
Open M/SQL Developer Guide
Version: Open M/SQL F.6, F.7

Revision Date: April 25, 1996

Print History

Creation Date: July, 1992

Revision Dates: March, 1993
September, 1995

Open M/SQL Developer Guide
Copyright © InterSystems Corporation

1995

All rights reserved

NOTICE

PROPRIETARY — CONFIDENTIAL

This document contains trade secret and confidential information which is the property of InterSystems Corpo-
ration, One Memorial Drive, Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the
operation and maintenance of the products of InterSystems Corporation. No part of this publication is to be
used for any other purpose, and this publication is not to be reproduced, copied, disclosed, transmitted, stored in
a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in
part, without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited
except to the limited extent set forth in the standard software license agreement(s) of InterSystems Corporation
covering such programs and related documentation. InterSystems Corporation makes no representations and
warranties concerning such software programs other than those set forth in such standard software license
agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or aris-
ing out of the use of such software programs is limited in the manner set forth in such standard software license
agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS
IMPOSED BY INTERSYSTEMS CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM,
ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION REFERENCE SHOULD BE MADE TO
THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION, COP-
IES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves
the right, in its sole discretion and without notice, to make substitutions and modifications in the products and
practices described in this document.

M/SQL®, M/PACT®, and M/NET® are registered trademarks, and InterSystems™, Open M™, Open M/SQL™,
ISM™, DTM™, DT-MAX™, DT Windows™, DSM™, and DASL™ are trademarks of InterSystems Corporation.

MUMPS®, now called M Technology, is a registered trademark of Massachusetts General Hospital.

DSM DDP™, VAX™, VMS™, Open VMS™, and DEC™ are trademarks of Digital Equipment Corporation.

Microsoft®, MS-DOS®, Microsoft Access®, and, Excel® are registered trademarks and Windows™, Visual
Basic™, and Visual C++™ are trademarks of Microsoft Corporation.

ORACLE® is a registered trademark of Oracle Corporation.

For Support questions about any InterSystems products, contact the InterSystems Worldwide Support Center:

U.S.:
Tel: +1 617 621-0700
Fax: +1 617 494-1631

Europe:
Tel: +44 753 830-077
Fax: +44 753 861-311

Internet — support@intersys.com

Preface
Open M/SQL is an integrated environment for developing and running database
applications. It includes an advanced relational database management system, an
application and report generator, and a procedural programming language.

Open M/SQL combines two ANSI-Standard languages — M, the only proce-
dural programming language designed specifically for database applications, and
SQL (Structured Query Language), the most widely used relational query lan-
guage.

Open M/SQL provides two program development environments:

 n The M environment, in which you can execute system management com-
mands, and create, modify, and execute M routines.

 n The relational environment, in which you define the database in relational
terms and use the application generator tools to create, modify, and execute
advanced relational database applications.

Open M/SQL’s relational environment is a complete RDBMS (Relational Data-
base Management System)—it includes a development environment for creating
advanced relational database applications, a management system for maintaining
them, and a run-time environment for executing them.

Open M/SQL’s relational environment has the following components:

 n Relational Data Dictionary — environment where you define tables to rep-
resent the logical structure of a relational database, or map the physical struc-
ture of an existing database to relational tables. These tables act as the
foundation on which Open M/SQL relational database applications are built.

 n Form Generator — an application generation tool used to create ready-to-
run data screens through which end users can add, retrieve, edit, and delete
database information.
Open M/SQL Developer Guide iii

Preface
 n Menu Generator — an application generation tool used to create pop-up
menus and menu bars which unite the various components of an application
in a logical and visually sophisticated manner and structure an application by
defining how it is organized and how it is presented to end users.

 n M/PACT (Report Generator) — a report-writing tool used to create and run
sophisticated end-user data reporting applications that interact with the Open
M/SQL Relational Data Dictionary.

 n Query Generator — environment in which you can create and run database
queries on an ad-hoc basis.

 n Relational Server — an optional component of Open M/SQL that allows
non-M applications to access and modify your Open M/SQL relational data-
base.

The Open M/SQL Developer Guide describes all aspects of Open M/SQL pro-
gram development that are independent of considerations specific to hardware
platform, operating system, and host M system.

This document provides an overview of the Open M/SQL program development
environment (including both the M environment and the relational environment)
and presents various strategies for developing applications.

More specifically, it contains information on the following topics:

 n Development of macro source routines
 n Use of the Full Screen Editor
 n Use of routine management utilities
 n Use of the Open M/SQL developer utilities
 n Overview of Open M/SQL’s implementation of SQL
 n Various methods for using SQL to query an Open M/SQL relational database

Audience

This document is intended for use by programmers who are using InterSystems’
Open M/SQL Developer product to create Open M/SQL relational database
applications.

The term “application programmer” in this document refers to the programmers
who create Open M/SQL relational database applications.

The term “user” in this document refers to the end user of an Open M/SQL rela-
tional database application.

This document assumes that you have programming experience. In specific, it
assumes familiarity with programming in the M language and the SQL language.
iv Open M/SQL Developer Guide

Preface
Organization of this Guide

This manual is divided into four sections. Section I, Getting Started, contains the
following two chapters:

 n Chapter 1, Introduction to Open M/SQL, introduces InterSystems’ Open
M/SQL and discusses its uses in a 4GL application generator environment.
Chapter 1 begins with a discussion of application development strategies,
then goes on to discuss the components of Open M/SQL and their various
applications.

 n Chapter 2, The Open M/SQL Relational Database, describes relational con-
cepts and their implementation in SQL as well as the database concept and its
implementation in Open M/SQL.

Section II, Program Development, contains the following five chapters:

 n Chapter 3, Open M/SQL Program Development, outlines the range of facili-
ties available for program development in Open M/SQL.

 n Chapter 4, Full Screen Editor, describes the Open M/SQL Full Screen Editor
used in editing macro source routines, intermediate code routines, and
include files.

 n Chapter 5, Developing Macro Source Routines, describes how to create rou-
tines at the macro source level, including descriptions of all the macro con-
structs permitted by Open M/SQL at this level.

 n Chapter 6, Routine Handling and Maintenance, presents an overview of the
Open M/SQL routine environment and describes routine handling and main-
tenance.

 n Chapter 7, Open M/SQL Routine Management Utilities, describes the built-in
utilities that InterSystems supplies to assist in examining and manipulating
routines and include files.

Section III, SQL Language Implementation, contains the following three chap-
ters:

 n Chapter 8, Embedded SQL, describes the two ways of using SQL in an Open
M/SQL program: cursor-based and non-cursor-based.

 n Chapter 9, Open M/SQL Implementation of SQL, describes extensions to
ANSI-Standard SQL that InterSystems has incorporated into Open M/SQL.

 n Chapter 10, Query Generation and Processing, describes the Query Genera-
tor and the Query Editor—the two facilities provided by Open M/SQL for
the generation and processing of ad hoc SQL queries.
Open M/SQL Developer Guide v

Preface
Section IV, Application Programming, contains the following chapter:

 n Chapter 11, Programmer Interface to Applications, presents an overview of
the M variables and globals that interact with forms and reports. It also dis-
cusses the uses of inserted M code in an application, the conventions for call-
ing forms, reports, queries, and menus and emulating forms, and the contents
of applications.

 n Chapter 12, Open M/SQL Developer Utilities, describes the built-in utilities
that InterSystems supplies to assist in examining and manipulating routines
and include files.

This guide contains the following appendices:

 n Appendix A, SQL Error Messages, which lists and describes all message
codes (successful completion messages and error messages) that can be
returned to the SQLCODE variable.

 n Appendix B, Open M/SQL Reserved Words, which lists all Open M/SQL
reserved words.

 n Appendix C, Open M/SQL Supported Terminal Types, which lists all terminal
types currently supported by Open M/SQL.

 n Appendix D, Keyboard Actions for the Full Screen Editor, which shows the
keyboard mapping for using the Full Screen Editor on keyboards associated
with the terminal types supported by Open M/SQL/

A glossary defines the terminology used in this guide.
vi Open M/SQL Developer Guide

Preface
Other References

Depending on the configuration of your system, you may also wish to refer to the
following guides:

 n The Open M/SQL Database Administrator’s Guide, which describes how to
configure, manage, and maintain an Open M/SQL environment, including
both the application development environment and the application run-time
environment. For sites that use the Open M/SQL Relational Server to make
Open M/SQL data available to external applications, this guide also
describes how to configure, manage, and maintain the Relational Server.

 n The Open M/SQL User Interface Programming Guide, which describes how
to use the application generation tools within Open M/SQL Developer to cre-
ate a user interface for your relational database. These application generation
tools include the Form Generator — used to create ready-to-run data
screens through which end users can add, retrieve, edit, and delete database
information; the Menu Generator — used to create pop-up menus and menu
bars which unite the various components of an application in a logical and
visually sophisticated manner and structure an application by defining how it
is organized and how it is presented to users; and the Application Help
Facility — used to create and deploy a context-sensitive on-line help system
for your Open M/SQL relational database application.

 n The Open M/SQL Data Dictionary Guide, which describes how to define
tables to represent the logical structure of a relational database, or how to
map the physical structure of an existing database to relational tables. These
tables act as the foundation on which Open M/SQL relational database appli-
cations are built.

 n The Open M/SQL Relational Client User Guide, which describes how to
access an Open M/SQL relational database (retrieve and modify data) from
various third-party application development tools.

 n The Open M/SQL Server Programming Guide, which describes how to
access an Open M/SQL relational database from applications created using
the C or C++ programming language.

 n The M/PACT Guide, which describes how to create and run sophisticated
end-user data reporting applications that interact with the Open M/SQL Rela-
tional Data Dictionary.

 n An tutorial entitled Open M/SQL: A Gentle Introduction, which uses a
project management demonstration application to show how to develop and
use an Open M/SQL application.

 n The Open M/SQL M Programming Guide, which describes ISM (InterSys-
tems’ original implementation of the M programming language), including
global database concepts, the development of intermediate code routines, and
the use of ISM utilities.
Open M/SQL Developer Guide vii

Preface
 n The appropriate system guide for your Open M system platform, which
describes the system-specific elements of using Open M on your particular
computer and operating system.
viii Open M/SQL Developer Guide

Preface
Typographic Conventions Used in this Guide

This guide observes the following typographic conventions:

Convention Description Example

Body text appears in Times
Roman type.

Open M/SQL offers a variety of strategies for
developing an application.

Computer generated informa-
tion appears in Courier type.

Linking/Syntax Checking...DONE

Computer generated required
fields appear in Courier Bold
type.

Update New M Database Defaults?

User input appears in Courier
Bold Italic type.

Yes

Keystrokes appear in upper-
case and enclosed within
angle brackets.

<RETURN>

Simultaneous keystrokes
appear hyphenated, in upper-
case, and enclosed within
angle brackets.

<CTRL-Z>

Command syntax appears
indented in Courier type with
variable information in Courier
Italic type and enclosed within
angle brackets.

> do setaid^%msql(“<UserName>”)

Examples of user-typed com-
mands appear indented in
Courier Bold Italic type.

> do setaid^%msql(“Zeus”)

Procedure titles appear in bold
Helvetica type and are desig-
nated by an underlined side-
head prefix.

Procedure To access the System Configu-
ration window:

Note, Caution, Warning, and
Hint statements appear in Hel-
vetica type with an appropriate
sidehead.

Note Turning DBMS security OFF is a useful way
to guarantee access to current applications
by users who will need them while you are
in the process of implementing a privilege
system.

Titles of other guides and other
chapters within this guide
appear in Times Italic type.

Open M/SQL User Interface Programming Guide
Open M/SQL Developer Guide ix

Preface
x Open M/SQL Developer Guide

Table of Contents
Preface
Audience. iv
Organization of this Guide . v
Other References . vii
Typographic Conventions Used in this Guide . ix

Part I—Getting Started

1 Introduction to Open M/SQL
What Is Open M/SQL?. 1-2
What Is Open M/SQL Developer? . 1-3
Application Development Strategies . 1-4

Automated Program Generation . 1-4
Procedural Programming in ANSI M . 1-6
Mixed Environments . 1-7

Overview of the System Environment . 1-8
Hardware and Operating System Environments 1-8
Memory Environment . 1-9
Global Database. 1-9
ANSI-Standard M Language Processor. 1-9
ANSI-Standard SQL Language Processor. 1-9
Relational Data Dictionary . 1-10
Program Development Environment . 1-10
The Form Generator and M/PACT . 1-12
Menu Generator . 1-12
Query Optimizer . 1-12
M/NET Networking. 1-13
Open M/SQL Developer Guide xi

Table of Contents
DT Network . 1-13
Open M/SQL Runs on Top of Any M Implementation 1-14

Integration of Two ANSI Standards . 1-15
Embedded SQL. 1-15
Inserted Code for Data Dictionary, Forms, and Reports. 1-15

Accessing the Global Database . 1-16
SQL - Relational Database Access . 1-16
M Global References . 1-16

Open M/SQL Program Structure . 1-17
Macro Source Routines. 1-17
Intermediate Code Routines . 1-17
Object Code Routines . 1-18
Open M/SQL Routine Utilities and Editors . 1-18
Distributed Data Processing . 1-19

2 The Open M/SQL Relational Database
Open M/SQL Implements Relations as Tables . 2-2

Open M/SQL Tables Follow The First Normal Form 2-2
Open M/SQL Supports Two Types of Tables . 2-3

Open M/SQL Implements Schemas as M Directories. 2-4
Open M/SQL Database Structure for Non-ISM Implementations of M. 2-4

The Open M/SQL Relational Data Dictionary . 2-5
Accessing Data in an Open M/SQL Relational Database 2-6

Using SQL to Query the Database . 2-6
Cartesian Product . 2-7
Project . 2-9
Restrict . 2-10
Joins . 2-11

InterSystems’ Extensions to the Relational Model . 2-14
One-Way Outer Joins . 2-14
Implicit Joins. 2-15
Multi-Line Fields . 2-21

Part II—Program Development

3 Open M/SQL Program Development
Programming Methods . 3-2
The Full Screen Editor. 3-2
Intermediate Code Routines . 3-3

Routine Line Editor. 3-3
xii Open M/SQL Developer Guide

Table of Contents
Routine Management Utilities . 3-3
Developer Utilities . 3-4
Programmer Interface to Applications . 3-4

4 Full Screen Editor
Overview of the Full Screen Editor . 4-2

Full Screen Editor Features . 4-2
Routine Types for Editing . 4-2

Invoking the Full Screen Editor . 4-3
Loading Existing Routines. 4-6
Creating New Routines . 4-7
Preventing Overwrites . 4-7

Full Screen Editor Screen Display . 4-8
Navigating the Full Screen Editor Menu System. 4-10

Primary Menu . 4-10
Buffers Menu . 4-11
Windows Menu . 4-11
Mark Menu . 4-12
Other Menu . 4-12

Editing Operations . 4-13
Moving the Cursor . 4-13
Inserting Text . 4-14
DeletingText . 4-14
Cutting and Pasting Text . 4-15
Editing Multiple Copies of a Routine . 4-16
Displaying Multiple Buffers . 4-18
Setting a Mark in Your Current Buffer . 4-19
Searching For Text Strings . 4-20
ReplacingText Strings . 4-20
Using Control Key Commands for Quicker Editing 4-20

Getting Help . 4-22
Exiting the Full Screen Editor . 4-23

Automatic Syntax Checking . 4-23
Automatic Date and Time Stamps . 4-24

5 Developing Macro Source Routines
Creating Macro Source Routines . 5-2

Compiling Macro Source Routines . 5-2
Macro Source Routines and Include Files . 5-3
Macro Source Routines Are Portable Across M Implementations 5-3
Open M/SQL Developer Guide xiii

Table of Contents
The Open M/SQL Macro Preprocessor . 5-4
Macro Preprocessor Commands . 5-4
Macro Preprocessor Functions . 5-5
Macro References . 5-5

Summary of Macro Preprocessor Commands . 5-7
#define and #undef . 5-7
Nested Expansion . 5-9
#ifdef, #ifundef, #if, #else, #elseif, and #endif 5-11
#include. 5-13
Indicating Comment Lines . 5-15

Summary of Macro Preprocessor Functions . 5-16
&sql(...) . 5-16
##vendor . 5-17

6 Routine Handling and Maintenance
Routine Environment. 6-2

Writing Routines . 6-2
Converting Intermediate Code to Macro Source Code. 6-2

Routine Names, Extensions, and Version Numbers . 6-3
Routine Names Must Be Unique . 6-3
Case Sensitivity. 6-3
Routine Extensions . 6-3
Version Numbers . 6-5

Using Wildcard Symbols to Specify Routines . 6-6
Wildcards for Routine Names. 6-6
Wildcards for Extensions . 6-7
Wildcards for Version Numbers . 6-7

Referencing Routines in Other Directories . 6-8
Restrictions on Using Remote Directory Syntax 6-9

Routine Sets . 6-10
Creating a Routine Set . 6-10
Using a Routine Set. 6-10

Compiling Routines . 6-11
Backing Up Routines. 6-12

How Backups are Shuffled and Renumbered . 6-12
The Full Screen Editor Generates Backups When You Save 6-13
Restoring a Backup Version to the Current Version. 6-13

Deleting Routines . 6-14
%urdel . 6-14
%urpurge. 6-14

Routine Copying and Compiling Synchronization . 6-15
xiv Open M/SQL Developer Guide

Table of Contents
7 Open M/SQL Routine Management Utilities
Summary of Routine Management Utilities. 7-2
Accessing the Routine Management Utilities . 7-3

Calling the Routine Utilities Directly from M. 7-3
Accessing the Routine Utilities from within Open M/SQL. 7-3

%urprint . 7-7
Selecting an Output Device . 7-7

%urload. 7-9
Routine Input Options . 7-9
Compile Macro Source Routines. 7-10

%urdir . 7-11
%urchange . 7-15
%urcomp. 7-17
%urcopy . 7-19
%urfind . 7-23
%urfand . 7-25
%urdel. 7-27
%urverma . 7-28
%urpurge . 7-29
%urset . 7-30

The Global ^mtemp . 7-30
Parameters of %urset . 7-31

Part III—SQL Language Implementation

8 Embedded SQL
Preprocessor Syntax Delimits Embedded SQL . 8-2
Open M/SQL Supports Two Kinds of Embedded SQL 8-2

Non-Cursor-Based SQL. 8-2
Cursor-Based SQL. 8-4

Referencing Macros in Embedded SQL. 8-7
Internal and External Values . 8-8
Multi-Line Values . 8-8
Reserved Tag and Variable Names . 8-9
Portability . 8-9
Detailed Example . 8-10
Open M/SQL Developer Guide xv

Table of Contents
9 Open M/SQL Implementation of SQL
Summary of Extensions. 9-2

Added Keywords and Symbols. 9-3
Joins . 9-5

One-Way Outer Joins . 9-5
Implicit Joins. 9-6

Aggregate Extensions . 9-11
Aggregates as Query Columns . 9-11
%FOREACH. 9-12
%AFTERHAVING. 9-14
DISTINCT BY . 9-14

Duplicate Rows . 9-16
Embedded SQL . 9-17
Using the INTO Clause . 9-18

You May Use INTO in Cursor Declaration . 9-18
Using INTO with Arrays . 9-19

SELECT INTO Using Arrays . 9-19
INSERT and UPDATE INTO Using Arrays . 9-21

VALUES Extension for INSERT and UPDATE Queries. 9-23
Multi-Line Fields . 9-24

Using Multi-Line Fields in SELECT Queries. 9-24
Using Multi-Line Fields in INSERT and UPDATE Queries 9-25

Internal and External Values . 9-26
%INTERNAL and %EXTERNAL Functions . 9-29
M Operators . 9-30

Pattern Match Operator Can Test Variables . 9-31
Extensions to SQL Operators . 9-32

[NOT] IN Operator . 9-32
Concatenation Operator . 9-32

%STARTSWITH. 9-33
LIKE Predicate . 9-34

Special Pattern Matching Characters . 9-34
Specifying a Host Variable as the Search Pattern. 9-35
ESCAPE Qualifier . 9-35
Error Handling . 9-36

Collation Sequence . 9-37
EXACT . 9-37
ALPHAUP . 9-38
UPPER . 9-38
Plus, Minus, and Space . 9-39
xvi Open M/SQL Developer Guide

Table of Contents
Field Collation Sequence . 9-39
Collation Sequence and ORDER BY . 9-40
Collation Sequence and Comparisons . 9-40
%ALPHAUP, %UPPER, and %EXACT . 9-41
Changing the Default Collation Sequence. 9-42

%NOCHECK . 9-44
SQL Transaction Processing . 9-45
Privilege Operators. 9-47

GRANT . 9-47
REVOKE . 9-49
%CHECKPRIV Keyword . 9-50
SQLCODE Values. 9-51

Using Subqueries . 9-52
Using a Subquery in a WHERE Clause. 9-52
Using a Subquery in a FROM clause. 9-54
Open M/SQL Subquery Extensions. 9-55

Query-Based Views . 9-57
CREATE VIEW . 9-57
ALTER VIEW . 9-57
DROP VIEW . 9-58
Restrictions on Defining Query-Based Views. 9-58
You May Name Query-Based Views in FROM Clause 9-58

10 Query Generation and Processing
Facilities for Creating SQL Queries . 10-2

Accessing the Query Generation Facilities . 10-2
Using the Query Generator. 10-5

Example . 10-9
Query Definition Menu Bar. 10-11

Using the Interactive Query Editor. 10-17
Query Types. 10-17
Creating a Query in the Interactive Query Editor 10-18
Editing Commands . 10-23
Query Editor Horizontal Options Menu . 10-23

Running Queries. 10-29
Privileges Required to Run Queries. 10-29
Running a Query From its Definition Environment 10-29
Using the Run Existing Queries Utility . 10-30
Running a Query from M Code . 10-31
Selecting an Output Device . 10-32
Open M/SQL Developer Guide xvii

Table of Contents
ASCII-Delimited Output for Queries . 10-35
Contents of an ASCII-Delimited File . 10-35
Queries Support Dual Output Formats . 10-35

Copying Queries . 10-36
List Queries Report . 10-39
Detailed Query Listing Report. 10-40

Part IV—Application Programming

11 Programmer Interface to Applications
Open M/SQL Variables . 11-2

List of Open M/SQL Percent (%) Variables. 11-2
Entry Points to the %msql Routine . 11-8
Open M/SQL Globals . 11-9

Object Definition Globals . 11-9
Open M/SQL Percent (%) Globals . 11-12

Inserting Code into Open M/SQL Applications . 11-13
Inserted Code Can Reference Fields. 11-14
Inserted Code Can Reference Variables and Globals 11-15
Open M/SQL Performs Syntax Checking on Inserted M Code 11-15
Triggers . 11-16
Override Queries for Lookups . 11-22
Computed Fields . 11-22
Internal/External Conversion Code. 11-23
Additional Validation Code . 11-24
Required-Maybe Fields. 11-24
Map Subscripts and Pieces . 11-25
NEXT Subroutine . 11-25
Conditional Map . 11-26

Calling Open M/SQL Objects from M Programs . 11-27
Calling Forms . 11-27
Calling Reports . 11-30
Calling Queries . 11-31
Calling Old-Style Menus . 11-32
Calling Menu Objects . 11-32

Emulating Form Behavior from M Programs . 11-34
Displaying Help Text in a Help Text Box . 11-34
Writing Message Text. 11-35
Reading Fields. 11-36
Cleaning Up Windows . 11-38
xviii Open M/SQL Developer Guide

Table of Contents
Establishing Authorization ID from Programmer Mode 11-39
Intermixing Open M/SQL Objects with User-Defined M Routines 11-40

pushvars^%msqlutl . 11-40
popvars^%msqlutl . 11-41
$$msqlvars^%msqlutl . 11-42

Contents of Applications . 11-43
Routine Names. 11-43
Contents of Base Table Routines. 11-44
Contents of Form Routines . 11-46
Contents of Menu Object Routines . 11-46
Contents of Old-Style Menu Routines. 11-47
Contents of Report Routines . 11-47
Contents of Query Routines. 11-47

12 Open M/SQL Developer Utilities
Accessing the Developer Utilities Menu . 12-2
Using the Object Compile Driver Utility . 12-5

Setting Compilation Option Defaults . 12-8
Defining the Contents of a Compilation Configuration. 12-12
Compiling the Configuration . 12-20
Viewing the Results of the Last Compilation 12-21
Compiling a Compilation Configuration from M Program Code 12-22

Checking the Integrity of Open M/SQL Objects . 12-23
Checks on Base Tables . 12-24
Checks on Views . 12-24
Checks on Forms . 12-25
Checks on Reports . 12-25
Checks on Menu Objects . 12-26
Checks on Triggers . 12-27
Running the Integrity Checker Utility . 12-29
Error Fixing Mode . 12-34

Searching for Strings in Open M/SQL Objects . 12-35
Invoking Macro Source Routine Utilities. 12-40
Querying Objects by Routine Prefix . 12-42
National Language Reports . 12-44
Open M/SQL Developer Guide xix

Table of Contents
Appendices

A SQL Error Messages
Successful Completion Messages . A-2
Error Messages . A-3

B Open M/SQL Reserved Words

C Open M/SQL Supported Terminal Types
Open M/SQL for DSM . C-3
Open M/SQL for DTM . C-3
Open M/SQL for MSM Environment. C-3

D Full Screen Editor Keyboard Actions
Altos. D-1
ANSI . D-4
CIT-500 . D-7
Dasher . D-11
IBM 3151 ASCII Display Station . D-13
IBM PC . D-17
QUME . D-20
Sun . D-23
Televideo 905 . D-26
DEC VT 100 . D-29
DEC VT 200 . D-32
DEC VT 220 . D-35
WYSE-60 (Native Mode) . D-39

Glossary of Terms

Index
xx Open M/SQL Developer Guide

PART

I
Getting Started
Chapter 1

Introduction to Open M/SQL

Chapter 2

The Open M/SQL Relational
Database

Open M/SQL Deve
CHAPTER

1
Introduction to Open M/SQL
This chapter introduces InterSystems’ Open M/SQL and discusses its uses in a
4GL application generator environment.

Specifically, it covers the following topics:

 n What Is Open M/SQL?
 n What Is Open M/SQL Developer?
 n Application Development Strategies
 n Overview of the System Environment
 n Integration of Two ANSI Standards
 n Accessing the Global Database
 n Open M/SQL Program Structure
loper Guide 1-1

Chapter 1—Introduction to Open M/SQL
What Is Open M/SQL?

Open M/SQL is an integrated environment consisting of an advanced relational
database management system, application generator, and procedural program-
ming language that offers a variety of strategies for developing and running data-
base applications.

Open M/SQL combines two ANSI Standard programming languages, SQL and
M. SQL is the most widely used relational query language. M is a database-ori-
ented procedural language that has been used to develop and run perfor-
mance-critical online applications at thousands of sites. The merger of these two
languages provides a powerful standards-based system that offers extremely high
performance.

The “Open” in Open M/SQL refers to its open systems architecture, which
allows it to run in a vendor-independent host M environment. Specifically, you
can develop and run Open M/SQL applications on top of the following M imple-
mentations:

 n ISM
 n DTM
 n DSM
 n Micronetics’ MSM

All Open M/SQL applications are completely portable between these M systems.
This means you can develop an application on one M system, then port it to
another M system without making any modifications.
1-2 Open M/SQL Developer Guide

What Is Open M/SQL Developer?
What Is Open M/SQL Developer?

Open M/SQL Developer is InterSystems’ development environment for creating
Open M/SQL relational applications.

Open M/SQL Developer encompasses the relational Data Dictionary, where you
define relational data structures, the Form Generator, where you build interactive
data entry screens, and the Menu Generator, where you bring the various compo-
nents together into a coherent application. It also supports various applications of
SQL, including the interactive construction of queries and the embedding of SQL
code within M routines. Open M/SQL Developer allows you to produce sophisti-
cated reports, queries, and forms with speed and ease.

The Open M/SQL Data Dictionary describes the elements of an Open M/SQL
relational database and as such constitutes the structural foundation of an Open
M/SQL application. The Data Dictionary provides an advanced, window-based
approach to defining, storing, and retrieving data.

The Open M/SQL Form Generator creates ready-to-run data entry screens to add,
delete, retrieve, and edit database information. The generated forms are equipped
with data validation, full-screen display handling, powerful function keys, and
SQL queries used internally to retrieve and store data.

M/PACT is an Open M/SQL add-on option that allows you to generate highly
formatted reports from data served by the relational Data Dictionary.

The Open M/SQL Relational Server is a related product that allows non-M, third
party application development tools and C programs on client systems to access
your Open M/SQL relational databases on a server system.
Open M/SQL Developer Guide 1-3

Chapter 1—Introduction to Open M/SQL
Application Development Strategies

Open M/SQL offers a variety of strategies for developing an application: devel-
opment can take place at a purely automated level; programs can be entirely
hand-coded; or, most commonly, applications can be developed in a mixed envi-
ronment that includes programs created using M, the Open M/SQL procedural
programming language, as well as automatically-generated forms, reports, and
SQL queries, and other ancillary functions using the application generation tools
of Open M/SQL. The following discussion addresses the different strategies for
applications development in Open M/SQL.

Automated Program Generation

Automated program generation takes place in five phases:

1. Map the functional specifications for the application out on paper.

2. Define the data structures in the Data Dictionary, along with integrity con-
straints, table relationships, and triggers.

3. Use the Form Generator to develop data entry and inquiry forms.

4. Use M/PACT to develop reports.

5. Use the Menu Generator to tie the different parts of the application together.

Mapping the Functional Specifications

The first step in developing an application is to organize the logical structure of
the data on paper as a series of tables, just as you might design a paper filing sys-
tem. To do this, consider the functional needs of your application and make a list
of all the different pieces of data that you need. The object of the design is to
describe the tables that constitute the database and how those tables will interact
with one another. For example, one application might have a customer table, an
invoice table, an invoice line item table, a parts table, etc. The customer table
might then consist of fields for customer name, address, phone, current balance,
etc.

Defining the Data Structure in the Data Dictionary

Once you have designed a data structure on paper, you next define that data struc-
ture in the Open M/SQL Data Dictionary, along with any integrity constraints on
the data. See the Open M/SQL Data Dictionary Guide for details about how to
create and modify the underlying M global structure for your relational database.

Integrity constraints may be very simple; for example, you can specify a range of
valid numbers that can be entered for a field. Other constraints may be more
complex; perhaps you want to specify that an invoice cannot be entered into the
invoice table without a corresponding customer entry in the customer table. Even
1-4 Open M/SQL Developer Guide

Application Development Strategies
more complex constraints may require the addition of complete SQL queries or
procedural M code.

The Data Dictionary will also contain descriptions of the relationships between
tables. For example, where rows of an invoice line item table cannot exist with-
out a corresponding row in an invoice table, the line item table should be defined
as a characteristic table of the invoice table. One field in the invoice table
should also be defined to serve as a designative reference to rows in the cus-
tomer table. Open M/SQL uses this information to enforce integrity constraints
and produce automatic joins in queries.

You may also define processing triggers in the Data Dictionary. Triggers are
sequences of actions defined to automatically occur, or be triggered, when cer-
tain other events occur. A trigger definition usually consists of an SQL query or
M code segment that should be invoked when rows are created, modified, or
deleted. For example, if a medical record for a given patient is deleted, you may
want to establish a trigger that will automatically delete all of that patient's lab
test information from various lab files.

Developing Forms and Reports

Once you have defined the data structure in the Data Dictionary, the next step is
to generate forms that enable data entry and inquiry using the Form Generator.
See the Open M/SQL User Interface Programming Guide for details about how
to use the Form Generator.

Forms are sets of windows for entering, retrieving, modifying, and displaying
data. The Form Generator creates visually sophisticated windows complete with
data validation capabilities, full screen display handling, and powerful function
keys. The Form Generator uses internally stored SQL queries to retrieve and
store data.

You can generate windows automatically and modify them easily using
cut-and-paste editing facilities. For more complex applications, you can enhance
the windows by adding SQL queries or M code to the window definition. You
can add very simple lines of code, or add entire programs that perform complex
calculations or generate their own displays and prompts in cooperation with the
Form Generator.

M/PACT generates reports. Reports are defined through a series of questions on
the screen; no complex procedural programming is required. See the Open
M/SQL M/PACT Guide for information about using M/PACT.

SQL queries can be entered interactively through the SQL Query Definition win-
dow.
Open M/SQL Developer Guide 1-5

Chapter 1—Introduction to Open M/SQL
Tying the Application Together with the Menu Generator

The Menu Generator ties the different components of the application together.
You may create pop-up menus and menu bars that unite the various components
of an application, apply an orderly structure to the application, and offer the user
easy access. For details about creating and using the Menu Generator, see the
Open M/SQL User Interface Programming Guide.

