM PC console, you must use aserial port, an Arnet or other board, or a LAT.

The MSM-PC/386 environment supports only keyboards whose function keys
generate the DEC VT escape sequences.

It may be possible to use personal computers connected to a serial port, provided
that they use VT terminal emulation software that supports the function keys and
generates the correct escape segquences.

Some dumb terminals may also work if they support aVVT100 or VT220 emula-

tion mode. You should consult with individual hardware vendors to ascertain
this.

Open M/SQL Developer Guide C-3

Appendix C—Open M/SQL Supported Terminal Types

C-4 Open M/SQL Developer Guide

Full Screen Editor Keyboard
Actions

Altos

APPENDIX

The following tables show the key mapping scheme for using the Full Screen
Editor on the keyboards associated with the terminal types supported by Open

M/SQL.

The tables below contain the following information:

n Thefirst column, “Editor Action,” lists the actions supported by the Full

Screen Editor environment.

n The second column, “Key(s) To Press,” lists the primary keystroke or key-
stroke sequence used to invoke each action.

Table D-1: Altos Keyboard Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Help Menu

<F13><F15>

Beginning of Area

<F13><Left Arrow>

Bottom

<F13>
<F13><SCRN Next>

Bottom of Window

<F13><Down Arrow>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Copy

<CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character

Open M/SQL Developer Guide D-1

Appendix D—Full Screen Editor Keyboard Actions

Table D-1: Altos Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press

Delete Character <CTRL-D>
<DEL Char>

Delete Word <CTRL-W>

Do Editor Action <CTRL-\>

<CTRL-E><A>
<CTRL-E><\>

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <F13><CTRL-K>
<F13><Right Arrow>

Enhance <CTRL-G>
<F13>

Erase Area <CTRL-L>
<F13>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Y>
<CTRL-Z>
<F13><Y>
<F13><Z>
<CTRL-E><?>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Field Help <F14>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>
<CTRL-H>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <SCRN NEXT>

Next Word <CTRL-F>

D-2 Open M/SQL Developer Guide

Altos

Table D-1: Altos Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

One Window

<CTRL-E><1>

Other Options

<CTRL-E><0O>
<CTRL-E><CTRL-O>

Previous

<F16>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen

<SCRN Prev>

Previous Word

<CTRL-B>

Query Replace

<CTRL-E><Q>
<CTRL-E><R>
<CTRL-E><CTRL-Q>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Return <RETN>
Right Arrow <CTRL-K>

<Right Arrow>
Save and Compile Buffer <F12>

<CTRL-E><F12>

Show Current Time

<CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>
<CTRL-E><CTRL-W>

Tab

<Tab>

Toggle Select

<CTRL-E><S>
<CTRL-E><CTRL-S>

Top <F13><SCRN Prev>
<F13><T>
Top of Window <F13><Up Arrow>

Two Windows

<CTRL-E><2>

Up Arrow

<Up Arrow>

Use Buffer

<CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options

<F15>

Word Capitalize

<CTRL-E><->

Open M/SQL Developer Guide

D-3

Appendix D—Full Screen Editor Keyboard Actions

Table D-1: Altos Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Word Lowercase

<CTRL-E><_>

Word Uppercase

<CTRL-E><">

ANSI

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor

Editor Action

Keys(s) To Press

Help Menu <F1><F3>
Advance <CTRL-A>
<F1><A>

Beginning of Area

<F1><Left Arrow>

Bottom

<CTRL-V>
<F1><Page Down>
<F1><Vv>

Bottom of Window

<F1><CTRL-J>
<F1><Down Arrow>

Break

<CTRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Copy

<CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <<->
<Delete>

Delete Character <CTRL-D>
<F1><D>

Delete Word <CTRL-W>
<F1-w>

D-4 Open M/SQL Developer Guide

ANSI

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

Do Editor Action

<CTRL->
<CTRL-E><A>
<CTRL-E><CTRL-A>

Down Arrow <CTRL-J>
<Down Arrow>
End of Area <F1><CTRL-K>
<F1><Right Arrow>
Enhance <CTRL-G>
<F1>
Erase Area <CTRL-L>
<Fl><<->

Erase to Beginning

<F1><Delete Key>

Find

<CTRL-E><F>
<CTRL-E><CTRL-F>

General Help

<CTRL-Y>
<CTRL-Z>
<F1><Y>
<Fl><Z>
<CTRL-E><?>

Goto Tag

<CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window

<CTRL-E><+>

Field Help <F2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>

<CTRL-E><CTRL-M>

Next Error in Buffer

<CTRL-E><E>
<CTRL-E><CTRL-E>

Next Find <F6>
<CTRL-E><N>
<CTRL-E><CTRL-N>
Next Tag <CTRL-N>
<F1><N>

Open M/SQL Developer Guide

D-5

Appendix D—Full Screen Editor Keyboard Actions

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

Next Screen

<Page Down>

Next Word <CTRL-F>
<Fl><F>
One Window <CTRL-E><1>

Other Options

<CTRL-E><0O>

Paste

<Insert>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <Page Up>

Previous Tag <CTRL-P>
<F1><P>

Previous Word <CTRL-B>
<F1>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <CTRL-R>
<F1><R>

Return <RETURN>

Right Arrow <CTRL-K>
<Right Arrow>

Save Options <F4>

Save and Compile Buffer <F5>

Show Current Time

<CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>
<CTRL-E><CTRL-W>

Tab

<Fl><I|>
<Tab>

Toggle Select

<CTRL-E><S>

Toggle Syntax Checking

<CTRL-E><@>

Top

<CTRL-T>
<F1><Page Up>
<F1><T>

D-6 Open M/SQL Developer Guide

CIT-500

CIT-500

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

Top of Window

<F1><CTRL-U>
<F1><Up Arrow>

Two Windows

<CTRL-E><2>

Undo <CTRL-X>
<F1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>

<CTRL-E><CTRL-U>

View Intermediate Source

<CTRL-E><V>
<CTRL-E><CTRL-V>

Window Options <F3>
Word Capitalize <CTRL-E><->
Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor

Editor Action

Keys(s) To Press

Help Menu <F15>

Advance <CTRL-A>
<PF1><A>

Begin Select <Home>

Beginning of Area

<PF1><CTRL-H>
<PF1><Left Arrow>

Bottom

<PF1>
<PF1><Center>

Bottom of Window

<PF1><CTRL-J>
<PF1><Down Arrow>

Open M/SQL Developer Guide D-7

Appendix D—Full Screen Editor Keyboard Actions

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <Underscore>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Delete>

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<PF1><W>

Do Editor Action <CTRL-">

<CTRL-E><CTRL-A>
<CTRL-E><a>

<PF1><">

Down Arrow <CTRL-J>
<Down Arrow>

End Select <PF1><Home>

End of Area <PF1><CTRL-K>
<PF1><Right Arrow>

Enhance <CTRL-G>
<PF1>

Erase Area <CTRL-L>

Erase to Beginning <PF1><Delete>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Z>
<PF1><Y>
<PF1><Z>

<CTRL-E><?>
<CTRL-E><F15>

GETOUTALL <PF1><F20>
<PF1><PF4>
Goto Tag <CTRL-E><G>

<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

D-8 Open M/SQL Developer Guide

CIT-500

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

Field Help <PF2>
Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>
Left Arrow <CTRL-H>
<Left Arrow>
List Buffers <CTRL-E><F9>
Macro Definition <PF1><K>
Make Buffer <PF1><F16>
<CTRL-E><=>
<CTRL-E><[>
Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>
Next Find <F9>
<PF1><PF2>

<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <Center>
<PF1><N>
Next Tag <CTRL-N>
<PF1><N>
Next Word <CTRL-F>
One Window <CTRL-E><1>

Only Save Buffer

<F19>

Other Options

<CTRL-E><O>

Paste

<EOL>
<PF1><EOL>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <EOP>
<PF1><P>

Previous Tag <PF1><P>

Previous Word <CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Open M/SQL Developer Guide D-9

Appendix D—Full Screen Editor Keyboard Actions

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

Retreat <CTRL-R>
<PF1><R>
Return <RETURN>
Right Arrow <CTRL-K>
<Right Arrow>
Save Options <F20>
<PF4>
Save and Compile Buffer <F16>

<CTRL-E><F16>

Show Current Time

<CTRL-E><T>

<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>

<CTRL-E><CTRL-W>

Tab

<PF1><I>
<PF1><Tab>
<Tab>

Toggle Select

<CTRL-E><S>

Top <PF1><EOP>
<PF1><T>
Top of Window <PF1><CTRL-U>

<PF1><Up Arrow>

Two Windows

<CTRL-E><2>

Undo <CTRL-X>
<PF1><Underscore>
<PF1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

D-10 Open M/SQL Developer Guide

Dasher

Dasher

Table D-4: Dasher Keyboard Mapping for the Full Screen Editor

Editor Action

Keys(s) To Press

Help Menu

<F10>

Beginning of Area

<Cl><Left Arrow>

Bottom

<C1>
<C1l><F12>

Bottom of Window

<C1><Down Arrow>

Break

<CTRL-C>

Buffer Options

<CTRL-E><CTRL-B>
<CTRL-E>

Copy

<CTRL-E><CTRL-D>
<CTRL-E><D>

Cut or Paste

<CTRL-E><CTRL-C>
<CTRL-E><C>

Delete Back Character <Delete>
Delete Character <CTRL-D>
Delete Word <CTRL-K>

Do Editor Action

<CTRL-E><CTRL-A>
<CTRL-E><A>

Down Arrow <Down Arrow>
End of Area <C1><Right Arrow>
End Select <CTRL-E>
Enhance <C1>

<CTRL-G>

Enlarge Current Window

<CTRL-E><+>

Erase Area

<CTRL-L>
<Erase Page>

Erase to Beginning

<C1l><Delete>

Field Help

<C2>

Find

<F11>
<CTRL-E><F>
<CTRL-E><CTRL-F>

General Help

<CTRL-E><?>

Open M/SQL Developer Guide D-11

Appendix D—Full Screen Editor Keyboard Actions

Table D-4: Dasher Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

GETOUTALL <C1><C4>

Goto Tag <CTRL-E><CTRL-G>
<CTRL-E><G>

Last Buffer <CTRL-E><CTRL-L>
<CTRL-E><L>

Left Arrow <Left Arrow>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><CTRL-M>
<CTRL-E><M>

Next Find <CTRL-E><CTRL-N>
<CTRL-E><N>

Next Screen <F12>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Other Options

<CTRL-E><O>

Previous

<C4>

Previous Find

<CTRL-E><CTRL-P>
<CTRL-E><P>

Previous Screen <F13>
Previous Tag <CTRL-P>
Previous Word <CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Return

<New Line>

Right Arrow

<Right Arrow>

Show Current Time

<CTRL-E><CTRL-T>
<CTRL-T>

Switch to Other Window

<CTRL-E><CTRL-W>
<CTRL-E><W>

Tab

<Cl><I>
<C1><Tab>
<Tab>

Toggle Select

<CTRL-E><S>

D-12 Open M/SQL Developer Guide

IBM 3151 ASCII Display Station

Table D-4: Dasher Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Keys(s) To Press

Top <C1><F13>
<Cl><T>
Top of Window <C1><Up Arrow>

Two Windows

<CTRL-E><2>

Undo <Cl><X>

Up Arrow <Up Arrow>

Use Buffer <CTRL-E><CTRL-U>
<CTRL-E><U>

Window Options <C3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

IBM 3151 ASCII Display Station

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Advance <F1><A>
<CTRL-A>
Begin Select <F8>

Beginning of Area

<F1><Left Arrow>

Bottom

<F1>
<CTRL-V>

Bottom of Window

<F1><Down Arrow>
<F1><CTRL-J>

Break

<CTRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Open M/SQL Developer Guide D-13

Appendix D—Full Screen Editor Keyboard Actions

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>
Cut <F7>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Backspace>

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<F1><W>

Do Editor Action <CTRL-">
<CTRL-E><A>
<CTRL-A>
<Fl><">

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <F1><CTRL-K>
<F1><Right Arrow>

Enhance <CTRL-G>
<F1>

Erase Area <CTRL-L>

Erase to Beginning <F1><Backspace>

Field Help <F2>

Find <CTRL-E><F>

<CTRL-E><CTRL-F>

General Help

<CTRL-Z>
<CTRL-E><Help>
<CTRL-E><?>

<F1><Y>
<Fl><Z>

Get Out All <F1><F4>
<F12>

Goto Tag <CTRL-E><G>

<CTRL-E><CTRL-G>

Enlarge Current Window

<CTRL-E><+>

Last Buffer

<CTRL-E><L>
<CTRL-E><CTRL-L>
<F1><L>

D-14 Open M/SQL Developer Guide

IBM 3151 ASCII Display Station

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Left Arrow <Left Arrow>

List Buffers <CTRL-E><Find>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>
<F1><F12>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>
<F9>

Next Tag <CTRL-N>
<F1><N>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Only Save Buffer

<F11>

Other Options

<CTRL-E><O>

Paste

<F6>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <Home>

Previous Tag <CTRL-P>
<Fl><P>

Previous Word <CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <CTRL-R>
<F1><R>

Return <RETURN>

Right Arrow <CTRL-K>
<Right Arrow>

Save and Compile Buffer <F1><F>
<F10>

<CTRL-E><Do>

Open M/SQL Developer Guide D-15

Appendix D—Full Screen Editor Keyboard Actions

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Save Options

<F4>
<F1><S>

Show Current Time

<CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>
<CTRL-W>

Tab

<Fl1><|>
<Tab>

Toggle Select

<CTRL-E><S>

Top <CTRL-T>
<F1><T>
<F1><Home>

Top of Window <F1><CTRL-U>

<F1><Up Arrow>

Two Windows

<CTRL-E><2>

Undo <CTRL-X>
<F1><F7>
<F1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

D-16 Open M/SQL Developer Guide

IBM PC

IBM PC

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Advance <F1><A>
<CTRL-A>
Help Menu <F1><F3>

Beginning of Area

<F1><Left Arrow>

Bottom

<F1><End>
<F1><V>
<F1><Page Down>

Bottom of Window

<F1><CTRL-J>
<F1><CTRL-V>
<F1><Down Arrow>
<End>

Break

<CTRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>
Cut <F1>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character

<Backspace>
<CTRL-H>
<Delete>

Delete Character

<CTRL-D>
<F1><D>

Delete Word

<CTRL-W>
<F1><W>

Do Editor Action

<CTRL-">
<CTRL-E><A>
<CTRL-E><CTRL-A>

Down Arrow <CTRL-J>
<CTRL-V>
<Down Arrow>

End of Area <F1><CTRL-K>

<F1><Right Arrow>

Open M/SQL Developer Guide D-17

Appendix D—Full Screen Editor Keyboard Actions

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

End Select <CTRL-E><E>
Enhance <CTRL-G>
<F1>
Erase Area <CTRL-L>
Erase to Beginning <F1><Backspace>