Procedural Programming in ANSI M

It is also possible to develop applications entirely in M, a powerful procedural
programming language that affords rapid program development and high perfor-
mance in a database application environment. M is an ANSI Standard procedural
programming language. Other ANSI Standard procedural programming lan-
guages include COBOL, C, FORTRAN, PL/1, BASIC, and PASCAL.

Within M programs, data can be accessed in the following ways:

 n Directly through M global references that view the database as a collection of
arrays;

 n Through standard SQL Data Manipulation Language (DML) constructs:
insert, update, and delete. Cursors are fully supported. For standard SQL syn-
tax, refer to a commercial textbook or the ANSI X3.135-1989 standard, also
known as ISO 9075:1989.

 n Through embedded SQL queries that access or edit a single row (provided
you have also defined the data structures in the Data Dictionary);

 n Through embedded SQL queries that access multiple rows one row at a time
using cursors;

 n Through embedded SQL queries using UPDATE or DELETE statements that
operate on multiple rows.

Direct global references and SQL queries can be used to access the same data.

Programming in a procedural language allows the creation of complex programs
that use sophisticated algorithms. However, procedurally generated programs
take longer to develop and are more difficult to maintain than applications gener-
ated automatically in Open M/SQL. The combined power of M, the Data Dictio-
nary, the Form Generator, M/PACT, and SQL delivers a flexible, productive, and
easily maintained environment for application development.
1-6 Open M/SQL Developer Guide

Application Development Strategies
Mixed Environments

While many applications can be developed entirely through automatic genera-
tion, and some are so specialized that they must be entirely hand coded, most
applications fall somewhere in between. For this, Open M/SQL offers the advan-
tages of a mixed programming strategy. It generally makes sense to use the Form
Generator and M/PACT to develop as much of the application as possible, utiliz-
ing customization capabilities where necessary. Then, use M to program those
portions that have to be written procedurally. Thus, a laboratory application
might perform most of its data entry through generated windows but use M for
direct input from specialized instruments. The result is an integrated application
created and run entirely within Open M/SQL.
Open M/SQL Developer Guide 1-7

Chapter 1—Introduction to Open M/SQL
Overview of the System Environment

Open M/SQL runs on a variety of platforms and offers a varied systems environ-
ment. It also runs in a vendor-independent host M environment, equally support-
ing the ISM, DTM, DSM, and Micronetics’ MSM implementations of M. The
following discussion introduces the various elements of the system environment,
including:

 n Hardware and Software Operating System Environments
 n Memory Environment
 n Global Database
 n ANSI M Processor
 n ANSI SQL Processor
 n Relational Data Dictionary
 n Program Development Environment
 n The Form Generator and M/PACT
 n Menu Generator
 n Query Optimizer
 n M/NET Networking
 n DT Network
 n Open M/SQL Runs on Top of Any M Implementation

Hardware and Operating System Environments

Open M/SQL runs on a variety of hardware platforms and operating systems,
ranging from single-user PCs to large UNIX- and VMS-based systems support-
ing many hundreds of users, including most major supermicro and minicomputer
systems from the leading hardware vendors. Operating systems include MS-
DOS, Microsoft Windows 3.1, VMS, and Unix.

One of Open M/SQL’s most exceptional features is its portability. Although the
host operating system may vary, the Open M/SQL environment is consistent
across platforms. Applications developed on one system can be moved to another
easily and usually with no modification. Frequently, these applications can be
ported with no changes.
1-8 Open M/SQL Developer Guide

Overview of the System Environment
Memory Environment

Each M process runs as a separate process on the host operating system, except
for MS-DOS and Microsoft Windows systems. In addition to a private memory
section for each M process, there are two configurable caches, one for database
transactions and one for shared re-entrant use of application programs. The glo-
bal database is paged in a data pool that is shared by all of the processes, and run-
time code is shared among processes. This strategy results in a highly optimized,
memory-efficient system.

Global Database

The global database is the physical structure that controls the storage of data. The
database can be accessed through SQL requests or M global references, as the
programmer sees fit. A full set of utilities for database management are also pro-
vided.

ANSI-Standard M Language Processor

The M programming language is widely used for database applications, particu-
larly in interactive environments. Although it is best known for offering pro-
grammers the ability to develop programs rapidly and change them easily, M is
also recognized for providing high performance in interactive transaction-ori-
ented database environments.

M is one of the few languages that is defined by an ANSI Standard, which indi-
cates its importance to a wide audience in the data processing community. Con-
formity to this standard protects software and hardware investments and
facilitates a level of portability uncommon in other programming languages.

M is accepted by ANSI-Standard SQL as a host language for embedded SQL.

ANSI-Standard SQL Language Processor

ANSI-Standard SQL is the most widely used query language for relational data-
base systems. Open M/SQL permits SQL queries to be entered directly through
an interactive window, or to be embedded in M routines. SQL can be used not
only to retrieve data, but also to insert, update, and delete data. InterSystems’
SQL implementation is compatible with ANSI-Standard SQL. InterSystems also
provides numerous SQL language extensions to enhance the power of SQL que-
ries.
Open M/SQL Developer Guide 1-9

Chapter 1—Introduction to Open M/SQL
Relational Data Dictionary

Open M/SQL includes an advanced relational Data Dictionary that allows you to
define the database as a group of tables. Extensive capabilities are built into the
Data Dictionary to avoid code redundancy. Data Dictionary maps define the con-
nection between the logical and physical storage structure of the tables. Maps can
be automatically generated to produce default structured tables. Alternatively,
advanced M programmers may wish to define their own maps to conform with
the global structures of existing applications or to design a new database structure
compliant to application specifications.

Relationships among tables can be described in the Data Dictionary by defining
characteristic or designative relationships between tables. When you define
these relationships in the Data Dictionary, joins among tables are “implicit” and
occur in queries automatically, freeing the programmer and end-user from the
tedious and demanding task of specifying explicit joins in SQL statements.

The Data Dictionary can also be used to enforce integrity constraints that apply
to database modifications made using SQL and forms designed using the Form
Generator. Processing triggers can be attached to events in database update and
form execution that cause related processing to occur automatically. For exam-
ple, a trigger can specify that when an invoice is deleted, associated line items of
the invoice are also deleted. The system thus provides a means to enforce refer-
ential integrity and to define application-specific processing in the dictionary,
eliminating redundant programming efforts.

A database is defined as a functionally-related group of tables that have been
explicitly linked in the Data Dictionary. Tables in a single database can be used to
create a view. Views are considered virtual tables because they appear to be
tables to the end user, but are not stored as such in the database. A view can be
used as a data source in queries and reports. Views also perform a security func-
tion by restricting users' access to specified fields in database tables.

Although describing the database in the Data Dictionary is essential to the use of
SQL queries, the Form Generator, and M/PACT, it is not required for M pro-
grams that access the database only through direct global references.

Program Development Environment

An Open M/SQL application can consist of data structures defined entirely in the
Data Dictionary, with forms for data entry and inquiry developed using the Form
Generator and reports for data output developed using M/PACT. Alternatively,
you can write programs in the ANSI M programming language, which is
extended in Open M/SQL to allow the use of macros, include files, and embed-
ded SQL (M is an ANSI-approved host language for SQL). Open M/SQL also
provides a full set of utilities for routine development and management.
1-10 Open M/SQL Developer Guide

Overview of the System Environment
Hand-Coded Programming in Open M/SQL

For hand-coded programming, Open M/SQL allows you to work at two levels of
processing — the macro source code level and the intermediate source code
level. Typically, you create routines a the macro source level, though you may
also create routines at the intermediate code level. Macro source code permits the
definition of macros and embedded SQL statements using a combination of
ANSI Standard M syntax, special macro preprocessor commands, and ANSI
Standard SQL. The macro preprocessor phase of the Open M/SQL Compiler
converts macro source code into M routines called intermediate code. You can
view and edit intermediate code routines using the Full Screen Editor. From
intermediate code the Open M/SQL Compiler generates executable code, called
object code.

Macro source code can make use of include files, which contain definitions that
are used in the preprocessor phase of compilation to expand macros and deter-
mine whether optional lines of code should be included. They can also be used to
include a common block of code in several routines, saving the overhead of calls
to a common subroutine.

Open M/SQL Interpreted Compiler

Open M/SQL combines the best elements of interpreted and compiled systems.
Interpreters are easy to use because they allow program development, testing,
and modification in a simple, integrated process. Fully compiled code runs faster
than interpreted code but typically involves more work for the programmer.

Open M/SQL provides program debugging facilities at the intermediate code
level. These debugging facilities operate like interpreted systems. When an error
or breakpoint occurs, the routine is suspended and a message appears indicating
exactly where the error or breakpoint occurred. You can examine and modify
variables, arrays, and database data, edit the routine, and resume debugging at
any location in the program without restarting the testing process.

When you insert a new line into an Open M/SQL intermediate code routine,
Open M/SQL’s incremental Compiler automatically processes the code, produc-
ing efficient object code. The system always executes the object code version of
the routine — never the intermediate code version. The Open M/SQL incremen-
tal Compiler is totally transparent; you need never issue separate compilation or
linkage commands explicitly.

For purposes of security, you can delete the macro source or intermediate code
version of any routine and still execute the object code. Furthermore, by simply
erasing a line with the ZREMOVE command and inserting a new line in its place
with the ZINSERT command, you can edit an object code routine as if the source
code were present. Open M/SQL will maintain an audit trail of any new lines.
Open M/SQL Developer Guide 1-11

Chapter 1—Introduction to Open M/SQL
The Form Generator and M/PACT

The Form Generator allows you to automatically generate data entry/inquiry
forms from Data Dictionary table definitions. You can then modify these forms to
your exact specifications using a screen editor called QuickForm. The Form Gen-
erator also supports the insertion of M code and SQL statements to further
enhance the processing scope of your forms.

M/PACT is an add-on option that allows you to generate highly formatted reports
based on data from the Data Dictionary. Designed for use by non-programmers
as well as programmers, M/PACT enables you to design sophisticated reports
without the use of a complex command language. Reports are generated from
your answers to questions logically presented in an easy-to-use window-based
interface. Though an M/PACT development license is required in order to
develop M/PACT reports, an RDBMS Engine license is sufficient to run
M/PACT reports.

Menu Generator

Open M/SQL includes a Menu Generator that ties a variety of programs and
options together. The Menu Generator can create two types of menus: menu
objects and old-style menus.

Menu objects are definitions that include the list of options for a menu, its screen
positioning, and its display attributes. Menu objects can be run as either menu
bars, which display horizontally across the screen, or pop-up menus, which dis-
play options vertically on the screen.

Old-style menus can be either vertical menus, which display a variety of options
in a vertical list, or horizontal menus, which display options in a horizontal list
across the bottom of the screen. Menu options can include the following: M code,
SQL code, routines, forms, windows, reports, queries, and other menus.

Query Optimizer

An unseen but extremely important part of Open M/SQL is the query optimizer.
During program compilation and query processing, the query optimizer analyzes
hundreds and sometimes thousands of different solutions to an information
request, ultimately selecting the best solution. The result is compiled routines
whose speed and efficiency guarantee optimal database throughput and response
time, based on the application and database design.
1-12 Open M/SQL Developer Guide

Overview of the System Environment
M/NET Networking

The database need not reside on a single computer. M/NET is an add-on option
that supports both local area and wide area networks within Open M/SQL.
M/NET works transparently, i.e. it is invisible to both the programmer and end-
user.

M/NET can access remote databases and split a database across multiple comput-
ers. M/NET also allows mixing the hardware of different vendors. M/NET fea-
tures the Distributed Cache Protocol (DCP), which is a high-speed, block-
oriented networking protocol that is proprietary to InterSystems. Some of the
other networking protocols currently supported by M/NET are:

 n Ethernet
 n TCP/IP
 n DSM-DDP
 n OMI
 n UDP
 n RS-232

DT Network

DT Network is InterSystems’ PC network technology for distributing databases
over Local- and Wide-Area networks (LANS and WANS). It supports cli-
ent/server architecture flexibly, in that each networked computer can act as a cli-
ent, a router, a server, or all three. DT Network supports a variety of database
protocols, including:

 n Distributed Cache Protocol (DCP)
 n ISNET for sharing globals with Open M/SQL platforms
 n Open M/Interconnect (OMI), for connectivity to other M databases
 n DSM/DDP, InterSystems’ implementation of Digital Equipment Corpora-

tion’s Distributed Database Protocol (DDP)
 n Serial Networking using serial lines for connectivity

It is possible to use multiple database protocols on the same machine. These data-
base protocols also operate over a variety of network protocol stacks. For more
information, see the DT-MAX Network Configuration Guide.
Open M/SQL Developer Guide 1-13

Chapter 1—Introduction to Open M/SQL
Open M/SQL Runs on Top of Any M Implementation

Open M/SQL runs in an environment that is independent of the underlying M
implementation. You can develop and run Open M/SQL applications on any of
the following host M systems:

 n ISM
 n DSM
 n DTM
 n Micronetics’ MSM

No matter what M implementation you are using as the host environment, Open
M/SQL supports full application development and run-time capabilities. This
allows existing users of these M systems to protect their current software invest-
ments while taking full advantage of Open M/SQL’s extensive relational data-
base and application development capabilities.

On ISM systems, Open M/SQL stores routines in a global called ^ROUTINE. On
all other host M systems, Open M/SQL stores routines in a global called ^mrou-
tine.

On all of the above host M environments, you may create and edit macro source
routines using the Open M/SQL Full Screen Editor. You may also use the full
suite of Open M/SQL routine management utilities to operate on routines.

Note To comply with all M implementations, InterSystems has renamed the routine
management utilities to be implementation-indepenedent. The implementation-
independent names of the utilities all begin with “u” and are lowercase. See Chap-
ter 7, Open M/SQL Routine Management Utilities for more information about
these utilities.

Open M/SQL applications are completely portable across M systems. This means
applications can be developed on one M system and ported to other M systems
(for continued development or run time purposes) without modification, as long
as they are written in ANSI-Standard M code and do not include implementation-
specific extensions. This portability is made possible by Open M/SQL’s
Export/Import facility, which generates programs specific to a supported M sys-
tem without disturbing the programs on the development system.
1-14 Open M/SQL Developer Guide

Integration of Two ANSI Standards
Integration of Two ANSI Standards

Open M/SQL integrates two ANSI Standard programming languages: SQL and
M. SQL is a standard query language for relational databases. M is a powerful
procedural programming language and ANSI-approved host language for SQL.
Together they form an integrated environment for applications development.

Embedded SQL

SQL statements that access the database to select, insert, update, or delete rows
(records) can be directly embedded within M routines. SQL statements inserted
into M routines are called embedded SQL statements. Non-embedded queries are
SQL queries entered into a special query template or entered interactively
through a query editor; the results of a non-embedded query can be output to the
terminal screen or to a printer. If the query is a SELECT query, the result may or
may not be a single row.

Cursors

Embedded SQL statements can be cursor-based or non-cursor-based. A cursor-
based statement is used to retrieve multiple rows from a table repetitively, one
row at a time. A cursor-based query includes a DECLARE statement, an OPEN
statement, one or more FETCH statements, and a CLOSE statement.

For example, if a programmer is writing a routine to access all invoices for a par-
ticular customer that are older than a given date, his routine must: 1) DECLARE
a cursor, 2) issue an OPEN of the specified cursor, 3) perform a FETCH repeti-
tively on that cursor to get the next invoice that meets the query criteria, and
finally 4) perform a CLOSE on the cursor when the processing is complete. An
UPDATE or DELETE could also be used following a FETCH to edit or delete
the row returned by the FETCH.

A non-cursor-based SQL statement embedded in a routine performs a single
operation, such as retrieving a single row, inserting a new row into a table, or
updating or deleting a specific row. A non-cursor-based SQL statement is appro-
priate when the operation is intended to act on only one row.

Inserted Code for Data Dictionary, Forms, and Reports

Programmers can also insert M and SQL code into tables, forms, and reports in a
variety of places, including triggers, lookup queries, computed field definitions,
and conversion and validation codes. This allows the programmer to take full
advantage of Open M/SQL’s automatic generator capabilities without costing
him/her the ability to create highly customized applications.

The powerful syntax and flexible variable and database structures of M makes it,
along with SQL, an excellent language for providing this customization.
Open M/SQL Developer Guide 1-15

Chapter 1—Introduction to Open M/SQL
Accessing the Global Database

The Open M/SQL global database can be accessed via the SQL language or the
M language, both together, using SQL code embedded within M code, and inde-
pendently. In this way existing M applications can incorporate the use of SQL
over time; no large conversion is required.

SQL - Relational Database Access

SQL can be used for database queries or to insert, update, or delete rows in a
table. SQL queries can be entered interactively and the results displayed on a ter-
minal, or they can be embedded within M routines. Global structures that were
built in a non-relational manner by M programs can be described relationally in
the Data Dictionary. This is consistent with the relational model, which does not
demand a specific physical storage structure or design. This special feature eases
the migration to SQL and the application generator features of Open M/SQL for
clients whose applications were developed with M.

M Global References

M also allows the use of global references for direct access to and modification
of the database. It is possible to make direct global references to global struc-
tures, regardless of whether they have been defined in the Data Dictionary. The
same data can be referenced by either SQL or global references. The choice of
access technique is up to the programmer and database manager. Thus, existing
M applications can incorporate the use of SQL over time; no large conversion is
required.
1-16 Open M/SQL Developer Guide

Open M/SQL Program Structure
Open M/SQL Program Structure

Open M/SQL programs are organized in units called routines. A routine is an
individual block of code that is compiled, and then run. In Open M/SQL, all rou-
tine linking is dynamic at run time. The programmer never needs to link routines
explicitly.

Open M/SQL routines can exist at three levels:

 n Macro source level
 n Intermediate code level
 n Object code level

The three types of routines and their development and management in Open
M/SQL are discussed below.

Macro Source Routines

Typically, you create routines at the macro source level. Macro source routines
can include preprocessor syntax that permits macros, optional line inclusion,
include files, and embedded SQL. Macro source routines are compiled into inter-
mediate and object code routines.

All routines have macro source code, no matter what host M environment you are
using.

Intermediate Code Routines

The middle level of routines is called intermediate code, which is the standard
3GL M source code available in all M implementations. The macro preprocessor
phase of the Open M/SQL Compiler produces intermediate code from macro
source code. At the intermediate code level, all preprocessor syntax is resolved,
and the routine contains only pure M source code.

You may create, view, and edit routines at the intermediate code level using the
Full Screen Editor. When you create routines at the intermediate code level, you
must do so without the benefit of embedded SQL or any preprocessor syntax,
such as macros.

Intermediate level source code is displayed on the terminal during debugging or
error message display.
Open M/SQL Developer Guide 1-17

Chapter 1—Introduction to Open M/SQL
Object Code Routines

Object code is the lowest level of routine code. This is the code that is actually
executed.

The Open M/SQL Compiler produces object code from intermediate code.

Routines can run in their object code form even if the macro source and interme-
diate code have been deleted. Each M implementation handles object code differ-
ently.

Open M/SQL Routine Utilities and Editors

Open M/SQL includes a number of routine utilities; some are designed to aid
program development, while others assist system operations and maintenance:

 n Routine development utilities provide editing, error analysis, date and time
conversion, compilation, and maintenance capabilities.

 n Developer utilities provide editing, object integrity checking, string search,
and compilation capabilities.

 n Global utilities provide analysis and control of the global database.
 n System operation and maintenance utilities check hardware and database

integrity, protect globals, and manage and control the database and networks.

Most Open M/SQL utilities are response driven. In other words, they use menus
and prompt you for input. In addition, the utilities often include on-line docu-
mentation describing their uses and functions.

Open M/SQL provides the Full Screen Editor for use in creating and editing of
macro source routines, include files, and intermediate code routines. A
line-by-line editor for the editing and debugging of intermediate code routines is
also available.

Routine Utilities for Non-ISM Implementations of M

Open M/SQL provides a set of utilities for editing Open M/SQL macro source
routines. These routine utilities are available to all Open M/SQL users regardless
of the host M environment.

In addition, for users of Open M/SQL running on non-ISM systems, the host M
implementation will usually provide its own utilities for intermediate and object
code management, global management, and system management.
1-18 Open M/SQL Developer Guide

Open M/SQL Program Structure
Distributed Data Processing

Open M/SQL’s distributed data processing feature enables you to link computer
systems. From any system node, a user with appropriate access privileges can
read and modify the global database anywhere in the system network. To refer-
ence a global on another system, you can:

 n Issue the global reference with an extended syntax that specifies the directory
and a system name for the other computer, or

 n Use standard global syntax to reference an implicit global (a global that
resides on another computer or in another directory on the same computer).
Open M/SQL Developer Guide 1-19

Chapter 1—Introduction to Open M/SQL
1-20 Open M/SQL Developer Guide

Open M/SQL Deve
CHAPTER

2
The Open M/SQL Relational
Database
Open M/SQL is based on an advanced relational model, which defines the data-
base as a group of tables. InterSystems has extended the relational model to allow
the definition of designative and characteristic relationships between tables. In
Open M/SQL, any related group of tables that resides within an M data partition
is considered a database. The M data partition is usually referred to as a directory
or UCI, depending on your M system. An Open M/SQL database corresponds to
the schema in the relational model.

Open M/SQL considers any related group of tables that resides within an M data
partition to be a database. The M data partition is usually referred to as a direc-
tory or UCI, depending on your M system.

This chapter discusses relational concepts and their implementation in Open
M/SQL.

Specifically, it covers the following topics:

 n Open M/SQL Implements Relations as Tables
 n Open M/SQL Implements Schemas as M Directories
 n The Open M/SQL Data Dictionary
 n Accessing Data in an Open M/SQL Relational Database
 n InterSystems’ Extensions to the Relational Model
loper Guide 2-1

Chapter 2—The Open M/SQL Relational Database
Open M/SQL Implements Relations as Tables

A relational database is characterized by:

 n A database structure that consists of a collection of tables (also called “rela-
tions” or “files”).

 n The presence of a query language that permits the manipulation of these
tables in a mathematically complete manner.

The table, which is the basic unit of data storage in the relational model, is a col-
lection of rows (also called “tuples” or “records”) and columns (also called
“fields” or “attributes”). Each column contains a particular type of data, such as
integer, date, or text. (Columns may also contain null values.) Each row in a table
corresponds to a real world entity and contains exactly one value for each column
in the table.

Below is a sample relational table:

Open M/SQL Tables Follow The First Normal Form

Tables follow what is called the First Normal Form; that is, each column of a
single row contains exactly one value, which may be null if the field is empty.

In some non-relational database systems, a column for a single row might contain
several values. For example, the “Child” field in a “People” table might contain
the names of three children; a single child field might also have three grandchil-
dren.

However, in a relational system, each parent/child/grandchild relationship is rep-
resented by a separate row. For instance, each child of a given parent will occupy
a unique row in the table despite the commonality of their parent fields. Like-
wise, each grandchild of that parent will also occupy its own unique row. This
means that if a parent has three children who in turn have three children apiece,
the relational model uses nine separate rows to describe the entire genealogy.

Table 2-1: A Sample Relational Table

EmpName EmpNum HireDate Status Salary

Grainger,Lisa 445-67-7891 06/06/90 Part-Time 28,000.00

Corson,Bob 210-92-8518 12/08/86 Active 15,000.00

Doe,Suzanne 333-44-7800 01/05/87 Active 38,000.00

Fast,Felix 334-45-5678 06/23/89 Active 44,000.00

Finley,Jack 356-62-1221 09/09/85 Part-Time 77,500.00

Gable,Bill 567-89-0123 08/02/92 Active 44,000.00
2-2 Open M/SQL Developer Guide

Open M/SQL Implements Relations as Tables
Alternatively, separate tables called characteristic tables (see below) can be used
to designate relationships between parents, children, and grandchildren. The
database designer must choose how s/he wants Open M/SQL to handle par-
ent/child relationships.

Open M/SQL Supports Two Types of Tables

Open M/SQL supports two types of tables:

 n Base tables
 n Virtual tables

A base table is an autonomous, named table. Unlike virtual tables, base tables
exist physically in the sense that they are mapped directly to physical storage
structures. We say that base tables are “named” because the table is explicitly
given a name via an appropriate definition statement, unlike, for example, the
result of a query, which is not explicitly named and exists only ephemerally.

A virtual table is a named table derived from one or more base tables. Virtual
tables are not directly represented in physical storage. Rather, they are abstract
collections of base tables.

Examples of virtual tables include the output from a SELECT query and views.
Views are windows through which data from multiple base tables can be
“viewed”. Open M/SQL allows views to serve as data sources for M/PACT
reports, SQL queries, and other views.

No two rows of a base table are identical. In virtual tables, two or more rows may
be identical.

RowID/Primary Key

The primary key or RowID is a field or combination of fields that serve as the
unique identifier to each row in a base table. At any given time, no two rows of
the base table may contain the same primary key value.For example, the primary
key of an “Employees” table might be the unique employee number; as each
employee is identified by a unique employee number, each employee row in the
table is identified by the value of the employee number field.

Since two rows of a base table cannot be identical while two rows of a virtual
table can, only base tables have primary keys. Virtual tables (results of queries,
for example) do not have primary keys.

In Open M/SQL, the RowID field is the primary key. The RowID is a single field
of the table that uniquely identifies the row. Optionally, the database designer can
base the RowID field on one or more other fields.
Open M/SQL Developer Guide 2-3

Chapter 2—The Open M/SQL Relational Database
Open M/SQL Implements Schemas as M Directories

In the relational model, a schema is a conceptual repository for a group of rela-
tions. No relation within the schema can have the same name as another.

In Open M/SQL, the unit equivalent to the schema is an M database. In Open
M/SQL, an M database can be spread over one or more directories. Each direc-
tory contains one component—MUMPS.DAT file—of the entire M database. A
MUMPS.DAT file is usually referred to by the name of the operating system
directory in which it resides. All tables defined in the same M directory must
have unique names.

The system manager's directory contains a database directory table. The database
directory table contains the database name, directory, and directory set if net-
worked.

Open M/SQL Database Structure for Non-ISM Implementations of M

When Open M/SQL is layered on top of a non-ISM implementation of M, the
database concept is implemented differently.

For example, under DSM, Open M/SQL considers all tables within a unique UCI
and volume set to be a common database.

Other M systems employ various other schemes for storing the list of databases.
For more information, see the documentation provided with your M system.
2-4 Open M/SQL Developer Guide

The Open M/SQL Relational Data Dictionary
The Open M/SQL Relational Data Dictionary

In Open M/SQL, tables are defined and “mapped” to M global storage structures
through the Open M/SQL Relational Data Dictionary. Mapping defines the link
from the logical representation of a table to the physical storage of that table.
When you define a database, the Relational Data Dictionary can generate a
default global storage structure, or if you prefer, you may specify a customized
global storage structure. The Relational Data Dictionary also lets you map exist-
ing global structures to Open M/SQL.

The Data Dictionary contains definitions for all the base tables that comprise the
database. It also contains map specifications for the underlying data storage
structures. The Form Generator, the SQL query facilities, and M/PACT all rely
on Data Dictionary-defined structures. The window-based Data Dictionary
makes the process of defining data structures very simple. It allows the program-
mer to develop applications using automated map generation facilities, and
enables the linking of existing Open M/SQL applications, thus providing access
to stored data through SQL, forms, and reports.

The following aspects of a database are defined in the Data Dictionary:

 n Its conceptual elements (base tables, fields)
 n RowIDs that enable data retrieval
 n Global data storage (“map” specifications of global structures)
 n Indexes for data access efficiency
 n Implicit joins - characteristic relationships and designative references
 n Triggers that enforce referential integrity and control application processing
 n Views that control users' access to tables
 n Data validation parameters for data insert and update
 n Code to convert field values between data entry formats (external format)

and database storage formats (internal format)
 n Lookups for row selection in forms
 n Field access code for forms
 n Field display information for forms and reports
Open M/SQL Developer Guide 2-5

Chapter 2—The Open M/SQL Relational Database
Accessing Data in an Open M/SQL Relational Database

Once you have defined tables in the Open M/SQL Relational Data Dictionary,
you can access data from those tables by any of the following means:

 n SQL queries — you may embed queries in M macro source code, or you may
define them via the Open M/SQL Query Definition template or the Interac-
tive SQL Query Editor

 n M global references (in conjunction with or independent of SQL)
 n Data entry, inquiry, and update forms designed using the Form Generator
 n Reports defined and formatted using M/PACT

This section provides a brief overview of relational operations in SQL, the ANSI-
Standard Query Language. SQL enables the retrieval of data from the relational
database for the generation of queries and reports.

Refer to an SQL text for a full understanding of this language. Chapter 9, Open
M/SQL Implementation of SQL, describes InterSystems’ extensions to standard
SQL.

Using SQL to Query the Database

 Open M/SQL lets you query the database using standard SQL SELECT state-
ment queries. Queries access data in tables and views. The output from a query
forms a virtual table and leaves the targeted table(s) unchanged.

You can reference multiple tables in a single query.

SQL enables you to use the following relational operations when querying a data-
base:

 n Combining tables (or, more accurately, viewing tables as if they had been
combined into one larger table)

 n Selecting particular columns from a single table or a combined table
 n Specifying particular rows in a single table or a combined table

Relational algebra provides the conceptual foundation for these relational opera-
tions. Understanding how the relational algebra works will help you take full
advantage of the capabilities of SQL.

Conceptually, the relational algebra operates on one or more tables to produce a
new (virtual) table. For example, a join combines two tables into a third. Or, a
select operation extracts selected rows from one table to produce another table. A
virtual output table is the result of the relational operation.
2-6 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database
The list of fundamental relational operators includes:

 n Cartesian Product — creates a cross-product of multiple tables, i.e. views
the tables as if they had been combined into one larger table

 n Project — selects particular columns from a single table or a combined table
 n Restrict — selects particular rows from a single table or a combined table
 n Join — selects some fields from some rows of multiple tables based on some

relationship between the fields of the different tables

Table.Name Syntax

When referencing fields in an SQL query you may optionally precede the field
name with the name of the base table to which it belongs, using the following
syntax:

Table.Field

For example, a SELECT clause might read as follows:

SELECT Employees.EmpName, Depts.DeptName

If you do not use prefixes when creating field names that reflect the name of the
base table in which they reside, it is generally a good idea to use this syntax for
clarity.

If a query references multiple tables and those tables contain fields with identical
field names, you must use the Table.Name syntax.

Cartesian Product

The Cartesian Product of two tables is the cross-product of all possible combi-
nations of rows from the two tables, such that each row of the first table is com-
bined (concatenated) with each row of the second table.

In SQL, the Cartesian Product operation occurs when two or more tables are
explicitly or implicitly (within a view) named in the FROM clause, all fields in
those tables are named in the SELECT clause, and no WHERE clause is present
to specify relationships among the tables.

Example In the example below, the tables “Employees” and “Departments” are combined
to form a virtual table, which is their Cartesian Product, by issuing the following
SQL statement:

SELECT *
FROM Employees,Departments

The asterisk in the SQL SELECT statement is used to denote “all fields in the
specified tables”.
Open M/SQL Developer Guide 2-7

Chapter 2—The Open M/SQL Relational Database
The “Employees” table is shown below:

The “Departments” table is shown below:

The table below represents the Cartesian Product of the “Employees” table and
the “Departments” table:

Note that this output may not be ordered by the “Employees.EmpName” field.
The ordering is subject to the specifications in the ORDER BY clause of the SQL
query, and

Table 2-2: Employees Table

EmpName EmpNum DeptNum

Bravo, Vicki 445-67-7800 1000

Doe, Suzanne 253-44-7898 3000

Corson, Bob 210-92-6518 2000

Table 2-3: Departments Table

DeptNum DeptName NumEmp DeptMgr

1000 Sales 50 Bravo, Vicki

2000 Administration 101 Corson, Bob

3000 Development 200 Doe, Suzanne

Table 2-4: Output Table After Cartesian Product Operation

E.EmpName E.EmpNum
E.Dept-
Num

D.Dept-
Num D. DeptName

D.Num-
Emp D.DeptMgr

Bravo, Vicki 445-67-7800 1000 1000 Sales 50 Bravo,Vicki

Bravo, Vicki 445-67-7800 1000 2000 Administration 101 Corson, Bob

Bravo, Vicki 445-67-7800 1000 3000 Development 200 Doe, Suzanne

Corson, Bob 210-92-6518 2000 1000 Sales 50 Bravo,Vicki

Corson, Bob 210-92-6518 2000 2000 Administration 101 Corson, Bob

Corson, Bob 210-92-6518 2000 3000 Development 200 Doe, Suzanne

Doe, Suzanne 253-44-7898 3000 1000 Sales 50 Bravo,Vicki

Doe, Suzanne 253-44-7898 3000 2000 Administration 101 Corson, Bob

Doe, Suzanne 253-44-7898 3000 3000 Development 200 Doe, Suzanne
2-8 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database
Project

The project operation extracts a subset of fields from an existing table. The result
is a new table (a virtual table) with the same number of rows but fewer fields.

You can perform a Project operation on a single table or on a combination of
tables.