<F1><CTRL-H>
<F1><Delete>

Find

<CTRL-E><F>
<CTRL-E><CTRL-F>

General Help

<CTRL-Y>
<CTRL-Z>
<F1><Y>
<F1><Z>
<CTRL-E><?>

Get Out All

<F1><F4>

Goto Tag

<CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window

<CTRL-E><+>

Field Help <F2>
<F1><F2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>

<CTRL-E><CTRL-N>
<F6>

Next Screen <PgDn>

Next Tag <CTRL-N>
<F1><N>

Next Word <CTRL-F>
<F1><F>

One Window <CTRL-E><1>

D-18 Open M/SQL Developer Guide

IBM PC

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Other Options

<CTRL-E><O>

Paste

<Ins>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <PgUp>

Previous Tag <CTRL-P>
<F1><P>

Previous Word <F1>
<CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <CTRL-R>
<F1><R>

Return <Enter>

Right Arrow <CTRL-K>
<Right Arrow>

Save and Compile Buffer <F1><F10>
<F5>

Save Options <F10>
<F4>

Show Current Time

<CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>
<CTRL-E><CTRL-W>

Tab

<Fl><I|>
<Tab>

Toggle Select

<CTRL-E><S>

Top <CTRL-T>
<F1><T>
<F1><Home>
<F1><PgUp>

Top of Window <F1><Up Arrow>

<F1><CTRL-U>

Two Windows

<CTRL-E><2>

Undo

<CTRL-X>
<F1><X>

Open M/SQL Developer Guide D-19

Appendix D—Full Screen Editor Keyboard Actions

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Up Arrow <Up Arrow>
<CTRL-U>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

QUME

Table D-7: QUME Keyboard Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Help Menu <PF1><PF3>
Advance <CTRL-A>
<PF1><A>

Beginning of Area

<PF1><CTRL-H>

Bottom of Window

<PF1><CTRL-J>

Bottom <PF1><V>
<CTRL-V>
Break <CTRL-C>

Buffer Options

<CTRL-E><CTRL-B>
<CTRL-E>

Copy

<CTRL-E><CTRL-D>
<CTRL-E><D>

Cut or Paste

<CTRL-E><CTRL-C>
<CTRL-E><C>

Delete Back Character <CTRL-J>
Delete Word <PF1><W>
<CTRL-W>

D-20 Open M/SQL Developer Guide

QUME

Table D-7: QUME Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Delete Character

<PF1><D>
<CTRL-D>

Do Editor Action

<CTRL-E><CTRL-A>
<CTRL-E><A>

<CTRL-">
Down Arrow <CTRL-L>
End Select <CTRL-E><D>
End of Area <PF1><CTRL-K>
<PF1><CTRL-L>
Enhance <CTRL-G>
<PF1>

Enlarge Current Window

<CTRL-E><+>

Exchange Point and Mark

<PF4>

Find

<CTRL-E><CTRL-F>
<CTRL-E><F>

General Help

<CTRL-E><?>

GETOUTALL <PF4>

Goto Tag <CTRL-E><CTRL-G>
<CTRL-E><G>

Last Buffer <CTRL-E><CTRL-L>
<CTRL-E><L>

Left Arrow <CTRL-H>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><CTRL-M>
<CTRL-E><M>

Next Find <CTRL-E><CTRL-N>
<CTRL-E><N>

Next Tag <CTRL-N>

Next Word <PF1><F>
<CTRL-F>

Next Tag <PF1><N>

One Window <CTRL-E><1>

Other Options

<CTRL-E><O>

Open M/SQL Developer Guide

D-21

Appendix D—Full Screen Editor Keyboard Actions

Table D-7: QUME Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Previous Tag

<PF1><P>
<CTRL-P>

Previous Find

<CTRL-E><CTRL-P>
<CTRL-E><P>

Previous Word

<PF1>
<CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <PF1><R>

<CTRL-R>
Return <CTRL-M>
Right Arrow <CTRL-K>

Show Current Time

<CTRL-E><CTRL-T>
<CTRL-E><T>

Switch to Other Window

<CTRL-E><CTRL-W>
<CTRL-E><W>

Tab

<PF1><I>
<CTRL-I>

Toggle Select

<CTRL-E><S>

Top of Window <PF1><CTRL-U>
Top <PF1><T>
<CTRL-T>

Two Windows

<CTRL-E><2>

Undo <PF1><X>
<CTRL-X>

Up Arrow <CTRL-U>

Use Buffer <CTRL-E><CTRL-U>
<CTRL-E><U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

D-22 Open M/SQL Developer Guide

Sun

Table D-8: Sun Keyboard Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Advance <CTRL-A>
<F1><A>
Begin Select <F7>

Beginning of Area

<F1><Left Arrow>

Bottom <F1><Page Down>
<F1><End>
Bottom of Window <End>

<F1><Down Arrow>

Break

<CRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Copy

<CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Delete>
<Backspace>
Delete Character
<CTRL-D>
Delete Word <CTRL-W>
Do Editor Action <CTRL-\>

<CTRL-E><A>
<CTRL-E><\>

Down Arrow <Down Arrow>
<CTRL-J>

End of Area <F1><Right Arrow>
<F1><CTRL-K>

End Select <F1><F7>

Enhance <F1>
<CTRL-G>

Erase Area <CTRL-L>
<F1>

Erase to Beginning

<F1><Delete>

Open M/SQL Developer Guide D-23

Appendix D—Full Screen Editor Keyboard Actions

Table D-8: Sun Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Find <CTRL-E><F>
<CTRL-E><CTRL-F>
General Help <CTRL-Y>
<CTRL-E><?>
GETOUTALL <F10>
<F1><F10>
<F1><F4>
Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>
Help Menu <Help>
<F1><F3>
Enlarge Current Window <CTRL-E><+>
Field Help <F2>
Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>
Left Arrow <Left Arrow>
<CTRL-H>
List Buffers <CRTL-E><F6>
Macro Definition <F1><K>
Make Buffer <CTRL-E><=>

<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Error in Buffer <CTRL-E><E>
<CTRL-E><CTRL-E>

Next Find <F6>
<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <Page Down>
<F1><N>

Next Word <CTRL-F>

Next Tag <CTRL-N>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Only Save Buffer <F9>

D-24 Open M/SQL Developer Guide

Sun

Table D-8: Sun Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Paste

<Insert>
<F1><Insert>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <Page Up>
<F1><P>

Previous Word <CTRL-B>
<F1>

Previous Tag <CTRL-P>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

RETURN <RETURN>

Retreat <CTRL-R>

Right Arrow <Right Arrow>
<CTRL><K>

Save Options <F4>

Save and Compile Buffer <F5>
<F1><F>

Show Current Time

<CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>
<CTRL-E><CTRL-W>

TAB

<Tab>
<F1><I>

Toggle Select

<CTRL-E><S>
<CTRL-E><CTRL-S>

Toggle Syntax Checking

<CTRL-E><@>

Top <F1><Page Up>
<F1><Home>
<CTRL><T>

Top of Window <F1><Up Arrow>

<Home>
<F1><CTRL-U>

Two Windows

<CTRL-E><2>

Up Arrow

<Up Arrow>
<CTRL-U>

Open M/SQL Developer Guide D-25

Appendix D—Full Screen Editor Keyboard Actions

Table D-8: Sun Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Undo

<CTRL-X>

View Intermediate Source

<CTRL-E><V>
<CTRL-E><CTRL-V>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

Televideo 905

Table D-9: Televideo 905 Key Mapping for Full Screen Editor

Editor Action

Key(s) To Press

Advance

<CTRL-A>
<F1><A>

Beginning of Area

<F1><Left Arrow>

Bottom

<F1><V>

Bottom of Window

<F1><Down Arrow>

Break

<CTRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Copy

<CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character
Delete Character <CTRL-D>
<F1><D>

D-26 Open M/SQL Developer Guide

Televideo 905

Table D-9: Televideo 905 Key Mapping for Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Delete Word <CTRL-W>
<Fl><W>
Do Editor Action <CTRL><">

<CTRL-E><a>
<CTRL-E><CTRL-A>

Down Arrow <Down Arrow>
<CTRL-v>
End of Area <F1><Right Arrow>
Enhance <F1>
<CTRL-G>
Erase Area <Line Erase>
Erase to Beginning <F1>
Erase to End <CTRL-U>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <F2>

GETOUTALL <F1><F4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Help Menu <F1><F3>

Enlarge Current Window

<CTRL-E><+>

Field Help <PF2>
Left Arrow <Left Arrow>
Make Buffer <CTRL-E><=>
<CTRL-E><[>
Next Screen <F1><N>
Next Word <CTRL-F>
<F1><F>
Next Tag <CTRL-N>
One Window <CTRL-E><1>

Other Options

<CTRL-E><O>

Paste <Line Insert>
PREVIOUS <F4>
Previous Screen <F1><P>

Open M/SQL Developer Guide D-27

Appendix D—Full Screen Editor Keyboard Actions

Table D-9: Televideo 905 Key Mapping for Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Previous Word <CTRL-B>
<F1>
Previous Tag <CTRL-F>

Query Replace

<CTRL-E><R>

<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

RETURN <RETURN>
Retreat <CTRL-R>
<F1><R>
Right Arrow <Right Arrow>
Save Options <F1><F>
Save and Compile Buffer <Esc><Esc>
TAB <Tab>
<F1><|>

Toggle Select

<CTRL-E><S>

Top <F1><T>
<CTRL-T>
Top of Window <F1><Up Arrow>

Two Windows

<CTRL-E><2>

Up Arrow <Up Arrow>
<CTRL-K>

Undo <CTRL-X>
<F1><X>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

D-28 Open M/SQL Developer Guide

DEC VT 100

DEC VT 100

Table D-10: VT100 Key Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Help Menu <PF1><PF3>
Advance <CTRL-A>

<PF1>
Beginning of Area <PF1><Left Arrow>

<PF1><CTRL-H>

Bottom

<PF1>

Bottom of Window

<PF1><Down Arrow>
<PF1><CTRL-J>

Break

<CTRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Copy

<CTRL-E><CTRL-D>
<CTRL-E><D>

Cut or Paste

<CTRL-E><CTRL-C>
<CTRL-E><C>

Delete Back Character <DELETE>
Delete Character <CTRL-D>
Delete Word <CTRL-W>
Do Editor Action <CTRL-">

<CTRL-E><CTRL-A>
<CTRL-E><A>

Down Arrow <CTRL-J>
<Down Arrow>
End of Area <PF1><Right Arrow>
PF1><CTRL-K>
End Select <CTRL-E><E>
Enhance <CTRL-G>
<PF1>

Enlarge Current Window

<CTRL-E><+>

Erase Area <CTRL-L>
Erase to Beginning <PF1>
Field Help <PF2>

Open M/SQL Developer Guide D-29

Appendix D—Full Screen Editor Keyboard Actions

Table D-10: VT100 Key Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Find <CTRL-E><CTRL-F>
<CTRL-E><F>

General Help <CTRL-Z>
<PF1><K>
<PF1><Y>
<PF1><Z>
<CTRL-E><?>

Get Out All <PF1><PF4>

Goto Tag <CTRL-E><CTRL-G>
<CTRL-E><G>

Last Buffer <CTRL-E><CTRL-L>
<CTRL-E><L>

Left Arrow <CRTL-H>
<Left Arrow>

Make Buffer <PF1><PF2>
<CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><CTRL-M>
<CTRL-E><M>

Next Find <CTRL-E><CTRL-N>
<CTRL-E><N>

Next Tag <PF1><N>
<CTRL-N>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Other Options

<CTRL-E><O>

Previous Find

<CTRL-E><CTRL-P>
<CTRL-E><P>

Previous Tag

<PF1><P>

Previous Word

<CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <CTRL-R>
<PF1><R>
Return <RETURN>

D-30 Open M/SQL Developer Guide

DEC VT 100

Table D-10: VT100 Key Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Right Arrow

<CTRL-K>
<Right Arrow>

Save Options

<PF1><S>
<PF4>

Show Current Time

<CTRL-E><CTRL-T>
<CTRL-E><T>

Switch to Other Window

<CTRL-E><CTRL-W>
<CTRL-E><W>

Tab

<PF1><I>
<PF1><Tab>
<Tab>

Toggle Select

<CTRL-E><S>

Top <PF1><T>
Top of Window <PF1><Up Arrow>
<PF1><U>

Two Windows

<CTRL-E><2>

Undo <PF1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><CTRL-U>
<CTRL-E><U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

Open M/SQL Developer Guide D-31

Appendix D—Full Screen Editor Keyboard Actions

DEC VT 200

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Advance <CTRL-A>
<PF1><A>

Help Menu <Help>

Begin Select <Select>

Beginning of Area <PF1><CTRL-H>
<PF1><Left Arrow>

Bottom <PF1>
<PF1><Next Screen>

Bottom of Window <PF1><CTRL-J>
<PF1><Down Arrow>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <Remove>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Delete>

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<PF1><W>

Do Editor Action <CTRL-\>
<CTRL-">
<PF1></>

<CTRL-E><CTRL-A>
<CTRL-E><A>

Down Arrow <CTRL-J>
<Down Arrow>

End Select <PF1><Select>

End of Area <PF1><CTRL-K>
<PF1><Right Arrow>

D-32 Open M/SQL Developer Guide

DEC VT 200

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Enhance <CTRL-G>
<PF1>
Erase Area <CTRL-L>

Erase to Beginning

<PF1><Delete>

Find

<CTRL-E><F>
<CTRL-E><CTRL-F>

General Help

<CTRL-Z>
<PF1><Y>
<PF1><Z>
<CTRL-E><?>
<CTRL-E><Help>

Get Out All <PF1><F20>
<PF1><PF4>
Goto Tag <CTRL-E><G>

<CTRL-E><CTRL-G>

Enlarge Current Window

<CTRL-E><+>

Help <PF2>
Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>
Left Arrow <CTRL-H>
<Left Arrow>
List Buffers <CTRL-E><Find>
Macro Definition <PF1><K>
Make Buffer <PF1><Do>
<CTRL-E><=>
<CTRL-E><[>
Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>
Next Find <Find>
<PF1><PF2>

<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen

<Next Screen>

<PF1><N>
Next Tag <CTRL-N>
<PF1><N>
Next Word <CTRL-F>

Open M/SQL Developer Guide D-33

Appendix D—Full Screen Editor Keyboard Actions

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

One Window

<CTRL-E><1>

Only Save Buffer

<F19>

Other Options

<CTRL-E><O>

Paste

<Insert Here>
<PF1><Insert Here>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen

<PF1><P>
<Prev Screen>

Previous Tag

<PF1><P>

Previous Word

<CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <CTRL-R>
<PF1><R>
Return <RETURN>
Right Arrow <CTRL-K>
<Right Arrow>
Save Options <F20>
<PF4>
Save and Compile Buffer <Do>

<CTRL-E><Do>

Show Current Time

<CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>
<CTRL-E><CTRL-W>

Tab

<PF1><I>
<PF1><Tab>
<Tab>

Toggle Select

<CTRL-E><S>

Top <PF1><Prev Screen>
<PF1><T>
Top of Window <PF1><CTRL-U>

<PF1><Up Arrow>

Two Windows

<CTRL-E><2>

D-34 Open M/SQL Developer Guide

DEC VT 220

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Undo <CTRL-X>
<PF1><Remove>
<PF1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

DEC VT 220

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor

Editor Action

Key(s) To Press

Advance <PF1><A>
<CTRL-A>

Help Menu <Help>

Begin Select <Select>

Beginning of Area <PF1><CTRL-H>
<PF1><Left Arrow>

Bottom <PF1>

<PF1><Next Screen>

Bottom of Window

<PF1><CTRL-J>
<PF1><Down Arrow>

Break

<CTRL-C>

Buffer Options

<CTRL-E>
<CTRL-E><CTRL-B>

Open M/SQL Developer Guide D-35

Appendix D—Full Screen Editor Keyboard Actions

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>
Cut <Remove>

Cut or Paste

<CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character
Delete Character <CTRL-D>
Delete Word <CTRL-W>
<PF1><W>
Do Editor Action <CTRL-">
<PF1></>

<CTRL-E><A>
<CTRL-E><CTRL-A>

Down Arrow <CTRL-J>
<Down Arrow>
End of Area <PF1><CTRL-K>
<PF1><Right Arrow>
End Select <PF1><Select>
Enhance <CTRL-G>
<PF1>
Erase Area <CTRL-L>

Erase to Beginning

<PF1><Delete>

Field Help

<PF2>

Find

<CTRL-E><F>
<CTRL-E><CTRL-F>

General Help

<CTRL-Z>
<CTRL-E><Help>
<CTRL-E><?>

<PF1><Y>

<PF1><Z>
GETOUTALL <PF1><PF4>
Goto Tag <CTRL-E><G>

<CTRL-E><CTRL-G>

Enlarge Current Window

<CTRL-E><+>

Last Buffer

<CTRL-E><L>
<CTRL-E><CTRL-L>
<PF1><L>

D-36 Open M/SQL Developer Guide

DEC VT 220

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Left Arrow <Left Arrow>
<CTRL-H>

List Buffers <CTRL-E><Find>

Macro Definition <PF1><K>

Make Buffer <PF1><Do>
<CTRL-E><[>
<CTRL-E><=>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>
<Find>
<PF1><PF2>

Next Tag <CTRL-N>
<PF1><N>

Next Screen <PF1><N>

<Next Screen>

Next Word

<CTRL-F>

One Window

<CTRL-E><1>

Only Save Buffer

<F19>

Other Options

<CTRL-E><O>

Paste

<Insert Here>
<PF1><Insert Here>

Previous Find

<CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen

<PF1><P>
<Prev Screen>

Previous Tag

<PF1><P>

Previous Word

<CTRL-B>

Query Replace

<CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen

<CTRL-E></>

Retreat <CTRL-R>
<PF1><R>
Return <RETURN>

Open M/SQL Developer Guide D-37

Appendix D—Full Screen Editor Keyboard Actions

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action

Key(s) To Press

Right Arrow

<CTRL-K>
<Right Arrow>

Save and Compile Buffer

<Do>
<CTRL-E><Do>
<PF1><F>

Save Options

<PF4>
<PF1><S>

Show Current Time

<CTRL-E><T>

<CTRL-E><CTRL-T>

Switch To Other Window

<CTRL-E><W>

<CTRL-E><CTRL-W>

Tab

<Tab>
<PF1><Tab>
<PF1><I>

Toggle Select

<CTRL-E><S>

Top <PF1><T>
<PF1><Prev Screen>
Top of Window <PF1><CTRL-U>

<PF1><Up Arrow>

Two Windows

<CTRL-E><2>

Undo <CTRL-X>
<PF1><Remove>
<PF1><X>

Up Arrow <Up Arrow>
<CTRL-U>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase

<CTRL-E><">

D-38 Open M/SQL Developer Guide

WYSE-60 (Native Mode)

WYSE-60 (Native Mode)

Table D-13: WYSE-60 Key Mapping for the Full Screen Editor

Editor Action

Primary Key

Alternate Key(s)

Advance

<Enhance><A>

<CTRL-A>

Beginning of Area

<Enhance><Left Arrow>

<Enhance><CTRL-H>
<Backspace>

Bottom of List

<Enhance><Page Down>

<Enhance>-V
<End>

Bottom of Window

<Enhance><Down Arrow>

<Enhance><CTRL-J>

Break <CTRL-C>

Buffer Options <CTRL-E>/B <CTRL-E><CTRL-B>
Copy <CTRL-E>/D <CTRL-E><CTRL-D>
Cut <Delete>

Cut or Paste <CTRL-E>/C <CTRL-E><CTRL-C>
Delete Word <CTRL-W>

Delete Previous Character |

Delete Character <CTRL-D>

Do Editor Action <Ins> <Enhance>-"

Down Arrow <Down Arrow> <CTRL-J>

End of Area <Enhance><Right Arrow>

End Select <CTRL-E>/E

Enhance <PF1> <CTRL-G>

Erase Area <PF12> <CTRL-U>

Erase to Beginning

<Enhance>

Explain <PF2>

Find <CTRL-E>/F <CTRL-E><CTRL-F>
GETOUT <PF10> <Enhance><F>
GETOUTALL <Enhance><PF10> <Enhance><PF4>
General Help <Enhance><K> <CTRL-Z>

Goto Tag <CTRL-E>/G <CTRL-E><CTRL-G>
Grow Current Window <CTRL-E>/+

Open M/SQL Developer Guide D-39

Appendix D—Full Screen Editor Keyboard Actions

Table D-13: WYSE-60 Key Mapping for the Full Screen Editor (Continued)

Editor Action Primary Key Alternate Key(s)

Help Menu <Enhance><PF3>

Insert/Typeover Toggle <Ins> <Enhance><Ins>

Key Help <Enhance><PF2>

Last Buffer <CTRL-E>/L <CTRL-E><CTRL-L>

Left Arrow <Left Arrow> <CTRL-H>
<Backspace>

Make Buffer <CTRL-E> = <CTRL-E> [

Mark Options <CTRL-E>M <CTRL-E><CTRL-M>

Next Find <PF6> <CTRL-E> <N>

Next Screen <Page Down>

Next Tag <CTRL-N> <Enhance><N>

Next Word <CTRL-F>

Other Options <CTRL-E>O

One Window <CTRL-E>1

Paste <Insert> <Enhance><Insert>
<Enhance><G>

Previous Find <CTRL-E>P <CTRL-E><CTRL-P>

Previous Screen <Page Up>

Previous Tag <Enhance><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E>R <CTRL-E><CTRL-R>

Redraw Screen <CTRL-E>/

Retreat <CTRL-R> <Enhance><R>

RETURN <Return>

Right Arrow <Right Arrow> <CTRL-L>

SAVE Options <PF4> <PF9
<>Enhance><S>

Save and Compile Buffer <PF5> <Esc><Esc>

Show Current Time <CTRL-E> <T> <CTRL-E><CTRL-T>

Switch to Other Window <CTRL-E> <W> <CTRL-E> <CTRL-W>

Tab <Tab>

Toggle Select <CTRL-E> <Y>

D-40 Open M/SQL Developer Guide

WYSE-60 (Native Mode)

Table D-13: WYSE-60 Key Mapping for the Full Screen Editor (Continued)

Editor Action

Primary Key

Alternate Key(s)

Top of Window

<Enhance><Up Arrow>

<Enhance>-<CTRL-K>

Top

<Enhance><Page Up>

<Enhance><T>

Two Windows

<CTRL-E> <2>

Undo <CTRL-X> <Enhance>-<CTRL-X>
Up Arrow <Up Arrow> <CTRL-K>

Use Buffer <CTRL-E>U <CTRL-E><CTRL-U>
Window Options <PF3>

Word Capitalize <CTRL-E> -

Word Lowercase <CTRL-E> _

Word Uppercase <CTRL-E> "

Open M/SQL Developer Guide D-41

Appendix D—Full Screen Editor Keyboard Actions

D-42 Open M/SQL Developer Guide

Glossary of Terms

Application

A set of forms, reports, and other objects and programs linked together by menus
to form a structure that provides aworking user interface to a database.

Application Help Facility

A suite of help features and utilities that allows you to develop and deploy a con-
text-sensitive on-line help system for your Open M/SQL applications.

Application Mode

The mode in which application end-users interact with a database using forms
and windows designed by the application developer. In application mode, users
enter the application directly from the operating system prompt and never seethe
M prompt. Navigation is typically guided by a menu structure designed by the
application developer.

Application Program Interface (API)
Software on your client machine that handles the interface between an applica-
tion tool or C application and the server, and manages communications with the
server. The Relational Client supportstwo APIs, the ORACLE Call Interface
(OCl) and Microsoft’s Open Database Connectivity (ODBC).

Auxiliary Window
Any window defined for aform that is neither the form’s master window nor its

row selection window, i.e., any window in aform that is not the first window to
appear when the form is invoked. Forms may have multiple auxiliary windows.

Open M/SQL Developer Guide Glossary-1

Glossary

Base Table

A collection of data represented in a simple 2-dimensional format consisting of
one or more rows with one or more columns. Each row has at most one value for
each column, and each row is unique, meaning that it differs by at least one col-
umn value from every other row. Base tables are mapped directly to physica
storage structures.

Branching Field

A form-only field of datatype Branching whose sole purposeisto serveasa
mask for an underlying trigger action, which typically branches to another win-
dow within the current form or to the master window of another form. Branching
fields can also invoke other actions besides a window branch. On awindow,

branching fields are represented by their captions, which always appear enclosed
in brackets.

Caller ID

Identifier that allows each menu item or form trigger that calls aform, window,
or menu to identify itself to the called object. The Caller ID is stored in the
{%caller} external reference variable.

Cascading Menus

Term used to describe the style of presentation for a pop-up menu that is called
by another pop-up menu. Multiple pop-up menus called in succession cascade on
the screen so as not to overlap.

Characteristic Relationship

A programmer-defined join between base tables in which rowsin a*“ child table”
are existence-dependent on rowsin a“ parent table” in a many-to-one manner—a
single parent row can have many child rows.

Child Form

A form whose data source is a child table. Child forms may be single-row or
multi-row and may access rows with the parent “known” or “not known”. If the
parent isknown, rows are called from the RowID in the parent table, which limits
row selection to children of the parent table RowID. If the parent is not known,
all child table rows are selected.

Glossary-2 Open M/SQL Developer Guide

Glossary

Child Table

A base table that is existence-dependent on another table (its parent) in a charac-
teristic relationship. Rows in a child table must have a pointer to arow in the par-
ent table.

Code Generation

The process by which the Open M/SQL compiler generates executable M rou-
tines from programmer specifications. This happens when you compile an Open
M/SQL base table, form, menu object, or report.

Column
See Field.
Communications Protocol

A set of conventions that defines how datais transferred between computers on a
network. More specificaly, it is the software that determines how a message
packet is formatted. Communication protocols are used to talk to a network inter-
face device. More than one communication protocol can share the same physical
interface device. The Open M/SQL Relational Client currently supports the fol-
lowing communication protocols: TCP/IP, DECnet (for VAX/VMS systems
only), and Memory-to-Memory (for DTM systems only).

Compilation
The process in which programmer specifications are translated by the Open
M/SQL compiler into macro source code and stored as .MAC routines. The
Macro Preprocessor Uses macro source code routines to produce intermediate
code, which isthen saved as executable M code (called abject code).

Computed Field
A field whose valueis derived from acal culation defined in M code. The M code
can reference other fields in the associated base table aswell asM functions and
special variables.

Conversion Code

M code used by Open M/SQL to convert field data values from external input
formatsto interna storage formats and from internal storage formats to external
display formats.

Open M/SQL Developer Guide Glossary-3

Glossary

Cursor

Anidentifier for an SQL request. Once a client application has established a con-
nection with the server, it creates a cursor. When the client application wants to
send an SQL request to the server, it associates the request with a cursor. An
application can have multiple cursors active within a connection. Only one SQL
request is associated with a cursor at a given point in time. Once the application
receives the server’s response to a request, however, it can reuse the cursor for
another request.

Cursor-Based SQL
A type of embedded SQL query that opens a cursor to process the query. When
your application needs to access multiple rows of data, you must use a cursor. A
cursor acts like a pointer—it focuses on accessing and processing one row at a
time, then moves from that row to the next in the sequence.

Database
A collection of related data.

Data Dictionary

A component of Open M/SQL used to describe the elements of the relational

database, including both its conceptual content and the mapping of its logical

data definitions to physical data structures in the global database.
Database Field

A field that is defined in a Data Dictionary base table. A form has accessto all
database fields defined for its associated base table. You can even modify certain
display characteristics of the field at the form level.

Database Form
Any form that uses a Data Dictionary base table as its data source.

Data Source
The Data Dictionary base table from which a database form retrieves its data. A

form may have only one data source. Non-database forms do not have any data
source. Forms cannot use views as their data source.

Glossary-4 Open M/SQL Developer Guide

Glossary

Designhated Table

The Data Dictionary base table that is referenced (pointed to) by a Designative
Reference field and accessed by Designative Display fieldsin a cross-table refer-
ence form.

Designative Display Field

A form-only field based on a Designated Reference field (defined in the associ-
ated base table) that retrieves data from (and optionally adds data to) a specified
field in the designated table. Designative Display fields are the vehicles of cross-
table referencing. You may create Designative Display fieldsfor any fieldsin the
designated table, and you may place them on windows in the form.

Designative Reference

A programmer-defined join between two base tables in which one field of the
designating table contains the Row IDs of all rowsin the referenced table. In
relational database terminology, the designating table has a“foreign key” on the
referenced table.

Developer
A component of Open M/SQL that allows application developersto use both pro-

gram-level code and application generator technology to create relational data-
base applications.

Device
A piece of hardware that is part of acomputer system, such as aterminal, printer,
disk drive, or magnetic tape drive.