Example In the example below, the fields “EmpName” and “DeptName” are selected from
the Cartesian Product of the tables “Employees” and “Departments”.

SELECT Employees.EmpName,Departments.DeptName
FROM Employees,Departments

The SELECT clause specifies the fields to be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause.

This Project operation yields the following table:

Whether you perform a query on one or many tables, the conceptual result is
always a new table that is derived from existing tables in the database.

Table 2-5: Output Table After Cartesian Product Operation

EmpName DeptName

Bravo, Vicki Sales

Bravo, Vicki Administration

Bravo, Vicki Development

Corson, Bob Sales

Corson, Bob Administration

Corson, Bob Development

Doe, Suzanne Sales

Doe, Suzanne Administration

Doe, Suzanne Development
Open M/SQL Developer Guide 2-9

Chapter 2—The Open M/SQL Relational Database
Restrict

The Restrict operation selects a designated set of rows from one or more tables.
In the SQL query language, restriction is expressed through the WHERE clause,
which uses the comparison operations, such as >, <, and =, for example:

WHERE City=”Boston”

or

WHERE Age>20

You can perform a Restrict operation on a single table or on a combination of
tables.

Example In the example below, all fields are selected from the Cartesian Product of the
tables “Employees” and “Departments”, but the output table is restricted to only
those rows for which the “NumEmp” field has a value greater than 100:

SELECT *
FROM Employees,Departments
WHERE Employees.NumEmp > 100

The SELECT clause uses the asterisk (*) to select all fields for inclusion in the
table. The Cartesian Product is derived from the tables named in the FROM
clause. The WHERE clause designates the condition for the restriction operation.

This Restrict operation yields the following table:

Note that restriction occurs through the WHERE statement, not through the
SELECT statement. The SELECT statement is used for projection, as discussed
above.

Table 2-6: Output Table After Restrict Operation

E.EmpName E.EmpNum
E.Dept-
Num

D.Dept-
Num D.DeptName

D.Num-
Emp D.DeptMgr

Bravo, Vicki 445-67-7800 1000 1000 Administration 101 Corson, Bob

Bravo, Vicki 445-67-7800 1000 3000 Development 200 Doe, Suzanne

Corson, Bob 210-92-6518 2000 1000 Administration 101 Corson, Bob

Corson, Bob 210-92-6518 2000 3000 Development 200 Doe, Suzanne

Doe, Suzanne 253-44-7898 3000 1000 Administration 101 Corson, Bob

Doe, Suzanne 253-44-7898 3000 3000 Development 200 Doe, Suzanne
2-10 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database
Joins

Joins provide the means of linking data in one table with data in another table and
are frequently used in defining reports and queries.

A join is an operation that combines two tables to produce a third, subject to a
restrictive condition. Every row of the new table must satisfy the restrictive con-
dition.

Usually, when the two tables (A and B) are combined to form a third table (C),
some condition is specified in the WHERE clause. This condition determines
how a row from B is chosen to combine with a row from A. Often, this condition
is equality, such that the value of a particular field from table A equals the value
from a particular field from table B. Combining tables in this way is called an
equijoin. Equijoins are often referred to as inner joins.

Although joins are often thought of as fundamental operators, they represent a
combination of Cartesian Product plus Restriction.

Example For an example of an inner join, consider the following two tables, a “Suppliers”
table and a “Parts” table:

Table 2-7: Suppliers Table

SNum SName SCity

S1 Smith Paris

S2 Jones London

S3 Blake Boston

S4 Whitney Boston

S5 Roberts Paris

Table 2-8: Parts Table

PNum PName PCity

P1 Nut Paris

P2 Screw Houston

P3 Cog New York

P4 Wheel Boston

P5 Switch Boston
Open M/SQL Developer Guide 2-11

Chapter 2—The Open M/SQL Relational Database
Suppose you wish to query the database for the names of every supplier, part, and
city, where the supplier and part are located in the same city. To do this, you
would use the following SQL query:

SELECT SName,PName,SCity
FROM Suppliers,Parts
WHERE Suppliers.SCity=Parts.PCity

The SELECT clause specifies the fields to be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause of the
above SQL statement, which combines the tables “Suppliers” and “Parts”. The
WHERE clause in the above statement (Suppliers.SCity=Parts.PCity) specifies
the inner join condition.

The Cartesian Product of the “Suppliers” table and “Parts” table is shown below.
The rows that satisfy the inner join condition are shaded.

Table 2-9: Output Table After Cartesian Product Operation

SNum SName SCity PNum PName PCity

S1 Smith Paris P1 Nut Paris

S1 Smith Paris P2 Screw Houston

S1 Smith Paris P3 Cog New York

S1 Smith Paris P4 Wheel Boston

S1 Smith Paris P5 Switch Boston

S2 Jones London P1 Nut Paris

S2 Jones London P2 Screw Houston

S2 Jones London P3 Cog New York

S2 Jones London P4 Wheel Boston

S2 Jones London P5 Switch Boston

S3 Blake Boston P1 Nut Paris

S3 Blake Boston P2 Screw Houston

S3 Blake Boston P3 Cog New York

S3 Blake Boston P4 Wheel Boston

S3 Blake Boston P5 Switch Boston

S4 Whitney Boston P1 Nut Paris

S4 Whitney Boston P2 Screw Houston

S4 Whitney Boston P3 Cog New York

S4 Whitney Boston P4 Wheel Boston
2-12 Open M/SQL Developer Guide

Accessing Data in an Open M/SQL Relational Database
This join operation yields the following output table:

When the join is based on an exact match between fields from the two tables, it is
a simple join. Rows in the both tables where no match is found do not appear in
the output table. There are no rows in the output table for the cities, “London”,
“New York”, or “Houston”.

S4 Whitney Boston P5 Switch Boston

S5 Roberts Paris P1 Nut Paris

S5 Roberts Paris P2 Screw Houston

S5 Roberts Paris P3 Cog New York

S5 Roberts Paris P4 Wheel Boston

S5 Roberts Paris P5 Switch Boston

Table 2-9: Output Table After Cartesian Product Operation (Continued)

SNum SName SCity PNum PName PCity

Table 2-10: Output After Join Operation

SName SCity PName

Smith Paris Nut

Blake Boston Wheel

Blake Boston Switch

Whitney Boston Wheel

Whitney Boston Switch

Roberts Paris Nut
Open M/SQL Developer Guide 2-13

Chapter 2—The Open M/SQL Relational Database
InterSystems’ Extensions to the Relational Model

InterSystems has extended SQL and the relational model to include two addi-
tional types of joins: one-way outer joins and implicit joins.

One-Way Outer Joins

With standard “inner” joins, when rows of one table are linked with rows of a
second table, a row in the first table that finds no corresponding row in the sec-
ond table is excluded from the output table.

With one-way outer joins, all rows from the first table are included in the output
table even if there is no match in the second table. The first table pulls relevant
information out of the second table but never sacrifices its own rows for lack of a
match in the second table.

When specifying a one-way outer join, the order in which you name the tables in
the FROM clause is very important. The first table you specify is the source table
for the join.

You specify an outer join by using the symbol =* in place of = in the WHERE
clause of the SQL query.

Example In the example below, the “Suppliers” table is specified as the source table for a
one-way outer join operation (=*) with the “Parts” table, where the “SCity” field
matches the “PCity” field.

SELECT SName,PName,SCity
FROM Suppliers,Parts
WHERE Suppliers.SCity=*Parts.PCity

The SELECT clause specifies the fields to be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause of the
above SQL statement, which combines the tables “Suppliers” and “Parts”. The
WHERE clause in the above statement (Suppliers.SCity=*Parts.PCity) specifies
the one-way outer join condition.

This query returns all rows from the “Suppliers” source table as well as any rows
from the “Parts” table where the “SCity” field matches the “PCity” field.
2-14 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model
This join operation yields the following output table:

Implicit Joins

One of the most powerful features of the relational model is its ability to handle
unanticipated ad hoc queries in a graceful and straightforward manner. However,
for many implementations this capability is costly: the power to join tables in
complex ways often means sacrificing the ease of executing joins for the more
common connections between tables.

InterSystems has solved this problem by implementing the implicit join. Implicit
joins are pre-defined joins between tables which you specify in the Data Dictio-
nary. They allow you to define queries without specifying the WHERE condition
that is used to join tables.

Open M/SQL supports two types of implicit joins, designative references and
characteristic relationships.

Designative references and characteristic relationships are useful for:

 n Pre-defining commonly used joins
 n Improving data access efficiency
 n Formally specifying integrity constraints

Note You may only define designative and characteristic relationships among tables
that reside within a single database.

Table 2-11: Output After Join Operation

SName SCity PName

Smith Paris Nut

Jones London

Blake Boston Wheel

Blake Boston Switch

Whitney Boston Wheel

Whitney Boston Switch

Roberts Paris Nut
Open M/SQL Developer Guide 2-15

Chapter 2—The Open M/SQL Relational Database
Designative References

A designative reference is a many-to-one link between tables in which one field
of the designating table contains the Row IDs of all rows in the designated table.
A designative reference is said to be a non-dependent link because rows in the
referenced table exist independently of rows in the designating table. In relational
database terminology, the designating table has a “foreign key” on the referenced
table. In M terminology, the designating table has a “pointer” to the referenced
table. In Open M/SQL, a field that designates another table is called a designative
reference field.

In the example below, the “Customer” field of the “Invoice” table serves as the
Designative Reference field to rows in the “Customer” designated table:

The Designative Reference field, when it is not empty, contains a value that iden-
tifies one and only one row of the referenced table. Every entry in the “Cus-
tomer” field of the “Invoice” table that is not empty must have exactly one
corresponding entry in the “Customer” table. However, not all of the “Number”
values in the “Customer” table need appear in the “Customer” field of the
“Invoice” table. In this way, a designative reference satisfies the relational defini-
tion of a one-way outer join.

Table 2-12: Invoice Table

InvNum InvTotal Customer

1234 100.00 C1

5555 20,000.00 C3

3333 5,000.00 C4

Table 2-13: Customer Table

Number Name Address

C1 Acme Hardware 10 Main Stree
Boston, MA

C2 Waterfront Motors 210 Willow Street
Brighton, MA

C3 Global Furniture 1010 5th Street
New York, NY

C4 Hill Pharnaceuticals 958Jordan Ave.
Pittsburgh, PA
2-16 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model
Furthermore, when the “Invoice” table is linked by designative reference to the
“Customer” table, the following is true:

 n There may be invoices with no “Customer” value, but
 n If a “Customer” value appears, there must also be a “Number” value in the

“Customer” table with the same value, and
 n There may be customers with no invoices

Designative references contribute to data storage efficiency by helping to elimi-
nate unnecessary redundancy. Since you can access the information through a
designative reference to the “Customer” table, it is not necessary to store the cus-
tomer names and addresses in the “Invoice” table. Accordingly, updates need be
made in only one table, rather than in two or more tables.

A table may have several fields that designate the same or different tables. Simi-
larly, a table may be designated by any number of tables. For example, the
“Invoice” table may contain another designative reference field to the
“Accounts” table. And the “Accounts” table might have a designative reference
to the “Customer” table.

Characteristic Relationships

A characteristic relationship is a link between tables in which rows in one table
(the “child table”) are existence-dependent (cannot exist without) on rows in
another table (the “parent table”), such that parent rows have a one-to-many rela-
tionship with child rows. A child table always designates its parent table. For this
reason, a characteristic relationship can be thought of as a kind of designative ref-
erence. However, a characteristic relationship is more restrictive than a designa-
tive reference since the join condition specifies that all rows of the child table
must designate the same parent table row. In this way, a characteristic relation-
ship satisfies the relational definition of an inner join.

Extending our previous example, the “Line Items” table, shown below, is a child
table of the “Invoice” table (its parent). The existence of the “Line Items” table is
entirely dependent on its parent “Invoice” table. If an invoice is deleted from the
parent table, its line items become 'orphaned' and must also be deleted, or trans-
ferred to a “foster parent”. Within the Data Dictionary definition of a table, you
may set a trigger that will function to automatically delete all child rows when its
parent is deleted.
Open M/SQL Developer Guide 2-17

Chapter 2—The Open M/SQL Relational Database
Each row of the “Invoice” table can have multiple line items, illustrating the
one-to-many relationship:

An “Invoice” row might also have no line items.

Though characteristic relationships may be perceived as hierarchical, they com-
ply with the tenets of the relational model; just as other tables, child tables can be
addressed through SQL without explicit reference to the parent table.

A parent table may have several child tables. For example, a “Patient” table may
have “Visits”, “Medical Problems”, and “Lab Tests” as child tables. However, a
child table may have only one parent. (The “Visits” table, for example, may be a
child only of the “Patient” table.) A child table can never be 'orphaned', i.e. exist
without a parent table.

Table 2-14: Invoice Table

InvNum InvTotal Customer

2222 10,000.00 C3

5555 20,000.00 C2

1234 100.00 C1

Table 2-15: Line Items Table

InvNum Item UnitCost Quantity Amount

2222 Chair 200.00 10 2,000.00

2222 Desk 300.00 10 3,000.00

2222 Rug 250.00 4 1,000.00

2222 Bookshelf 200.00 30 6,000.00
2-18 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model
Implicit Join Syntax

Implicit joins simplify the process of querying the database. By defining charac-
teristic relationships and designative references in the Data Dictionary, you may
take advantage of Open M/SQL's implicit join syntax to facilitate the definition
of queries.

Arrow syntax, a dash followed by a greater-than symbol (->), is an InterSys-
tems’ SQL extension used to indicate an implicit join between tables. This syntax
causes an additional outer join condition to be added implicitly to the WHERE
clause and the joined table to be added implicitly to the FROM clause of an SQL
query.

In Open M/SQL, you may use arrow syntax in the following three cases:

1. To signify Designative References between tables

2. To signify Child-to-Parent References between tables

3. To signify Parent-to-Child References between tables

Implicit Join Syntax in a Designative Reference

If the field A.b designates table B, and x is a field in table B, the reference:

A.b->x

points to the value of x in the row of table B corresponding to A.b. It is inter-
preted as a reference to B.x with B added implicitly to the FROM clause and an
additional outer join condition added implicitly to the WHERE clause.

For example, the following query retrieves the patient's name and patient's doc-
tor's name for every patient who lives in Boston:

SELECT Patient.Pname, Patient.Doctor->Dname
FROM Patient
WHERE Patient.City = “Boston”

Assuming that “Patient.Doctor” is a designative reference to the “Doctor” table,
the above query is equivalent to:

SELECT Patient.Pname,Doctor.Dname
FROM Patient,Doctor
WHERE Patient.City = “Boston”

AND Patient.Doctor = *Doctor.Doctor
Open M/SQL Developer Guide 2-19

Chapter 2—The Open M/SQL Relational Database
Implicit Join Syntax in a Child-to-Parent Reference

If P is the parent of C and x is a field in P, the implicit join syntax:

C.P->x

for a given row points to the value of x in that row's parent row. It is interpreted
as a reference to P.x with P added implicitly to the FROM clause and an addi-
tional outer join condition added implicitly to the WHERE clause.

For example, given a parent table “Customer” with a child table “Invoice”, the
following query:

SELECT Invoice.Customer->Name
FROM Invoice
WHERE Invoice.Number = 51140

is equivalent to:

SELECT Customer.Name
FROM Invoice,Customer
WHERE Invoice.Number = 51140

AND Invoice.Customer = Customer.Customer

Implicit Join Syntax in a Parent-to-Child Reference

If P is the parent of C and x is a field in C, the implicit join reference:

P.C->x

for a given P row points to the value of x in a child row of that row. It is inter-
preted as a reference to C.x with C added implicitly to the FROM clause and an
additional outer join condition added to the WHERE clause.

For example, given parent “Customer” with child “Invoice”, the following query
for all invoices for all customers named Smith:

SELECT Customer.Invoice->Number
FROM Customer
WHERE Customer.Name = “Smith”

is equivalent to:

SELECT Invoice.Number
FROM Customer,Invoice
WHERE Customer.Name = “Smith”

AND Customer.Customer = Invoice.Customer
2-20 Open M/SQL Developer Guide

InterSystems’ Extensions to the Relational Model
Integrity Constraints

Implicit join definitions include built-in integrity constraints. For instance, the
existence-dependent relationship between the “Line Items” table and the
“Invoice” table may be regarded as an integrity constraint: no line item can exist
without a corresponding invoice.

The Open M/SQL relational Data Dictionary can be used to define other integrity
constraints, such as:

 n Field validation code to enforce integrity constraints at the field processing
level, such as affect field values, required fields, and field formats.

 n Triggers to enforce table integrity constraints, such as complex interactions
between fields, or the prohibition of DELETEs from the table.

Multi-Line Fields

Open M/SQL extends the relational database model by permitting the creation of
multi-line fields. Such fields are useful for storing information about a single
entity where that information spans several lines. A typical multi-line field might
be used for an address or a block of comment text.

Open M/SQL treats the data in multi-line fields as a single entity, in accordance
with First Normal Form principle of the relational model.

InterSystems’ SQL supports the use of multi-line fields in input operations
(INSERT and UPDATE statements) and output operations using INTO lists by
creating an array and matching each line of the multi-line field to a node in the
array. InterSystems’ SQL also supports the naming of multi-line fields in the
SELECT statement of SQL SELECT queries. It does not, however, allow the use
of multi-line fields to perform comparisons or row ordering in an SQL SELECT
query.

You can access pieces of multi-line field data using the M language, but this use
of multi-line fields is not recommended, because it does not adhere to first nor-
mal form.
Open M/SQL Developer Guide 2-21

Chapter 2—The Open M/SQL Relational Database
2-22 Open M/SQL Developer Guide

PART

II
Program Development
Chapter 3

Open M/SQL Program Development

Chapter 4

Full Screen Editor

Chapter 5

Developing Macro Source Routines

Chapter 6

Routine Handling and Maintenance

Chapter 7

Open M/SQL Routine Management
Utilities

Open M/SQL Deve
CHAPTER

3
Open M/SQL Program Development
This chapter presents a brief overview of the facilities available for program
development in Open M/SQL.

Specifically, it covers the following topics:

 n Programming Methods
 n Full Screen Editor
 n Intermediate Code Routines
 n Routine Management Utilities
 n Developer Utilities
 n Programmer Interface to Applications
loper Guide 3-1

Chapter 3—Open M/SQL Program Development
Programming Methods

Open M/SQL allows the programmer to develop hand-coded applications at two
levels: the macro source level and the intermediate code level.

Typically, you create routines at the macro source level. At the macro source
level, you may define macros, refer to existing macros, and write pure M code or
embed SQL statements using a combination of ANSI-Standard M syntax, special
macro preprocessor commands, and ANSI-Standard SQL. Macro source code
also makes use of include files. Like macro source code, include files may con-
tain M syntax, SQL syntax, and preprocessor syntax.

The macro preprocessor phase of the Open M/SQL Compiler converts macro
source code into M code with an internal form of embedded SQL. This converted
code is called intermediate code. You may view and edit routines at the interme-
diate code level. You may also create routines directly at the intermediate code
level, although without the benefit of embedded SQL or preprocessor syntax,
such as macros. One strategy you may use is to create pure M routines at the
intermediate code level, copy those routines to the macro source level using the
%urcopy utility, then edit the routines in the Full Screen Editor to include prepro-
cessor syntax and embedded SQL.

The Full Screen Editor

You may use the Full Screen Editor to edit any of the following types of routines:

 n Macro source routines
 n Include files
 n Intermediate code routines

You must use the Full Screen Editor to create and edit macro source routines and
include files.

You may create and edit intermediate code routines either using the Full Screen
Editor or directly from the M prompt using the Routine Line Editor.
3-2 Open M/SQL Developer Guide

Intermediate Code Routines
Intermediate Code Routines

Open M/SQL provides three ways to create intermediate code routines:

1. Intermediate code routines are the products of compiled macro source code
routines — these routines consist of M code with the possible inclusion of
embedded SQL statements.

2. You may create intermediate code routines in the Full Screen Editor — these
routines consist of pure M source code.

3. You may create intermediate code routines at the M programmer mode
prompt — these routines consist of pure M source code.

Routine Line Editor

The Routine Line Editor lets you edit and debug intermediate code routine lines
and insert new routine lines directly from the M programmer prompt. The Rou-
tine Line Editor operates only on intermediate code—it does not operate on
macro source code or include files. For more information on using the Routine
Line Editor to develop and edit intermediate code routine lines, see the Open
M/SQL M Programming Guide.

Routine Management Utilities

InterSystems provides a set of pre-defined utilities for examining and manipulat-
ing routines and include files. These routine utilities are useful for developing
and maintaining Open M/SQL applications. See Chapter 7, Open M/SQL Routine
Management Utilities, for a complete description of the Open M/SQL routine
management utilities.
Open M/SQL Developer Guide 3-3

Chapter 3—Open M/SQL Program Development
Developer Utilities

InterSystems provides a set of utilities useful for testing and developing pro-
grams and manipulating program objects. These utilities perform functions that
include checking the integrity of program objects, searching for strings in
objects, and compiling sets (called configurations) of objects. For a complete
description of the Open M/SQL developer utilities see Chapter 12, Open M/SQL
Developer Utilities.

Programmer Interface to Applications

Open M/SQL combines the precision of hand-coded programming with the speed
and ease of application generation to provide a totally integrated application
development environment.

You can reference Data Dictionary-defined global structures using any combina-
tion of SQL and M code. Open M/SQL provides entry points that enable you to
call menus, forms, and reports from anywhere in your application. You can insert
M and SQL code directly into base table definitions, form definitions, menu defi-
nitions, and report definitions, which allows you to develop highly customized
applications while still preserving Open M/SQL’s automatic-generation capabili-
ties.

In the Data Dictionary, you can define processing triggers to enforce integrity
constraints or to automatically invoke related processing actions every time a cer-
tain event occurs. You can enter code to perform data validation checking and
conversion of user-entered and edited data. You can define computed fields that
will automatically calculate data values based on user input. And you can manu-
ally insert your own M code to customize lookup and filing routines.

In the Form Generator, you can manually insert M and SQL code at the form
level, window level or field level to customize your application to your exact
specifications. You can use processing triggers to program window branching
that responds in different ways to different situations.

These are but a few of the many ways the Open M/SQL environment combines
custom programming flexibility with the ease of automatic generation.
3-4 Open M/SQL Developer Guide

Open M/SQL Deve
CHAPTER

4
Full Screen Editor
This chapter describes the Open M/SQL Full Screen Editor. The Full Screen Edi-
tor is used for creating, editing, and viewing macro source routines, intermediate
code routines, and include files.

Specifically, this chapter covers the following topics:

 n Overview of the Full Screen Editor
 n Invoking the Full Screen Editor
 n Full Screen Editor Screen Display
 n Navigating the Full Screen Editor Menu System
 n Editing Operations
 n Getting Help
 n Exiting the Full Screen Editor
loper Guide 4-1

Chapter 4—Full Screen Editor
Overview of the Full Screen Editor

The Full Screen Editor is an Open M/SQL utility that allows you to view an
entire block of source code and edit sections of it. By contrast, the alternative
editing utility, the Routine Line Editor, allows only line-by-line editing (see the
Open M/SQL M Programming Guide for an in-depth description of the Routine
Line Editor).

Full Screen Editor Features

The Full Screen Editor provides all of the following capabilities:

 n Cut and paste capabilities
 n Search and replace functions
 n Ability to work in more than one buffer or window at a time
 n Automatic syntax checking
 n A lockout mechanism to prevent overwrites

When you edit a routine in the Full Screen Editor, you are editing a temporary
copy of the routine. Pressing the <PREVIOUS> key invokes a save menu that dis-
plays options for saving, compiling, and renaming the routine as well as an
option for exiting the Full Screen Editor.

Routine Types for Editing

Using the Full Screen Editor, you may edit any of the following types of routines:

 n Macro source routines
 n Include files
 n Intermediate code routines (ANSI Standard M)
 n The routine in your current M partition
4-2 Open M/SQL Developer Guide

Invoking the Full Screen Editor
Invoking the Full Screen Editor

You can invoke the Full Screen Editor from either the M programmer prompt or
from within the Open M/SQL development environment.

Procedure To invoke the Full Screen Editor from the M programmer prompt:

1. Issue any of the following commands at the M programmer prompt:

> do ^%rde

or:

> do ^%

or:

> x ^%
Edit: .E

To exit from the “Edit:” prompt befor invoking the Full Screen Editor, type a
period (.), and press <RETURN>.

Note If you are running Open M/SQL on a non-ISM host M system, you
must use the first command (^%rde).

Once invoked, the Full Screen Editor prompts you to load a routine, as fol-
lows:

Load Routine:

At this prompt you may either load an existing routine or create a new rou-
tine. See below for information on both options.
Open M/SQL Developer Guide 4-3

Chapter 4—Full Screen Editor
Procedure To invoke the Full Screen Editor from the Open M/SQL development
environment:

1. At the M programmer prompt, type the following command to enter
Open M/SQL:

> do ^%msql

You see the Terminal Type prompt, as shown below:

Terminal Type: VT220 =>

2. At the Terminal Type prompt, enter the name of the terminal type you
are currently using.

You may press <RETURN> to accept the system-wide default terminal type.

You see the Open M/SQL User Identification window, as shown below:

3. At the UserName field on the Open M/SQL User Identification window,
enter your Open M/SQL UserName, and press <RETURN>.

4. At the Password field on the Open M/SQL User Identification window,
enter the Password for your Open M/SQL UserName, and press
<RETURN>.

 ÚÄÄÄ¿
 ³ÚÄÄÄ¿³
 ³³ Open M/SQL User Identification ³³
 ³ÃÂÄÄÄÂ´³
 ³ÃÙ À´³
 ³³ WELCOME TO OPEN M/SQL ³³
 ³³ ³³
 ³³ Version F ³³
 ³³ Maintenance Release F.7 ³³
 ³Ã¿ Ú´³
 ³ÀÁÄÄÄÁÙ³
 ³ÚÂÄÄÄÂ¿³
 ³ÃÙ À´³
 ³³ User Name Password ³³
 ³³ ³³
 ³³ ³³
 ³³ Language ³³
 ³³ ³³
 ³Ã¿ Ú´³
 ³ÀÁÄÄÄÁÙ³
 ÀÄÄÄÙ

User Login Press <Help> For Help

Enter a valid Open M/SQL username.
4-4 Open M/SQL Developer Guide

Invoking the Full Screen Editor
5. At the Language field on the Open M/SQL User Identification window,
enter the language in which you want to run Open M/SQL.

To accept the system-wide default run-time language, press <RETURN>.

To choose a different run-time language, press <CTRL-L> to delete the sys-
tem-wide default language.

You may press the <LIST CHOICES> key to see a lookup box that lists the run-
time languages supported by Open M/SQL.

You see the Open M/SQL Main Menu, as shown below:

6. From the Open M/SQL Main menu, select the Developer Utilities option.

You see the M/SQL Developer Utilities menu, as shown below:

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄOpen M/SQL MenuÄÄÄ¿
 ³ ³
 ³ Data Dictionary ³
 ³ Forms ³
 ³ Reports ³
 ³ Queries ³
 ³ Menu Generator ³
 ³ System Management ³
 ³ Privileges ³
 ³ Developer Utilities ³
 ³ User Utilities ³
 ³ Server Management ³
 ³ Relational Gateway ³
 ³ Help Options ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

Open M/SQL Menu 03:50PM Press <Help> For Help

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄÄM/SQL Developer UtilitiesÄÄÄÄ¿
 ³ ³
 ³ Export/Import Options ³
 ³ Object Compile Driver ³
 ³ M/SQL Object Integrity Checking ³
 ³ Object String Search Utility ³
 ³ Full Screen Editor ³
 ³ Macro Routine Utilities ³
 ³ Query Object By Routine Prefix ³
 ³ National Language Reports ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation
Open M/SQL Developer Guide 4-5

Chapter 4—Full Screen Editor
7. From the M/SQL Developer Utilities menu, select the Full Screen Editor
option to invoke the Full Screen Editor.

Note: You may type f to select this option—it is a mnemonic accelerator.

Once invoked, the Full Screen Editor prompts you to load a routine, as fol-
lows:

Load Routine:

At this prompt you may either load an existing routine or create a new rou-
tine. See below for information on both options.

Loading Existing Routines

To load an existing routine, enter the name and extension of the routine or
include file you wish to edit at the “Load Routine” prompt.

When entering the name of a routine, if you do not specify a suffix, Open M/SQL
assumes the .MAC suffix.

For example, to load the routine ABC.MAC, you may type the following:

Load Routine: ABC

If you specify the name of a routine that already exists, Open M/SQL loads the
routine and invokes the Full Screen Editor.

Loading Routines Automatically

You can set up Open M/SQL to automatically load a specified routine whenever
you invoke the Full Screen Editor. You do this by setting the %first variable to
the routine that you want to be auto-loaded.

Procedure To load a specified routine automatically:

1. From the M programmer prompt, set the %first variable to the routine
that you want to be auto-loaded.

Use the following syntax to do this:

> SET %first=“routine.ext”

where routine.ext is the name and extension of the routine you want to auto-
load.

2. Invoke the Full Screen Editor.

M/SQL Developer Utilities 03:50PM Press <Help> For Help
4-6 Open M/SQL Developer Guide

Invoking the Full Screen Editor
The Full Screen Editor automatically loads the routine stored in the %first
variable.

Creating New Routines

To create and load a new routine, use the procedure below:

Procedure To create a new routine using the Full Screen Editor:

1. At the “Load Routine” prompt, enter the name of a new routine, as fol-
lows:

Load Routine: NEWROU

The Full Screen Editor automatically appends the default extension “.MAC”
to the routine name you entered and then issues the following prompt:

Load Routine: NEWROU
 the source 'NEWROU.MAC' does not exist

Continue with new buffer? Y=>

2. Press <RETURN> to accept the Yes default and load the new routine into
the Full Screen Editor, or type No and press <RETURN> to return to the
“Load Routine” prompt.

Preventing Overwrites

The Full Screen Editor provides a lockout mechanism to ensure that two pro-
grammers cannot modify the same routine simultaneously. This mechanism
issues a lock on a routine as soon as the first user retrieves it.

The locking mechanism prevents the following scenarios from occurring:

 n Prevents two users from editing the same .MAC file simultaneously
 n Prevents two users from editing the same .INT file simultaneously
 n Prevents two users from editing the same .INC file simultaneously
 n Prevents one user from editing the .MAC version of a routine while another

user is simultaneously editing the .INT version of the same routine, or vice
versa.

When the Full Screen Editor detects a lock on a routine, it allows the second user
to browse the routine in “read mode”, but the user cannot edit or file the routine.
When this happens, the terminal beeps and the Full Screen Editor displays the
following message at the bottom of the screen:

ROUTINE IS LOCKED: Now in Read Mode
Open M/SQL Developer Guide 4-7

Chapter 4—Full Screen Editor
As you browse the locked routine, the Status Line continues to display the tag:

(read)
4-8 Open M/SQL Developer Guide

Full Screen Editor Screen Display
Full Screen Editor Screen Display

Below is a typicat Full Screen Editor screen display:

The screen display is divided into the following three parts:

 n Edit Field — the top (and major) portion of the screen
 n Status Line — Directly below the Edit Field
 n Horizontal Options Menu — Directly below the Status Line

Edit Field

The Full Screen Editor display consists of as many lines as will fit on your termi-
nal screen. One of those lines is reserved for the Status Line and two more are
reserved for the Horizontal Options Menu. The remaining lines belong to the Edit
Field.

The typical terminal screen consists of 24 lines, therefore the Edit Field of a typi-
cal terminal screen displays up to 21 lines of text.

The Full Screen Editor is always in insert mode.

The Edit Field scrolls appropriately as you insert and delete text.

 EMPLIST ;List the employees in a given department
;Define macro to convert a string to uppercase and remove
;punctuation. Calls the entry point 4alphaup^yraz(%a) as a
;function
;

#define ALPHAUP(%a) $$alphaup^yraz(%a)
;
;Define macro to get the external value of a returned field.
;

#define EXTERNAL(%a) $p(%a,$c(1),2)
;
;Declare cursors for accessing department tables. Selects fields
;”Department” and “Name” from the “Department: table and puts them into
;the M variables “deptid” and “deptname”.
;

##sql(DECLARE deptcurs CURSOR FOR SELECT Department, Name
INTO :deptid, :deptname
FROM Department WHERE (%ALPHAUP(NAME) %STARTSWITH :name)
;
;Declare cursor for accessing Employee table. Selects fields "Name"

EMPLIST.MAC(modified)

Goto Find Next Prev Select Cut/ Replace Check Buffer Mark Other
Tag String Find Find Block Paste String Errors Menu Menu Menu
Open M/SQL Developer Guide 4-9

Chapter 4—Full Screen Editor
Status Line

The Status Line appears in reverse video between the Edit Field and the Horizon-
tal Options Menu. It displays the following information:

 n Name of the current buffer
 n Name of the current routine
 n Type of routine being edited (.MAC, .INT, .INC)

When changes have been made to the current routine, the Status Line displays the
following tag:

(modified)

If the current routine is non-modifiable, the Status Line displays the tag:

(read)

The information displayed on the Status Line is standard and does not vary across
systems. The system, however, may alter the appearance of the information. The
standard appearance format is as follows:

[buffer]routine_name.type

Horizontal Options Menu

The Horizontal Options Menu displays across the bottom of the screen, directly
beneath the Status Line. You can use the options on this menu to perform basic
editing functions such as selecting and moving text.

Procedure To access an option on the Horizontal Options Menu:

1. From anywhere in the Edit Field of the Full Screen Editor, press the <GO
TO BOTTOM MENU> key.

The cursor moves to the Horizontal Options Menu.

2. On the Horizontal Options Menu, you may select and invoke an option
using any one of the following methods:

a. Use the arrow keys to position the cursor on the desired option, and press
<RETURN> to invoke it.

b. Type the first letter of an option (the cursor selects and automatically
invokes the option).

c. Press <CTRL-E> plus the first letter of the desired option.
d. If you are selecting an option from a submenu, you may type

<CTRL-E>xy where x is the first letter of the primary menu option and y is
the first letter of the submenu option.
4-10 Open M/SQL Developer Guide

Navigating the Full Screen Editor Menu System
Navigating the Full Screen Editor Menu System

The following sections list and describe the options located on each of the hori-
zontal options menus in the Full Screen Editor menu system

Primary Menu

The following table lists and describes the options on the Primary Menu:

Table 4-1: Options on Primary Menu

Option Function

Goto Tag Specify the tag and offset within your M routine that you wish to locate,
using the syntax:

TAG

TAG+3

TAG-3

Find String Specify a string to be located.

Next Find Finds next occurrence of a string specified in previous Find, working
towards the bottom of the buffer.

Prev Find Finds previous occurrence of a string specified in a previous Find, work-
ing towards the top of the buffer.

Select Block Turn on select mode. Any cursor movement while in select mode results
in highlighting the text between the current cursor position and its posi-
tion when select mode was activated. Selecting this option a second
time eliminates the highlighting.

Cut/Paste If select mode is on, cuts the contents of the select region from the text
and inserts it into the paste buffer, then turns off select mode. If select
mode is off, inserts the contents of the paste buffer into the current
buffer.

Replace String Scans the buffer for a specified string, and optionally replaces it with
another.

Check Errors Syntax checks the routine from the location of the cursor down, replac-
ing the cursor at the beginning of the first line in which it detects a syn-
tax error. This is an error-by-error syntax checking mechanism.

Buffer Menu Invokes Buffers submenu (described below).

Mark Menu Invokes Mark submenu (described below).

Other Menu Invokes Other submenu (described below).
Open M/SQL Developer Guide 4-11

Chapter 4—Full Screen Editor
Buffers Menu

When you select the Buffers Menu option from the Primary Menu, you see the
Buffers Menu. The table below lists and describes the options on the Buffers
Menu:

Windows Menu

When you select the Windows Menu option from the Buffers Menu, you see the
Windows Menu. The table below lists and describes the options on the Windows
Menu:

Table 4-2: Options on Buffers Menu

Option Function

Make Buffer Make a new buffer with a specified routine name and load that routine
if it exists.

Use Buffer Switch from one buffer to another.

Directory of Buff-
ers

View the names of all existing buffers.

Print Buffer Print the contents of buffer to a device.

Load Routine Load a routine into current buffer, deleting the existing contents of the
buffer.

Insert Routine Insert a routine into current buffer, without deleting the existing con-
tents.

Windows Menu Invokes Windows menu.

Table 4-3: Options on Windows Menu

Option Function

Two Windows Arranges the terminal screen to display two buffers at the same time,
each in its own area (window).

One Window Sets the terminal screen to display one buffer using the entire screen
area.

Switch Windows Moves the cursor from one buffer window to the other.

Grow Current
Window

Increases the size of one of the two displayed windows, allowing it to
occupy a greater portion of the screen.
4-12 Open M/SQL Developer Guide

Navigating the Full Screen Editor Menu System
Mark Menu

When you select the Mark Menu option from the Primary Menu, you see the
Mark Menu. The table below lists and describes the options on the Mark Menu:

Other Menu

When you select the Other Menu option from the Primary Menu, you see the
Other Menu. The table below lists and describes the options on the Other Menu:

Table 4-4: Options on Mark Menu

Options Function

Set Mark Mark a location in the current buffer.

Clear Mark Remove a mark from the current buffer.

Find Mark Go to a specified mark in the current buffer.

Table 4-5: Options on Other Menu

Option Function

Redraw Screen Redraws screen without saving or deleting contents of buffer.

Execute M Code Prompts for lines of M code and executes them. Type “Q” to exit
from this option.

M/SQL Invokes Open M/SQL
Open M/SQL Developer Guide 4-13

Chapter 4—Full Screen Editor
Editing Operations

This section describes how to perform the following text editing operations:

 n Moving the Cursor
 n Inserting and Deleting Text
 n Cutting and Pasting Text
 n Editing Multiple Copies of a Routine
 n Displaying Multiple Buffers
 n Setting a Mark in Your Current Buffer
 n Searching For Text Strings
 n Replacing Text Strings

Moving the Cursor

The use of control keys simplifies cursor movement for touch typists. The fol-
lowing table describes the cursor positioning keys available for use in the Full
Screen Editor:

Table 4-6: Full Screen Editor Cursor Movement Key Commands

Keystroke(s) Function

<RIGHT ARROW> or
<CTRL-K>

Cursor moves one character to the right. If at right physical
margin, cursor moves to the first character of the next line.

<LEFT ARROW> or
<CTRL-H>

Cursor moves one character to the left. If at left physical
margin, cursor moves to the last character of the previous
line.

<UP ARROW> or
<CTRL-U>

Moves the cursor to the same column position on the next
physical line up.

<DOWN ARROW> or
<CTRL-J>

Moves the cursor to the same column position on the next
physical line down.

<ENHANCE><RIGHT ARROW> Moves the cursor to the end of the current M code line.

<ENHANCE><LEFT ARROW> Moves the cursor to the beginning of the current M code
line.

<ENHANCE><UP ARROW> Moves the cursor to the first character of the edit field.

<ENHANCE><DOWN ARROW> Moves the cursor to the first character of the last line of the
edit field.

<CTRL-N> Moves the cursor to the next tag.

<CTRL-P> Moves the cursor to the previous tag.

<CTRL-V> Moves the cursor to the last character of the routine being
edited (bottom of routine).
4-14 Open M/SQL Developer Guide

Editing Operations
 * A word is defined as any sequence of characters delimited by one or more
spaces or commas.

Inserting Text

The Full Screen Editor is always in insert mode.

Procedure To insert text:

1. Use the arrow keys to locate the cursor at the place where you wish to
insert text.

2. Begin typing.

Note: There is an implicit hard return at the end of each M code line.
Pressing <RETURN> breaks the line. Deleting a <RETURN> joins the
line.

DeletingText

To delete text, use the appropriate key or key sequence from the following table:

<CTRL-F> Moves the cursor to the first character of the next word*.

<CTRL-B> Moves the cursor to the last character of the previous
word*.

<CTRL-E><1> Repaints the screen when it is split into two windows for the
syntax error report.

Table 4-6: Full Screen Editor Cursor Movement Key Commands (Continued)

Keystroke(s) Function

Table 4-7: Text Delete Options

Keystroke Function Description

<CTRL-D> Delete Current Character Deletes the character on which the cursor is
currently positioned.

<DELETE> Delete Previous Character Deletes the character to the left of the cur-
rent cursor position.

<CTRL-W> Delete Word Deletes from the current cursor position to
the end of the current word.

<CTRL-L> Delete to End of Line Deletes from current cursor position to the
end of the current physical screen line.

<CTRL-X> Undelete Restores a previously deleted character,
word, or line.
Open M/SQL Developer Guide 4-15

Chapter 4—Full Screen Editor
Cutting and Pasting Text

To cut and paste text, use the following procedure.

Procedure To cut and paste text:

1. Place the cursor at the beginning of the block of text that you want to
cut.

2. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

3. From the Horizontal Options Menu, choose the Select Block option.

The Select option makes the cursor function as a tool for highlighting blocks
of text.

4. Move the cursor to the end of the block of text that you want to select.

The cursor highlights all text in its path from the location where Select mode
was activated.

5. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

6. From the Horizontal Options Menu, select the Cut/Paste option to cut
the text.

When you cut text from the document, the Full Screen Editor stores it in an
area called the Paste Buffer. Each time you cut a block of text, the new text
overwrites the previous contents of the Past Buffer. The Paste Buffer always
contains the most recently cut block of text.

7. Move the cursor to the location where you wish to insert the text.

8. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

9. From the Horizontal Options Menu, select the Cut/Paste option again to
paste the text.
4-16 Open M/SQL Developer Guide

Editing Operations
Editing Multiple Copies of a Routine

The Full Screen Editor provides buffers and windows to let you edit multiple rou-
tines and multiple copies of the same routine simultaneously.

Buffers are conceptual spaces where you can temporarily store text to be edited.
The first routine loaded into the Editor is automatically placed in a buffer called
MAIN. You can then create and name additional buffers, and place new text into
the new buffers. You can also create empty buffers for use during an editing ses-
sion.

When placing routines in buffers, you can LOAD or INSERT. LOAD places the
text into the buffer, overwriting the current contents of the buffer. INSERT places
the designated text into the buffer without deleting the current contents.

Creating a New Buffer

Use the procedure below to create a new buffer.

Procedure To create a new buffer:

1. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffer Menu option.

You access the Buffers Menu.

3. From the Buffers Menu, select the Make Buffer option.

You see the following prompt in the bottom right-hand corner of the screen:

Make Buffer:

4. At the “Make Buffer” prompt, enter the name of a new buffer, and press
<RETURN>.

The Full Screen Editor opens a new buffer and places you in insert mode.

Selecting an Existing Buffer

Use the procedure below to select an existing buffer.

Procedure To select an existing buffer:

1. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffers Menu option.

You access the Buffers Menu.
Open M/SQL Developer Guide 4-17

Chapter 4—Full Screen Editor
3. From the Buffers Menu, select the Use Buffer option.

You see the following prompt in the bottom right-hand corner of the screen:

Use Buffer:

4. At the “Use Buffer” prompt, enter the name of the buffer you want to
edit, and press <RETURN>.

Note: To see a list of all current buffers, select the Directory option from
the Buffer Menu.

The Full Screen Editor opens the specified buffer and places you in insert
mode.

Loading a Routine into the Current Buffer

Use the procedure below to load a routine into the current buffer.

Procedure To load a routine into the current buffer:

1. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffer Menu option.

You access the Buffers Menu.

3. From the Buffers Menu, select the Load Routine option.

You see the following prompt in the bottom right-hand corner of the screen:

Load Routine:

4. At the “Load Routine” prompt, enter the name of the routine you want
to load, and press <RETURN>.

The Full Screen Editor load the specified routine into the current buffer,
overwriting its previous contents.

Note: Using the Insert Buffer option allows you to insert the specified
routine into the current buffer without overwriting its previous
contents.
4-18 Open M/SQL Developer Guide

Editing Operations
Displaying Multiple Buffers

The Full Screen Editor displays the contents of a buffer in a window. Windows in
the Full Screen Editor let you display up to two buffers simultaneously.

You can control the display of your buffers using the Windows Menu.

When displaying two buffers, the Full Screen Editor splits the display screen so
that one window occupies the top half of the screen and the other window occu-
pies the remaining area of the screen above the status line.

When two buffers are sharing the screen, you can cut and paste between them.

Editing commands function no differently for two windows than for one.
Because the position of the cursor determines the current window status, all edit-
ing commands function on the window in which the cursor is located.

Procedure To display and edit multiple buffers simultaneously:

1. Press the <GO TO BOTTOM MENU KEY> to access the Horizontal Options
Menu.

2. From the Horizontal Options Menu, select the Buffer Menu option.

You access the Buffers Menu.

3. From the Buffers Menu, select the Windows Menu option.

You access the Windows Menu.

4. From the Windows Menu, select the Two Windows option.

You see the following prompt in the bottom right-hand corner of the screen:

Use Buffer:

5. At the “Use Buffer” prompt, enter the name of the buffer you want to
display in the second window, and press <RETURN>.

The Full Screen Editor splits the screen into two halves, one half for each of
the two buffers being displayed.

Note: You can cut and paste between these two buffers.
Open M/SQL Developer Guide 4-19

Chapter 4—Full Screen Editor
Setting a Mark in Your Current Buffer

You can set a mark in your current buffer to define a location within the text.

Setting a mark does not affect the surrounding text in any way. Marks only serve
to define locations within the text.

Procedure To set a mark in the current buffer:

1. Position the cursor at the place in your text where you want to set a
mark.

2. Press the <GO TO BOTTOM MENU> key to access the Horizontal Options
Menu.

3. From the Horizontal Options Menu, select the Mark Menu option.

You access the Mark Menu.

4. From the Mark Menu, select the Set Mark option.

You see the following prompt in the bottom right-hand corner of the screen:

Mark Name:

5. At the “Mark Name” prompt, enter the name of the mark you want to
edit, and press <RETURN>.

This sets a mark at the place in your text where the cursor is currently posi-
tioned.

You can relocate the cursor back to this position at any time by selecting the
Find Mark option on the Mark Menu and specifying the name of the mark
you want to find at the “Goto Mark” prompt.

You can also delete the mark at any time by selecting the Clear Mark option
on the Mark Menu and specifying the name of the mark you want to delete at
the “Clear Mark” prompt.
4-20 Open M/SQL Developer Guide

Editing Operations
Searching For Text Strings

You can search your buffer for a text string by using the following options on the
Horizontal Options Menu:

ReplacingText Strings

You can use the Replace String option on the Horizontal Options Menu to specify
a string of text to search for (at the Replace prompt) and a string of text to replace
each instance of the search string (at the With prompt). The Replace String option
finds and replaces all instances of the search string from the current cursor posi-
tion to the end of the buffer.

Using Control Key Commands for Quicker Editing

Many commands in the Full Screen Editor are designated by <CTRL-letter> key-
stroke sequences.

The following table summarizes the keystrokes you can use to issue commands
for the Full Screen Editor. None of the information contained here is terminal
specific. However, you may find that not all the <CTRL-letter> functions listed
here are available to you, as they tend to vary with operating system:

Option What It Does

Find String prompts you to specify a text string and searches for the string from the
current cursor position to the end of the buffer

Next Find searches from the current cursor position to the end of the buffer for the
next instance of the same text string

Prev Find searches from the current cursor position to the top of the buffer for the
previous instance of the same text string

Table 4-8: <CTRL-letter> Commands

<CTRL-letter> Function

<CTRL-A> Advances cursor several lines of text.

<CTRL-B> Backs up cursor to first letter of previous word.

<CTRL-D> Deletes current character.

<CTRL-E>-<letter> Invokes option from primary menu beginning with specified
letter.

<CTRL-F> Advances cursor to first character of next word.

<CTRL-G>-<CTRL-H> Returns cursor to first character of current M code line.

<CTRL-G>-<CTRL-J> Moves cursor to end of last physical line displayed on screen.

<CTRL-G>-<CTRL-K> Moves cursor to end of current M code line.
Open M/SQL Developer Guide 4-21

Chapter 4—Full Screen Editor
Note For a complete listing of all keyboard-specific Full Screen Editor action commands
for each terminal type supported by InterSystems, see the Appendix to this man-
ual.

<CTRL-G>-<CTRL-U> Moves cursor to beginning of first physical line displayed on
screen.

<CTRL-G>-<CTRL-X> Undoes previous deletion.

<CTRL-H> Moves cursor one character to left.

<CTRL-J> Moves cursor down one physical line.

<CTRL-K> Moves cursor one character to right.

<CTRL-L> Deletes rest of line from current cursor position.

<CTRL-N> Next tag.

<CTRL-R> Moves the cursor back 15 lines, maintaining the same cursor
position.

<CTRL-U> Moves cursor up one physical line.

<CTRL-W> Deletes to end of current word.

<CTRL-X> Undoes previous deletion.

Table 4-8: <CTRL-letter> Commands (Continued)

<CTRL-letter> Function
4-22 Open M/SQL Developer Guide

Getting Help
Getting Help

You may press the <EXPLAIN> key at any time while the cursor is located in the
Edit Field to access the Full Screen Editor Help Menu. The Help Menu is a hori-
zontal options menu that appears at the bottom of the screen.

Use the <LEFT ARROW> and <RIGHT ARROW> keys to navigate the menu, and
press <RETURN> to select an option.

The table below lists and describes the options on the Help Menu:

Table 4-9: Options on Help Menu

Option Function

General This option displays a list of all control sequence commands
currently defined for the Full Screen Editor.

Keys This option is not currently implemented.

Options This option is not currently implemented.

Action This option lets you select an action on which you would like
more information.
When you select this option, you see the following prompt in the
bottom right-hand corner of the screen:

Action:

At the “Action” prompt, specify the name of an action on which
you would like more information, and press <RETURN>. The sys-
tem displays a help window that contains a description of the
specified action.
You may also perform lookups of actions at the “Action” prompt.
Enter the first letter or sequence of letters for an action and
press <RETURN> to see a lookup box that lists all actions with
matching names.
Open M/SQL Developer Guide 4-23

Chapter 4—Full Screen Editor
Exiting the Full Screen Editor

When finish editing a routine in the Full Screen Editor, you may press the <PRE-
VIOUS> key to access the Full Screen Editor Save Menu. The Save Menu lets you
save edits to a routine, compile a routine, rename a routine, and exit the Full
Screen Editor.

You may press the <PREVIOUS> key at any time while the cursor is located in the
Edit Field. The Save Menu is a horizontal options menu that appears at the bot-
tom of the screen. Use the <LEFT ARROW> and <RIGHT ARROW> keys to navigate
the Save Menu, and press <RETURN> to select an option.

The table below lists and describes the options on the Save Menu:

Automatic Syntax Checking

Whenever you compile a macro source or intermediate code routine, the Open
M/SQL Compiler automatically syntax-checks the code and records all errors in
a sequential error log. The error log displays to the screen upon the completion of
the compilation. In the Full Screen Editor, you can display the error log by select-
ing the Check Errors option on the Primary Menu. The error log displays in its
own window located in the lower half of a split screen. This screen split enables
you to correct the routine while looking at the error report. To erase the error log
window and repaint the screen, type <CTRL-E><1>.

Note The Full Screen Editor does not support syntax checking for Open M/SQL sys-
tems running on non-ISM host M implementations.

Table 4-10: Options on the Save Menu

Option Function

Quit Exit the Full Screen Editor without saving or compiling the rou-
tine.
Note: If you select this option while there are unsaved edits

made to the routine, the Full Screen Editor displays the
following confirmation prompt before allowing you to exit
the Editor without saving your edits:

Quit without filing changes?

Save & Compile Save and compile routine. This option may disrupt any other pro-
cess that is running the routine. See the discussion on ZSAVE in
the Open M Programming Guide to learn the consequences of
saving a program that another process is executing.

Only Save Save but do not compile the contents of the current buffer.

Rename & Save Save but do not compile the contents of the current buffer as a
new routine.
4-24 Open M/SQL Developer Guide

Exiting the Full Screen Editor
Automatic Date and Time Stamps

The Full Screen Editor can automatically stamp the date and time in the form of a
comment on the first line of intermediate code routines whenever changes are
saved.

To enable this feature as the system-wide default behavior, the System Manager
must issue the following command from the System Manager's directory:

> set ^%rde(“MARK”)=1
Open M/SQL Developer Guide 4-25

Open M/SQL Deve
CHAPTER

5
Developing Macro Source Routines
InterSystems recommends that you write all routines (even pure M routines) at
the top level — the macro source level. In order to create a macro source code
routine, you must use the Full Screen Editor.

This chapter describes how to develop macro source routines. Specifically, it
covers the following topics:

 n Creating Macro Source Routines
 n The Open M/SQL Macro Preprocessor
 n Summary of Macro Preprocessor Commands
 n Summary of Macro Preprocessor Functions
loper Guide 5-1

Chapter 5—Developing Macro Source Routines
Creating Macro Source Routines

To create and edit both macro source routines and include files in Open M/SQL,
you must use the Full Screen Editor.

Note You can also create intermediate code routines using the Full Screen Editor, but
InterSystems recommends creating routines at the macro source level.

Macro source code permits the use of macros and embedded SQL statements
using a combination of ANSI-Standard M syntax, special macro preprocessor
commands, and ANSI-Standard SQL. Macro source routines can also refer to
include files, which are useful for standardizing the behavior of a set of programs
and for customizing a single source for different environments.

Macro source code can use preprocessor commands and keywords to do all of the
following:

 n Provide names for constants, expressions, and other arbitrary text, which can
be replaced at compile time without sacrificing run-time performance.

 n Conditionally include lines of code.
 n Include macro source code from named include files.
 n Tailor a single macro source routine to different environments.
 n Execute SQL statements as part of a program.

Compiling Macro Source Routines

When you compile macro source routines, the Compiler works in two phases.
First, the Compiler converts the macro source routine into pure M code, called
intermediate code. This level of compilation is called the macro preprocessor
phase. Subsequently, the Compiler compiles the intermediate code routine into
executable code, called object code.

To compile a macro source routine, you may select the “Save and Compile”
option of the Full Screen Editor after editing a macro source routine, or you may
compile the routine directly from the M programmer prompt using the %urcomp
utility.
5-2 Open M/SQL Developer Guide

Creating Macro Source Routines
Macro Source Routines and Include Files

Macro source code can use include files.

Include files contain definitions that are used in the preprocessor phase of compi-
lation to expand macros and determine whether optional lines of code should be
included. They can also be used to include a common block of code in several
routines, saving the overhead of calls to a common subroutine.

The table below summarizes the differences between include files and a macro
source routines:

The Open M/SQL routine management utilities use the filename suffix to distin-
guish between include files (FILENAME.INC) and macro source routines
(FILENAME.MAC). The suffixes may appear in either lower or upper case.

Macro source routine and include file names may include up to 235 alphanumeric
characters. They must begin with an alphabetic character. Underscores are not
allowed. Case is significant.

Macro Source Routines Are Portable Across M Implementations

Macro source routines are completely portable across Open M/SQL systems run-
ning on any of the following M implementations:

 n ISM
 n DTM
 n DSM
 n MSM

You may create macro source routines in Open M/SQL on any of these M imple-
mentations, compile the routine into intermediate code, and then run it on the
same or any other M implementation.

Table 5-1: Macro Source Routines versus Include Files

Macro Source Routine Include File

Created using Full Screen Editor Created using Full Screen Editor

Named with suffix .MAC Named with suffix .INC

Compiler produces intermediate code
from the macro source routine, then
translates intermediate code into execut-
able object code routines

Cannot invoke Compiler directly; must be ref-
erenced in a macro source routine

Comments in source are included in the
intermediate file

Comments in include file are not included in
the intermediate file unless specified by the
#show command
Open M/SQL Developer Guide 5-3

Chapter 5—Developing Macro Source Routines
The Open M/SQL Macro Preprocessor

The Open M/SQL macro preprocessor recognizes three kinds of constructs, as
shown in the following table:

Macro Preprocessor Commands

A preprocessor command can prompt the preprocessor to execute any of the fol-
lowing actions:

 n Define or undefine a macro
 n Include the text of an include file
 n Conditionally process consecutive lines in the current source
 n Set a mode of operation for the preprocessor

A preprocessor command must appear on a line by itself, at the left margin or
preceded by one or more space or tab characters, as in the following:

tag set x=5,y=10
#include LIBNAME

quit

The following is incorrect:

tag set x=5,y=10 #include LIBNAME quit

With the exception of the #define command, preprocessor commands can be fol-
lowed by a comment on the same line.

Construct Symbol

Preprocessor Commands #

Preprocessor Functions ##
or
&

Macro References $$$
5-4 Open M/SQL Developer Guide

The Open M/SQL Macro Preprocessor
Macro Preprocessor Functions

A preprocessor function is an expandable construct that can appear anywhere
within a line of M code. When you compile the macro source code, the prepro-
cessor line “expands” and is replaced by the designated code. The preprocessor
function, &sql (or ##sql), is used to embed SQL statements in an M program.

A preprocessor function can appear anywhere in the text of a macro source rou-
tine, as in:

set id=5 &sql(FETCH ecurs INTO :name) write !,name quit

Even if the function extends across two or more lines, it can be followed by code
on its last line, for example:

set id=5 &sql(FETCH ecurs
INTO :name) write !,name quit

The Compiler does not expand preprocessor functions when they are embedded
inside quoted strings, i.e., when enclosed in double quote characters (“”), or in
comments.

Macro References

A reference to a previously defined macro should consist of the macro name pre-
ceded by 3 dollar signs ($$$) and optionally followed by one or more arguments
in parentheses. When inserted, a macro reference is replaced by the definition of
the macro as established by a previously specified macro define (#define) state-
ment. If the macro has been defined to take arguments, argument substitution is
performed to generate the text value of the macro reference.

A macro reference must be preceded and followed by punctuation characters or
the beginning or end of the macro source line. The macro definition:

#define DATE $ZD($H,2)

assigns the value “$ZD($H,2)” to the macro “DATE”. Thus, a subsequent occur-
rence of the macro source text, such as:

w !,“The date is ”,$$$DATE

is replaced by:

w !,“The date is ”,$ZD($H,2)

The following macro reference:

xyz$$$version

is invalid because it immediately follows an alphanumeric character.
Open M/SQL Developer Guide 5-5

Chapter 5—Developing Macro Source Routines
The source text:

$$$versionxyz

is interpreted as a reference to the macro named “versionxyz”. Since a macro ref-
erence cannot be adjacent to an alphanumeric character, you cannot use a macro
to generate part of an identifier name.

The Compiler does not expand macro references and preprocessor functions
when they are embedded inside quoted strings, i.e., when enclosed in double
quote characters (“”), or in comments.

References to undefined macros will produce error messages at compile time.
The “$$$” preceding the macro name is left intact.

Macro source lines that, after expansion, do not contain any characters other than
space and tab are omitted from the intermediate routine.
5-6 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands
Summary of Macro Preprocessor Commands

The following table lists and briefly describes the commands supported by the
macro preprocessor:

#define and #undef

The #define statement can appear in several forms and the #undef statement in
just one form:

#define MACRONAME
#define MACRONAME VALUE
#define MACRONAME(PARAMETERS) VALUE

#undef MACRONAME

where MACRONAME is a valid macro name (without the $$$) and VALUE,
separated from MACRONAME by at least one space, consists of the rest of the
line. VALUE can be any arbitrary text. The macro preprocessor strips leading and
trailing spaces from VALUE. If the line ends in a comment, the comment is
included in the macro value.

Table 5-2: Macro Preprocessor Commands

Preprocessor
Command What It Does

#define Define a macro.

#undef Remove a macro definition.

#include Include macro source text from a specified, previously created include
file.

#show Include comments from include files.

#noshow Don't include comments from include files. (Default)

#if Conditionally include the following macro source text if an expression is
true.

#ifdef Conditionally include macro source text if a specified macro is defined.

#ifundef
(#ifndef)

Conditionally include macro source text if a specified macro is not
defined.

#else Include macro source text if the previous #if, #ifdef, or #ifundef failed.

#elseif
(#elif)

Include macro source text if the previous #if, #ifdef, or #ifundef failed
and an expression is true.

#endif Terminate conditional text.

#; Define single-line, macro-only comment lines
Open M/SQL Developer Guide 5-7

Chapter 5—Developing Macro Source Routines
#define MACRONAME

The first form of #define causes MACRONAME to be defined with a null value.
This is useful primarily in combination with the #ifdef and #ifundef commands
(described below) that test whether or not a macro is defined.

#define MACRONAME VALUE

The second form of #define causes MACRONAME to be defined with the value
of VALUE, for example:

#define release 3

A later reference to this macro, such as:

go:currel<$$$release oldrel

expands into:

go:currel<3 oldrel

Another example is the definition:

#define var “^abc(qsub”

for which the following references:

set x=$$$var_“,n)”
set y=$$$var_“)”

expand into:

set x=^abc(qsub,n)
set y=^abc(qsub)

#define MACRONAME() VALUE

The third form of #define defines a macro that takes arguments, also called a
function macro. The argument(s) may be one or more alphanumeric strings, each
beginning with percent signs and separated by commas. Each of the parameter
strings can occur one or more times in VALUE, indicating a substitution.

A reference to a function macro takes the form $$$MACRONAME(), where the
argument(s) are any character strings separated by commas. Commas and right
parentheses can be passed as macro arguments only if they are part of quoted
strings. At expansion time, the macro preprocessor expands any
$$$MACRONAME references inside the parentheses, then substitutes the argu-
ments for the corresponding % parameters in the macro’s definition.
5-8 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands
For example, if the macro “version” is defined as:

#define version(%a,%b) %a_".0"_%b

then the reference:

write “VERSION=”,$$$version($$$release,“subrel”)

causes the macro preprocessor to replace “$$$release” with “3” (defined in the
example above) and then substitute the arguments “3” and “subrel” into the text
to produce:

write “VERSION=”,3_“.0”_“subrel”

When a macro is defined to accept arguments, you must reference it with the cor-
rect number of arguments; otherwise, the macro preprocessor generates an error.
If a macro is defined without arguments, you may never include parentheses in a
reference to that macro. For example, the following source text:

#define foo “precise”
$$$foo()_“ly”

expands into:

precise()ly

In this case, the macro preprocessor will issue a warning message about the null
parentheses.

#undef MACRONAME

The #undef statement causes MACRONAME to have an undefined value. The
distinction between a null value and an undefined value is important to the #ifdef
and #ifundef commands.

Nested Expansion

Nested expansion occurs when one expandable property contains a second
expandable property within its expanded evaluation. Macro definitions, include
file names, and embedded SQL text can all contain $$$MACRO references.
When this happens, the macro preprocessor must resolve nested expansion.

A macro reference is always expanded at the time that it is used to produce actual
text. For example, when the macro preprocessor encounters the #include com-
mand:

#include $$$system

it must evaluate the macro reference $$$system to decide which include file to
use.
Open M/SQL Developer Guide 5-9

Chapter 5—Developing Macro Source Routines
Macro references inside embedded SQL are expanded before the SQL text itself
is evaluated. For more information on using macro references in embedded SQL,
refer to the section entitled “Referencing Macros in Embedded SQL” in Chapter
8, Embedded SQL.

When a macro reference is expanded, the macro preprocessor scans the result for
additional macro references. If it finds another macro reference, the macro pre-
processor expands it, then again scans the result for further macro references, and
so forth until no macro references remain.

If a macro reference is located inside a #define statement, it is not evaluated until
the macro being defined is referenced. For example, the following define state-
ments:

#define release 3
#define version(%a) $$$release_“.0”_%a

cause the function macro “version” to be defined with the value:

$$$release_“.0”_%a

where %a is the macro’s argument. The macro preprocessor expands the refer-
ence to $$$release only when the macro “version” is referenced. The source text:

write $$$version(“subrel”)

expands into:

write $$$release_“.0”_“subrel”

and finally into:

write 3_“.0”_“subrel”

If a #define statement later redefines “release” to be 4, then a subsequent occur-
rence of the statement “write $$$version(subrel)” in the macro source will
expand into:

write 4_“.0”_“subrel”
5-10 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands
#ifdef, #ifundef, #if, #else, #elseif, and #endif

The #ifdef preprocessor command includes a block of source text only if the
specified macro name has a defined value.

The #ifundef command (also abbreviated #ifndef for compatibility with the C
programming language) has the opposite meaning. It includes a block of source
text if the specified macro name does not have a defined value.

The #if command includes a block of source text if the specified expression eval-
uates to true (i.e., a non-zero, numeric value). The expression consists of M
macro source that, after expansion, produces an M expression. Since this expres-
sion is evaluated at compile time (not at run time), any references to local vari-
ables or extrinsic functions are resolved in the environment in which the program
is compiled. Since the compilation environment is difficult to predict, you should
use caution when referencing local variables and extrinsic functions inside #if
expressions.

The #else command specifies a block of source text to be included if the previous
#ifdef, #ifundef, #if, or #elseif command was not satisfied.

The #elseif command (also abbreviated #elif) includes a block of source text if
the previous #ifdef, #ifundef, #if, or #elseif command was not satisfied and if the
specified expression evaluates to true.

These statements have four syntax options, as described in the following sec-
tions.