Directory
A name for alocation on a disk where files can be stored.

DTM

InterSystems' implementation of the M programming language designed to run
on IBM-compatible PCs based on Intel 80386 and higher microprocessors.

Embedded SQL

SQL statementsthat are directly embedded within M routines at the macro source
code level. These statements are prefixed by the M binding syntax, &sql.

Open M/SQL Developer Guide Glossary-5

Glossary

Export/Import Utility

A window-based utility that allows you to port Open M/SQL “objects’ (base
tables, views, forms, reports, queries, menus, menu objects, help topics, and help
documents) between different directories and different computers.

External Value
Thevaue of afiddinitsexterna display format, i.e., after it has passed through

internal -to-external conversion code. A field may have both an internal and an
external value.

Fields
A named unit of datain abase table row, usually representing areal world entity,
such as aname, socia security number, or date of birth for that row. Also called
“column” or “attribute”.

Field Caption
The descriptive text attached to afield on awindow.

Foreign Key
See Designative Reference.

Forms

A collection of one or more associated windows that either displays information
or prompts the user to enter information, or both.

Form Generator
An application generator component of Open M/SQL that allows application
developersto design highly sophisticated window-based forms that interact with
the Relational Data Dictionary (or optionally an alternative data source) to add,
update, retrieve, and delete database information.

Form-Only Field
A field that is created for aform and exists only at the form level, independent of

the Data Dictionary. Form-only fields may appear on aform but cannot file data
to the Data Dictionary. All fields on a non-database form are form-only.

Glossary-6 Open M/SQL Developer Guide

Glossary

Form-Only Form

A non-database form that does not file data to any data structure.

Full Screen Editor

Global

AnISM (InterSystems’ original implementation of M) utility that allows you to
create, edit, and view macro source code routines, intermediate code routines,
and include files.

A disk-based data storage unit specified by the M programming language stan-
dard. Also called “global variables’, these are commonly implemented using bal-
anced-tree technol ogy.

Global Database

A database in which all datais stored in a system of multiply-subscripted arrays
called “globals’. Thisisthe underlying logical and physical data storage struc-
ture of an Open M/SQL database. Relational tables are mapped to the global
database through the Open M/SQL Relational Data Dictionary.

Help Document

A user documentation manual for your application based on the help definitions
you have already created. You create help documents using the Help Document
Creation facility. A help document consists of chapter numbers and titles, para-
graph/section headings and numbers, screen images of menus, screen images of
forms, screen images of individual windows, long and short hel p messages for
menu options and fields, help topic text, and optionally an automatically gener-
ated table of contents and index.

Help Document Creation Facility

An extension to the Application Help facility that allows you to create a printed
documentation manual for your application based on the help definitions you
have already created.

Help Text Entry Facility

An extension to the Application Help facility that centralizes access to the help
attributes associated with forms and menu objects and provides an easy-to-use
interface for creating help text definitions and deploying them throughout an
application.

Open M/SQL Developer Guide Glossary-7

Glossary

Help Topic

A block of programmer-defined help text which you can make available to end-
usersin a context-sensitive fashion at various points in an application by attach-
ing it to base tables, forms, windows, menu objects, and menu object choices or
by enabling it viatriggers.

Horizontal Menu

A type of old-style menu that istied to awindow on aform and displaysitslist of
options horizontally across the bottom of the screen just below the status line of
the window to which it istied.

Implicit Join

A programmer-defined join between related tables defined in the Data Dictionary
that allows you to query multiple tables without specifying data access restric-
tionsin the WHERE clause. Implicit joins can designate characteristic rel ation-
ships or designative references.

Include File

Files containing definitions that can be used in the preprocessor phase of compi-
lation to expand macro source routines and determine whether optional lines of
code should be included. Include files can also be used to include a common
block of code in several routines, saving the overhead of callsto a common sub-
routine.

Index Map

A map for one or more database fields that contains the Row ID of each row ina
base table. Index maps speed up access to rows looked up by values for the index
fields and alow rapid retrieval of rows sorted by one or more index fields. The
Open M/SQL Data Dictionary automatically generates index maps for all fields
specified as lookup fields in the lookup specifications for a base table (when
default physical structureis used).

Integrity Constraints

Programmer-defined constraints on datainsert, update, and del ete operations that
ensure the accuracy and completeness of the application and the underlying data-
base.

Glossary-8 Open M/SQL Developer Guide

Glossary

Interactive Query Editor

Open M/SQL facility for defining and running ad hoc queries. The Interactive
Query Editor provides afree-form SQL editor environment (similar to the Full
Screen Editor) that enables users to define and run any syntactically valid SQL
guery. The Interactive Query Editor aso provides full screen editing capabilities.

Intermediate Source Code

The standard 3GL M source code availablein al M implementations. Intermedi-
ate code is produced from macro source code by the Open M/SQL compiler. At
theintermediate code level, all preprocessor syntax, including embedded SQL, is
resolved, and the routine contains only pure M source code. You can write M
routines directly at the intermediate code level, but you cannot use embedded
SQL or other preprocessor syntax, such as macros.

Internal Value

Join

The value of afield as stored internally by Open M/SQL, i.e., after it has passed
through external-to-internal conversion code. A field may have both an internal
and an external value.

A link between base tables that defines the relationship between the data in those
tables.

Learn-As-You-Go (LAYGO)

License

Login

The ability for aform to add new rowsto aforeign base table at run time.

An agreement between | nter Systems and its customer that defines the compo-
nents of Open M software avail able to the customer and the number of users who
can use each component. A customer must be licensed in order to run Open M.
Licenseinformation is distributed in a Product Activation Key and stored on your
systemin afile named MSQL.KEY.

The act of signing on to a system. Database administrators and application devel-
operslog in to Open M/SQL by typing “do "%msgl” at the M prompt and then
providing UserName and Password information at the Open M/SQL User Identi-
fication window.

Open M/SQL Developer Guide Glossary-9

Glossary

Long Help Message

A multiple-line programmer-defined help text message associated with afield or
menu object choice that displays to the screen in a run-time window when the
user presses the <ExXPLAIN> key twice in succession from afield or menu object
choice. For fields, you may define triggers to automatically display the long help
message based on certain run-time circumstances.

Lookup Display Field
Field or combination of fields whose values are displayed in the lookup box that
lists al matching entries retrieved by the lookup query in row selection for sin-
gle-row forms. The information displayed by these fields hel psthe user select the
appropriate row.

Lookup Field
Field or combination of fields used by single-row forms to select rows from the
database. When aform is run, the user enters lookup information into the lookup
field(s), and the system runs alookup query to match the user input against actual
database values.

Lookup Specifications

The complete set of all lookup queries, including their lookup fields and lookup
display fields, defined to perform row selection for a single-row form.

Lookup Query

A set of lookup fields and lookup display fields defined to perform row selection
for asingle-row form. A Single-row form may have multiple lookup queries.

M Language
An ANSI-Standard procedural programming language specifically designed for
database applications. M is the foundation technology of InterSystems' entire
Open M product line.

M Database

A MUMPS.DAT file and, on server systems that support multivolume databases,
from O through 7 MUMPS.EXT files.

Glossary-10 Open M/SQL Developer Guide

Glossary

Macro Preprocessor

Phase of the Open M/SQL Compiler that converts macro source code, which may
include macro constructs and embedded SQL, into intermediate code, whichis
pure M source code. The macro preprocessor resolves macros and code-gener-
ates embedded SQL.

Macro Source Code

The highest, most flexible and permissive level of code at which routines can be
written. Macro source code permits the definition of macros and embedded SQL
statements using a combination of ANSI-Standard M syntax, special macro pre-
processor commands, and ANSI-Standard SQL.

Map
A map describes the relationship of the logical structure of abase table to the
physical structure of the underlying global database. The Open M/SQL Rela
tional Data Dictionary uses maps to describe an M global databasein relational
terms.

Master Map

Each base table has exactly one master map. The master map defines the global
structure for all of the datafieldsin the base table. In M terminology, the master
map defines the “upright file”.

Master Window

Theintroductory window of any form. Every form must have amaster window in
order to be compiled and run. No form can have more than one master window.

Menu

A list of one or more choices, each of which invokes an action that performs a
specific task. Menus can display their options vertically (top to bottom) or hori-
zontally (left to right). Menus are typically used to unite various components of
an application and provide access to them from a central location.

Menu Generator

An application generator component of Open M/SQL that allows application
developersto design and maintain menus for an application. Menus unite the var-
ious components of an application in alogical and visually sophisticated manner
and structure an application by defining how it is organized and how it is pre-
sented to users. You can design menu objects or old-style menus.

Open M/SQL Developer Guide Glossary-11

Glossary

Menu Object

Menu Bar

M/PACT

A list of one or more choices, each of which invokes an action that performs a
specific task. A menu object can be run as either a menu bar or a pop-up menu.
Menu objects emulate the style of a graphical user interface (GUI) environment
by providing pull-down menu bar and pop-up menu capabilities.

One of the two run-time modes for amenu object, amenu bar displaysits options
horizontally across the screen. Menu bars can be attached to windows (in which
case they appear at the top of the window), they can be attached to forms (in
which case they appear at the top of the screen for al windowsin the form), or
they can be run as stand-al one objects (in which case they can be positioned any-
where on the screen).

The report writer component of Open M/SQL. M/PACT lets you create and run
sophisticated end-user data reporting applications that interact with the Open
M/SQL Relational Data Dictionary.

MSQL.KEY File

The file into which you must enter the encoded version of your Open M license
in order to activate the license.

Multi-Row Form

A form that simultaneously presents multiple rows of data from its associated
base table. The master window of a multi-row form displaysits set of fieldsin
repeating units, each unit corresponding to one database row. Multi-row forms
must always have a Data Dictionary data source—they can never be non-data-
base forms.

MUMPS.DAT File

The primary or only volumein an M database. It contains M globals and rou-
tines.

MUMPS.EXT File

A secondary volume in an M database. On Server systems that support multivol-
ume databases, an M database can contain from 0 through 7 MUMPS.EXT files,
in addition to one MUMPS.DAT file. A MUMPS.EXT file contains M globals
and routines, but cannot be referenced directly except when the SY SMGR or
MIS utility is used to add it to the database.

Glossary-12 Open M/SQL Developer Guide

Glossary

National Language Independence

An Open M/SQL internationalization feature that allows you to provide language
translations for most application text, including help and error messages, display
captions, and system-generated run-time messages. Open M/SQL supports
eleven run-time languages.

Network

A collection of computers and connections that allows users and programs on one
computer to communicate with users and programs on other computersin the
network.

Network Configuration

1. A description of the location of data within a network, and of the relation-
ships among various components in the network. The combined entriesin the
Hardware Description Table, the Directory Set Location Table, and the
DSM-DDR Volume Set Translation Table form this description. Although
multiple configurations may be defined and stored in M/NET, only one at a
time can be active.

2. Theactual network components and relationships.
Node

One computer in a network.
Non-Cursor-Based SQL

A type of embedded SQL query that consists of individual SELECT, INSERT,
UPDATE, and DEL ETE statements. A non-cursor-based SQL query must always
return asingle row of data. Non-cursor-based SELECT statement queries are

appropriate when you know that a single row of data matches the WHERE
clause.

Non-Database Form
A form that is not associated with a base table in the Data Dictionary. Non-data-
base forms may be form-only forms (no data source at al), or they may be alter-

native data source forms (interact with a data structure other than the Open
M/SQL Data Dictionary).

Open M/SQL Developer Guide Glossary-13

Glossary

Object

In Open M/SQL, an object isastructural entity that has identity and behavioral
properties. Objects constitute both the structure of the databse and the structure
of applications. Objects can interact with other objects. Open M/SQL abject
typesinclude: base tables, views, forms, windows, fields, stand-alone captions,
line objects, menu objects, menus (old-styl€), reports, queries, help topics, and
help documents.

Object Code

The lowest level of code produced by the Open M/SQL compiler. Thisisthe
code that is actually interpreted and executed. You cannot write routines at the
object code level.

Object Compile Driver Utility

Open M/SQL utility that allows application devel opersto define and store lists of
Open M/SQL aobjects for serial compilation. A compilation list may include mul-
tiple objects or entire applications. When run, the utility batch-compiles the code
for al objects included in the specified compilation configuration.

Object Integrity Checker Utility

Open M/SQL utility that checks the integrity of specified object definitions or
groups of object definitionsin the current directory and generates areport of all
integrity errors that it finds. The Integrity Checker utility can also automatically
correct some of the integrity errorsit finds. This utility enables application devel-
opersto easily identify and repair integrity errorsin their applications.

Old-style Menu

Open M

Thetraditional Open M/SQL horizontal and vertical menus. The Menu Generator
supports the creation and deployment of both menu objects and old-style menus.
For new applications, I nterSystems recommends that you create menus using the
more flexible and sophisticated menu object generation environment.

Name of InterSystems’ complete line of products, of which the foundation tech-
nology is M.

Open M refers to the foundation software on top of which Open M/SQL runs.

Glossary-14 Open M/SQL Developer Guide

Glossary

Open M/SQL

Open M/SQL isthe RDBMS (Relational Database Management System) compo-
nent of Open M—it includes a devel opment environment for creating advanced
relational database applications, amanagement system for maintai ning them, and
arun-time environment for executing them.

Open M/SQL features an integrated devel opment environment consisting of an
advanced relational database management system, application generator, report
generator, and procedural programming language. It combinesthe SQL relational
guery language with the M database-oriented procedural programming language.

Open M/SQL Relational Database

An M database that is organized in arelational structure by creation in or map-
ping to the Open M/SQL Relational Data Dictionary.

One-Way Outer Join

Parent ID

A programmer-defined join specified by using the symbol =* in place of = inthe
WHERE clause of an SQL query. Thistype of join designates the first table spec-
ified in the join condition as the source table and includes al rows from the
source table in the output table, even if there is no match in the second table. The
source table pulls relevant information out of the second table but never sacri-
ficesits own rows for lack of amatch in the second table.

Field automatically created by the Open M/SQL Relational Data Dictionary to
specify the Row ID in a child table when you define a characteristic relationship
between tables. The Parent ID acts like a designative reference from the child
table to the parent table and has the same name as the parent table.

Pop-Up Menu

One of the two run-time modes for a menu object, a pop-up menu displaysits
optionsin avertical list. Pop-up menus can be run as stand-alone objects, they
can be pulled down from menu bars, they can be called from other pop-up menus
(in which case they display in cascading styl€), or they can be called from within
forms.

Primary Key

A field or combination of fields used to uniquely identify each row of a base
table. In Open M/SQL, the function of the primary key is performed by the Row
ID.