Syntax 1

#if EXPRESSION
(SOURCE TO INCLUDE IF EXPRESSION IS TRUE)

#else ;optional
(SOURCE TO INCLUDE IF EXPRESSION IS FALSE) ;optional

#endif

For example:

#if $$$version<$$$LatestVersion
 do convert($$$version)
#endif
Open M/SQL Developer Guide 5-11

Chapter 5—Developing Macro Source Routines
Syntax 2

#if EXPRESSION A
(SOURCE TO INCLUDE IF EXPRESSION A IS TRUE)

#elseif EXPRESSION B ;optional
(SOURCE TO INCLUDE IF EXPRESSION A IS FALSE AND
EXPRESSION B IS TRUE) ;optional

#elseif EXPRESSION C ;optional
(SOURCE TO INCLUDE IF EXPRESSIONs A & B ARE
 FALSE AND EXPRESSION C IS TRUE) ;optional

#endif

For example:

#if $extract($$$application)=”F”
#include FINANCIAL

#elseif $extract($$$application)=”S”
#include SALES

#elseif $extract($$$application)=”M”
#include MARKETING

#endif

Syntax 3

#ifdef MACRONAME
(SOURCE TO INCLUDE IF MACRO DEFINED)

#else ;optional
(SOURCE TO INCLUDE IF MACRO NOT DEFINED) ;optional

#endif

For example:

#ifdef debug
if dbmode=”halt” do ^dbhalt

#else
if dbmode=“go” do ^dggo

#endif
5-12 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands
Syntax 4

#ifundef MACRONAME
(SOURCE TO INCLUDE IF MACRO NOT DEFINED)

#else ;optional
(SOURCE TO INCLUDE IF MACRO DEFINED) ;optional

#endif

For example:

#ifundef TERMTYPE
#define BUFSIZE 512

#else
#define BUFSIZE 1024
#define DECTYPE 220

#endif

Notes

Note the following:

 n The source code conditionally included by #if, #ifdef, and #ifundef may
include preprocessor commands. As is shown in the above examples, #if's,
#ifdef's, and #ifundef's may be nested.

 n The names of macros referenced inside #if expressions must be prefaced by
$$$.

 n Indentation of preprocessor commands, as is used in the above examples, is
optional. It is used here to assist readability.

#include

The preprocessor command:

#include FILENAME.INC

causes the macro preprocessor to treat the contents of the include file FILE-
NAME.INC in the current directory as the next part of the macro source code.
The include file can contain any kind of macro source text, including nested
#includes.
Open M/SQL Developer Guide 5-13

Chapter 5—Developing Macro Source Routines
The differences between an include file and a macro source routine are:

 n Include files have the suffix .INC. Macro source routines have the suffix
.MAC.

 n You cannot directly invoke the Compiler on an include file.
 n Whereas comments in a macro source routine are included in the intermedi-

ate code routine, comments in an include file are not, unless otherwise speci-
fied by the #show command.

When you compile a macro source routine that references an include file, the
macro preprocessor replaces the #include command with the text of the include
file. If the include file includes macro definitions, the macro preprocessor
expands those definitions as it encounters them. You may also have an #include
command within an include file. This causes nested inclusion.

#show, and #noshow

The #show command instructs the macro preprocessor to preserve all subsequent
comments in an include file in the intermediate code routine.

The #noshow command restores the default condition of not preserving com-
ments in an include file in the intermediate code routine.

The macro preprocessor always preserves comments in the macro source code in
the intermediate code.

Advantages of Using Include Files

Include files are useful for standardizing the behavior of a set of programs and
for customizing a single source file for different environments.

More specifically, some of the advantages to using include files are:

 n Processing a single macro source with different include files is a way to cus-
tomize an application for different environments.

 n Using macro names defined in a commonly shared include file to stand for
constant values ($$$MAXSIZE instead of 511, or $$$REPEATSW(10,251)
instead of $p(^mdd(1,10,2,251,3),$c(1),6)) reduces the likelihood of errors in
which two cooperating programs fail to use the same value, or look in differ-
ent places for an item of data. It also does not suffer the performance penalty
of using a variable in place of the constant.

 n If several programs need to execute the same block of M code, without the
added overhead of calls to a centralized routine, you can put that code in an
include file and have each macro source routine reference that include file.
Doing so ensures that each program will execute exactly the same code.
5-14 Open M/SQL Developer Guide

Summary of Macro Preprocessor Commands
For example, suppose you want to customize a single set of macro source rou-
tines for environments A, B, and C by having them all share the include file
“FILEA.INC”, “FILEB.INC”, or “FILEC.INC”.

You begin each macro source routine with the line:

#include FILECHOICE

The include file FILECHOICE.INC consists of the single line:

#include FILENAME

where “FILENAME” is “FILEA”, “FILEB”, or “FILEC”. Each of the include
files “FILEA.INC”, “FILEB.INC”, and “FILEC.INC” contains a set of #define
commands used to customize the environment for A, B, or C. To tailor all rou-
tines for a particular environment, you may edit the “FILENAME” value in
“FILECHOICE.INC” and recompile all the macro source routines.

Indicating Comment Lines

You may use the #; preprocessor command to provide a single-line of comment
text within a macro source routine. The comment line appears in the macro
source code but is suppressed by the macro preprocessor from the intermediate
code.

For example:

#; This is an old version

The pound sign (#) and the semicolon (;) may be separated by any number of
spaces.

When you use this preprocessor command, your comment text must not exceed
one line.
Open M/SQL Developer Guide 5-15

Chapter 5—Developing Macro Source Routines
Summary of Macro Preprocessor Functions

The following table lists and briefly describes the functions supported by the
macro preprocessor:

&sql(...)

To embed an SQL statement within an M macro source routine, you must use the
Open M/SQL preprocessor syntax &sql(...) or ##sql(...). Either syntax is accept-
able.

The embedded SQL statement begins after the prefix &sql(and concludes with
the matching right parenthesis. Embedded SQL can stretch across multiple lines
or can occupy just a portion of a single line. However, you may not split SQL
keywords or tokens across lines.

The following is an example of a single-line embedded SQL statement where
SQL code is intermixed with M code on the same line:

for i=1:1 &sql(fetch c into :x,:y) quit:SQLCODE=10020 do
output

The following is an example of a multi-line embedded SQL statement:

&sql(DECLARE xcurs CURSOR FOR SELECT
Name,Age FROM Patients WHERE Age <12 AND
Ward=”4D”)

SQL statements, like the rest of the macro source code, can contain $$$MACRO
references. The macro preprocessor expands and replaces macro references
inside embedded SQL statements before evaluating the SQL statements them-
selves.

The macro preprocessor reports an error if it reaches the end of the macro source
routine without encountering the right parenthesis to match “&sql(”.

For a description of how M routines can use embedded SQL to access an Open
M/SQL database, see Chapter 8, Embedded SQL.

Table 5-3: Macro Preprocessor Functions

Preprocessor Function What It Does

##sql
&sql

Delimits embedded SQL code. Either symbol is accept-
able.

##vendor InterSystems-specific preprocessor function used to make
macro source routines portable among Open M/SQL-sup-
ported host M systems (ISM, DSM, DTM, and Micronetics’
MSM).
5-16 Open M/SQL Developer Guide

Summary of Macro Preprocessor Functions
##vendor

##vendor is an InterSystems-specific preprocessor function used to make Open
M/SQL routines portable among the host M systems supported by Open M/SQL.
The Open M/SQL-supported host M systems include:

 n ISM
 n DTM
 n DSM
 n Micronetics’ MSM

You can observe the use of the ##vendor(...) syntax throughout the Open M/SQL
system-generated code. For example, you can see it in default-generated Internal-
to-External and External-to-Internal Conversion Code, Validation Code, field
length code, and help message code.

At the macro source level, you may use ##vendor to delimit vendor-specific M
constructs, thus producing vendor-independent code. This allows the macro pre-
processor to compile the routine into intermediate code for the specified target M
system.

InterSystems reserves ##vendor for its own use.
Open M/SQL Developer Guide 5-17

Chapter 5—Developing Macro Source Routines
5-18 Open M/SQL Developer Guide

Open M/SQL Deve
CHAPTER

6
Routine Handling and Maintenance
This chapter presents an overview of the Open M/SQL routine environment and
discusses topics related to routine handling and maintenance, including informa-
tion on referencing routines by name, extension, and version as well as instruc-
tions for copying, compiling, and backing up routines.

Specifically, it covers the following topics:

 n Routine Environment
 n Routine Names, Extensions, and Version Numbers
 n Using Wildcard Syntax to Specify Routines
 n Referencing Routines in Other Directories
 n Routine Sets
 n Compiling Routines
 n Backing Up Routines
 n Deleting Routines
 n Routine Copying and Compiling Synchronization
loper Guide 6-1

Chapter 6—Routine Handling and Maintenance
Routine Environment

In Open M/SQL, you can create routines at two levels:

 n Macro source
 n Intermediate code

The macro source level permits the use of macros and embedded SQL statements
using a combination of ANSI-Standard M syntax, special macro preprocessor
commands, and ANSI-Standard SQL. Macro source routines can refer to include
files, which are useful for standardizing the behavior of a set of programs and for
customizing a single source for different environments.

You can also write pure M routines (routines that do not include embedded SQL
or any macro preprocessor statements) at the macro source level.

When macro source code is compiled, it is first converted into M code with
embedded SQL, called intermediate code. This level of compilation is called the
preprocessor phase. Intermediate code routines are subsequently compiled into
executable object code.

Writing Routines

InterSystems recommends that you create all routines (even pure M routines) at
the top level — the macro source level. In order to create a macro source code
routine, you must use the Full Screen Editor. Where macro source code exists,
you should always compile from the macro source level. When macro source
code is compiled, it produces both intermediate code and object code. When a
macro source routine contains embedded SQL or refers to an include file, or
both, intermediate and object code must always be regenerated from the macro
level. The macro source level allows you to save backup copies of routines. For
more information on writing routines at the macro source level, refer to Chapter
5, Developing Macro Source Routines.

You may also create routines directly at the intermediate code level. For informa-
tion on developing and editing intermediate code routines on an ISM system,
refer to the Open M/SQL M Programming Guide.

Converting Intermediate Code to Macro Source Code

Open M/SQL allows a mixed environment in which some routines have macro
source versions and others have only intermediate code versions. You can copy
intermediate code routines to the macro source level using the %urcopy utility,
provided the intermediate code routines do not include embedded SQL. This is a
particularly useful feature if you are converting pure M applications to applica-
tions that make use of macros, SQL, and other relational database features.
6-2 Open M/SQL Developer Guide

Routine Names, Extensions, and Version Numbers
Routine Names, Extensions, and Version Numbers

When using the Full Screen Editor or any of the routine management utilities
provided by InterSystems, you may refer to routines and include files not only by
name but also by extension and version number.

The complete syntax for routine identification is:

NAME.EXTENSION.VERSION

For example:

ROU.MAC.1
ROU.MAC.2
ABC.INC.1

Sometimes you may use the remote directory syntax to specify a routine that
resides in a directory other than the current directory, for example:

[“DIR”]ROU.MAC.2

Routine Names Must Be Unique

A routine may have the same name as an include file, but no two routines in a
single directory may have the same name, and no two include files may have the
same name.

Case Sensitivity

Routine and include file names are case sensitive; thus, “ABC.INT” is not the
same as “abc.INT”.

Routine extensions are not case sensitive; thus, “ABC.INT” is the same as
“ABC.int”.

Routine Extensions

The following table lists the routine extensions:

Extension Meaning

.MAC For macro source routines

.INT For intermediate code routines

.INC For include files

.OBJ For object code routines
Open M/SQL Developer Guide 6-3

Chapter 6—Routine Handling and Maintenance
For example, the routine “ROU” might have the following names:

You can also create/edit include files using the Full Screen Editor as well as
manipulate them using the routine management utilities. To identify an include
files, you must specify the extension .INC, as in:

ABC.INC

which specifies the include file “ABC”.

When No Extension Is Specified

If you do not specify a file extension for a routine, Open M/SQL assigns the
.MAC suffix by default. If no .MAC routine exists, Open M/SQL assigns the
.INT suffix.

This allows M programmers who do not make use of the macro source level but
rather write routines that consist only of pure M code to use the routine manage-
ment utilities without adapting their routines or programming methods.

In a mixed programming environment where some routines have a macro source
level and others do not, programmers can still use the routine utilities without
specifying extensions. In this case, when routines have a macro source level, pro-
cessing takes place at that level. When only intermediate code exists, processing
begins at the intermediate level.

Specification Meaning

ROU.MAC Macro source level for ROU

ROU.INT Intermediate level for ROU

ROU.OBJ The object code level for ROU
6-4 Open M/SQL Developer Guide

Routine Names, Extensions, and Version Numbers
Version Numbers

Macro source routines and include files can have up to 9 backup versions.

Intermediate and object code routines cannot have backup versions. Therefore,
you never need to specify version numbers for .INT or .OBJ routines; their ver-
sion number is always 1 implicitly.

The table below shows how you refer to multiple versions of a macro source rou-
tine called “ROU”:

etc., up to a maximum of ROU.MAC.9.

The table below shows how you refer to multiple versions of an include file
called “ABC”:

etc., up to a maximum of .INC.9.

You must explicitly specify the version number only when referring to versions
other than the current version (version 1). Thus, the following specifications are
equivalent:

.MAC = .MAC.1

and

.INC = .INC.1

Specification Meaning

ROU.MAC.1 Current version

ROU.MAC.2 1st backup

ROU.MAC.3 2nd backup

Specification Meaning

ABC.INC.1 Current version

ABC.INC.2 1st backup

ABC.INC.3 2nd backup
Open M/SQL Developer Guide 6-5

Chapter 6—Routine Handling and Maintenance
Using Wildcard Symbols to Specify Routines

InterSystems provides a series of wildcard symbols to assist you in specifying
sets of routines to be acted on by the routine management utilities. You may use
these wildcard symbols when specifying routines at the Routine(s): prompt.

Wildcards for Routine Names

When specifying routine names, you may use any of the special character (“wild-
card”) symbols described in the table below:

Note Type a question mark (?) at the Routine(s) prompt to view help text with informa-
tion about the wildcard symbols. Type “?L” to see a list of the routines you have
chosen so far.

Table 6-1: Wildcard Symbols for Use When Specifying Routine Names

Wildcard
Symbol Meaning

* Signifies zero or more characters. For example:
* means all names
AB*D means all names that start with AB and end with D

? Signifies one and only one wildcard character. For example:
A?C means all names that start with A, end with C, and have exactly

one character in between.

: Signifies a range. For example:
AB:D means all names from AB through D inclusive.

‘ Signifies exclusion from a previously specified list. For example:
A*
‘ABC

means all names that start with A except for ABC. Similarly,
A*
‘AB:AD
‘AF*

means all names that start with A except for those in the range AB through
AD inclusively and those that start with AF.

= In utilities that use the two-column format (e.g., %urcopy, where routines
in the first column are copied to those in the second), the equals sign (=)
can be used to signify the same routine name as specified in the “From”
column. If no directory is specified, Open M/SQL assumes the current
directory. If no extension is specified, Open M/SQL assumes “.MAC”.

=.EXT The equals sign followed by an extension (=.EXT) can be used to signify
the same routine name as specified before with the specified extension.

=:. The equals sign followed by a colon and period (=:.) can be used to signify
the same routine and extension as in the “From” column.
6-6 Open M/SQL Developer Guide

Using Wildcard Symbols to Specify Routines
Wildcards for Extensions

You may also use the asterisk symbol (*) in the file extension identifier. In this
case, it means all extensions for the specified routine name(s).

For example:

ROU.*

expands to:

ROU.MAC, ROU.INT, ROU.INC, and ROU.OBJ

More specifically, it expands to:

ROU.MAC.1, ROU.INT, ROU.INC.1, and ROU.OBJ

Wildcards for Version Numbers

It is necessary to specify a version number only when the version you are refer-
encing is not the current version (version 1).

When no version number is specified, the version is implicitly .1.

You may use the asterisk symbol (*) in the version identifier. In this case, it
means all versions for the specified routine(s).

The table below shows several examples of the use of the asterisk symbol in the
version identifier:

Specification Meaning

ROU.MAC.* Means ROU.MAC.1, ROU.MAC.2, etc.

ROU.OBJ.* Means ROU.OBJ.1 (there are no backups)

ROU.INC.* Means ROU.INC.1, ROU.INC.2, etc.

ROU.*.* Means all versions of all extensions of routine ROU

..* Means all versions of all extensions of all routines
Open M/SQL Developer Guide 6-7

Chapter 6—Routine Handling and Maintenance
Referencing Routines in Other Directories

Open M/SQL’s routine management utilities allow you to reference routines
located in directories other than the current directory, including directories on
other computers, where applicable.

To specify routines located in a directory other than your current directory, you
may use remote directory syntax at the Routine(s): prompt, as shown below:

[directory,directory_set_name]routine.extension.version

where directory is the name of the target directory and directory_set_name is the
name given to the target computer in your M/NET networking configuration.

If your target directory is the current directory, you do not need to specify remote
directory syntax at all. If your target directory is another directory on the same
computer, you may ignore the directory_set_name parameter.

Note If you are running Open M/SQL on a non-ISM host M system, the remote directory
syntax may be different. Consult your system guide for this information.

For example:

Routine(s): [“DIR”,”SYS”]ROU.MAC
Routine(s): [“DIR2”]ABC.INT

This example selects the .MAC version of routine “ROU” in directory “DIR”,
directory set “SYS” and the .INT version of routine “ABC” in directory “DIR2”
on the current computer.

To avoid repeatedly retyping remote directory information where a list of rou-
tines is required, you may use the following syntax to reference the last explicitly
specified directory:

[^]

The following example selects routines “AAA”, “BBB”, and “CCC” in directory
“DIR$SYSX”:

Routine(s): [“DIR$SYSX”]AAA
Routine(s): [^]BBB
Routine(s): [^]CCC

For routine management utilities that use two-column format (e.g., %urcopy,
where routines from column one are copied to those in column two), the [^] syn-
tax is column-specific. In the following example, routine “AAA” in “DIR1” of
system “SYS” is copied to routine “BBB” in the current directory, then routine
6-8 Open M/SQL Developer Guide

Referencing Routines in Other Directories
“XXX” also in directory “DIR” of system “SYS” is copied to “YYY” in the cur-
rent directory:

Copy Routine(s): [“DIR1”,”SYS”]AAA To: BBB
Copy Routine(s): [^]XXX To: YYY

Restrictions on Using Remote Directory Syntax

Use of remote directory syntax has the following restrictions:

1. The routine management utilities do not permit you to alter the contents of a
directory other than the current directory.

2. The utilities %urchange, %urcomp, and %urdel do not support remote direc-
tory syntax.

3. The %urcopy utility lets you copy routines from a remote directory into the
current directory, but you cannot copy routines from the current directory
into a remote directory.
Open M/SQL Developer Guide 6-9

Chapter 6—Routine Handling and Maintenance
Routine Sets

The Open M/SQL Routine Set facility allows you to create a list of routines
under one name and reference that routine set name at the Routine(s): prompt for
any of the routine management utilities. This feature is useful when you have a
group of routines on which you commonly perform a particular function, such as
compiling all the routines in a particular application.

Creating a Routine Set

You may create a routine set at the Routine(s): prompt of any of the routine man-
agement utilities.

Procedure To create a routine set:

1. At the Routine(s) prompt for any of the routine management utilities,
specify all the routines you want to include in the routine set, either by
naming them explicitly or by using the wildcard syntax.

2. When you have named all the routines you want to include, type “.F” at
the next appearance of the Routine(s): prompt, and press <RETURN>.

The system prompts you to provide a name and description for the routine
set, as shown below:

Routine set names are case sensitive, so “ROUTINESET” is not the same as
“routineset”.

Using a Routine Set

To use a pre-defined routine set, type the routine set name preceded by the “@”
character at the Routine(s): prompt, as shown in the example below:

 >d ^%urdir
 Routine(s): test*.mac
 Routine(s): .F
 File as Routine Set: TESTSET
 With Description: Routines for testing
 OK to File? Yes= <RETURN>
 Filing ... done

 >d ^%urdir
 Routine(s): @TESTSET

 --.MAC--
 test1.mac test2.mac test3.mac test4.mac test5.mac
6-10 Open M/SQL Developer Guide

Compiling Routines
Compiling Routines

You may use the %urcomp utility to compile either the macro source or interme-
diate code level of a routine.

When you invoke %urcomp on a macro source routine, Open M/SQL compiles
the routine in two phases. First, the macro preprocessor phase of the Compiler
produces intermediate code, then the main Compiler produces object code.

If you invoke %urcomp on intermediate code routines, the main Compiler
directly produces object code.

Some intermediate code routines cannot be compiled. When the Compiler cannot
compile a routine, it issues an abort compilation message and does not modify
the routine. The following two conditions can cause this to happen:

1. Source lines are missing from the intermediate code level of ^ROUTINE.

2. The intermediate code contains embedded SQL.

In either case, you must compile the routine at the macro source level.

Most M-level and SQL-level syntax errors do not cause the compiling process to
abort.

Other ways to compile a routine include:

1. You may compile a routine as a result of executing the utilities %urchange
and %urcopy. These utilities prompt you to specify whether or not you want
to compile the specified routines.

2. You may elect to compile a routine from within the Full Screen Editor.
Open M/SQL Developer Guide 6-11

Chapter 6—Routine Handling and Maintenance
Backing Up Routines

 The Full Screen Editor and the utilities %urchange, %urcomp, and %urcopy all
provide the option of producing backup versions of macro source routines and
include files.

You can use the %urverma utility on a per-directory basis to set the maximum
number of versions to be maintained for macro source routines and include files.
The default number of versions is four (one current version and three backups).
The maximum number of versions that Open M/SQL can maintain is nine (one
current version and eight backups).

Open M/SQL maintains backups for macro source routines and include files
only. It does not maintain backups for intermediate code or object code routines;
their version numbers are always .1.

How Backups are Shuffled and Renumbered

Whenever Open M/SQL generates a backup version of a macro source routine or
include file, it shuffles the existing backups down. When the number of backups
exceeds the maximum number of versions to be maintained, which you may set
using the %urverma utility, Open M/SQL deletes the last backup on the list. For
example, suppose the following backup versions of the macro source routine
“ABC” are maintained:

When you modify the current version of the routine and then save it, Open
M/SQL generates a new backup, and the other backups shuffle down, as shown
below:

You can use the utilities %urpurge and %urdel to delete old backup copies of
macro source routines and include files.

Routine Name Version

ABC.MAC.2 First backup

ABC.MAC.3 Second backup

ABC.MAC.4 Third backup

Original Name New Name

ABC.MAC ABC.MAC.2

ABC.MAC.2 ABC.MAC.3

ABC.MAC.3 ABC.MAC.4

ABC.MAC.4 Deleted
6-12 Open M/SQL Developer Guide

Backing Up Routines
The Full Screen Editor Generates Backups When You Save

When editing a macro source routine or include file in the Full Screen Editor, the
Editor automatically generates a backup copy of the routine or file and shuffles
down its existing backups (in accordance with the per-directory backup maxi-
mum) whenever you elect to save and compile your edits. For example, when
you save and compile the macro source routine “ABC.MAC” after editing it in
the Full Screen Editor, the previous current version becomes “ABC.MAC.2”, and
the version you are editing becomes the current version (“ABC.MAC”). Any
older versions of the routine (“ABC.MAC.3” through “ABC.MAC.9”) are shuf-
fled down and/or out. If you have specified that a maximum of 2 backup versions
is to be maintained, the previous “ABC.MAC.1” version is renamed to
“ABC.MAC.2”, and the previous “ABC.MAC.2” version is deleted.

Restoring a Backup Version to the Current Version

To restore a backup version of a macro source routine or include file to the cur-
rent version, you may use the %urcopy utility. To do this, you copy from the
backup version you want to restore to the new version.

For example, copying from “ROU.MAC.2” to “ROU.MAC.1” effectively
restores the first backup, making “ROU.MAC.1” and “ROU.MAC.2” identical.

When you use %urcopy to copy one version of a routine to another version of the
same routine and extension, the backups do not shuffle down.
Open M/SQL Developer Guide 6-13

Chapter 6—Routine Handling and Maintenance
Deleting Routines

To delete routines and include files, you may use either of the two utilities
described below.

%urdel

You may use the %urdel utility to delete routines and include files. To use this
utility, you must specify a list of the routines and include files with extensions
and version numbers that you want to delete. For example, if you want to delete
all the versions of the macro source routine and include file “ABC”, you specify:

Routine(s): ABC.*.*

As another example, you may specify the following:

Routine(s): DEF.MAC.*
Routine(s): GHI.MAC.2

to delete all .MAC versions of routine “DEF” and macro version 2 (the first
backup) of routine “GHI”. Deleting macro version 2 of routine “GHI” causes
subsequent macro backups of “GHI” to be shuffled forward, hence the old
“GHI.MAC.3” becomes “GHI.MAC.2”.

To delete all macro source and intermediate code routines in the current direc-
tory, leaving only object code, type:

Routine(s): *.MAC.*
Routine(s): *.INT

To delete all levels of all routines and include files in the current directory, type:

Routine(s): *.*.*

%urpurge

You may use the %urpurge utility to delete some or all backups for macro source
routines and include files. This utility prompts you to specify a set of routines and
include files that you want to purge. You may only specify routines with .MAC
extensions or include files with .INC extensions in the list of routines and include
files to purge. The utility also prompts you to specify how many versions of the
routine or include file to keep after the purge. The default value is 1, meaning the
current version only and no backups.
6-14 Open M/SQL Developer Guide

Routine Copying and Compiling Synchronization
Routine Copying and Compiling Synchronization

It is the programmer’s responsibility to keep the .MAC, .INT, and .OBJ levels of
a routine in sync, or out of sync if desired. You keep the different levels of a rou-
tine in sync by compiling the routine.

Copying or editing a routine at either the .MAC or .INT level does not automati-
cally result in compiling that routine, although the utilities for copying and edit-
ing do give you the option of compiling. Thus, the responsibility for determining
when a routine should be compiled is yours; Open M/SQL does not do it auto-
matically and does not attempt to keep compiled routines in sync with source
code.

Sometimes you may want to keep the different levels of a routine out of sync. For
example, you may want to edit one or more macro source routines for several
days and not disturb the .INT and .OBJ levels until all editing is complete.

Although Open M/SQL does permit copying of .MAC file extensions to .INT as
well as copying of .INT file extensions to .MAC, InterSystems does not recom-
mend this. .INT files do not always contain all of the information necessary to
produce corresponding .MAC files—source lines may be missing or embedded
SQL code may exist (for which there is no source code). If a .MAC routine
includes preprocessor statements (such as #if statements or macros) or embedded
SQL, you should not copy it to the .INT level because it cannot be compiled
there.
Open M/SQL Developer Guide 6-15

Chapter 6—Routine Handling and Maintenance
6-16 Open M/SQL Developer Guide

Open M/SQL Deve
CHAPTER

7
Open M/SQL Routine Management
Utilities
InterSystems provides a set of utilities for examining and manipulating routines
and include files. These utilities are collectively known as the Open M/SQL rou-
tine management utilities.

This chapter summarizes the routine management utilities, shows how to access
them, and then provides a detailed description with examples of how to use each
utility.

Specifically, it covers the following topics:

 n Summary of Routine Management Utilities
 n Accessing the Routine Management Utilities
 n %uro
 n %uri
 n %url
 n %urprint
 n %urload
 n %urdir
 n %urchange
 n %urcomp
 n %urcopy
 n %urfind
 n %urfand
 n %urdel
 n %urverma
 n %urpurge
 n %urset
loper Guide 7-1

Chapter 7—Open M/SQL Routine Management Utilities
Summary of Routine Management Utilities

The following table lists and describes the routine management utilities provided
by Open M/SQL:

Table 7-1: Open M/SQL Routine Management Utilities

Utility Meaning Description

%urprint Routine Output Prints selected macro source routine(s) and include
file(s) from the current directory to a storage file or to
a specified output device.

%urload Routine Input Loads macro source routines and include files that
have been output to a file by the %urprint utility.

%urdir Routine Directory Lists routines in the current directory.

%urchange Routine Change Changes all occurrences of specified string(s) in
selected routine(s).

%urcomp Routine Compile Compiles macro source code into intermediate
code, and intermediate code into object code for a
specified set of routines.

%urcopy Routine Copy Copies macro source routines, itermediate code
routines, and include files from any directory into the
current directory.

%urfind Routine Search Searches through routines for occurrences of one of
a specified set of strings.

%urfand Routine Search Searches through routines for occurrences of all of a
specified set of strings.

%urdel Routine Delete Deletes routines and include files from the current
directory.

%urverma Set Maximum Num-
ber of Backups

Specifies the maximum number of backup versions
maintained in the current directory for macro source
routines and include files.

%urpurge Routine Backup
Purge

Deletes backup versions of macro source routines
and include files.

%urset Select a Set of Rou-
tines

Creates a set of routines to be used by other utilities
for other operations.
7-2 Open M/SQL Developer Guide

Accessing the Routine Management Utilities
Accessing the Routine Management Utilities

There are two ways to access the Open M/SQL routine management utilities:

1. You may call them directly from the M programmer prompt.

2. You may access them as menu options from within Open M/SQL.

Calling the Routine Utilities Directly from M

To call the routine management utilities directly from the M programmer prompt,
you issue the following command syntax:

do ^%utility_name

For example, to call the %urcopy utility from the M programmer prompt, you
issue the following:

>do ^%urcopy

You may use the same syntax to call the routine utilities from within M programs.

Accessing the Routine Utilities from within Open M/SQL

Alternatively, you may access the Open M/SQL routine management utilities by
selecting them as options from the Macro Routine Utilities menu, which is a sub-
menu of the Developer Utilities menu.

All the routine management utilities listed in the table on the previous page are
available as options on this menu, except the following:

 n %urprint
 n %urload
 n %urset

Procedure To access the routine management utilities via Open M/SQL:

1. At the M programmer prompt, type the following command to enter
Open M/SQL:

> do ^%msql

You see the Terminal Type prompt, as shown below:

Terminal Type: VT220 =>

2. At the Terminal Type prompt, enter the name of the terminal type you
are currently using.

You may press <RETURN> to accept the system-wide default terminal type.
Open M/SQL Developer Guide 7-3

Chapter 7—Open M/SQL Routine Management Utilities
You see the Open M/SQL User Identification window, as shown below:

3. At the UserName field on the Open M/SQL User Identification window,
enter your Open M/SQL UserName, and press <RETURN>.

4. At the Password field on the Open M/SQL User Identification window,
enter the Password for your Open M/SQL UserName, and press
<RETURN>.

5. At the Language field on the Open M/SQL User Identification window,
enter the language in which you want to run Open M/SQL.

To accept the system-wide default run-time language, press <RETURN>.

To choose a different run-time language, press <CTRL-L> to delete the sys-
tem-wide default language.

You may press the <LIST CHOICES> key to see a lookup box that lists the run-
time languages supported by Open M/SQL.

 ÚÄÄÄ¿
 ³ÚÄÄÄ¿³
 ³³ Open M/SQL User Identification ³³
 ³ÃÂÄÄÄÂ´³
 ³ÃÙ À´³
 ³³ WELCOME TO OPEN M/SQL ³³
 ³³ ³³
 ³³ Version F ³³
 ³³ Maintenance Release F.7 ³³
 ³Ã¿ Ú´³
 ³ÀÁÄÄÄÁÙ³
 ³ÚÂÄÄÄÂ¿³
 ³ÃÙ À´³
 ³³ User Name Password ³³
 ³³ ³³
 ³³ ³³
 ³³ Language ³³
 ³³ ³³
 ³Ã¿ Ú´³
 ³ÀÁÄÄÄÁÙ³
 ÀÄÄÄÙ

User Login Press <Help> For Help

Enter a valid Open M/SQL username.
7-4 Open M/SQL Developer Guide

Accessing the Routine Management Utilities
You see the Open M/SQL Main Menu, as shown below:

6. From the Open M/SQL Main Menu, select the Developer Utilities
option.

Note: You may type v to select this option—it is a mnemonic accelerator.

You see the Developer Utilities menu, as shown below:

7. From the Developer Utilities menu, select the Macro Routine Utilities
option.

Note: You may type r to select this option—it is a mnemonic accelerator.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄOpen M/SQL MenuÄÄÄ¿
 ³ ³
 ³ Data Dictionary ³
 ³ Forms ³
 ³ Reports ³
 ³ Queries ³
 ³ Menu Generator ³
 ³ System Management ³
 ³ Privileges ³
 ³ Developer Utilities ³
 ³ User Utilities ³
 ³ Server Management ³
 ³ Relational Gateway ³
 ³ Help Options ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

Open M/SQL Menu 03:50PM Press <Help> For Help

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄÄM/SQL Developer UtilitiesÄÄÄÄ¿
 ³ ³
 ³ Export/Import Options ³
 ³ Object Compile Driver ³
 ³ M/SQL Object Integrity Checking ³
 ³ Object String Search Utility ³
 ³ Full Screen Editor ³
 ³ Macro Routine Utilities ³
 ³ Query Object By Routine Prefix ³
 ³ National Language Reports ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

M/SQL Developer Utilities 03:50PM Press <Help> For Help
Open M/SQL Developer Guide 7-5

Chapter 7—Open M/SQL Routine Management Utilities
You see the M/SQL Routine Utilities menu, as shown below:

8. From the M/SQL Routine Utilities menu, you may select any option to
invoke the corresponding utility.

When you exit the utility, you return to the M/SQL Routine Utilities menu.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄÄÄÄÄÄM/SQL Routine UtilitiesÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Routine Output (%uro) ³
 ³ Routine Input (%uri) ³
 ³ Routine Lister (%url) ³
 ³ Routine Directory (%urdir) ³
 ³ Routine Change (%urchange) ³
 ³ Routine Compile (%urcomp) ³
 ³ Routine Copy (%urcopy) ³
 ³ Routine Search (%urfind) ³
 ³ Routine Search All (%urfand) ³
 ³ Routine Delete (%urdel) ³
 ³ Set Maximum No. of Backups (%urverma) ³
 ³ Routine Backup Purge (%urpurge) ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

M/SQL Routine Utilities 03:50PM Press <Help> For Help
7-6 Open M/SQL Developer Guide

%urprint
%urprint

The %urprint utility lets you print selected macro source routine(s) and include
file(s) and send the output to a storage file or to a specified output device.

When called, %urprint displays the following prompt:

Routine Output
Routine(s):

Here you specify the routine(s) you want to output. You may enter a single rou-
tine name or a set of routine names with or without extensions. The only valid
extensions are .MAC and .INC, which you may specify either in upper or lower
case. If you do not specify an extension, %urprint assumes an extension of
.MAC.

Note %urprint does not accept intermediate code or object code routines.

Next, %urprint prompts you to enter a description of the output file. Here you
may enter some text that describes the file.

Alternatively, you may type the carat character (^) at the “Description:” prompt
to add an auto-load header as the first record in the file. An auto-load header is a
line of executable M code that, when executed within an Open M/SQL system,
causes the contents of the file to be restored automatically. A typical M statement
to execute the auto-load header is shown below:

OPEN <device>:() USE <device> READ <code> XECUTE <code>
CLOSE <device>

Selecting an Output Device

After you specify the routines you want to output, %urprint presents a ven-
dor-specific prompt that asks you to specify an output device. You may send out-
put to any valid device supported by your host M system.

Printing to the Screen

If you specify your current device as the output device, output automatically
appears in paged format. At the bottom of each page, the message “More”
appears to indicate that the report continues. You may continue the output by
pressing <RETURN>, or you may abort the output by typing Q or q or ^.
Open M/SQL Developer Guide 7-7

Chapter 7—Open M/SQL Routine Management Utilities
Printing to a Printer

If you specify an output device other than your current device, you see the fol-
lowing prompt:

Printer Format?

If you are directing the output to a printer, you should answer Yes at this prompt.
Answering Yes causes the output to appear one page at a time in a format appro-
priate for a printer.

Printing to a Storage File

If you specify an output device other than your current device, you see the fol-
lowing prompt:

Printer Format?

If you are directing the output to a storage file in a directory or on tape so that it
may be restored later using the %urload utility, you should answer No at this
prompt. Answering No causes the output to appear in a format useful for backing
up the routine, including the appending of a self-loading header record to the
beginning of the output file.

Example

In the example below, %urprint outputs the files “ABC.INC” and “ABC.MAC”
to a storage file called “/usr/msql/abc.rtn”:

You can now restore these files using the %urload utility.

 > do ^%urprint
 Routine Input
 Routine(s): ABC.*

 Description: ^ (autoload header added)
 Output routines to
 Device: /usr/msql/abc.rtn Parameters: "WNS"=> <RETURN>
 Printer Format? No => <RETURN>

 ABC.INC ABC.MAC

 >
7-8 Open M/SQL Developer Guide

%urload
%urload

The %urload utility lets you load macro source routines and include files that
have been output to a storage file in a directory or on tape via the %urprint utility.

%urload prompts you to specify an input device, routines to load, and whether or
not to compile loaded macro source routines.

When called, %urload displays the following prompt:

Enter input device:
Device:

Here you must specify the name of a storage device to which routines and
include files were output by %urprint.

Routine Input Options

After you specify the input device, %urload displays the following prompt:

Routine Input Option: (A)ll ==>

This prompt asks you to specify which routines from the input device to load.

Type ? to see a list of the load options.

The table below lists and describes the load options:

Table 7-2: Load Options for Routine Input Using %urload

Option Meaning

(A)ll Loads all files on the input device, then prompts you to specify
whether or not you want to compile the macro source routines, as fol-
lows:

Compile macro source routines? No=>

All is the default option.

(S)elect Prompts you to specify whether or not you want to compile the macro
source routines, as follows:

Compile macro source routines? No=>

Then, prompts you file-by-file to specify whether or not to load each
file on the input device, as follows:

OK to load? No ==>

(E)nter Lets you manually specify the list of files to be loaded. When you
select this option, you see the following prompt:

Routine(s) To Load:
Open M/SQL Developer Guide 7-9

Chapter 7—Open M/SQL Routine Management Utilities
To select an option, type its first letter, and press <RETURN>.

Compile Macro Source Routines

When you select one of the load options “All”, “Select”, or “Enter”, %urload dis-
plays the following prompt:

Compile macro source routines? No ==>

to determine whether or not you want Open M/SQL to compile all macro source
routines as they are loaded.

No is the default response.

Example

In the example below, %urload loads all files from the storage file “abc.rtn” into
the current directory and compiles them:

%urload displays a list of all macro source routines and include files from the
input device to the screen. It organizes the files in alphabetical order. Beside
every file that it loads, it displays the message “(loaded)”. Beside every file that it
does not load, it displays the message “(skipped)”. Beside every macro source
routine that it compiles, it displays the message “compiling...”.

(L)ist Lists all files on the input device, then redisplays the “Routine Input
Option:” prompt.

(Q)uit Quits %urload.

Table 7-2: Load Options for Routine Input Using %urload (Continued)

Option Meaning

 >do ^%urload
 Enter input device:
 Device: abc.rtn Parameters: "R"=> <RETURN>

 Routine Input Option: (A)ll ==> <RETURN>
 Compile macro source routines? No ==> Yes

 ABC.INC (loaded) compiling...
 ABC.MAC (loaded) compiling...

 >
7-10 Open M/SQL Developer Guide

%urdir
%urdir

The %urdir utility lists routines in the current directory.

Note On ISM systems the %urdir utility is also known as %RD.

The %urdir utility lets you do all of the following:

 n List the routines in another directory.
 n Specify any set of .MAC, .INT, .INC, or .OBJ routines to display using the

wildcard syntax.
 n Select the short or long display form. The short form displays the routine

names, extensions, and version numbers. The long form displays, in addition
to the short form information, the date and time when routines were last
saved, the size in bytes of each routine, and the block(s) that object code rou-
tines occupy.

 n Specify the selection condition of a range of dates during which the routines
were last modified.

First, you see the following prompt:

Routine(s)

Here you specify the routines that you want to include in the output list.

%urdir supports remote directory syntax, which lets you select routines from a
directory other than the current directory. To do this, you must type the name of
the source directory inside brackets and within quotation marks [“”], as shown
below:

Routine(s): [“/us/mgr/tasks”]ABC.MAC

After you specify the routine(s) you want to list, %urdir displays the following
prompt:

Long or Short form (L or S)? S=>

Here, you select a display format for outputting the routine list. You may chose
between Short Form and Long Form. Short Form lists each routine with its exten-
sion and version. Long Form organizes the output into tabular format and pro-
vides additional information, including date and time last modified, total number
of bytes, and total number of blocks. Short Form is the default choice.
Open M/SQL Developer Guide 7-11

Chapter 7—Open M/SQL Routine Management Utilities
Next, you see the following prompt:

Find routines last modified since date:
and on or before date:

This is an optional feature that lets you limit the output list to those routines that
were modified within a specified date range. Enter a start-of-range date and an
end-of-range date, as follows:

1/31/95

Example 1

In the example below, %urdir uses the Short Form to display of all versions of all
macro source routines beginning with the letter '”Y”' in the current directory:

 >do ^%urdir

 Routine(s): Y*.MAC
 Routine(s): <RETURN>

 Long or Short form (L or S)? S=> <RETURN>
 Find routines last modified since date: <RETURN>

and on or before date: <RETURN>
 Display on
 Device: <RETURN> Right margin: 80=> <RETURN>

Short Listing of Selected Routine/Include Files
Directory: /usr/msql

10 Jul 95 01:24PM Page 1

 YAAA -- .MAC --

 YAAA -- .MAC.2 --

 YAAA -- .MAC.3 --

 YAAA -- .MAC.4 --

 YBBB -- .MAC --

 YCCC -- .MAC --

 YDDD -- .MAC --
 >
7-12 Open M/SQL Developer Guide

%urdir
Example 2

In the example below, %urdir uses the Short Form to display all versions of all
macro source and intermediate code routines that reside in the current directory,
begin with the letter “Y”, and were modified between January 21, 1995 and the
current date:

When the Short Form display extends across multiple screens, %urdir pauses on
each screen and displays the message “--more--” at the bottom of the screen. You
may press <RETURN> to move ahead to the next screen.

 >do ^%urdir

 Routine(s): Y*.MAC
 Routine(s): Y*.INT
 Routine(s): <RETURN>

 Long or Short form (L or S)? S=> <RETURN>
 Find routines last modified since date: 1/21/95

and on or before date: t
 Display on
 Device: <RETURN> Right margin: 80=> <RETURN>

 Short Listing of Selected Routine/Include Files
Modified Between 1 July 95 and 10 July 95

Directory: /usr/msql
10 Jul 95 01:24PM Page 1

 YAAA -- .MAC --

 YAAA -- .MAC.2 --

 YAAA -- .MAC.3 --

 YBBB -- .MAC --

 YDDD -- .MAC --

 YAAA -- .INT --

 YCCC -- .INT --
 >
Open M/SQL Developer Guide 7-13

Chapter 7—Open M/SQL Routine Management Utilities
Example 3

In the example below, %urdir uses the Long Form to display of all versions of the
macro source, intermediate code, and object code routines and include files
called “abc” located in the current directory:

When the Long Form display extends across multiple screens, %urdir pauses on
each screen and displays the message “--more--” at the bottom of the screen. You
may press <RETURN> to move ahead to the next screen.

 >do ^%urdir

 Routine(s): abc.*
 Routine(s): <RETURN>

 Long or Short form (L or S)? S=> L
 Find routines last modified since date: <RETURN>
 and on or before date: <RETURN>
 Display on
 Device: <RETURN> Right Margin: 80=> <RETURN>

Long Listing of Selected Routines/include Files
 Directory /user/documentation
10 Jul 95 01:25PM Page 1

 NAME .EXT.VER DATE/TIME #BYTES BLOCKS
 abc .MAC.1 10 Apr 91 10:35AM 1234
 abc .MAC.2 15 May 91 02:30PM 1255
 abc .MAC.3 25 Jun 91 08:45AM 1196
 abc .INT 25 Jun 91 08:48AM 1268
 abc .OBJ 25 Jun 91 09:00AM 1301 706

 Total for Directory: /user/documentation
 -- .MAC -- 3 3685
 -- .INT -- 1 1268
 -- .OBJ -- 1 1301 706
 >
7-14 Open M/SQL Developer Guide

%urchange
%urchange

The %urchange utility changes all occurrences of a specified string or strings in
macro source routines, intermediate code routines, and include files to a new
value. The new value may be the null string.

Note On ISM systems the %urchange utility is also known as %RCHANGE.

When you invoke %urchange, the utility prompts you to specify a search string
and a replace string. You may specify multiple search strings with a correspond-
ing replace string for each.

Next, the utility prompts you to specify the routines you want to change.

Note %urchange does not support remote directory syntax. This means that you cannot
make changes to routines that reside outside your current directory.

In addition to searching for and replacing strings, the %urchange utility can also
perform several auxiliary functions on modified routines, including:

 n Generate a backup copy for each changed routine
 n Recompile each changed routine
 n Display a confirmation prompt for each change before it is made

Answer Yes at the appropriate prompt to enable any of these options. By default,
%urchange recompiles all changed routines but does not generate backups or ask
you to confirm each change.

If you answer Yes to the “Verify Each Change?” prompt, %urchange displays an
“Okay to change?” confirmation prompt each time it reaches a line that contains
a string to be changed.

%urchange automatically stamps the date and time when it modifies intermediate
code routines.
Open M/SQL Developer Guide 7-15

Chapter 7—Open M/SQL Routine Management Utilities
Example

In the example below, %urchange changes every occurrence of the global
“^ABD” to “^ABC” in all routines that begin with the letter “Z” and are located
in the current directory.

The utility outputs the routine name, the text of the change, and the lines contain-
ing the changed string.

 >do ^%urchange

 This routine changes all occurrences of a string in
 routines/include files.

 1. Change every: ^ABD to: ^ABC
 2. Change every:

 Routine(s): Z*
 Routine(s): <RETURN>

 Generate backups? No=> <RETURN>
 Recompile? Yes=> <RETURN>
 Verify Each Change? No=> <RETURN>

 Display changes on
 Device: <RETURN> Right Margin: 80=> <RETURN>

%urchang Jan 31 95 2:42 PM

 Changing "^ABD" to "^ABC"

 ZRR.INC
 ZRR+3 if ^ABC(0)=41250 set id=x1

 ZAA.INT
 ZAA+3 set ^ABC(0)=100

 ZBB.INT
 ZBB+5 set ^ABC(0)=41250

 ZBB.MAC
 ZBB+5 set ^ABC(0)=41250

 >
7-16 Open M/SQL Developer Guide

%urcomp
%urcomp

The %urcomp utility compiles macro source and intermediate code routines.

Note On ISM systems the %urcomp utility is also known as %RCOMPILE.

If you invoke %urcomp at the macro source level, it produces both intermediate
and object code for the routine. Specifically, the macro preprocessor phase of the
Compiler produces intermediate code, then the main Compiler produces the
object code.

If you invoke %urcomp at the intermediate source code level, it directly produces
object code.

When macro source routines include embedded SQL statements or make use of
include files that contain embedded SQL statements, %urcomp comments out the
SQL code. Thus, the intermediate code produced for a compiled macro source
routine that contains embedded SQL statements consists of pure M source code
with SQL statements as comments.

You should never compile routines that contain embedded SQL from the inter-
mediate code level. If you attempt to do this, the Compiler issues an error mes-
sage and aborts the compilation without modifying the routine. If a routine
contains embedded SQL statements, you must compile it at the macro source
level.

Note %urcomp does not support remote directory syntax. This means that you cannot
compile routines that reside outside your current directory.
Open M/SQL Developer Guide 7-17

Chapter 7—Open M/SQL Routine Management Utilities
Example

In the example below, %urcomp compiles the macro source routine “EMPLIST”.

For the full text of the macro source routine “EMPLIST”, see Chapter 8, Embed-
ded SQL.

 >do ^%urcomp

 Routine(s): EMPLIST.MAC
 Routine(s): <RETURN>

 Display on
 Device: <RETURN> Right margin: 80=><RETURN>

 EMPLIST.MAC
 ****** DECLARE deptcurs CURSOR FOR SELECT Department,Name
 ****** INTO :deptid,:deptname
 ****** FROM Department
 ***** WHERE (%ALPHAUP (Name) %STARTSWITH :name)
 ****** DECLARE empcurs CURSOR FOR SELECT Name,Phone,

 HireDate
 ****** INTO :empname,:empphone,:empdate
 ****** FROM Employee WHERE (Department=:deptid)
 ****** SELECT Department,Name,COUNT(Department)
 ****** INTO :deptid,:deptname,:deptcount
 ****** FROM Department
 ****** WHERE %ALPHAUP(Name) %STARTSWITH :name
 ****** OPEN deptcurs
 ****** FETCH deptcurs
 ****** CLOSE deptcurs
 ****** OPEN empcurs
 ****** FETCH empcurs
 ****** CLOSE empcurs
 ****** CLOSE deptcurs
 >
7-18 Open M/SQL Developer Guide

%urcopy
%urcopy

The %urcopy utility lets you copy existing routines and include files.

Note On ISM systems the %urcopy utility is also known as %RCOPY.

You may use the %urcopy utility to do all of the following:

 n Copy macro source routines, intermediate code routines, and include files
within the current directory to other routine names and other extension
names;

 n Copy macro source routines, intermediate code routines, and include files
from a foreign directory into the current directory;

Note: Since the routine management utilities do not permit you to alter
foreign directories, %urcopy does not allow you to copy routines
from the current directory into a foreign directory.

 n Compile macro source and intermediate code routines in the current direc-
tory;

 n Generate backup versions of macro source routines and include files;
 n Copy intermediate code routines to the macro source level in order to

develop macro source code from routines that were created as pure M rou-
tines. This feature is particularly useful for users who are converting to Open
M/SQL from earlier M versions;

When you invoke the %urcopy utility, you see the following prompt:

Copy routine(s):

Here you specify the name of the routine or include file you want to copy.

Note %urcopy supports remote directory syntax, which enables you to copy a routine
from a directory other than the current directory. To do this, type the name of the
source directory inside brackets and within quotation marks [“”], for example:

Copy routine(s): [“/us/mgr/tasks”]ABC.MAC

If you wish to again reference the same outside directory, you may simply type the
carat character enclosed in brackets [^] at the next appearance of the “Copy Rou-
tine(s)” prompt. This recalls the name of the last explicitly referenced directory.
Open M/SQL Developer Guide 7-19

Chapter 7—Open M/SQL Routine Management Utilities
After you specify the routine/include file you want to copy, press <RETURN>. You
see the following prompt:

To:

Here you specify the name to be given to the copied routine/include file. You
may give the routine/include file any name (a new name or a name that already
exists in the current directory) and any of the following extensions:

 n .MAC
 n .INT
 n .INC

You may copy as many routines/include files as you want.

After specifying the routines/include files to copy and the new names for the cop-
ied versions, %urcopy prompts you for the following auxiliary options:

 n Generate backups for each copied routine
 n Recompile each copied routine
 n Display errors encountered during compilation
 n Overwrite existing routines with identical names

Answer Yes at the appropriate prompt to enable any of these options. By default,
%urcopy recompiles all copied routines, displays all compilation errors, and
overwrites existing routines with identical names. It does not generate backups
by default.

Finally, %urcopy asks you to specify the device to which the routine names and
status information should be output as the routines are copied.

Note You can compile a routine using the %urcopy utility by copying it to itself with the
compile option enabled.
7-20 Open M/SQL Developer Guide

%urcopy
Example 1

In the example below, %urcopy copies all macro source routines beginning with
the letter “A” located in directory “/USER/MSQL” into the current directory.

In this example, %urcopy does not compile the copied routines and does not gen-
erates backups for them. No routines are overwritten because the copied routines
did not previously exist in the current directory.

 >do ^%urcopy
 Copy routine(s): ["/USER/MSQL"]A*.MAC To: A*.MAC
 Copy routine(s): <RETURN>

 Generate backups ? No=> <RETURN>
 Compile? Yes=> N
 Display Errors? Yes=> <RETURN>
 Overwrite Existing Routines? Yes=> <RETURN>

 Display routine names on
 Device: <RETURN> Right margin: 80=> <RETURN>

AAA.MAC -> AAA.MAC
ABC.MAC -> ABC.MAC
ACC.MAC -> ACC.MAC
AFG.MAC -> AFG.MAC

 >
Open M/SQL Developer Guide 7-21

Chapter 7—Open M/SQL Routine Management Utilities
Example 2

In this example, %urcopy copies the intermediate code routine “PRQ” to the
intermediate code routine called “PZZ” and compiles the copied routine.

This operation effectively replaces the previous contents of “PZZ” with the cur-
rent contents of “PRQ”.

The asterisk shown in the output line of this example indicates that the copied
routine has overwritten the previous contents of the target routine. The output
line also displays the message “COMPILED” to indicate that the new routine has
been compiled.

 >do ^%urcopy
 Copy routine(s): PRQ.INT To: PZZ.INT
 Copy routine(s): <RETURN>

 Generate backups? No=> <RETURN>
 Compile? Yes=> <RETURN>
 Display Errors? Yes=> <RETURN>
 Overwrite Existing Routines? Yes=> <RETURN>

 Display routine names on
 Device: <RETURN> Right margin: 79=> <RETURN>

PRQ.INT -> * PZZ.INT — COMPILED
 >
7-22 Open M/SQL Developer Guide

%urfind
%urfind

The %urfind utility searches through macro source routines, intermediate code
routines, and include files and returns all routine lines that contain at least one
occurrence of any search string in a list of search strings. This contrasts with
%urfand, which returns any routine lines that contain occurrences of all search
strings in the list of search strings. %urfind does not operate at the object code
level.

Note On ISM systems the %urfind utility is also known as %RFIND.

When you invoke %urfind, the utility prompts you to specify a search string. You
may specify as many search strings as you want.

After specifying the search strings, %urfind displays the following prompt:

Exact Upper/Lowercase Match? Yes=>

Here you may answer Yes or No to indicate whether or not you want the search to
be case-sensitive. Yes (case-sensitive) is the default response.

Next, the utility prompts you to specify the routines through which you want to
search.
Open M/SQL Developer Guide 7-23

Chapter 7—Open M/SQL Routine Management Utilities
Example

In the example below, %urfind searches for occurrences of the strings “Hello”
and “Goodbye” in all macro source and intermediate code routines located in the
current directory whose names begin with the letter “A”.

The utility outputs the names of all routines through which it searches.

When it finds one of the specified search strings, it outputs the tag numbers and
lines in which the string is located.

 >do ^%urfind
 Find routine lines that contain at least one of a set of
 strings.
 1. Search for: Hello
 2. Search for: Goodbye
 3. Search for: <RETURN>

 Exact Upper/Lowercase Match? Yes=> N

 Routine(s): A*.MAC
 Routine(s): A*.INT
 Routine(s): <RETURN>

 Display results on
 Device: <RETURN> Right Margin: 80=> <RETURN>

 ABC.INT
 ABC+4 S ^ABC(x) = "Hello"

 AQQ.INTAYY.INT AZZ.INT
 AZZ+6 S ^ABC(z) = "Goodbye"

 ABC.MAC
 ABC+4 S ^ABC(x) = "Hello"

 AQQ.MACAYY.MAC AZZ.MAC
 AZZ+6 S ^ABC(z) = "Goodbye"

 >
7-24 Open M/SQL Developer Guide

%urfand
%urfand

The %urfand utility searches through macro source routines, intermediate code
routines, and include files and returns routine lines that contain occurrences of all
search strings in a list of search strings. This contrasts with %urfind, which
returns any routine lines that contain an occurrence of at least one search string in
the list of search strings. %urfand does not operate at the object code level.

Note On ISM systems the %urfand utility is also known as %RFAND.

When you invoke %urfand, the utility prompts you to specify a search string.
You may specify as many search strings as you want.

After specifying the search strings, %urfind displays the following prompt:

Exact Upper/Lowercase Match? Yes=>

Here you may answer Yes or No to indicate whether or not you want the search to
be case-sensitive. Yes (case-sensitive) is the default response.

Next, the utility prompts you to specify the routines through which you want to
search.
Open M/SQL Developer Guide 7-25

Chapter 7—Open M/SQL Routine Management Utilities
Example

In the example below, %urfand searches for occurrences of the strings “Hello”
and “Goodbye” in all macro source and intermediate code routines located in the
current directory whose names begin with the letter “A”.

The utility outputs the names of all routines that it searches.

When it finds all of the specified search strings in one line of a routine, it outputs
the tag numbers and line in which the strings are located.

 >do ^%urfand
 Find routine lines that contain all of a set of strings.
 1. Search for: ^ABC
 2. And Search for: Hello
 3. And Search for: <RETURN>

 Exact Upper/Lowercase match? Y=> N

 Routine(s): A*.MAC
 Routine(s): A*.INT
 Routine(s): <RETURN>

 Display results
 Device: <RETURN> Right Margin: 80=> <RETURN>

 ABC.INT
 ABC+4 S ^ABC(z) = "Hello"

 AQQ.INT AYY.INT AZZ.INT ABC.MAC
 ABC+4 S ^ABC(z) = "Hello"

 AQQ.MAC AYY.MAC AZZ.MAC

 >
7-26 Open M/SQL Developer Guide

%urdel
%urdel

You may use the %urdel utility to delete macro source routines, include files,
intermediate code routines, and object code routines from the current directory
and output a list of the deleted routines to a specified device.

Note On ISM systems the %urdel utility is also known as %RDELETE.

When you invoke %urdel, the utility prompts you to specify the routines you
want to delete.

Note %urdel does not support remote directory syntax. This means you cannot delete
routines/include files that reside outside your current directory.

When %urdel deletes one version of a routine, it shuffles the remaining versions
forward. For example, suppose you maintain three versions of the macro source
routine “ABC.MAC”. When you delete version “ABC.MAC.1”, the first backup
version (previously called “ABC.MAC.2”) is renamed to “ABC.MAC.1” and
becomes the current version, and the second backup version is renamed to
“ABC.MAC.2”, while the second backup version ceases to exist.

Example

In the example below, %urdel deletes all versions of all routines (.MAC, .INT,
.INC, .OBJ) located in the current directory that begin with the letter “Y”.

 >do ^%urdel
 Delete routines/include files.
 WARNING: When .MAC.1 is deleted, backups are shuffled

 forward, UNCOMPILED.

 Routine(s): Y*.*.*
 Routine(s): <RETURN>

 Output on
 Device: <RETURN> Right margin: 80=> <RETURN>

DELETE SELECTED ROUTINES/INCLUDE FILES

Jul 13 91 3:32 PM

DIRECTORY: /DUA0/MARGARET

 YAZ.MAC.1 YPP.MAC.1 YZZ.MAC.1 YAZ.MAC.2 YPP.MAC.2
 YZZ.MAC.2 Y1.INC Y2.INC Y3.INC YAZ.INT
 YPP.INT YZZ.INT YAZ.OBJ YPP.OBJ YZZ.OBJ

 >
Open M/SQL Developer Guide 7-27

Chapter 7—Open M/SQL Routine Management Utilities
%urverma

The %urverma utility lets you set the maximum number of backup versions
maintained by the current directory for macro source routines and include files.

Note On ISM systems the %urverma utility is also known as %RVERMAX.

The default number of versions to maintain is four (one current version and three
backups). The maximum number of versions that Open M/SQL can maintain is
nine (one current version and eight backups).

Open M/SQL maintains backups for macro source routines and include files
only. It does not maintain backups for intermediate code or object code routines;
their version numbers are always .1.

Example

In the example below, %urverma is used to change the number of backup ver-
sions maintained for macro source routines and include files from the default
value of 4 to the maximum value of 9.

 >do ^%urverma

 Number of versions to keep for .MAC: 4=> 9
 Number of version to keep for .INC: 4=> 9

 >
7-28 Open M/SQL Developer Guide

%urpurge
%urpurge

The %urpurge utility deletes backup versions of macro source routines and
include files and outputs a list of purged routines and their version numbers to a
specified device.

Note On ISM systems the %urpurge utility is also known as %RPURGE.

When you invoke %urpurge, the utility prompts you to specify the number of
backup versions to be maintained after the purge. The default number of versions
to be maintained is 1, the current version only. If you wish to keep any backup
versions, you must change the default.

Next, the utility prompts you to specify the routines whose backups you want to
purge.

Example

In the example below, %urpurge purges all backup versions of the macro source
routines “TEST” and “MATT” in the current directory.

%urpurge outputs a list of all routines and include files that it purges.

 >do ^%urpurge

 Purge backups, keeping how many versions: 1=> <RETURN>

 Routine(s): TEST.MAC
 Routine(s): MATT*.MAC

 Device: <RETURN> Right margin: 80=> <RETURN>

 PURGE SELECTED ROUTINES/INCLUDE FILES

 RETAINING 1 VERSION
 Jul 15 91 12:22 PM

 DIRECTORY: /USER/MSQL

 TEST.MAC.2 TEST.MAC.3 MATT1.INC.2 MATT1.INC.3

 MATT1.INC.4 MATT2.INC.2 MATT2.INC.3 MATT3.INC.3

 8 routines Purged.

 >
Open M/SQL Developer Guide 7-29

Chapter 7—Open M/SQL Routine Management Utilities
%urset

The %urset utility is used by the other Open M/SQL routine utilities to select
routines.

You will likely never call this utility directly from the Open M/SQL programmer
mode prompt. You may, however, find it useful to make calls to %urset in order
to select routines from within a program.

Note On ISM systems the %urset utility is also known as %RSETN.

The Global ^mtemp

Routines selected using %urset are stored in the ^mtemp global.

The ^mtemp global has the following structure:

^mtemp(%msub,system@directory,extension,version,name)=“”

The first subscript of the ^mtemp global is %msub, which is the variable returned
by %urset.

The table below lists and describes the additional subscripts to the ^mtemp glo-
bal:

Table 7-3: Subscripts of the ^mtemp Global

Subscript Meaning

system@directory System and directory where the routine resides.

extension Extension of the routine (MAC, INC, INT, or OBJ).

version Version number of the routine.

name Name of the routine.
7-30 Open M/SQL Developer Guide

%urset
Parameters of %urset

The %urset utility has the following syntax:

^%urset(prompt,access,extensions,sort)

The following table lists and describes the four parameters accepted by %urset:

Table 7-4: Parameters of %urset

Parameter Meaning

prompt This parameter specifies the prompt used to ask for routines.
The default prompt is “Routine(s):”.
If this parameter is null, %urset uses the default prompt.
Note: If your program uses a two-column format (like the format used

by the %urcopy utility, with the “Copy From:” prompt in one col-
umn and the “Copy To:” prompt in a second column), you may
use the delimiter $C(1) to separate the first and second pieces
of the prompt.

access This parameter specifies the type of access that is permitted for select-
ing routines. It may have the following three values:
 n “D” — permits selecting of routines across directories on the same

system.
 n “S” — permits selecting of routines across directories and systems.
 n Null — permits selecting of routines in the current directory only.

extensions This parameter specifies the routine extensions that are accepted as
valid. You may enter a list of the routine extensions, separated by com-
mas.
If this parameter is null, only routines with the extensions .MAC and .INT
are accepted as valid.

sort This parameter specifies the order in which selected routines are
sorted. It may have either of the following two values:
 n DEVN — sorts routines according to Directory/System, Extension,

Version, and Name.
 n DNEV — sorts routines according to Directory/System, Name,

Extension, and Version.
DEVN is the default sort order.
Open M/SQL Developer Guide 7-31

Chapter 7—Open M/SQL Routine Management Utilities
Example

In the example below, %urset is called with the following parameters:

 n The prompt to be displayed for selecting routines is defined as:
Routine Names:

 n A null value is passed to the access parameter, meaning that access to rou-
tines across directories and systems is prohibited

 n A value of “INT” is passed to the extension parameter to specify that .INT is
the only extension accepted as valid for selecting routines

 n A value of “DEVN” is passed to the sort order parameter to specify that the
selected routines will be sorted by name

 >do ^%urset(“Routine Names: ”,“”,“INT”,“DEVN”)

 Routine Names: AAA.INT
 Routine Names: BBB.INT
 Routine Names: CCC.INT

 >D ^%G

 Global ^mtemp(%msub)

 ^mtemp(163,"@","INT",1,"AAA")=

 "BBB")=
 "CCC")=

 >

7-32 Open M/SQL Developer Guide

PART

III
SQL Language Implementation
Chapter 8

Embedded SQL

Chapter 9

Open M/QSL Implementation of
SQL

Chapter 10

Generating Queries

Open M/SQL Deve
CHAPTER

8
Embedded SQL
Open M/SQL supports the embedding of SQL statements in macro source code.

This chapter describes the rules and syntax for using embedded SQL in Open
M/SQL applications.

Specifically, it covers the following topics:

 n Preprocessor Syntax Delimits Embedded SQL
 n Open M/SQL Supports Two Kinds of Embedded SQL
 n Referencing Macros in Embedded SQL
 n Internal and External Values
 n Multi-line Values
 n Reserved Tag and Variable Names
 n Portability
 n Detailed Example
loper Guide 8-1

Chapter 8—Embedded SQL
Preprocessor Syntax Delimits Embedded SQL

To embed SQL in Open M/SQL macro source code, you must delimit each SQL
statement using the Open M/SQL preprocessor function &sql(...) or, alterna-
tively, ##sql(...), for example:

&sql(DELETE *
FROM Employees
WHERE TerminationDate < 1/1/80)

The letters “sql” may be upper or lower case.

Open M/SQL Supports Two Kinds of Embedded SQL

Open M/SQL supports the following two kinds of embedded SQL statements:

 n Non-cursor-based SQL
 n Cursor-based SQL

Non-cursor-based SQL consists of individual SELECT, INSERT, UPDATE, and
DELETE statements.

Cursor-based SQL is used for operations in which a program retrieves multiple
rows from a table. To do this, the program declares and opens a cursor on the
table, specifying one or more conditions on the rows to be retrieved. It then per-
forms a series of fetches on the cursor, retrieving one row each time, until all the
matching rows have been read.