Open M/SQL Developer Guide Glossary-15

Glossary

Privilege
The authority of auser to perform an action on an object. The owner of an object
has the responsibility for granting and revoking privileges to users and groups of
users on that object.

Process

An entity scheduled by the system software, which provides a context in which
an image executes. A process is associated with certain hardware and software
and uses an address space.

Product Activation Key

A paper key that arrives with your software distribution on which is printed an
encoded version of your Open M/SQL license. You must enter thisinformation
into afile called MSQL.KEY in order to activate the license.

Programmer Mode

The modein which all program development activity takes place. In programmer
mode, you initiate programs from the M prompt, and the M prompt reappears at
the conclusion of every program you run. Programmer mode encompasses the M
environment and all programs that can be called fromit, including the Open
M/SQL development environment and run time environment. In programmer
mode, you can create applications that users subsequently run in application
mode.

Prompt
A system-generated signal requesting some user response.
Pull-Down Menu

Term used to describe the style of presentation for a pop-up menu that is called
from amenu bar.

Query

An SQL language construct that allows you to extract and manipulate the datain
arelational database. In the Open M/SQL relational environment, queries can be
embedded directly within M code, or they can be written interactively using the

Interactive Query Editor or the Query Generator (for SEL ECT-statement queries
only).

Glossary-16 Open M/SQL Developer Guide

Glossary

Query-Based View

A view that is based on the output of a SEL ECT-statement query. You may create
query-based views using the CREAE VIEW statement.

Query Generator

Open M/SQL facility for defining and running ad hoc queries. The Query Gener-
ator provides an easy-to-use template of SQL SELECT statement syntax
equipped with fields for the appropriate SQL clauses, including SELECT,
FROM, WHERE, ORDER BY, GROUP BY, and HAVING. This enables usersto
create SELECT queries by simply filling in the template. The Query Generator
automatically generates all queries as acursor-based SELECT statement queries,
which means they can retrieve multiple data rows into the output table.

Referential Integrity

Relation

Referential integrity constraints ensure that database insert, update, and delete
operations that apply to tables linked by implicit joins do not compromise the
accuracy and completeness of the database.

A link between base tables. See Characteristic Relationship and Designative
Reference.

Relational Database

A collection of related datathat is organized according to the relational model.

Relational Environment

Environment in which you define the database in relational terms and use Open
M/SQL'’s application generator tools to create, modify, and execute advanced
relational database applications. The Open M/SQL relational environment com-
bines two ANSI-standard languages—M and SQL.

Relational Gateway

A component of Open M/SQL which providesafunction call-based interface that
enables M applications to connect with external database servers. The external
database servers can be M-based relational databases or non-M-based (“foreign”)
relational databases, such as Oracle. M applications act as clients to these exter-
nal database servers and issue SQL requests to retrieve data.

Open M/SQL Developer Guide Glossary-17

Glossary

Relational Model
The model for database management in which all datais organized in relational
tables. The SQL language is based on the relational model, asis the Open
M/SQL Relational Data Dictionary.

Relational Client
A set of drivers that resides on aclient system and allows you to connect from an
external application program to an Open M/SQL relational database using the
Open M/SQL Relational Server.

Relational Server
A component of Open M/SQL that makes data stored in Open M/SQL relational
databases available to applications developed in certain Windows-based tools
such as Microsoft Excel, Microsoft Access, and Pilot LightShip, aswell as appli-
cations developed in C or C++.

Report

A program defined using the M/PACT report writer that retrieves and displays
datafrom the relational Data Dictionary.

Required Field

A field in abase table or on aform that must contain avalid non-null value
before the row can be filed.

Row
A group of related field values that describes an entity in the domain of arela-
tional table. For example, in a Customers table, arow describes a single cus-
tomer. Also called a“record” in traditional data processing terminology, or a
“tuple” in relational database terminology.

Row ID

In a base table defined in the Open M/SQL Relational Data Dictionary, the
RowlD isafield (or combination of fields) whose value uniquely identifies each
row in the base table. A RowID field must always have a unique value. In rela-
tional terminology, the Row ID is the same as the primary key.

Glossary-18 Open M/SQL Developer Guide

Glossary

Row Selection

The process of selecting arow to be retrieved from the database for asingle-row
form. The programmer defines lookup queries to perform row selection, and the
user runs alookup query by providing the requisite lookup information.

SELECT List Item

An element in a SELECT statement that tells the server what datato retrieve. It
can be either a column name or an expression.

Server

1. The system on which the Open M/SQL Relational Server and your Open
M/SQL relational database resides.

2. AnM process on the Relational Server system that communicates with the
client API.

Server Master
A component of the server software that “listens’ for connection attempts from
clients connected via TCP, and spawns server processes to service those connec-
tions. Each server master isan M process.

Server Process

A JOBbed process on the server that services asingle client connection. A server
master creates a server process for this purpose.

Short Help Message

A one-line programmer-defined help text message associated with afield or
menu object choice that displays at the bottom of the screen just below the status
line when the user pressesthe <expPLAIN> key from afield or menu object choice.
For fields, you may define triggers to automatically display the short help mes-
sage based on certain run-time circumstances, or you may enable automatic dis-
play of the short help message for all fields on aform.

Sign-on

The act of entering Open M/SQL, in order to use M, Developer, or an Open
M/SQL application. See also login.

Open M/SQL Developer Guide Glossary-19

Glossary

Single-Row Form

A form that presents data from its associated base table onerow at atime. The
users selects arow from the row selection window.

SQL (Structured Query Language)

Stands for Structured Query Language; SQL isthe ANSI-Standard 4GL pro-
gramming language designed specifically for accessing and maintaining rela-
tional databases.

Stand-Alone Caption

Descriptive text that appears on awindow but is not attached directly to afield.
Often used in the capacity of awindow header.

Subquery

A subquery isan SQL SELECT statement query that is embedded within another
SQL SELECT statement query. Open M/SQL permits the embedding of subque-
ries within the SELECT, FROM, and WHERE clauses of the outer query. Open
M/SQL also permits the nesting of subqueriesto any number of levels.

System Manager’s Directory

The directory where the Open M/SQL database resides. This directory contains
system globals, system routines, and %-utilities. You must create this directory at
the DOS level. Your Open M system automatically places the Open M/SQL data-
base in this directory during installation.

Transaction
A set of operations that forms a unit.
Trigger

A sequence of actions defined by the devel oper to execute at various points dur-
ing an Open M/SQL application. In Open M/SQL, you can associate triggers
with base tables and with forms. Base table triggers are database actions initiated
by INSERT, UPDATE, or DELETE actions performed on a base table. These
triggers help maintain integrity constraints and other data dependencies. Form
triggers can execute at the form, window, and field levels of an application and
provide numerous application navigation and processing functions, such as trans-
ferring control to different parts of an application.

Glossary-20 Open M/SQL Developer Guide

Glossary

Validation Code

M code used by Open M/SQL to validate field values by specifying validity con-
gtraints on field data values.

Variable

A symbolic name that is used to reference a data value. Variables can be local or
global. Local variablesreside in the local symbol table associated with a given
partition. All Open M/SQL local variables begin with the percent sign (%). Glo-
bal variables reside on disk. Some global variablesin Open M/SQL also begin
with the percent sign (%).

Variable Window Placement

The ability to display awindow at different positions on the screen depending on
the context in which itiscalled. Variable window placement allows you to define
alternative placements for awindow by specifying multiple setsof X and Y axis
coordinates, each associated with an M condition that governs its execution.

Vertical Menu
A type of old-style menu that runsin stand-alone fashion and displaysits options
vertically in alist. Vertical menus typically serve as control flow maps for an
application. The Open M/SQL Main Menu is an example of avertical menu.

View
A virtual table created using the fields from abase table or set of base tables
linked by implicit joins. Views are conceptua “windows’ through which data
from one or more base tables can be “viewed”.

Virtual Field
A field that does not correspond directly to asingle stored value but instead is
composed of several stored values. For example, the Row ID field for achild
table is sometimes composed of two stored values—the Row 1D of the parent and
a subscript corresponding to a particular child row.

Virtual Table

A named table derived from one or more base tables that is not directly repre-
sented in physical storage. Views and query output are examples of virtual tables.

Open M/SQL Developer Guide Glossary-21

Glossary

Window

A set of fields, text captions, and line objects displayed together on the screen as
part of aform. Every form must have at |east one window, its master window.

Word-Processing Field
A multi-line field of datatype Text that has word-processing capabilities, includ-

ing “automatic” line wrapping, enhanced field navigation, and the ability for
users to search for a string.

Glossary-22 Open M/SQL Developer Guide

Index

A

{%action} 11-4, 11-20
Additional validation code 11-24
%AFTERHAVING 9-3,9-14

{%agg} 11-6

Aggregate functions (in SQL) 9-11
%AFTERHAVING 9-14
as query columns 9-11
DISTINCT 9-14
DISTINCT BY 9-15
%FOREACH 9-12

%ALPHAUP 9-3, 9-41
ALPHAUP 9-38
%ALTER privilege 9-3, 9-49
ALTER VIEW statement 9-57, 10-17
Application Help facility G-1
Application mode G-1
Application Programming Interface (API)
G-1
Applications G-1
automatic generation of 1-4
contents of 11-43
defining the data structure 1-4
designing 3-4
developing forms and reports 1-5
hand-codingin M 1-6
inserting M code and SQL code 1-15,
11-13

mapping the functional specifications
1-4

mixing automatic generation and hand-
coding 1-7

portable acrros M systems 1-14

programmer interfaceto 11-1

programming methods 3-2

strategies for developing 1-4

system-generated routines 11-43

tying together the various components
1-6

Arrays

using the INTO clause to pass
information into M arrays 9-19

Arrow syntax 2-19, 9-7

ASCII-Delimited format (for queries) 10-35
contents of file 10-35
gueries created via the Query Editor
10-26
queries created via the Query Generator
10-14
selecting an output device 10-34

Authorization ID
establishing from M code 11-39
stored in %msql local variable 11-39

Auxiliary windows G-1

B

{%background} 11-7

Backups (for routines) 6-5, 6-12
deleting 6-14, 7-29

Open M/SQL Developer Guide Index-1

Index

generated by the Full Screen Editor 6-13

restoring backup versions 6-13

setting # of backup versionsto be
maintained 7-28

shuffling and renumbering of backups
6-12

Base table triggers 11-16
action types 11-17

Basetables 2-3, G-2

characteristic relationships 2-17, 9-9

checks made by Object Integrity
Checker utility 12-24

compiled routines of 11-44

designative references 2-16, 9-7

filing entry points to compiled routines
11-45

First Normal Form 2-2

storage globals 11-45

triggers 11-16

%BEGTRANS 9-3, 9-45
Branching fields G-2

Buffers (in the Full Screen Editor) 4-16
creating 4-16
displaying in windows 4-18
loading routines into 4-17
selecting 4-16
setting marksin 4-19

C

CdlerID G-2
{%caller} 11-3,11-20
Cartesian product operation 2-7

CASCADE option (for revoking privileges)
9-50

Cascading menus G-2

{%cellar_tuple} 11-6

Characteristic relationships 2-17, 9-9, G-2
child-to-parent relationship 2-20, 9-9
parent-to-child relationship 2-20, 9-10
specifying implict join syntax in queries

2-20,9-9, 9-10

Index-2 Open M/SQL Developer Guide

Charactersistic relationships
specifying implict join syntax in queries
2-20
%CHECKPRIV 9-3,9-50, 10-17
Child forms G-2
Child tables 2-17, 9-9, G-3
CLOSE statement 8-4
Code generation G-3

Collation sequence 9-37
ALPHAUP function 9-38
changing the default collation sequence

9-42
EXACT function 9-37
field-level collation 9-39
in comparisons 9-40
Minus function 9-39
Plus function 9-39
Space function 9-39
UPPER function 9-38
using ORDER BY clause 9-40

Columns 2-2, G-3

Comment lines
in macro source code 5-15

COMMIT 9-45
Common directory 11-11
Communications protocol G-3
Compilation G-3
compiling Open M/SQL objects serially
12-5
of objects 11-43
of routines 6-11

Compilation Options window 12-8
options defined 12-9

Compiler 1-11, 5-2,6-11
generating routines for applications
11-44

Computed fields G-3
inserting code 11-22

Concatenation operator (SQL) 9-32
Conditional maps 11-26

Index

Configuration
Network G-13

Conversion code 9-26, G-3
external-to-internal 11-23

internal-to-external 11-23
referencing variables 11-23

Copy Query utility 10-36
Copying
queries 10-36
CREATE VIEW statement 9-57, 10-17
Curly brace syntax 11-2,11-19

Cursor-based SQL 8-4, G-4
declaring acursor 8-4
opening acursor 8-4
passing information into M variables 8-5
retrieving information into a cursor 8-5
using the INTO clause 9-18

Cursors 8-4, G-4
declaring 8-4
opening 8-4
passing information into variables 8-5
retrieving information 8-5

D

"opdafmlog 11-12

DataDictionary 1-3, 1-10, 2-5, 3-4, G-4
accessing datafrom 2-6
defining data structures 1-4

Data source G-4
%data(icol) 11-3

Database 1-10, 2-1, G-4
for non-1SM systems 2-4
M G-10
Open M/SQL G-15
relational 2-2
relational model G-17

Database forms G-4
{%date} 11-6
DECLARE statement 8-4
#define 5-7

DELETE privilege 9-49

DELETE queries 10-17
in non-cursor-based SQL 8-3
Designated table 2-16, 9-7, G-5
Designative display fields G-5
Designative references 2-16, 9-7, G-5
specifying implict join syntax in queries
2-19
Detailed Query Listing utility 10-40
sample report 10-42

Developer 1-3,G-5

Developer Utilitiesmenu 12-1

accessing 12-2

Export/Import Options 12-3

invoking routine management utilities
7-3

invoking routine mangement utilities
12-40

invoking the Full Screen Editor 4-4, 12-4

National Language Reports 12-44

Object Compile Driver utility 12-5

Object Integrity Checker utility 12-23

Object Routine Prefix utility 12-42

Object String Search utility 12-35

options defined 12-3

Device G-5

Device selection (for queries) 10-32
ASCII-delimited output format 10-34
selecting adevice 10-33
selecting a print format 10-33

Device Selection window 12-31
fields defined 12-32
selecting adevice 12-32
selecting a print format 12-32

Directory G-5

DISTINCT 9-14

DISTINCT BY 9-15

Distributed Cache Protocol (DCP) 1-13
Distributed data processing 1-19
DROP VIEW statement 9-58, 10-17
DSM 1-14