Non-Cursor-Based SQL

A non-cursor-based embedded SQL SELECT statement query always returns a
single row of data. Non-cursor-based SELECT statement queries are appropriate
when you know that a single row of data matches the WHERE clause. If a non-
cursor-based SELECT statement query matches more than one row, the query
retrieves only the first of the matching rows and none of the rest, although it com-
putes any aggregate functions in the SELECT list over all the matching rows.
8-2 Open M/SQL Developer Guide

Open M/SQL Supports Two Kinds of Embedded SQL
Use the INTO Clause to Pass Retrieved Values to M Variables

A non-cursor-based SELECT statement query embedded in an M program
always communicates its retrieved values to the program by using an INTO
clause to read the values into M variables. For example:

&sql(SELECT Name,Telephone
 INTO :name,:tel
 FROM Employees WHERE SocSec=:ssn)

This example returns information about the employee whose social security num-
ber equals the value of the M variable “ssn”. If there is no such row, the query
sets the local M variable SQLCODE to 100. If there is a matching row, the values
of “Name” and “Telephone” are copied into the M variables “name” and “tel”.
The names “name”, “tel”, and “ssn” in the above query are prefixed by colons,
which indicates to the preprocessor that they are M variables.

The following example shows an embedded INSERT statement that adds a single
row to the “Employee” table:

&sql(INSERT INTO Employee (Name,SocSec,Telephone)
 VALUES(“Boswell”,333448888,“546-7989”))

UPDATE and DELETE Statements Can Operate on Multiple Rows

Non-cursor-based UPDATE and DELETE statement queries can operate on mul-
tiple rows, for example:

&sql(UPDATE Employee SET AgeStatus=“MINOR”
 WHERE Age<21)

which sets “AgeStatus” to “MINOR” for every “Employee” row whose “Age” is
less than 21, and:

&sql(DELETE FROM Products
 WHERE Supplier = :sup)

which deletes all “Products” rows whose “Supplier” field equals the variable
“sup”.

For information on how to insert, update, and retrieve rows using arrays, see
Chapter 9, Open M/SQL Implementation of SQL.
Open M/SQL Developer Guide 8-3

Chapter 8—Embedded SQL
Cursor-Based SQL

When your application needs to access multiple rows of data, you must use a cur-
sor. A cursor acts like a pointer—it focuses on accessing and processing one row
at a time, then moves from that row to the next in the sequence.

Declaring a Cursor

Cursor-based SQL involves declaring one or more cursors on one or more base
tables or views.

Note You may declare two or more cursors on the same base table and position them
independently.

A cursor name may consist of any number of alphanumeric characters, though
only the first six are significant. The first character must be alphabetic. All cursor
operations for a given cursor name must reside in a single M routine.

To declare a cursor, you use the SQL DECLARE statement. Since DECLARE
statements are not executable, InterSystems recommends for the sake of clarity
that you place them at the beginning of a routine.

Once it has been declared, a cursor can be used by one or more OPEN, FETCH,
and CLOSE statements. The DECLARE statement for a cursor must precede any
other statements involving that cursor.

Below is an example of a DECLARE statement:

&sql(DECLARE PatCur CURSOR FOR
 SELECT Name,Telephone FROM Patients
 WHERE Name=”Boswell”)

This example declares a cursor “PatCur” that retrieves the names and telephone
numbers of all rows in the “Patients” table with the name “Boswell”. The
DECLARE statement does not itself execute any code.

Opening a Cursor

Before using a cursor in a program, you must open it, as follows:

&sql(OPEN PatCur)

Depending on the particular query, the amount of code executed by a cursor
OPEN can be very small or very large. When you finish using a cursor in a pro-
gram, you should close it, as follows:

&sql(CLOSE PatCur)
8-4 Open M/SQL Developer Guide

Open M/SQL Supports Two Kinds of Embedded SQL
Use FETCH to Retrieve Information into a Cursor

You use FETCH statements to retrieve information into a cursor. For example,
the statement:

&sql(FETCH PatCur INTO :name, :tel)

fetches the next row as selected by the DECLARE statement for “PatCur” into
the variables “name” and “tel”. Note that the SELECT statement has already
been specified as part of the DECLARE statement.

Use the INTO Clause to Pass Retrieved Values to M Variables

As in the non-cursor-based version, you must use an INTO clause to get values
from the query into the program. In cursor-based SQL, you may specify the
INTO clause as part of the DECLARE statement for a cursor, for example:

&sql(DECLARE PatCur CURSOR FOR
 SELECT Name, Telephone INTO :name, :tel
 FROM Patients WHERE Name=”Boswell”)
...
&sql(FETCH PatCur)

In this example, the FETCH statement retrieves values into the variables “name”
and “tel”.

Or, you may specify the INTO clause as part of each FETCH statement that uses
the cursor, for example:

&sql(DECLARE PatCur CURSOR FOR
 SELECT Name, Telephone
 FROM Patients WHERE Name=”Boswell”)

...
&sql(FETCH PatCur INTO :name, :tel)

The ability to use the INTO clause in a FETCH statement is provided by ANSI-
Standard SQL. The ability to use the INTO clause in a DECLARE statement is an
InterSystems extension. For more information on INTO clauses, see Chapter 9,
Open M/SQL Implementation of SQL.
Open M/SQL Developer Guide 8-5

Chapter 8—Embedded SQL
You may also use an INTO clause in a FETCH statement to override the INTO
clause in the corresponding DECLARE statement, for example:

&sql(DECLARE PatCur CURSOR FOR
 SELECT Name, Telephone INTO :name, :tel
 FROM Patients WHERE Name=”Boswell”)

...
&sql(FETCH PatCur INTO :n1, :t1)

Warning Do not specify %val as the host variable in the INTO clause for an SQL FETCH
statement—this causes the FETCH statement to produce empty values. You may
specify other “%” variables.

INSERT, UPDATE, and DELETE Operations Follow ANSI-Standard

Cursor-based INSERT, UPDATE, and DELETE operations follow ANSI-Stana-
dard SQL, for example:

&sql(DELETE FROM Patients WHERE CURRENT OF PatCur)

which deletes the row that was last FETCH’d using the cursor “PatCur”.
8-6 Open M/SQL Developer Guide

Referencing Macros in Embedded SQL
Referencing Macros in Embedded SQL

Embedded SQL text may contain macro references. The Open M/SQL macro
preprocessor expands these macro references before it translates the SQL text.
Therefore, you may use macros to generate parts of the SQL text. The following
example shows a series of macro definitions followed by an SQL statement that
references the macros:

#define TABLE Patients
#define FIELDS Name,Phone
#define VARS :n,:p
#define COND Name %STARTSWITH “JO”
...
&sql(SELECT $$$FIELDS INTO $$$VARS
FROM $$$TABLE WHERE $$$COND)

Conversely, you may use a macro reference to insert the &sql preprocessor func-
tion, as in the following example:

#define GETNEXT &sql(FETCH xcurs INTO :a,:y)
...
for i=1:1 $$$GETNEXT quit:SQLCODE=100 do ^process

When expanding the last line, the macro preprocessor first replaces the macro
reference “$$$GETNEXT” with “&sql(FETCH...)” and then expands the embed-
ded SQL expression.
Open M/SQL Developer Guide 8-7

Chapter 8—Embedded SQL
Internal and External Values

Every value returned by an embedded SELECT query consists of the internal
value (the value as stored in the database) plus an optional external value (if the
Data Dictionary specifies internal-to-external conversion for the specific field).

If a value has an external value, it is separated from the internal value by the
delimiter character $c(1). Therefore, every value returned by an embedded SQL
query has one of two formats:

internal

or

internal_$c(1)_external

For a complete description of internal and external field values, see Chapter 9,
Open M/SQL Implementation of SQL.

Multi-Line Values

When an INTO clause retrieves a multi-line (repeating) field into a variable, it
puts the count of lines in the variable node and the value of each line in a num-
bered node under the variable.

For example, a two-line field value is stored as follows in the variable x:

x=2
x(1)=first line
x(2)=second line

For a complete description of multi-line fields, see Chapter 9, Open M/SQL
Implementation of SQL.
8-8 Open M/SQL Developer Guide

Reserved Tag and Variable Names
Reserved Tag and Variable Names

When Open M/SQL generates intermediate code for a macro source routine that
contains embedded SQL, it automatically generates tag and variable names.

For non-cursor-based SQL statements, all of the generated tag names begin with
%0, and all of the generated variable names begin with %mmmsql.

For cursor-based SQL statements (suppose that operations are performed on a
cursor called “PatCur”), all of the generated tag names begin with either %Pat-
Cur or %0, and all of the generated variable names begin with either %PatCur or
%mmmsql.

Therefore, to avoid conflict with generated tag and variable names, macro source
routines containing embedded SQL should not begin any tag names with %0 or
any variable names with %mmmsql. They should also not begin tag or variable
names with %PatCur, where PatCur is any cursor name used in the program.

Portability

If a macro source routine contains embedded SQL statements, you must compile
the routine in the directory that contains the Data Dictionary definitions of all
base tables referenced by the SQL statements.

After compiling a macro source routine that contains embedded SQL SELECT
statements, you may copy the intermediate code and object code versions of the
routine to another directory or system and run there without copying any other
routines or globals, assuming the directory to which you copy uses a compatible
database structure.

Note You cannot copy the intermediate code and object code versions of a macro
source routine that contains any non-SELECT statement embedded SQL queries,
i.e., you cannot copy routines that contain INSERT, UPDATE, or DELETE state-
ments.
Open M/SQL Developer Guide 8-9

Chapter 8—Embedded SQL
Detailed Example

The macro source routine shown below lists the employees in a company depart-
ment. It asks the user to specify the first few characters of the department name.
If there are no department matches with the characters provided by the user, the
routine prints an error message and asks again. If there is one match, it lists the
employees for that department. If there is more than one match, it uses cur-
sor-based SELECT/FETCH operations to cycle through the department matches,
asking the user which match is desired.

EMPLIST ;List the employees in a given department
 ;
 ;Define macro “CAPITAL” to convert a string to uppercase and remove
 ;punctuation. Calls the entry point alphaup^yraz as a
 ;function:
 ;
#define CAPITALS(%a) $$alphaup^yraz(%a)
 ;
 ;Define macro “EXTERNAL” to get the external value of a returned
 ;field:
 ;
#define EXTERNAL(%a) $piece(%a,$c(1),2)
 ;
 ;Declare cursor for accessing Department table. Selects fields
 ;”Department” and “Name” from Department table and puts them into
 ;M variables deptid and deptname:
 ;
 &sql(DECLARE dcurs CURSOR FOR SELECT Department,Name
 INTO :deptid,:deptname
 FROM Department
 WHERE (%ALPHAUP(Name) %STARTSWITH :name))
 ;
 ;Declare cursor for accessing Employee table. Selects fields “Name”
 ;,”Phone”, and “Hiredate” into M variables empname, empphone,
 ;and empdate:
 ;
 &sql(DECLARE ecurs CURSOR FOR SELECT Name,Phone,HireDate
 INTO :empname,:empphone,:empdate
 FROM Employee WHERE (Department=:deptid))
 ;
 ;For formatting:
 ;
 kill set spaces=” “
 ;
 ;Prompt user to select a department:
 ;
askd write !,”Department name starts with: “ read name
 quit:name=””
 set name=$$$CAPITALS(name); to compare with
 %ALPHAUP(Name) below
 ;
 ;Non-cursor-based SELECT to get COUNT of Department rows whose
 ;name field begins with the value of the M variable name.
 ;COUNT goes into M variable deptcount, to be used below.
 ;Get the field values, too, in case COUNT is one:
 ;
 &sql(SELECT Department,Name,COUNT(Department)
 INTO :deptid,:deptname,:deptct
 FROM Department
 WHERE %ALPHAUP(Name) %STARTSWITH :name)
 go:+deptct=0 nomatch ;say “+deptct” because it might be null
 ;
8-10 Open M/SQL Developer Guide

Detailed Example
 ;--------If there is only one, go to gotd and list the employees:
 ;
 go:deptct=1 gotd
 ;
 ;--------Otherwise, loop through the matching
 ;--------departments, asking the user which one to use:
 ;
 &sql(OPEN dcurs)

dloop &sql(FETCH dcurs) if SQLCODE'=0 &sql(CLOSE dcurs) go nomatch
 write !,”Do you want the “_deptname_” department? “
 read answer go:answer=”” dloop go:”Yy”'[$extract(answer) dloop
 &sql(CLOSE dcurs)
 ;
gotd &sql(OPEN ecurs)
 write !,!,”Employees in the “_deptname_” department:”
 write !,” NAME PHONE HIRE DATE”
 write!,”__”
 ;
eloop &sql(FETCH ecurs) ;get values for the next employee in this dept
 if SQLCODE'=0 &sql(CLOSE ecurs) go askd
 write !,” “_empname_$e(spaces,1,39-$1ength(empname))
 write empphone_$e(spaces,1,14-$length(empphone))
 write $$$EXTERNAL(empdate) ;External value of
 ;hire date (MM/DD/YY)
 go eloop

 ;----
nomatch write “ No matching departments.” go askd
Open M/SQL Developer Guide 8-11

Chapter 8—Embedded SQL
8-12 Open M/SQL Developer Guide

Open M/SQL Deve
CHAPTER

9
Open M/SQL Implementation of
SQL
This chapter describes extensions to ANSI-Standard SQL that have been incor-
porated into Open M/SQL. It assumes that you are already familiar with standard
SQL syntax and usage.

Specifically, it covers the following topics:

 n Summary of Extensions
 n Joins
 n Aggregate Extensions
 n Duplicate Rows
 n Embedded SQL
 n Using the INTO Clause
 n Using the INTO Clause with Arrays
 n VALUES Extension for INSERT and UPDATE Queries
 n Multi-Line Fields
 n Internal and External Values
 n %INTERNAL and %EXTERNAL Functions
 n M Operators
 n Extensions to SQL Operators
 n %STARTSWITH
 n LIKE Predicate
 n Collation Sequence
 n %NOCHECK
 n SQL Transaction Processing
 n Privilege Operators
 n Using Subqueries
 n Query-Based Views
loper Guide 9-1

Chapter 9—Open M/SQL Implementation of SQL
Summary of Extensions

Open M/SQL’s implementation of Structured Query Language (SQL), referred to
throughout this chapter and this guide as InterSystems’ SQL, provides a variety
of useful extensions to the ANSI-Standard SQL Data Manipulation Language
(DML). These extensions enhance the power of SQL itself and help to integrate
SQL with M.

The following list summarizes InterSystems’ extensions to ANSI-Standard SQL:

 n One-way outer join (=* operator)
 n Implicit join (-> arrow syntax)
 n Aggregate extensions (%FOREACH, %AFTERHAVING, DISTINCT BY)
 n Embedded SQL
 n Use of the INTO clause in cursor declaration
 n SELECT INTO using mixed variables
 n Array INSERT and UPDATE
 n VALUES extension for INSERT and UPDATE queries
 n Multi-line fields
 n Internal and external values
 n %INTERNAL and %EXTERNAL functions
 n M operators
 n LIKE predicate
 n Starts-with operator (%STARTSWITH)
 n Collation sequence functions (%ALPHAUP,%UPPER,%EXACT)
 n %NOCHECK keyword
 n SQL Transaction processing keywords (%BEGTRANS, %INTRANS)
 n Privilege operators (GRANT, REVOKE, %CHECKPRIV)
 n Subqueries
 n Query-based view operators (CREATE VIEW, ALTER VIEW, DROP

VIEW)
9-2 Open M/SQL Developer Guide

Summary of Extensions
Added Keywords and Symbols

Keywords that represent InterSystems extensions to SQL begin with the percent
sign (%). These keywords include:

 n %AFTERHAVING
 n %ALPHAUP
 n %ALTER
 n %BEGTRANS
 n %CHECKPRIV
 n %EXACT
 n %EXTERNAL
 n %FOREACH
 n %FORM
 n %INTERNAL
 n %INTRANS
 n %MENU
 n %MEUNOBJ
 n %NOCHECK
 n %QUERY
 n %REPORT
 n %ROWCOUNT
 n %STARTSWITH
 n %THRESHOLD
 n %UPPER

Note The keywords listed above are all Open M/SQL reserved words. To see a com-
plete list of reserved words, refer to Appendix B of this guide.
Open M/SQL Developer Guide 9-3

Chapter 9—Open M/SQL Implementation of SQL
The symbols shown in the following table also represent InterSystems extensions
to SQL:

InterSystems’ SQL permits the use of the double quote characters (“...”) to
delimit literal values, in addition to the apostrophe character (‘...‘) used by ANSI-
Standard SQL.

InterSystems’ SQL allows you to negate the comparison and logical operators by
prefixing them with “not” or “NOT”, for example:

not= (equivalent to < >)

not< (equivalent to >=)

not> (equivalent to <=)

not?

not&

not[

not]

not!

Note The syntax “!=” is equivalent to “NOT=”.

Table 9-1: SQL Extension Symbols

Symbol Meaning

=* One-way outer join

-> Implicit join

_ # M scalar operators

? [M comparison operators

& ! M AND and OR

] M follows operator
9-4 Open M/SQL Developer Guide

Joins
Joins

Joins provide the means of linking data in one table with data in another table and
are frequently used in defining reports and queries.

A join is an operation that combines two tables to produce a third, subject to a
restrictive condition. Every row of the new table must satisfy the restrictive con-
dition.

One-Way Outer Joins

With standard “inner” joins, when rows of one table are linked with rows of a
second table, a row in the first table that finds no corresponding row in the sec-
ond table is excluded from the output table.

With one-way outer joins, all rows from the first table are included in the output
table even if there is no match in the second table. With one-way outer joins, the
first table pulls relevant information out of the second table but never sacrifices
its own rows for lack of a match in the second table.

When specifying a one-way outer join, the order in which you name the tables in
the FROM clause is very important. The first table you specify is the source table
for the join.

You specify an outer join by using the symbol =* in place of = in the WHERE
clause of the SQL query.

As an illustration of the difference between a regular join and a one-way outer
join, consider the query:

SELECT Patient.PName,Doctor.DName
FROM Patient,Doctor
WHERE Patient.Doctor = Doctor.Doctor

This query returns one row for each row of the “Patient” table that has a non-null
“Doctor” field. By contrast, examine the query:

SELECT Patient.PName,Doctor.DName
FROM Patient,Doctor
WHERE Patient.Doctor =* Doctor.Doctor

Though it differs only in the =* operator, this query returns all the rows of the
previous query plus the rows of the “Patient” table that have null value for the
“Patient.Doctor” field. For such rows, “Doctor.Name” is returned as null. This is
known as “null padding”—Open M/SQL automatically performs null padding.
Open M/SQL Developer Guide 9-5

Chapter 9—Open M/SQL Implementation of SQL
The one-way outer join condition expressed by the following syntax:

A.x =* B.y

specifies that every row in A be returned. For each A row returned, if there is a B
row such that A.x=B.y, all of the corresponding B values are also returned. If
there is no B row such that A.x=B.y, null padding causes all B values for that A
row to return as null.

One-way outer join conditions, including the necessary null padding, are applied
before other conditions. Therefore, a condition in the WHERE clause that cannot
be satisfied by a null-padded value (for example, a range or equality condition on
a field in B) effectively converts the one-way outer join of A and B into a regular
join.

For example, if you add the clause “AND Doctor.Age < 45” to the two “Patient”
table queries above, it makes them equivalent. However, if you add the clause
“AND Doctor.Age < 45” or “Doctor.Age is null”, it preserves the difference
between the two queries.

Implicit Joins

Implicit joins are pre-defined joins between tables which you specify in the Data
Dictionary. They allow you to define queries without specifying the WHERE
condition that is used to join tables.

On an internal level, an implicit join causes an additional join condition to be
implicitly added (ANDed) to the WHERE clause and the joined table to be
implicitly added to the FROM clause of the SQL query.

By definition, the implicit join is a one-way outer join. However, conditions on
fields of the join table may cause the join to act as a regular join (as explained
above).

Open M/SQL supports two types of implicit joins, designative references and
characteristic relationships. Characteristic relationships can be either child-to-
parent references or parent-to-child references.

Note You may only define designative and characteristic relationships among tables
that reside within a single database.
9-6 Open M/SQL Developer Guide

Joins
Arrow Syntax Specifies Implicit Joins

You use arrow syntax to specify implicit joins between tables. Arrow syntax
appears as a dash followed by a greater-than symbol (->).

In Open M/SQL, you may use arrow syntax in the following three cases:

1. To signify Designative References between tables

2. To signify Child-to-Parent References between tables

3. To signify Parent-to-Child References between tables

Note References to arrow syntax fields (such as a->b->c) may appear in the SELECT
clause of a general view definition without the use of an AS clause. This holds true
also for the SELECT clause of a subquery nested within the FROM clause of
another query. For example, the following syntax is valid in Open M/SQL:

SELECT c FROM (SELECT a->b->c FROM d)

Designative References

A designative reference is a many-to-one link between tables in which one field
of the designating table contains the Row IDs of all rows in the designated table.
A designative reference is said to be a non-dependent link because rows in the
referenced table exist independently of rows in the designating table. In relational
database terminology, the designating table has a “foreign key” on the referenced
table. In M terminology, the designating table has a “pointer” to the referenced
table. In Open M/SQL, a field that designates another table is called a designative
reference field.

The value of a designative reference field is the Row ID of a row in the desig-
nated table. Designative references provide a means of accessing information
from a row of the designated table and using that information together with the
associated row of the designating table.

If the field A.b is a designative reference field that designates table B and x is a
field in B, the reference:

A.b->x

points to the value of x in the row of table B that corresponds to A.b. It is inter-
preted as a reference to B.x with B added implicitly to the FROM clause and an
additional one-way outer join condition added implicitly to the WHERE clause,
of the form:

A.b =* B.RowID
Open M/SQL Developer Guide 9-7

Chapter 9—Open M/SQL Implementation of SQL
For example, the following query is equivalent to the second query on page 9-4:

SELECT Patient.PName,Patient.Doctor->DName
FROM Patient

The following query retrieves patient's name and patient's doctor's name for
every patient who lives in Boston:

SELECT Patient.PName,Patient.Doctor->DName
FROM Patient
WHERE Patient.City = “Boston”

Assuming that “Patient.Doctor” is a designative reference to the “Doctor” table,
this query is equivalent to:

SELECT Patient.PName,Doctor.DName
FROM Patient,Doctor
WHERE Patient.City = “Boston”
AND Patient.Doctor =* Doctor.Doctor

As another example, consider the query:

SELECT Patient.PName,Patient.Doc1->DName,Patient.Doc2->
DName

FROM Patient
WHERE Patient.City = “Boston”

This query is equivalent to:

SELECT Patient.PName,DoctorX.DName,DoctorY.DName
FROM Patient,DoctorX,DoctorY
WHERE City = “Boston”

AND Doc1 =* DoctorX.Doctor
AND Doc2 =* DoctorY.Doctor

Note If it does not create ambiguity, A.b->x may be abbreviated as b->x.
9-8 Open M/SQL Developer Guide

Joins
Characteristic Relationships

In the Data Dictionary, you can create tables that are characteristic of other
tables. This type of relationship is appropriate when one or more rows in the
child table correspond to a single row in the parent table. For example, a parent
table “Invoices” might have a child table “LineItems” containing one or more
line items for each invoice. The child table contains a “parent reference” field,
which is similar to a designative reference but points to the parent table.

A child table always designates its parent table. For this reason, a characteristic
relationship can be thought of as a kind of designative reference. However, a
characteristic relationship is more restrictive than a designative reference since
the join condition specifies that all rows of the child table must designate the
same parent table row. In this way, a characteristic relationship satisfies the rela-
tional definition of an inner join.

Child-to-Parent References

If table P is the parent of table C and x is a field in P, the implicit join syntax:

C.ParentRef->x

for a given C row refers to the value of x in that row's parent row. It is interpreted
as a reference to P.x with P added implicitly to the FROM clause and an addi-
tional one-way outer join condition added implicitly to the WHERE clause, of
the form:

C.ParentRef =* P.RowID

For example, given a parent table “Customer” with child table “Invoice”, the
query:

SELECT Customer->Name
FROM Invoice
WHERE Number = 51140

is equivalent to:

SELECT Customer.Name
FROM Invoice,Customer
WHERE Invoice.Number = 51140
AND Invoice.Customer =* Customer.Customer

This query returns the name of the customer to whom invoice number 51140
belongs.
Open M/SQL Developer Guide 9-9

Chapter 9—Open M/SQL Implementation of SQL
Parent-to-Child References

If P is the parent of C and x is a field in C, the implicit join syntax:

P.C->x

for a given row in P refers to the value of x in a child row of that row. It is inter-
preted as a reference to C.x with C added implicitly to the FROM clause and an
additional one-way outer join condition added to the WHERE clause, of the
form:

P.RowID =* C.ParentRef

Since there can be many children for a given parent, each child causes the query
to produce another row.

For example, if you have a parent table “Customer” with child table “Invoice”,
the query:

SELECT Invoice->Number
FROM Customer
WHERE Name = “Smith”

is equivalent to:

SELECT Invoice.Number
FROM Customer,Invoice
WHERE Customer.Name = “Smith”
AND Customer.Customer =* Invoice.Customer

This query returns the numbers of all invoices for all customers with the name
“Smith”.
9-10 Open M/SQL Developer Guide

Aggregate Extensions
Aggregate Extensions

InterSystems provides extensions to the SQL aggregate functions AVG, COUNT,
MAX, MIN, and SUM to make them more powerful and more flexible. These
extensions simplify the relationship of the SQL aggregate functions with the
GROUP BY and DISTINCT operators, effectively making aggregates, grouping,
and duplicate elimination three orthogonal components of the SQL language.

Open M/SQL’s aggregate function extensions are:

 n Aggregates alongside fields in SELECT and HAVING clauses
 n %FOREACH
 n %AFTERHAVING
 n DISTINCT BY in aggregates
 n SELECT DISTINCT BY

Aggregates as Query Columns

The first extension allows aggregates to appear in a SELECT list or HAVING
clause alongside field values. In ANSI-Standard SQL, if a query contains an
aggregate, the SELECT and HAVING clauses cannot contain any field values
outside of aggregates (unless they are listed in the GROUP BY clause). For
example, the query:

SELECT Salary,AVG(Salary)
FROM Employee

is invalid in ANSI-Standard SQL because it selects both an aggregate and a field
value.

InterSystems’ SQL treats an aggregate simply as another column in each returned
row, just as it treats a field or an expression composed of fields. In InterSystems’
SQL, the above example returns one row of output for each row contained in the
“Employee” table. The first column of each returned row is the salary of the cor-
responding employee. The second column is the value of the aggregate AVG(Sal-
ary), which is the same for each row and is the average salary for all employees.
This feature is also useful in conjunction with the %FOREACH extension (see
below).

The following query:

SELECT Name,Salary,AVG(Salary)
FROM Employee
HAVING Salary>AVG(Salary)

lists the name, salary and average salary for all employees whose salary is greater
than the average salary. ANSI-Standard SQL does not accept such a query.
Open M/SQL Developer Guide 9-11

Chapter 9—Open M/SQL Implementation of SQL
If the SELECT list consists only of aggregates and neither %FOREACH nor
GROUP BY is used (in which case, the SELECT list is acceptable to ANSI-Stan-
dard SQL), Open M/SQL adds an implicit DISTINCT to the query so that it
returns only one row. This is done because the value of the aggregate is the same
for each selected row. For example, the query:

SELECT AVG(Salary)
FROM Employee
WHERE Department = “SALES”

returns the same value of AVG(Salary) for each “Employee” row, namely the
average salary for all employees in the sales department.

Therefore, Open M/SQL adds an implicit DISTINCT to the query, as follows:

SELECT DISTINCT AVG(Salary)
FROM Employee
WHERE Department = “SALES”

This reduces the output to a single row consisting of the average salary in the
sales department.

Two additional extensions generalize aggregates and make them more powerful.
The %FOREACH keyword allows queries to produce different aggregate values
for different groups of returned rows, and the DISTINCT BY feature provides a
high degree of control over duplicate elimination.

%FOREACH

Obtaining aggregate results along with data is especially useful when combined
with the InterSystems extension keyword %FOREACH, which can appear only
inside an aggregate. The %FOREACH keyword divides the rows returned by a
query into groups and calculates a separate aggregate value for each group.

%FOREACH uses the following syntax:

Aggregate (expr1 %FOREACH (expr2,expr3,...))

where a list of one or more arbitrary expressions follows the %FOREACH key-
word.

For example, the query:

SELECT Name,Division,Department,
AVG(Salary %FOREACH(Division,Department))

FROM Employee

returns four columns of information for each row in the “Employee” database.
9-12 Open M/SQL Developer Guide

Aggregate Extensions
The output columns for this query are shown in the table below:

ANSI-Standard SQL uses the keyword GROUP BY for a similar purpose.
Whereas GROUP BY operates on an entire query, %FOREACH is more flexible
because it only affects the value of a particular aggregate. Therefore, although
Open M/SQL also supports ANSI-Standard SQL’s implementation of GROUP
BY, InterSystems recommends that you use %FOREACH and DISTINCT in all
cases.

For another example of %FOREACH, the query:

SELECT PName,Ward,Age,AVG(Age %FOREACH(Ward)),Sex,
AVG(Age %FOREACH(Sex))

FROM Patient

returns, for each patient, the average age of all patients in that patient’s ward and
the average age of all patients of that patient’s sex:

The output columns for this query are shown in the table below:

Column Value

1 Employee's name

2 Employee's division (call it DV)

3 Employee's department (call it DP)

4 Average salary for employees in division DV and department DP

PName Ward Age
AVG(Age)
By Ward Sex

AVG(Age)
By Sex

Smith 6 59 62 F 59

Jones 5 16 37 M 29

Clark 5 42 37 M 29

Baker 6 65 62 F 59

Mulligatawny 5 53 37 F 59
Open M/SQL Developer Guide 9-13

Chapter 9—Open M/SQL Implementation of SQL
%AFTERHAVING

The %AFTERHAVING keyword is another InterSystems extension that can
appear inside aggregates within a SELECT clause.

%AFTERHAVING uses the following syntax:

Aggregate (... %AFTERHAVING)

When Open M/SQL encounters an aggregate with %AFTERHAVING, it com-
putes the aggregate only for those rows that satisfy the query’s HAVING clause.

For example, the query:

SELECT Name,Salary,AVG(Salary),AVG(Salary %AFTERHAVING)
FROM Employee
WHERE City = “Boston”
HAVING Salary > AVG(Salary)

computes two different salary averages. The aggregate “AVG(Salary)” computes
the average salary for all Boston employees. The aggregate “AVG(Salary
%AFTERHAVING)” computes the average salary for those Boston employees
whose salary is greater than the average of all salaries for Boston employees.

Note Since InterSystems’ SQL allows aggregates and fields to appear together in
SELECT and HAVING clauses, you may compare the field “Salary” with the
aggregate “AVG(Salary)” in the HAVING clause.

DISTINCT BY

InterSystems’ SQL follows ANSI-Standard SQL by permitting the use of the
keyword DISTINCT in a SELECT clause to remove duplicate rows from the out-
put of a query. For example, the query:

SELECT DISTINCT Ward FROM Patient

returns one row for each distinct value of the field “Patient.Ward”.

InterSystems’ SQL also follows ANSI-Standard SQL by permitting the use of
DISTINCT for aggregates in a SELECT clause, thus eliminating duplicate values
from those used to compute the aggregate. For example, the query:

SELECT COUNT(DISTINCT City) FROM Patient

returns the number of distinct values in “Patient.City”.

InterSystems’ SQL provides an extension that allows you to eliminate just the
rows that have duplicate values for specific expressions.
9-14 Open M/SQL Developer Guide

Aggregate Extensions
This extension is the use of DISTINCT followed by the keyword “BY” and a
parenthesized list of expressions, specifying which fields and expressions should
be distinct in the returned rows. Rather than eliminating rows that are duplicates
in their entirety, it eliminates rows that have duplicate values for these expres-
sions.

DISTINCT BY uses the following syntax:

DISTINCT BY (expr1, expr2, ...)

For example, the query:

SELECT DISTINCT BY(City) Mayor,Phone
FROM Precincts

returns the “Mayor” and “Phone” of one of the rows for each value of “City”.
Note that the value of City itself is not selected by this query.

An example of DISTINCT BY with an aggregate function is:

SELECT SUM(DISTINCT BY(Name) Insurance)
FROM Employee

This query returns the sum of values for “Employee.Insurance”, including in the
sum only one insurance value for each employee name.

The following is an example of DISTINCT BY using an expression:

SELECT DISTINCT BY(Salary + Commission) Salary,Commission
FROM Employee

This query returns one salary and commission for each value of salary + commis-
sion.
Open M/SQL Developer Guide 9-15

Chapter 9—Open M/SQL Implementation of SQL
Duplicate Rows

ANSI-Standard SQL allows tables to contain multiple identical rows, i.e. rows
that have the same values for all fields. InterSystems’ SQL, however, does not
permit identical rows. In accordance with most relational models, InterSystems’
SQL requires that each table have a unique RowID field.