DT Network 1-13
list of database protocols 1-13

Open M/SQL Developer Guide Index-3

Index

DTM 1-14,G-5
Duplicate rows (in SQL queries) 9-16

E

%edit(icol) 11-3

#else, 5-11

#elsalf, 5-11

Embedded SQL 1-15, 9-17, G-5
cursor-based 1-15, 8-4, G-4
example 8-10
handling internal and external values 8-8
handling multi-line fields 8-8
macro references 8-7
non-cursor-based 1-15, 8-2, G-13
portability 8-9
reserved tag and variable vames 8-9

#endif 511

Equijoins 2-11

Error messages (for SQL queries) A-3

%EXACT 9-3,9-41

EXACT 937

Export/Import utility G-6
accessing via Developer Utilities menu

12-3

Extensions (for routines) 6-3

%EXTERNAL 9-3,9-29

External values G-6
in SQL queries 9-26

External-to-internal conversion code 9-26,
11-23

F

FETCH statement 8-4
retrieving information into a cursor 8-5
Field captions G-6
Fields G-6
computed 11-22
database G-4
reading 11-36
referencing in M code 11-14
referencing within triggers 11-19

Index-4 Open M/SQL Developer Guide

required 11-24
{%filetype} 11-4,11-20
%first 4-6
First Normal Form 2-2
FOR ALL operator 9-56
FOR SOME operator 9-56
%FOREACH 9-3,9-12
Foreign key 2-16, 9-7, G-6
%FORM 9-3

Form call syntax (from M) 11-27
calling forms by name/ID# 11-27
calling forms by routine prefix 11-28
parameters defined 11-28

Form Generator 1-3, 1-12, 3-4, G-6
creating forms 1-5

Form triggers 11-17
action types 11-17

Form-only fields G-6
Form-only forms G-7

Forms 1-5, 1-12, G-6

checks made by Object Integrity
Checker utility 12-25

child forms G-2

compiled routines of 11-46

emulating form behavior in M programs
11-34

erasing windows from screen 11-38

form-only forms G-7

invoking from M code 11-27

non-database forms G-13

single-row G-20

storage globals 11-46

triggers 11-17

FROM clause 10-8

Full Screen Editor 1-18, 3-2, 4-1, 12-4, G-7
automatic date and time stamps 4-24
automatic syntax checking 4-23
Buffers Menu options described 4-11
control key editing commands 4-20
creating anew buffer 4-16
creating routines 4-7
cursor positioning keys 4-13

Index

cutting and pasting 4-15

deleting text 4-14

displaying multiple buffers 4-18

edit field 4-8

editing multiple copies of aroutine 4-16

editing operations 4-13

exiting 4-23

generating backup versions for routines
6-13

getting help 4-22

Help Menu options described 4-22

horizontal options menu 4-9

inserting text 4-14

invoking from Devel oper Utilitiesmenu
4-4

invoking from M programmer prompt
4-3

keyboard actions D-1

loading aroutine into the current buffer
4-17

loading existing routines 4-6

loading routines automatically 4-6

lockout mechanism 4-7

Mark Menu options described 4-12

navigating the menu system 4-10

Other Menu options described 4-12

overview 4-2

preventing overwrites 4-7

Primary Menu options described 4-10

replacing strings 4-20

routine types 4-2

Save Menu options described 4-23

saving routines 4-23

screen display 4-8

searching for text strings 4-20

selecting an existing buffer 4-16

setting a mark in the current buffer 4-19

Status Line 4-9

Windows Menu options described 4-11

G

Global database 1-9, G-7
accessing 1-16

Globals 11-9, G-7
base table definition 11-45
form definition 11-46
implicit 1-19

menu object definition 11-46
object definition globals 11-9
old-style menu definition 11-47
percent globals 11-12
query definition 11-47
referencing within inserted code 11-15
report definition 11-47

Grant option (for privileges)
granting 9-48
Revoking 9-50

GRANT statement 9-47, 10-17
WITH GRANT OPTION 9-48

GROUP BY clause 10-8

H

HAVING clause 10-9
Help Document Creation facility G-7
Help documents G-7

Help text
displaying in help text box 11-34
writing messages 11-35

Help Text Entry facility G-7

Help topics G-8

help"%msgl function 11-34
parameters defined 11-35

Horizontal menus 1-12, G-8

I
#f, 5-11
#ifdef, 5-11
#ifundef, 511
Implicit globals 1-19
Implicit joins 2-15, 9-6, G-8
arrow syntax 2-19, 9-7
as characteristic relationships 2-17, 9-9
as designative references 2-16, 9-7
integrity constraints 2-21
syntax for specifying child-to-parent
references 2-20, 9-9
syntax for specifying designative
references 2-19

Open M/SQL Developer Guide Index-5

Index

syntax for specifying parent-to-child
references 2-20, 9-10

#include 5-13

Includefiles 1-11, 5-3, G-8
advantages of using 5-14
creating 5-2
editing 4-2
extensions 6-3
maintaining backup versions 6-5
naming 5-3

Index map G-8

Inner joins 2-11
{%inquiry_mode} 11-5, 11-20
INSERT privilege 9-49

INSERT queries 10-17
handling mutli-line fields 9-25
in non-cursor-based SQL 8-3
passing information into M arrays 9-21
with VALUES clause 8-3,9-23

Inserted code 1-15, 11-13
referencing fields 11-14
referencing globals 11-15
referencing variables 11-15
summary of insert locations 11-13
syntax checking 11-15
types of code 11-14
within additional validation code 11-24
within computed fields 11-22
within conditional maps 11-26
withininternal/external conversion code

11-23

within map subscripts and pieces 11-25
within NEXT subroutine 11-25
within override lookup queries 11-22
within required-maybe fields 11-24
within triggers 11-16

Integrity checking
see Object Integrity Checker utility

Integrity constraints G-8

Interactive Query Editor
see Query Editor

Intermediate code routines 1-17, 3-2
converting to macro source code 6-2

Index-6 Open M/SQL Developer Guide

creating 3-3

editing (using Full Screen Editor) 4-2

editing (using the Routine Line Editor)

3-3

extensions 6-3

maintaining backup versions 6-5
Intermediate source code 1-11, G-9
%INTERNAL 9-3,9-29

Internal values G-9
in SQL queries 9-26
Internal-to-external conversion code 9-26,
11-23

INTO clause 9-18
passing information into M arrays 9-19
passinginformationinto mixedvariables
9-20
using in cursor declaration 9-18
with cursor-based SQL 8-5
with INSERT queries 9-21
with non-cursor-based SQL 8-3
with SELECT queries 9-19
with UPDATE queries 9-22

%INTRANS 9-3, 9-45
%is 11-2
ISM 1-14

J

Join operation 2-11
Joins 9-5, G-9
equijoin 2-11
implicit joins 2-15, 9-6, G-8
inner joins 2-11
one-way outer joins 2-14, 9-5, G-15

K

Keyboards
key mapping for Full Screen Editor
function keys D-1
Keys
Full Screen Editor function keys mapped
to your terminal type D-1

Keywords (in SQL) 9-3
reserved words B-1

Index

L

Language
report on language trandations 12-44

Learn-As-You-Go (LAY GO) G-9
License G-9

LIKE predicate 9-34
error handling 9-36
ESCAPE qualifier 9-35
pattern matching characters 9-34
using host variables for search pattern
9-35

{%linenum} 11-5

List Queries utility 10-39
sample report 10-39

Login G-9

Long help messages G-10
Lookup display fields G-10
Lookup fields G-10

Lookup queries G-10
inserting code within override lookup
queries 11-22

L ookup specifications G-10

M

M G-10
database G-10
vendor-independence 1-14

M code 1-10

caling forms 11-27

calling menu objects 11-32

calling old-style menus 11-32

calling queries 10-31, 11-31

calling reports 11-30

cleaning up windows 11-38

compiling an object compilation
configuration 12-22

displaying help text in a help text box
11-34

embedded SQL 8-1

establishing Authorization ID 11-39

inserting into applications 11-13

inserting into triggers 11-21

protecting critical Open M/SQL
variables 11-40

reading fields 11-36

writing message text 11-35

M database
for non-1SM systems 2-4

M directory
asschema 2-4

M operators
summary of 9-30

M programming language 1-2, 1-15
global referencesto the database 1-16
language processor in Open M/SQL 1-9
procedural programming 1-6

M/NET 1-13
list of database protocols 1-13

M/PACT 1-3,1-12, G-12
generating reports 1-5

M/SQL Integrity Check Utility menu 12-29

Macro preprocessor 5-2, 5-4, G-11
commands 5-4, 5-7
functions 5-5, 5-16
macro references 5-5

Macro routine utilities
see routine management utilities

Macro source code 1-11, 5-2, G-11
advantages of using include files 5-14
#define statements 5-7
#else statements 5-11
#elseif statements 5-11
embedding SQL 5-16, 8-1
#endif statements 5-11
#if statements 5-11
#ifdef statements 5-11
#ifundef statements 5-11
#include statements 5-13
indicating comment lines 5-15
macro references 5-5
making code inter-vendor portable 5-17
nesting macros 5-9
#noshow statements 5-14
preprocessor commands 5-4
preprocessor functions 5-5
referencing include files 5-3

Open M/SQL Developer Guide Index-7

Index

#show statements 5-14

##sgl preprocessor function 5-16, 8-2

& sql preprocessor function 5-16, 8-2
summary of preprocessor commands 5-7
summary of preprocessor functions 5-16
#undef statements 5-9

##vendor preprocessor function 5-17

Macro source routines 1-17, 3-2, 5-1, 6-2
compiling 5-2
creating 5-2
editing 4-2
extensions 6-3
in vendor-independent environment 1-14
Macro preprocessor 5-4
maintaining backup versions 6-5
naming 5-3
portability across directories 8-9
portability across M systems 5-3

Macros 5-5
nested expansion 5-9
referencing in embedded SQL 8-7

Maps G-11
inserting code for conditional 11-26
inserting code for NEXT subroutine
11-25
inserting code for subscripts and pieces
11-25

Master map G-11
Master window G-11
Amcompd 11-9
Amconv 11-9

"mdd 11-9, 11-45
Amddc 11-9, 11-45
%MENU 9-3

Menu bars 1-12, G-12

Menu call syntax (for old-style menus) 11-32
parameters defined 11-32

Menu Generator 1-6, 1-12, G-11

Menu object call syntax 11-32
calling menu objects by routine prefix
11-33
calling menu objects with menu call
entry point 11-33

Index-8 Open M/SQL Developer Guide

Menu objects 1-12, G-12

checks made by Object Integrity
Checker utility 12-26

compiled routines of 11-46
horizontal menus 1-12
invoking from M code 11-32
menu bars 1-12
pop-up menus 1-12
storage globals 11-46
vertical menus 1-12

{%menubar} 11-6
{%menuid} 11-6

Menus G-11
cascading G-2

Menus (old-style) 1-12, G-14
invoking from M code 11-32
storage globals 11-47

{%menutype} 11-6
%MEUNOBJ 9-3
mexpnew 11-9
mexport 11-9
mform 11-9, 11-46
Amformc 11-9, 11-46
"mhelp 11-9

Minus collation sequence function 9-39
"mlock 11-9

Ammenu 11-9, 11-47
Ammisc 11-9
A%%mmsg 11-12
%mobject 11-10
Nopmobject 11-12
%mode 11-2

Ampriv 11-10

"mgl 11-10, 11-47
Amreport 11-10, 11-46, 11-47
mreportc 11-10, 11-47
Amroutine 11-9

%msg 11-3

Index

MSM 1-14
%msgl 11-2
entry point for calling forms 11-27
entry point for calling old-style menus
11-32
entry point for calling queries 11-31
entry point for calling reports 11-30
entry point for cleaning up windows
11-38
entry point for displaying help textina
help text box 11-34
entry point for establishing
Authorization ID 11-39
entry point for reading fields 11-36
entry point for writing message text
11-35
list of entry points 11-8

Aomsgl 11-12
MSQL.KEY file G-12

%msglutl utility 11-40
displaying list of critical Open M/SQL
variables 11-42
pushing Open M/SQL variables onto a
stack 11-40
reinstating variables from stack 11-41

$Pmsglvars™¥msglutl function 11-42
Amtemp 7-30, 11-10
Amterm 11-10

Multi-linefields 2-21
in INSERT queries 9-25
in SELECT queries 9-24
in UPDATE queries 9-25
retrieving valuesin SQL 8-8, 9-24

Multi-row forms G-12
MUMPS.DAT file G-12
MUMPS.EXT file G-12
AYpomuser 11-12

Amutil 11-10

Amxdd 11-10

Amxdoc 11-10
~mxform 11-10
Amxhtop 11-10

Amxmenob 11-10
Amxmenu 11-10
mxql 11-10

Amxreport 11-10

N

National language independence G-13
report on language trand ations 12-44

National Language Reports utility 12-44
sample report 12-45

Network G-13
Configuration G-13
DT Network 1-13
M/NET 1-13

%new 11-3

%newext 11-3
{%newpage} 11-6
NEXT subroutine 11-25
%NOCHECK 9-3,9-44
Node G-13

Non-cursor-based SQL 8-2, G-13
passing information into M variables 8-3
using the INTO clause 9-18

Non-database forms G-13
#noshow 5-14
NOT IN operator 9-32

O

Object code 1-11, G-14

Object code routines 1-18, 5-2
extensions 6-3
maintaining backup versions 6-5

Object Compilation Driver Results window

12-21

viewing error messages 12-22

Object Compile Driver Items window 12-12
advanced options for forms 12-15, 12-16
advanced options for routines 12-18
fields defined 12-13

Open M/SQL Developer Guide Index-9

Index

Object Compile Driver utility 12-5, G-14

advanced options 12-14

compilation error messages 12-21

compiling a configuration 12-20

compiling a configuration from within
an M program 12-22

defining the contents of a compilation
configuration 12-12

editing object definitions 12-19

setting defaults for compilation options
12-8

using 12-5

viewing the results of a compilation
12-21

Object Compile Driver window 12-7
fields defined 12-7

Object definition globals 11-9
list of 11-9
located in common directory 11-11

Object definitions
checking integrity of 12-23
looking up routine prefix for 12-42
searching for stringsin 12-35

Object Integrity Checker utility 12-23, G-14
automatic error fixing 12-34
checks made on base tables 12-24
checks made on forms 12-25
checks made on menu objects 12-26
checks made on reports 12-25
checks made on triggers 12-27
checks made on views 12-24
enabling error fixing mode 12-30
running 12-29
sample report 12-33

Object Routine Prefix utility 12-42
sample display 12-43
using 12-42

Object String Search utility 12-35
sample report 12-39
using 12-35

Objects G-14
stored in globals 11-9

%ok 11-2
%old 11-3

Index-10 Open M/SQL Developer Guide

%oldext 11-3
Aopomc 11-12
AYooms 11-12
One-way outer joins 2-14, 9-5, G-15

OpenM G-14
Relationa environment G-17

Open M/SQL 1-2, G-15

accessing the relational database 2-6

application development strategies 1-4

applications portable across M systems
1-14

common directory 11-11

compiler 1-11

defining a database 1-10

development environment 1-10, 3-4

distributed data processing 1-19

extensionsto relational model 2-14

global database 1-9, 1-16

globals 11-9

hand-coded programming 1-11

hardware and operating system
environments 1-8

implementation of SQL 9-1

in a vendor-independent host M
environment 1-14

integration of M and SQL 1-15

keyboard mapping for supported
terminal types D-1

list of reserved words B-1

list of supported terminal types C-1

M language processor 1-9

memory environment 1-9

networking 1-13

open systems architecture 1-2

percent variables 11-2

program structure 1-17

programming methods 3-2

query optimizer 1-12

Relational Data Dictionary 2-5

relational database 2-1, G-15

schemas 2-4

SQL language processor 1-9

supported M systems 1-14

system-generated routines 11-43

Open M/SQL Developer 1-3

Index

Open M/SQL for DSM 1-14
terminal types supported for C-3

Open M/SQL for DTM 1-14
terminal types supported for C-3

Open M/SQL for MSM 1-14
terminal types supported for C-3

Open M/SQL Main Menu 12-2
OPEN statement 8-4

Open systems 1-2

ORDER BY clause 10-8

Override lookup queries
inserting code 11-22

P

{%Ypagenum} 11-6

Parent ID G-15

Parent tables 2-17, 9-9
{%oparent_reference} 11-3, 11-20

Percent globals 11-12
list of 11-12

Percent variables 11-2
enclosed in curly braces 11-2
list of 11-2
referencing within triggers 11-19
return prefix 11-20

Plus collation sequence function 9-39

Pop-up menus 1-12, G-15
cascading G-2
pulled down from menu bar G-16

popvars®*%msglutl function 11-41

Preprocessor commands 5-4
#, 5-15
#define 5-7
#else 5-11
#elseif 5-11
#endif 5-11
#f 511
#ifdef 5-11
#ifundef 5-11
#include 5-13
#noshow 5-14

#show 5-14
summary of 5-7
#undef 5-9
#undefine 5-7

Preprocessor functions 5-5
##s0l 5-16, 8-2
&sgl 516,82
summary of 5-16
##vendor 5-17

{%presave} 11-4,11-20
Primary key 2-3, G-15
Privilege operators 9-47

Privileges G-16
for running queries 10-29
granting 9-47
revoking 9-49
summary of 9-49
suppressing checks 9-50

Processes G-16

Product Activation Key G-16
Programmer mode G-16

Project operation 2-9

Prompt G-16

_PUBLIC (UserName) 9-48
Pull-down menus G-16
pushvars*%msglutl function 11-40

Q

opgarmisc 11-12

Queries 2-6,10-1, G-16
ALTER VIEW 9-57, 10-17

ASCII-delimited output format 10-14,

10-26, 10-35
%CHECKPRIV 9-50, 10-17
compiled routines of 11-47
copying 10-36
CREATE VIEW 9-57,10-17

creating viathe Interactive Query Editor

10-18

creating via the Query Generator 10-5

DELETE 10-17
DROP VIEW 9-58, 10-17

Open M/SQL Developer Guide

Index-11

Index

embedded in M macro source code 8-1,
9-17

formatting output for import by other
products 10-35

generation facilities 10-2

GRANT 9-47, 10-17

INSERT 10-17

invoking from M code 11-31

listing (detailed) 10-40

listing (short) 10-39

privileges needed to run 10-29

query owner 10-14, 10-26

REVOKE 9-49, 10-17

routine prefix of 10-14, 10-26

running 10-29

running from M code 10-31

run-time measure 10-14, 10-26

SELECT 10-18

selecting an output device 10-32

storage globals 11-47

UPDATE 10-18

%QUERY 93

Query call syntax (from M) 10-31, 11-31
parameters defined 10-31, 11-31

Query Definition Advanced Featureswindow
10-13
fields described 10-14

Query Definition window 10-7
advanced features option 10-13
fields described 10-7
menu bar options described 10-11

Query Editor 10-17, G-9
accessing 10-2
compiling queries 10-28
copying queries 10-36
creating queries 10-18
editing commands 10-23
horizontal options menu 10-23
running queries 10-28, 10-30
screen display 10-21
supported query types 10-17
using on-line help 10-24
Query Editor Advanced Options window
10-25
fields described 10-26

Index-12 Open M/SQL Developer Guide

Query Editor horizontal options menu 10-23
options described 10-23

Query Generator 10-5, G-17
accessing 10-2
compiling queries 10-16
copying queries 10-36
creating SEL ECT-statement queries 10-5
displaying list of fields from tables

named in FROM clause 10-11

running queries 10-16, 10-29

Query optimizer 1-12

Query-based views G-17
atering 9-57
creating 9-57
deleting 9-58
naming in FROM clause 9-58
restrictions on defining 9-58

Querying the database 2-6
R

prakey 11-12
oprakeys 11-12
"%RDE 11-12

%rde 11-12

$Pread"%msgl function 11-36
parameters defined 11-37

REFERENCES privilege 9-49
Referential integrity G-17
Noprekey 11-12

Relation G-17

Relational Client G-18

Relational Data Dictionary 2-5, 3-4
accessing datafrom 2-6

Relational database G-17
accessing datafrom 2-6
characteristics 2-2
fields 2-2
First Normal Form 2-2
for non-1SM systems 2-4
overview 2-1
querying viaSQL 2-6

Index

structure of 2-2
tables 2-3

Relational environment G-17
Relational Gateway G-17

Relational model 2-1, G-18
First Normal Form 2-2
implicit joins 2-15, 9-6
InterSystems extensionsto 2-14
one-way outer joins 2-14, 9-5
schemas 2-4
support for multi-line fields 2-21

Relational operations 2-7
cartesian product 2-7
joins 2-11,9-5
project 2-9
restrict 2-10

Relational Server 1-3, G-18

Remote directory syntax (for routines) 6-8
restrictions 6-9

%REPORT 9-3

Report call syntax (from M) 11-30
parameters defined 11-30

Report triggers 11-18
action types 11-18

{%report-end} 11-7

Reports 1-5,1-12, G-18

checks made by Object Integrity
Checker utility 12-25

compiled routines of 11-47
Detailed Query Listing report 10-40
invoking from M code 11-30
List Queriesreport 10-39
storage globals 11-47
triggers 11-18

Required fields G-18
conditionally required fields 11-24

Reserved words B-1

Restrict operation 2-10

{%retrieved} 11-6, 11-20

Return prefix percent variables 11-20
{%return_action} 11-5, 11-20

{%return_filetype} 11-5, 11-20
{%return_presave} 11-5, 11-20
{%return_savedata} 11-5, 11-20
{%return_timeout} 11-5, 11-20

REVOKE statement 9-49, 10-17
CASCADE option 9-50
GRANT OPTION FOR keyword 9-50

ROLLBACK 9-45
AROUTINE 11-9
Routine Line Editor 3-3,4-2

Routine management utilities 3-3, 7-1

for non-1ISM systems 1-18

invoking from Developer Utilitiesmenu
7-3

invoking from M programmer prompt
7-3

invoking from the Developer Utilities
menu 12-40

summary of 7-2

Routine prefix
calling forms by routine prefix 11-28
calling menu objects by routine prefix
11-33
default namesfor all objects 11-43
using the Object Routine Prefix utility to
find origin of 12-42

Routine prefix (for queries)
created viathe Query Editor 10-26
created viathe Query Generator 10-14

Routine sets 6-10
creating 6-10
using 6-10
Routines 1-17
automatic syntax checking 4-23
compiling 6-11, 7-17
converting intermediate code to macro
source code 6-2
copying 7-19
creating 6-2
creating in the FSE 4-7
deleting 6-14, 7-27
deleting backup versions 6-14, 7-29
extensions 6-3

Open M/SQL Developer Guide Index-13

Index

generated for base tables 11-44
generated for forms 11-46
generated for menu objects 11-46
generated for queries 11-47
generated for reports 11-47
intermediate code routines 1-17
keeping routine levels synchronized 6-15
listing routinesin current directory 7-11
load from file 7-9
loading automatically into FSE 4-6
loading into the FSE 4-6
macro source routines 1-17, 5-1, 5-2, 6-2
maintaining backup versions 6-5
management utilities 1-18, 7-1
names of system-generated routines
11-43
naming 6-3
object code routines 1-18
output to file 7-7
producing backup versions 6-12
referencing routines in other directories/
computers 6-8
restoring backup versions 6-13
routine sets 6-10
search for all in aset of text strings 7-25
search for and replace text strings 7-15
search for onein aset of text strings 7-23
set # of backup versions 7-28
shuffling and renumbering backup
versions 6-12
using wildcard symbols to specify 6-6
utility for selecting routines 7-30
writing 6-2
Row selection G-19
%ROWCOUNT 9-3
RowlID 2-3,G-18
Rows 2-2, G-18

Run Existing Queries utility 10-30

S

{%savedata} 11-4, 11-20
Schema 2-4

SELECT clause 10-7
SELECT list item G-19

Index-14 Open M/SQL Developer Guide

SELECT privilege 9-49

SELECT queries 10-18
ASCII-delimited output format 10-35
creating via Query Generator 10-5
handling multi-line fields 9-24
in non-cursor-based embedded SQL 8-2
passing information into M arrays 9-19
selecting an output device 10-32
template for defining 10-7

Server G-19

Server masters G-19

Server processes G-19

setaid"%msgl function 11-39

Short help messages G-19

#show 5-14

Sign-on G-19

Single-row forms G-20

Space collation sequence function 9-39

SQL 1-2, 1-15, 2-6, G-20

accepts multi-line fields 2-21

accessing the relational database 1-16

aggregate function extensions 9-11

collating output values 9-37

creating queries viathe Interactive
Query Editor 10-18

creating queriesviathe Query Generator
10-5

cursor-based 1-15, 8-4, G-4

embedded in M macro source code 1-15,
8-1,9-17

extensionsto SQL operators 9-32

extensions, summary of 9-2

handling duplicate rows 9-16

handling internal and external valuesfor
fields 9-26, 9-29

handling multi-line fields 9-24

handling of subqueries 9-52

inserting SQL codeinto triggers 11-21

InterSystems extensions to 2-14

joins 9-5

keyword extensions 9-3

language processor in Open M/SQL 1-9

list of error messages A-1

list of reserved words B-1

Index

non-cursor-based 1-15, 8-2, G-13
privilege operators 9-47
programming methods 3-2
guery generation facilities 10-2
querying the relational database 2-6
relational operations 2-7
summary of supported M operators 9-30
symbol extensions 9-4
transaction processing 9-45
using the INTO clause 9-18
##sgl 5-16, 8-2
&sgl 5-5, 5-16, 8-2
SQL code
inserting into applications 11-13
SQL Menu 10-3
options described 10-4

SQL operators
Concatenation operator 9-32
LIKE predicate 9-34
NOT IN operator 9-32
%STARTSWITH 9-33

SQLCODE variable 9-51, A-1
Stand-alone captions G-20
%STARTSWITH 9-3,9-33
Subqueries 9-52, G-20
extensionsto 9-55
FOR ALL operator 9-56
FOR SOME operator 9-56
syntax 9-52
using in FROM clauses 9-54

usingin SELECT clauses 9-55
using in WHERE clauses 9-52

Symbols (in SQL) 9-4
AOpsys 11-12
System manager’s directory G-20

T

Tables 2-2
see also base tables, child table, parent
tables, virtual tables, views

"fptask 11-12

Terminal types
in Open M/SQL for DSM environment
in Open l\(zIS)SQL for DTM environment
in Open I\C/I:/S)SQL for MSM environment
list of su;;grted terminal types C-1

%THRESHOLD 9-3
{%time} 11-6
{%timeout} 11-4,11-20
Transaction G-20

Transaction processing 9-45
%BEGTRANS 9-45
%INTRANS 9-45

Translations (for system-generated messages
and menus)
reportson 12-44

Triggers 1-5, G-20

action types 11-16

base table 11-16

checks made by Object Integrity
Checker utility 12-27

form 11-17

inserting M code 11-16, 11-21

inserting SQL code 11-16, 11-21

referencing fields 11-19

referencing Open M/SQL percent
variables 11-19

report 11-18

U

#undef 5-7,5-9
UPDATE privilege 9-49

UPDATE queries 10-18
handling multi-line fields 9-25
in non-cursor-based SQL 8-3
passing information into M arrays 9-22
with VALUES clause 9-23

%UPPER 9-3, 9-41
UPPER 9-38

Open M/SQL Developer Guide Index-15

Index

%urchange 7-15
compiling routines 6-11
producing backup versions 6-12

%urcomp 6-11, 7-17
producing backup versions 6-12

%urcopy 7-19
compiling routines 6-11
producing backup versions 6-12
restoring backup versions 6-13

Y%urdel 6-14, 7-27

%urdir 7-11
long form display 7-14
short form display 7-12, 7-13

%urfand 7-25
%urfind 7-23

%urload 7-9
compiling routines 7-10
load options 7-9

Y%urprint 7-7
output to file 7-8
output to printer 7-8
output to screen 7-7

%urpurge 6-14, 7-29

%urset 7-30
parameters described 7-31

%ourverma 6-12, 7-28

UserName
establishing from M code 11-39
stored in %msgl local variable 11-39
Utilities
Copy Query 10-36
Detailed Query Listing 10-40
List Queries 10-39
%msglutl 11-40
National Language Reports 12-44
Object Compile Driver 12-5, G-14
Object Integrity Checker 12-23, G-14
Object Routine Prefix 12-42
Object String Search 12-35
program and object management 3-4
routine management 3-3, 7-2
Run Existing Queries 10-30

AUTILITY 119

Index-16 Open M/SQL Developer Guide

Vv

%val 11-2

Validation code 11-24, G-21
VALUES clause 8-3,9-23
Variable window placement G-21

Variables G-21
displaying list of critical variables 11-42
list of percent variables 11-2
naming conventions 11-2
percent (%) variables 11-2
pushing onto a stack 11-40
referencing within inserted code 11-15
referencing within triggers 11-19
reinstating from stack 11-41

##vendor 5-17
Versions (for routines) 6-5
Vertical menus 1-12, G-21

Views 1-10, G-21
checks made by Object Integrity
Checker utility 12-24
query-based 9-57, G-17

Virtual fields G-21
Virtual tables 1-10, 2-3, G-21

w

WHERE clause 10-8

Wildcard symbols
for routine extensions 6-7
for routine names 6-6
for version numbers 6-7

windcln"%msgl function 11-38
Window cleanup function 11-38

Windows G-22
erasing from screen 11-38

Windows (in the Full Screen Editor) 4-18
Word-processing fields G-22

write"%msgl function 11-35
parameters defined 11-36

	Open M/SQL Developer Guide
	Version: Open M/SQL F.6, F.7
	Revision Date: April 25, 1996
	Preface
	Audience
	Organization of this Guide
	Other References
	Typographic Conventions Used in this Guide

	Getting Started
	Introduction to Open M/SQL
	What Is Open M/SQL?
	What Is Open M/SQL Developer?
	Application Development Strategies
	Automated Program Generation
	Mapping the Functional Specifications
	Defining the Data Structure in the Data Dictionary
	Developing Forms and Reports
	Tying the Application Together with the Menu Generator

	Procedural Programming in ANSI M
	Mixed Environments

	Overview of the System Environment
	Hardware and Operating System Environments
	Memory Environment
	Global Database
	ANSI-Standard M Language Processor
	ANSI-Standard SQL Language Processor
	Relational Data Dictionary
	Program Development Environment
	Hand�Coded Programming in Open M/SQL
	Open M/SQL Interpreted Compiler

	The Form Generator and M/PACT
	Menu Generator
	Query Optimizer
	M/NET Networking
	DT Network
	Open M/SQL Runs on Top of Any M Implementation

	Integration of Two ANSI Standards
	Embedded SQL
	Cursors

	Inserted Code for Data Dictionary, Forms, and Reports

	Accessing the Global Database
	SQL � Relational Database Access
	M Global References

	Open M/SQL Program Structure
	Macro Source Routines
	Intermediate Code Routines
	Object Code Routines
	Open M/SQL Routine Utilities and Editors
	Routine Utilities for Non-ISM Implementations of M

	Distributed Data Processing

	The Open M/SQL Relational Database
	Open M/SQL Implements Relations as Tables
	Open M/SQL Tables Follow The First Normal Form
	Open M/SQL Supports Two Types of Tables
	RowID/Primary Key

	Open M/SQL Implements Schemas as M Directories
	Open M/SQL Database Structure for Non-ISM Implementations of M

	The Open M/SQL Relational Data Dictionary
	Accessing Data in an Open M/SQL Relational Database
	Using SQL to Query the Database
	Table.Name Syntax

	Cartesian Product
	Project
	Restrict
	Joins

	InterSystems’ Extensions to the Relational Model
	One-Way Outer Joins
	Implicit Joins
	Designative References
	Characteristic Relationships
	Implicit Join Syntax
	Integrity Constraints

	Multi-Line Fields

	Program Development
	Open M/SQL Program Development
	Programming Methods
	The Full Screen Editor
	Intermediate Code Routines
	Routine Line Editor

	Routine Management Utilities
	Developer Utilities
	Programmer Interface to Applications

	Full Screen Editor
	Overview of the Full Screen Editor
	Full Screen Editor Features
	Routine Types for Editing

	Invoking the Full Screen Editor
	Loading Existing Routines
	Loading Routines Automatically

	Creating New Routines
	Preventing Overwrites

	Full Screen Editor Screen Display
	Navigating the Full Screen Editor Menu System
	Primary Menu
	Buffers Menu
	Windows Menu
	Mark Menu
	Other Menu

	Editing Operations
	Moving the Cursor
	Inserting Text
	DeletingText
	Cutting and Pasting Text
	Editing Multiple Copies of a Routine
	Creating a New Buffer
	Selecting an Existing Buffer
	Loading a Routine into the Current Buffer

	Displaying Multiple Buffers
	Setting a Mark in Your Current Buffer
	Searching For Text Strings
	ReplacingText Strings
	Using Control Key Commands for Quicker Editing

	Getting Help
	Exiting the Full Screen Editor
	Automatic Syntax Checking
	Automatic Date and Time Stamps

	Developing Macro Source Routines
	Creating Macro Source Routines
	Compiling Macro Source Routines
	Macro Source Routines and Include Files
	Macro Source Routines Are Portable Across M Implementations

	The Open M/SQL Macro Preprocessor
	Macro Preprocessor Commands
	Macro Preprocessor Functions
	Macro References

	Summary of Macro Preprocessor Commands
	#define and #undef
	#define MACRONAME
	#define MACRONAME VALUE
	#define MACRONAME() VALUE
	#undef MACRONAME

	Nested Expansion
	#ifdef, #ifundef, #if, #else, #elseif, and #endif
	Syntax 1
	Syntax 2
	Syntax 3
	Syntax 4
	Notes

	#include
	Advantages of Using Include Files

	Indicating Comment Lines

	Summary of Macro Preprocessor Functions
	&sql(...)
	##vendor

	Routine Handling and Maintenance
	Routine Environment
	Writing Routines
	Converting Intermediate Code to Macro Source Code

	Routine Names, Extensions, and Version Numbers
	Routine Names Must Be Unique
	Case Sensitivity
	Routine Extensions
	When No Extension Is Specified

	Version Numbers

	Using Wildcard Symbols to Specify Routines
	Wildcards for Routine Names
	Wildcards for Extensions
	Wildcards for Version Numbers

	Referencing Routines in Other Directories
	Restrictions on Using Remote Directory Syntax

	Routine Sets
	Creating a Routine Set
	Using a Routine Set

	Compiling Routines
	Backing Up Routines
	How Backups are Shuffled and Renumbered
	The Full Screen Editor Generates Backups When You Save
	Restoring a Backup Version to the Current Version

	Deleting Routines
	%urdel
	%urpurge

	Routine Copying and Compiling Synchronization

	Open M/SQL Routine Management Utilities
	Summary of Routine Management Utilities
	Accessing the Routine Management Utilities
	Calling the Routine Utilities Directly from M
	Accessing the Routine Utilities from within Open M/SQL

	%urprint
	Selecting an Output Device
	Printing to the Screen
	Printing to a Printer
	Printing to a Storage File

	%urload
	Routine Input Options
	Compile Macro Source Routines

	%urdir
	%urchange
	%urcomp
	%urcopy
	%urfind
	%urfand
	%urdel
	%urverma
	%urpurge
	%urset
	The Global ^mtemp
	Parameters of %urset

	SQL Language Implementation
	Embedded SQL
	Preprocessor Syntax Delimits Embedded SQL
	Open M/SQL Supports Two Kinds of Embedded SQL
	Non-Cursor-Based SQL
	Use the INTO Clause to Pass Retrieved Values to M Variables
	UPDATE and DELETE Statements Can Operate on Multiple Rows

	Cursor-Based SQL
	Declaring a Cursor
	Opening a Cursor
	Use FETCH to Retrieve Information into a Cursor
	Use the INTO Clause to Pass Retrieved Values to M Variables
	INSERT, UPDATE, and DELETE Operations Follow ANSI-Standard

	Referencing Macros in Embedded SQL
	Internal and External Values
	Multi-Line Values
	Reserved Tag and Variable Names
	Portability
	Detailed Example

	Open M/SQL Implementation of SQL
	Summary of Extensions
	Added Keywords and Symbols

	Joins
	One-Way Outer Joins
	Implicit Joins
	Arrow Syntax Specifies Implicit Joins
	Designative References
	Characteristic Relationships

	Aggregate Extensions
	Aggregates as Query Columns
	%FOREACH
	%AFTERHAVING
	DISTINCT BY

	Duplicate Rows
	Embedded SQL
	Using the INTO Clause
	You May Use INTO in Cursor Declaration

	Using INTO with Arrays
	SELECT INTO Using Arrays
	SELECT INTO Using Mixed Variables

	INSERT and UPDATE INTO Using Arrays
	Using an Array Reference with an INSERT Query
	Using an Array Reference with an UPDATE Query

	VALUES Extension for INSERT and UPDATE Queries
	Multi�Line Fields
	Using Multi-Line Fields in SELECT Queries
	Using Multi-Line Fields in INSERT and UPDATE Queries

	Internal and External Values
	%INTERNAL and %EXTERNAL Functions
	M Operators
	Pattern Match Operator Can Test Variables

	Extensions to SQL Operators
	[NOT] IN Operator
	Concatenation Operator

	%STARTSWITH
	LIKE Predicate
	Special Pattern Matching Characters
	Specifying a Host Variable as the Search Pattern
	ESCAPE Qualifier
	Error Handling

	Collation Sequence
	EXACT
	ALPHAUP
	UPPER
	Plus, Minus, and Space
	Field Collation Sequence
	Collation Sequence and ORDER BY
	Collation Sequence and Comparisons
	%ALPHAUP, %UPPER, and %EXACT
	Changing the Default Collation Sequence
	Changing Collation Sequence on ISM Systems
	Changing Collation Sequence on Non-ISM Systems

	%NOCHECK
	SQL Transaction Processing
	Privilege Operators
	GRANT
	REVOKE
	%CHECKPRIV Keyword
	SQLCODE Values

	Using Subqueries
	Using a Subquery in a WHERE Clause
	Expression Matches Some Value in Subquery Output
	Expression Does Not Match Any Value in Subquery Output
	Subquery Retrieves At Least One Row
	Expression Compares With Values in Subquery Output
	Expression Compares with Some Values in Subquery Output
	Expression Compares with All Values in Subquery Output

	Using a Subquery in a FROM clause
	Open M/SQL Subquery Extensions
	Subquery Embedded in SELECT Clause
	FOR ALL Operator
	FOR SOME Operator

	Query-Based Views
	CREATE VIEW
	ALTER VIEW
	DROP VIEW
	Restrictions on Defining Query-Based Views
	You May Name Query-Based Views in FROM Clause

	Query Generation and Processing
	Facilities for Creating SQL Queries
	Accessing the Query Generation Facilities

	Using the Query Generator
	Example
	Query Definition Menu Bar
	Displaying Fields From Tables and Views
	Query Definition Advanced Features
	Compile and Run the Query

	Using the Interactive Query Editor
	Query Types
	Creating a Query in the Interactive Query Editor
	Editing Commands
	Query Editor Horizontal Options Menu
	Using On-line Help
	Query Editor Advanced Options
	Compile and Run the Query

	Running Queries
	Privileges Required to Run Queries
	Running a Query From its Definition Environment
	Using the Run Existing Queries Utility
	Running a Query from M Code
	Selecting an Output Device
	Device Selection for ASCII-Delimited Output Format

	ASCII-Delimited Output for Queries
	Contents of an ASCII-Delimited File
	Queries Support Dual Output Formats

	Copying Queries
	List Queries Report
	Detailed Query Listing Report

	Application Programming
	Programmer Interface to Applications
	Open M/SQL Variables
	List of Open M/SQL Percent (%) Variables

	Entry Points to the %msql Routine
	Open M/SQL Globals
	Object Definition Globals
	Object Definition Globals Located in Common Directory

	Open M/SQL Percent (%) Globals

	Inserting Code into Open M/SQL Applications
	Inserted Code Can Reference Fields
	Inserted Code Can Reference Variables and Globals
	Open M/SQL Performs Syntax Checking on Inserted M Code
	Triggers
	Trigger Action Types
	Base Table Triggers
	Form Triggers
	Report Triggers
	Referencing Fields in a Trigger
	Referencing Open M/SQL Percent (%) Variables in Triggers
	Using SQL Code in a Trigger
	Using M Code in a Trigger

	Override Queries for Lookups
	Computed Fields
	Internal/External Conversion Code
	External�to�Internal Conversion Code
	Internal�to�External Conversion Code
	Other Conversion Code Variables

	Additional Validation Code
	Required-Maybe Fields
	Map Subscripts and Pieces
	NEXT Subroutine
	Conditional Map

	Calling Open M/SQL Objects from M Programs
	Calling Forms
	Calling a Form By Its Name/ID#
	Calling a Form By Its Routine Prefix
	Form Call Syntax Parameters

	Calling Reports
	Calling Queries
	Calling Old-Style Menus
	Calling Menu Objects
	Calling Menu Objects Using a Menu Call Entry Point
	Calling a Menu Object By Its Routine Name

	Emulating Form Behavior from M Programs
	Displaying Help Text in a Help Text Box
	Writing Message Text
	Reading Fields
	Cleaning Up Windows

	Establishing Authorization ID from Programmer Mode
	Intermixing Open M/SQL Objects with User-Defined M Routines
	pushvars^%msqlutl
	popvars^%msqlutl
	$$msqlvars^%msqlutl

	Contents of Applications
	Routine Names
	Contents of Base Table Routines
	Entry Points to Primary Base Table Routine
	Base Table Definition Globals

	Contents of Form Routines
	Form Definition Globals

	Contents of Menu Object Routines
	Menu Object Definition Globals

	Contents of Old-Style Menu Routines
	Contents of Report Routines
	Report Definition Globals

	Contents of Query Routines

	Open M/SQL Developer Utilities
	Accessing the Developer Utilities Menu
	Using the Object Compile Driver Utility
	Setting Compilation Option Defaults
	Defining the Contents of a Compilation Configuration
	Advanced Options for Compilation List Items
	Editing an Object Definition

	Compiling the Configuration
	Viewing the Results of the Last Compilation
	Compilation Error Messages

	Compiling a Compilation Configuration from M Program Code

	Checking the Integrity of Open M/SQL Objects
	Checks on Base Tables
	Checks on Views
	Checks on Forms
	Checks on Reports
	Checks on Menu Objects
	Checks on Menu Object Options

	Checks on Triggers
	Base Table Trigger Checks
	Form Trigger Checks
	Report Trigger Checks
	Trigger Definition Checks
	Trigger Items

	Running the Integrity Checker Utility
	Error Fixing Mode
	Fix Errors Without Prompting
	Prompt Before Fixing Errors

	Searching for Strings in Open M/SQL Objects
	Invoking Macro Source Routine Utilities
	Querying Objects by Routine Prefix
	National Language Reports

	SQL Error Messages
	Successful Completion Messages
	Error Messages

	Open M/SQL Reserved Words
	Open M/SQL Supported Terminal Types
	Open M/SQL for DSM
	Open M/SQL for DTM
	Open M/SQL for MSM Environment

	Full Screen Editor Keyboard Actions
	Altos
	ANSI
	CIT-500
	Dasher
	IBM 3151 ASCII Display Station
	IBM PC
	QUME
	Sun
	Televideo 905
	DEC VT 100
	DEC VT 200
	DEC VT 220
	WYSE-60 (Native Mode)

	Glossary of Terms
	Index