This extension eliminates potential problems with querying tables. Duplicate
rows can cause otherwise well-defined queries and aggregates to return varying
results depending on the order of the SQL clauses.

The functionality of duplicate rows is essentially preserved in Open M/SQL by a
table design that allows rows to be identical except for a unique Row ID field that
is automatically generated by the system (and may be custom-defined). This
approach allows the creation of duplicate rows for otherwise unique fields such
as social security numbers or company names, as they may be needed for look-
ups, while still preserving the unique row concept of the relational model.
9-16 Open M/SQL Developer Guide

Embedded SQL
Embedded SQL

Open M/SQL allows the embedding of SQL statements in M programs. This fea-
ture replaces and enhances the Module Language (ML) of ANSI-Standard SQL.

You may embed SQL at the macro source code level only.

To embed SQL in Open M/SQL macro source code, you must delimit each SQL
statement using the Open M/SQL preprocessor function &sql(...) or, alterna-
tively, ##sql(...)

References to M variables within embedded SQL must begin with a colon.

Embedded SQL communicates retrieved information to M programs by using an
INTO clause to read the values into M variables. For example, the embedded
SQL query:

&sql(SELECT PName, Phone INTO :name,:tel
FROM Patient
WHERE SSN=:num)

uses the M variable “num” as input for the WHERE clause and the M variables
“name” and “tel” to retrieve the output of the query.

For a complete description of how embedded SQL uses the INTO keyword to
read query values into M variables, refer to Chapter 8, Embedded SQL.

An INTO clause may include both subscripted and unsubscripted M local vari-
ables as well as a mixture of both.

Embedded SQL statements can modify the M if-switch. Keep this in mind when
embedding SQL inside an #if statement.
Open M/SQL Developer Guide 9-17

Chapter 9—Open M/SQL Implementation of SQL
Using the INTO Clause

Both ANSI-Standard SQL and InterSystems’ SQL permit the use of the INTO
keyword in queries.

In non-cursor-based SQL queries, you may use the INTO clause with the
SELECT statement, for example:

&sql(SELECT Name, Age INTO :n,:a
 FROM Employee WHERE SocSec = 555997777)

 selects a row from the “Employee” table and puts the values of the “Name” and
“Age” fields into the M variables “n” and “a”.

Note Since this is a non-cursor-based embedded SQL query, it can retrieve only one
row, even if more than one row matches the WHERE clause.

In cursor-based SQL queries, you may use the INTO clause with the FETCH
statement, for example:

&sql(FETCH c INTO :x,:y,:z)

where “c” is a cursor name.

By using its own INTO clause each FETCH can read the same cursor into differ-
ent sets of variables.

You May Use INTO in Cursor Declaration

An InterSystems’ SQL extension permits the use of the INTO clause in the cursor
declaration statement, for example:

&sql(DECLARE c CURSOR FOR
SELECT Date, Time, Result INTO :d, :t, :r
FROM Tests)

...
&sql(FETCH cursor)

Putting the INTO clause in the DECLARE statement (rather than the FETCH
statement) produces slightly faster code and prevents having to repeat the INTO
clause in each FETCH. However, you must be careful not to modify the variables
referenced in the INTO clause while the cursor is open.

If you put an INTO clause in the DECLARE statement, you may override it with
an INTO clause in a FETCH statement.
9-18 Open M/SQL Developer Guide

Using INTO with Arrays
Using INTO with Arrays

InterSystems’ SQL allows you to use the INTO clause with M arrays to do all of
the following:

 n Retrieve values from a SELECT query into an array
 n INSERT values from an array into a table
 n UPDATE a table with values stored in an array

SELECT INTO Using Arrays

InterSystems’ SQL allows the INTO clause in a SELECT statement to retrieve
values into an array.

This applies only to queries where all of the fields in the SELECT clause yield
from a single table specified in the FROM clause.

To do this, the INTO clause must retrieve values into a subscripted M variable,
and you must leave the last subscript of the M variable unspecified, for example:

INTO :a()

puts each retrieved field value into the array element:

a(col)

where “col” is the field’s column number in the base table, as defined in the Data
Dictionary. Similarly, the INTO clause:

INTO :a("foo",)

puts each retrieved field value into the array element:

a(“foo”,col)

For example, if the “Employee” table has the following fields:

Column Name

1 Employees (RowID)

2 Name

3 Address (multi-line)

4 Department

5 Location

6 Telephone
Open M/SQL Developer Guide 9-19

Chapter 9—Open M/SQL Implementation of SQL
the following embedded SQL query:

&sql(SELECT * INTO :emp()
 FROM Employee
 WHERE Name = "Smith")

reads the “Employees” field into emp(1), “Name” into emp(2), etc.

Since “Address” is a multi-line field, emp(3) is set to the number of address lines,
emp(3,1) is set to the first line of “Address”, emp(3,2) to the second, and so on.

Caution Open M/SQL does not support use of the INTO clause to retrieve fields from a
view into a local array. It only supports use of the INTO clause to retrieve fields
from a base table into a local array.

SELECT INTO Using Mixed Variables

You can also mix subscripted and unsubscripted variables in the INTO clause of
an SQL SELECT query. This allows you to use the array notation in a query
involving expressions and/or fields from other tables. In this case, you must
include additional scalar variables in the INTO clause to retrieve the values of
expressions and fields from other tables.

When combining an array with other variables in an INTO clause, the array refer-
ence must always appear first. The array receives all values for fields from the
table specified in the FROM clause. The remaining variables in the INTO list
match up one-by-one with the expressions and fields from referenced tables in
the SELECT clause. For example, the query:

SELECT PName, Doctor->DName, Sex, AVG(Age)
INTO :p(“items”,),:x,:y
FROM Patient

where “PName” is column 2 in “Patient” and “Sex” is column 5 in the “Patient”
table, returns the following values:

p(“items”,2)=PName
p(“items”,5)=Sex
x=Doctor->DName
y=AVG(Age)
9-20 Open M/SQL Developer Guide

Using INTO with Arrays
INSERT and UPDATE INTO Using Arrays

InterSystems’ SQL allows you to use a variable reference with unspecified last
subscript to pass an array of values into an embedded SQL INSERT or UPDATE
query.

For example, the embedded SQL query:

&sql(INSERT INTO Employee
VALUES :emp(“profile”,))

causes each field in the inserted “Employee” row to be set to:

emp(“profile”,col)

where “col” is the field’s column number in the “Employee” table, as defined in
the Data Dictionary.

Note that whereas ANSI-Standard SQL requires the table name to be followed by
a list of field names, as in:

INSERT INTO Employee (Name,Telephone)
VALUES (:name,:tel)

InterSystems’ SQL does not require that you provide a list of field names after
the table name when you use an array reference. The presence and absence of
array elements determines the fields into which the query inserts values. This
enables the contents of the array to dictate which fields receive insert values.

Using an Array Reference with an INSERT Query

ForINSERT queries, if an array entry is missing (undefined as opposed to null)
and the corresponding field has an explicitly defined default value, the default
value becomes the value of that field. However, if an array entry is explicitly
defined as null, the default value does not override the null setting.

In the emp(“profile”) example above, if the “Employee” table has the following
fields with corresponding default values as defined in the Data Dictionary:

Column Name Default

1 Employee (Row ID)

2 Name

3 Address

4 Department S

5 Location

6 Telephone
Open M/SQL Developer Guide 9-21

Chapter 9—Open M/SQL Implementation of SQL
and the array values defined are:

emp(“profile”,2)=”Smith”
emp(“profile”,3)=2
emp(“profile”,3,1)=”1441 Main St.”
emp(“profile”,3,2)=”Cableton, IL 60433”
emp(“profile”,5)=””
emp(“profile”,7)=25
emp(“profile”,”next”)=”F”

the inserted “Employee” row has “Name” set to “Smith”, “Address” set to a
two-line value, “Department” set to the default “S”, and “Location” set to null.
The default value for “Location” is not used since the corresponding array ele-
ment is defined with a null value. The array elements “7” and “next” do not cor-
respond to column numbers in the “Employee” table, therefore the query ignores
them.

Using an Array Reference with an UPDATE Query

An UPDATE query can also reference an array with unspecified last subscript.
Whereas INSERT uses the presence and absence of array elements to assign val-
ues and default values to a newly created row, UPDATE uses the presence of an
array element to indicate that the corresponding field should be updated. For
example, consider the following embedded SQL statement:

&sql(UPDATE Employee
 VALUES :emp(“profile”,)
 WHERE Employee = 379)

Given the above definitions and array values, this statement will update the val-
ues of the “Name” and “Location” fields of the “Employee” row for which Row
ID = 379.

You may also use an array reference with an UPDATE query that targets multiple
rows, for example:

&sql(UPDATE Employee
 VALUES :emp(“profile”,)
 WHERE Type = “PART-TIME”)

As with INSERT, the contents of the array dictate which fields receive update
values.
9-22 Open M/SQL Developer Guide

VALUES Extension for INSERT and UPDATE Queries
VALUES Extension for INSERT and UPDATE Queries

Typically, INSERT queries use the following syntax:

INSERT INTO <tablename> (<fieldname>,<fieldname>,...)
VALUES (...,...)

and UPDATE queries use the following syntax:

UPDATE <tablename> (<fieldname>,<fieldname>,...)
VALUES (...,...)

where the elements in the VALUES clause correspond in sequence to the fields
specified after the table name.

Note If there is only one value element specified in the VALUES clause, it is not neces-
sary to enclose the element in parentheses.

InterSystems’ SQL allows INSERT and UPDATE queries to use either syntax
above without requiring you to explicitly specify a list of field names after the
table name.

In order to skip the step of specifying a list of field names after the table name,
your query must meet the following two criteria:

1. The number of values specified in the VALUES clause is the same as the
number of fields in the table.

2. The values in the VALUES clause are listed in order of the internal column
numbers of the fields.

For example, the query:

INSERT INTO tabl1 VALUES (5,”John”)

is equivalent to the query:

INSERT INTO tabl1 (age,name) VALUES (5,”John”)

if the table “tabl1” has exactly two fields.

In this example, the value 5 is assigned to the field with the lower column num-
ber, and the value “John” is assigned to the other field.
Open M/SQL Developer Guide 9-23

Chapter 9—Open M/SQL Implementation of SQL
Multi-Line Fields

Open M/SQL extends the relational database model by permitting the creation of
multi-valued fields, commonly called multi-line fields by M programmers. Such
fields are useful for storing information about a single entity where that informa-
tion spans several lines. A typical multi-line field might be used for an address or
a block of comment text. While such structures are useful, they violate the First
Normal Form relational precept and, therefore, are not relationally correct. The
user should be aware that SQL contains no operators for manipulating multi-line
fields, and that it is impossible to perform comparisons or row ordering with
multi-line fields.

InterSystems’ SQL allows you to use multi-line fields in both output queries
(SELECT) and input queries (INSERT and UPDATE).

Using Multi-Line Fields in SELECT Queries

In SELECT queries, you may reference multi-line fields in the SELECT state-
ment by using an INTO clause to copy the contents of the field into a variable.

Note You may not use multi-line fields with comparison operators in the WHERE clause
or in any of the row ordering clauses. If you attempt to use a multi-line field in a
WHERE clause or in a row ordering clause, Open M/SQL returns an error mes-
sage when it tries to process the query.

When an INTO clause copies a multi-line field into a variable, it creates an array
by putting the count of lines in the variable node and the value of each line in a
descendant node under the variable. For example, if the field “Patient.Address”
for patient row 758 contains the following three lines:

426 Sunday Drive
Apt. 12C
Roberta, CA 90126

the embedded query:

&sql(SELECT Address INTO :a
 FROM Patient
 WHERE Patient = 758)

places the following values in “a”:

a=3
a(1)=”426 Sunday Drive”
a(2)=”Apt. 12C”
a(3)=”Roberta, CA 90126”
9-24 Open M/SQL Developer Guide

Multi-Line Fields
Similarly, the query:

&sql(SELECT Address INTO :b(“addr”)
 FROM Patient
 WHERE Patient = 758)

places the following values in “b”:

b(“addr”)=3
b(“addr”,1)=”426 Sunday Drive”
b(“addr”,2)=”Apt. 12C”
b(“addr”,3)=”Roberta, CA 90126”

Using Multi-Line Fields in INSERT and UPDATE Queries

You may also target multi-line fields with INSERT and UPDATE queries by
using an array in the VALUES clause as input to the INSERT or UPDATE state-
ment. For example, the query:

&sql(UPDATE Doctors(Address)
 VALUES :b(“addr”)
 WHERE Doctors = :doc)

which uses the “b” values listed above as input to the multi-line field “Doc-
tors.Address”.

Since “Doctors.Address” is a multi-line field in this example, the variable
b(“addr”) must contain a multi-line value as above. If, however, the input value is
not a variable (for example, if it is a constant), it is used as the first line of a
multi-line value. For example, the query:

&sql(UPDATE Doctors(Address)
 VALUES “Main Street”
 WHERE Doctors = :doc)

sets “Doctors.Address” to a one-line value whose first line is “Main Street”.
Open M/SQL Developer Guide 9-25

Chapter 9—Open M/SQL Implementation of SQL
Internal and External Values

The concept of internal and external values pertains to fields that are defined in
the Data Dictionary to have External-to-Internal and/or Internal-to-External Con-
version Code. The “internal” value is the value that is stored in the database. The
“external” value is a printable or user-readable form.

By default, the following Open M/SQL field types have conversion code and
maintain both internal and external values:

 n Number
 n Date
 n Time
 n Yes/No

And, the following field type has the option to generate conversion code for
maintaining both internal and external values.

 n Multiple Choice

For example, the internal value for a field of data type Date has the M format of
$H and the external value is a printed representation that depends on which of six
date formats the application developer chooses for that field. Furthermore, you
can explicitly specify additional conversion code by inserting M code.

In SQL queries, the following rules apply concerning internal and external val-
ues:

1. For a given field, the internal value is the first piece of $c(1) and the external
value is the second piece of $C(1), as follows:

Internal_$c(1)_External

2. Variables and constants are neither internal nor external and have no data
types. Their use depends on context. When comparing a field with a variable,
the variable should contain a value suitable for comparison with the field’s
internal value.

3. As an exception to rule 2, constants are treated specially in conditions such
as:

Field <Op> Constant

or

Constant <Op> Field

where <Op> is any comparison operator or where <Op> specifies input to a
field in an INSERT or UPDATE statement.
9-26 Open M/SQL Developer Guide

Internal and External Values
In this context, the field’s external-to-internal conversion code is applied to
the constant. This allows a comparison such as:

StartDate > “06/01/86”

to test whether or not the internal value of the field “StartDate” is greater than
the internal representation of “06/01/86”, i.e. whether “StartDate” is after
06/01/86.

4. Variables are also treated specially in the same two conditions, namely:

Field <Op> Variable

or

Variable <Op> Field

where <Op> is any comparison operator or where <Op> specifies input to a
field in an INSERT or UPDATE statement.

In this context, the variable can optionally be given an internal and external
value by using the delimiter character $c(1). If the variable’s value is:

Internal_$c(1)_External

or simply:

Internal

where “Internal” has a non-null value, “Internal” is taken as the internal
value for either comparison with a field or input to a field.

If the value is:

$c(1)_External

the field’s external-to-internal conversion is applied to “External” to produce
an internal value.

5. For all fields that have internal-to-external conversion code defined in the
Data Dictionary, each value returned by an embedded SELECT query also
takes the form:

Internal_$c(1)_External

If there is no internal-to-external conversion code defined in the Data Dictio-
nary, the value returned is simply

Internal

In either case, the internal value is:

$piece(value,$c(1),1)
Open M/SQL Developer Guide 9-27

Chapter 9—Open M/SQL Implementation of SQL
The following example uses both internal and external values returned by a
query:

&sql(SELECT HireDate INTO :hiredate
FROM Employee
WHERE SocSec = 426713280)

set intdate=$piece(hiredate,$c(1))
set extdate=$piece(hiredate,$c(1),2)
if intdate>$h write !,”Not hired until”,extdate

6. Each value returned by a non-embedded SELECT query is the result of
applying any applicable internal-to-external conversion code.
9-28 Open M/SQL Developer Guide

%INTERNAL and %EXTERNAL Functions
%INTERNAL and %EXTERNAL Functions

InterSystems’ SQL supports the following two SQL unary functions:

 n %EXTERNAL
 n %INTERNAL

When applied to a field for which Internal-to-External conversion code is
defined, %EXTERNAL returns the external value for that field.

When applied to a field for which Internal-to-External conversion code is
defined, %INTERNAL returns the internal value for that field.

You may reference the %EXTERNAL and %INTERNAL keywords in the
SELECT, WHERE, and ORDER BY clauses of an SQL query, using the follow-
ing syntax:

SELECT %EXTERNAL(FieldName)

Or, you may specify the field by its column number, as follows:

SELECT %EXTERNAL(FieldColumnNumber)

For example:

SELECT %INTERNAL(FieldName),...
FROM Table
WHERE %INTERNAL(FieldName) = 'some value' ...
ORDER BY %INTERNAL(FieldName)

%EXTERNAL enables you to retrieve and manipulate the external value of a
field. For example, you might define conditions based on the external value of a
field, or you might define a field to sort by its external value. This is especially
useful for Multiple Choice fields, where the internal value is a number, but you
need to test or sort by the external value.

%INTERNAL enables you to retrieve and manipulate the internal value of a
field. For example, you might define conditions based on the internal value of a
field, or you might define a field to sort by its internal value. This is especially
useful for Multiple Choice fields, where the external value is a number, but you
need to test or sort by the internal value.

If the field does not have a separate external value (i.e., Internal-to-External con-
version code is not defined), %INTERNAL and %EXTERNAL both return the
field’s internal value. This makes it possible to use these keywords even when
you do not know whether or not a field has Internal-to-External conversion code
defined for it.
Open M/SQL Developer Guide 9-29

Chapter 9—Open M/SQL Implementation of SQL
M Operators

InterSystems has extended SQL to support several M operators. This increases
the expressive power of SQL and helps to better integrate the two languages.

The table below lists and describes the M operators supported by InterSystems’
SQL:

Table 9-2: M Operators Supported By InterSystems’ SQL

Operator Usage

 _
(space followed
by underscore)

Concatenates two strings wherever it is not part of an identifier. You
must use a space to prevent ambiguity.
The expression:

A_B
is the name A_B containing an underscore.
While the expression:

A _B
is the concatenation of A with B.

&
!

For compatibility with the M language, InterSystems’ SQL allows “&”
as a synonym for AND and “!” as a synonym for OR.

?
#
/
\
[
]

InterSystems’ SQL also recognizes the following M operators:
 n ? — pattern match
 n # — modulo (remainder)
 n / — division
 n \ — integer division
 n [— string contains
 n] — follows

= InterSystems’ SQL implements the equals sign in accordance with
the M convention rather than the ANSI-Standard SQL convention for
comparing text strings of unequal length. Whereas ANSI-Standard
SQL pads the shorter text string with blank spaces, InterSystems’
SQL does not. Therefore, (“a “ = “a”) is false.
9-30 Open M/SQL Developer Guide

M Operators
Pattern Match Operator Can Test Variables

InterSystems’ SQL allows you to use the pattern match operator (?) against user-
defined variables.

To do this, you must prefix the variable name with the indirection symbol “@”.

For example, suppose you set the variable “namevar” to a pattern match condi-
tion, as follows:

S namevar=“1.10A1“,”1.5A”

You could use the pattern match operator to reference this pattern match condi-
tion in the WHERE caluse of a query, as follows:

SELECT Name
FROM Employees
WHERE Name ? :@namevar

This query retrieves names from the “Employees” table for all rows where the
“Name” field has the form:

<1-10 alphabetic characters>,<1-5 alphabetic characters>

such as:

Smith,John

but not:

Washington,George

NOT
or
not

You may negate comparison and boolean operators by prefixing
them with the word “not” or “NOT” (without intervening spaces).
You may also use the word “not” as a prefix for an entire condition.
The expressions:

WHERE NOT Age < 5

and
WHERE Age NOT < 5

are synonymous.
Note: You cannot use the M apostrophe (‘) to signify NOT because

SQL uses the apostrophe to signify quotation marks for lit-
eral strings.

!= InterSystems’ implementation of SQL supports the syntax “!=”. This
syntax is equivalent to “NOT=”.

Table 9-2: M Operators Supported By InterSystems’ SQL (Continued)

Operator Usage
Open M/SQL Developer Guide 9-31

Chapter 9—Open M/SQL Implementation of SQL
Extensions to SQL Operators

Open M/SQL provides extensions to several SQL operators, as described below.

[NOT] IN Operator

InterSystems’ SQL supports the use of the [NOT] IN operator with fields of data
type Date and Time in WHERE clause conditions. The [NOT] IN operator tests
whether or not a date or time falls within a specified date/time range.

For Date fields, the [NOT] IN operator uses the following syntax:

Date_Field [NOT] IN (Start_Date,End_Date)

where Start_Date is a start date in external format, and End_Date is an end date
in external format.

For Time fields, the [NOT] IN operator uses the following syntax:

Time_Field [NOT] IN (Start_Time,End_Time)

where Start_Time is a start time in external format, and End_Time is an end time
in external format.

For example:

SELECT *
FROM Table
WHERE Date_Field IN ('10/25/1994','01/26/93') AND
Time_Field IN ('10:25PM','11:35AM')

Concatenation Operator

InterSystems’ SQL supports the use of the SQL concatenation operator (||).

For example, if the fields “F1” and “F2” have the following values:

F1 = “Part One”, F2 = “Part Two”

the query:

SELECT F1,F2,F1||‘ & ‘||F2 INTO :val1,:val2,:val3
FROM Table
WHERE F1||’ & ‘||F2=‘Part One’||‘ & ’||‘Part Two’

yields the following results:

val1 = “Part One”
val2 = “Part Two”
val3 = “Part One & Part Two”
9-32 Open M/SQL Developer Guide

%STARTSWITH
%STARTSWITH

InterSystems’ SQL provides the extension keyword %STARTSWITH.

%STARTSWITH is a comparison operator that tests to determine whether one
character string is a prefix of another.

%STARTSWITH uses the following syntax:

expr1 %STARTSWITH expr2

where the expressions can be any valid SQL expressions.

For example, a query that contains the WHERE clause:

WHERE ProductCode %STARTSWITH “S”

returns all rows where the value of the “ProductCode” field starts with the char-
acter “S”.

%STARTSWITH treats fields of data type Name somewhat differently. With
fields of data type Name, %STARTSWITH can match both the last name and
first name strings on either side of the comma.

For example, if “EmpName” is a field of data type Name, then a query that con-
tains the WHERE clause:

WHERE EmpName %STARTSWITH “SM,J”

returns all rows for which $PIECE(EmpName,“”,“”,1) starts with “SM” and
$PIECE(EmpName,“”,“”,2) starts with “J”. For example:

EmpName = “SMITH,JANE”
EmpName = “SMOOT,JERRY”

but not:

EmpName = “SMITH,HERMIONE”

The %STARTSWITH operator and other comparison operators are modified by
collation sequences as described in the section entitled “Collation Sequence” on
page 9-37.
Open M/SQL Developer Guide 9-33

Chapter 9—Open M/SQL Implementation of SQL
LIKE Predicate

Open M/SQL supports the ANSI Standard SQL-2 LIKE predicate for performing
comparison tests on two values.

The LIKE predicate uses the following syntax:

<match value> [NOT] LIKE <search pattern> [ESCAPE <escape
character>]

Where the syntax elements have the following meanings:

1. The value for <match value> may be a field or a literal string. If it is a literal
string, it must be enclosed in single quotes.

2. The value for <search pattern> can be either a literal string or a host variable.
If it is a literal string, it must be enclosed in single quotes. Literal strings may
reference the special pattern matching characters “%” and “_”.

3. If the ESCAPE clause is specified, the value for <escape character> must be
one and only one character. Also, if the escape character is present in the
search pattern string, then the character following the escape character within
the pattern string must be one of the special pattern matching characters,
either “%” or “_”.

Below is a sample SQL query that uses the LIKE predicate in the WHERE
clause:

SELECT FieldA, FieldB, FieldC
FROM Table
WHERE FieldA LIKE ‘abc%’

This query retrieves “FieldA”, “FieldB”, and “FieldC” from “Table” for all rows
where “FieldA” starts with the character string “abc” and has any number of
characters in length.

Note By default, the LIKE predicate always uses the external value of a field for com-
parison purposes.

Note The LIKE predicate uses the collation function (EXCAT, ALPHAUP, UPPER) used
by the match value on the left side of the equation to perform the comparison test.

Special Pattern Matching Characters

The LIKE predicate supports the following two special pattern matching charac-
ters:

 n “_” (underscore symbol)
 n “%” (percent sign)
9-34 Open M/SQL Developer Guide

LIKE Predicate
These special pattern matching characters are defined as follows:

“_” You may use this special character in the search pattern string to match
any single character in the same position in the match value string.

Examples include:

‘>Match This’ LIKE ‘_Match This’ (Match)
‘>>Match This’ LIKE ‘_Match This’ (No Match)
‘Match This’ LIKE ‘_Match This’ (No Match)

“%” You may use this special character in the search pattern string to match
any number of characters (zero or more) between the last exact match-
ing character and the next exact matching character in the match value
string.

Examples include:

‘>Match This’ LIKE ‘%Match This’ (Match)
‘>>Match This’ LIKE ‘%Match This’ (Match)
‘Match This’ LIKE ‘%Match This’ (Match)
‘Match This!’ LIKE ‘%Match This’ (No Match)
‘Match??? This!!!’ LIKE ‘Match% This%’ (Match)

Specifying a Host Variable as the Search Pattern

The search pattern you specify after the LIKE predicate does not always have to
be a string literal. You may also specify a search pattern that references a host
variable, for example:

‘Match This’ LIKE :hostvar

ESCAPE Qualifier

Open M/SQL's implementation of the LIKE predicate supports the ESCAPE
qualifier. The ESCAPE qualifier lets you suppress the meaning of the special
characters “%” and “_” in the search pattern string and treat them instead as lit-
eral characters.

For example, the following SQL statement:

‘Match This’ LIKE ‘$_Match This’ ESCAPE ‘$’

evaluates to the following M code:

“Match This”?1”_Match This”

which is not true.
Open M/SQL Developer Guide 9-35

Chapter 9—Open M/SQL Implementation of SQL
However, the following SQL statement:

‘Match_This’ LIKE ‘Match$_This’ ESCAPE ‘$’

evaluates to the following M code:

“Match_This”?1”Match_This”

which is true.

Error Handling

If the syntax of the LIKE predicate contains a mistake, Open M/SQL returns the
error code SQLCODE=-63, and you see the following error message:

Data Exception - invalid escape character
9-36 Open M/SQL Developer Guide

Collation Sequence
Collation Sequence

Collation sequence is the ordering of character strings.

Open M/SQL supports six collation sequence functions:

 n EXACT
 n ALPHAUP
 n UPPER
 n Plus (+)
 n Minus (-)
 n Space ()

These collation sequence functions determine the ordering of the output values
produced by SELECT queries as well as the behavior of comparison operations.

EXACT

The EXACT collation sequence orders pure numeric values (values for which
x=+x) in numeric order first, followed by all other characters in string order.
EXACT uses the same collation sequence for strings as the ANSI-Standard
ASCII collation sequence. According to the ASCII collation sequence, digits are
collated before uppercase alphabetic characters and uppercase alphabetic charac-
ters are collated before lowercase alphabetic characters. Punctuation characters
occur at several places in the sequence.

Note Numbers that are not canonic (e.g., 02 or 1.30) collate as strings rather than num-
bers.

The following example shows several strings listed in EXACT collation
sequence:

Note that “‘” (apostrophe) collates before “A”.

EXACT is the default collation sequence function. If you prefer another collation
sequence, you may choose one of the collation sequences described below.

String

A'Ha

ARNOLD

Adams

a'Choo

aaronson
Open M/SQL Developer Guide 9-37

Chapter 9—Open M/SQL Implementation of SQL
ALPHAUP

The ALPHAUP collation sequence function converts all strings to ALPHAUP
format and then collates or compares according to the EXACT collation
sequence.

ALPHAUP format removes all punctuation (non-alphanumeric) characters
except commas and question marks and converts all alphabetic characters to
uppercase.

The following example shows the same strings as above listed in ALPHAUP col-
lation sequence:

UPPER

The UPPER collation sequence function converts all strings to UPPER format
and then collates or compares according to the EXACT collation sequence.

UPPER format converts all alphabetic characters to uppercase but leaves punctu-
ation characters intact.

The following example shows the same strings as above listed in UPPER colla-
tion sequence:

String Compared As

aaronson AARONSON

a’Choo ACHOO

Adams ADAMS

A’Ha AHA

ARNOLD ARNOLD

String Compared As

a’Choo A’CHOO

A’Ha A’HA

aaronson AARONSON

Adams ADAMS

ARNOLD ARNOLD
9-38 Open M/SQL Developer Guide

Collation Sequence
Plus, Minus, and Space

The Plus, Minus, and Space collation sequence functions are directed towards the
collation of numeric values.

The table below describes the Plus, Minus, and Space collation sequence func-
tions:

Field Collation Sequence

In Open M/SQL, all fields of data type Name and Text use one of the six colla-
tion sequence functions described above (EXACT, ALPHAUP, UPPER, Plus,
Minus, or Space).

Whenever you define a base table field in the Data Dictionary of data type Name
or Text, you assign a collation sequence function to it. The default collation
sequence for all Name and Text fields is EXACT.

The collation sequence function you assign to a field affects the results of SQL
ORDER BY clauses involving that field. Choice of collation sequence also
affects comparisons on that field using any of the comparison operators, listed
below:

<
>
=
>=
<=
!=
not>
not<
%STARTSWITH

Table 9-3: Plus, Minus, and Space Collation Sequence Functions

Function Effect On Collation Sequence Index Map Syntax

Plus (+) Deletes leading character zeros so that numeric val-
ues with leading character zeros collate as numbers
rather than as character strings.

+{field}

Minus (-) Reverses the collation sequence for numeric values.
This causes numeric values to collate in descending
order (highest to lowest) instead of ascending order
(lowest to highest).

-{field}

Space () Forces all values to collate as character strings. This
causes all numeric values to collate after all character
strings.

“ ”_{field}
Open M/SQL Developer Guide 9-39

Chapter 9—Open M/SQL Implementation of SQL
Collation Sequence and ORDER BY

When an SQL query has an ORDER BY clause that names one field with a data
type of Text or Name, as in:

SELECT EmpName ...
ORDER BY EmpName

the query uses the collation sequence function defined for the order-by field to
determine the order in which it returns matching rows.

If a query has an ORDER BY clause that names any other field or expression, as
in:

SELECT DateEnd-DateStart ...
ORDER BY 1

the query collates its output according to the EXACT collation sequence func-
tion.

If the field “EmpName” uses the ALPHAUP collation sequence function, the
example:

SELECT DateEnd-DateStart,EmpName ...
ORDER BY 1,2

orders the returned rows first by “DateEnd-DateStart” in EXACT collation order,
and within that by “EmpName” in ALPHAUP order.

Collation Sequence and Comparisons

When performing comparisons of character string values, Open M/SQL typically
uses the EXACT collation sequence function.

If either side of a comparison operator is a field of data type of Name or Text,
Open M/SQL uses the collation sequence function defined for the field in the
Data Dictionary. For example, if “EmpName” is defined to use the ALPHAUP
collation sequence function, the comparison:

EmpName > “jo”

tests “EmpName” in ALPHAUP format to determine whether it is greater than
(follows in collation sequence) the string “JO”. In effect, Open M/SQL implicitly
applies the ALPHAUP function (see %ALPHAUP below) to both sides of the
comparison to convert each side to ALPHAUP format. After the conversion, it
performs the comparison based on the EXACT collation sequence.
9-40 Open M/SQL Developer Guide

Collation Sequence
If both sides of a comparison are fields of data type Name or Text, Open M/SQL
uses precedence order to choose the collation sequence for the comparison. The
precedence order is:

1. ALPHAUP (highest)

2. UPPER

3. EXACT (lowest)

Open M/SQL chooses the collation sequence with the higher precedence.

%ALPHAUP, %UPPER, and %EXACT

InterSystems’ SQL supports three extension functions to force the conversion of
a value to ALPHAUP, UPPER, or EXACT format, as described above.

These extension functions are:

 n %ALPHAUP
 n %UPPER
 n %EXACT

Suppose that the field “EmpName” is defined to use the ALPHAUP collation
sequence. The example:

%ALPHAUP(EmpName) > “jo”

compares “EmpName” converted to ALPHAUP format with the lowercase string
“jo”. Since %ALPHAUP(EmpName) is an expression rather than a field, Open
M/SQL uses the EXACT collation sequence to perform the comparison.

Similarly, the example:

%EXACT(EmpName) > “jo”

compares the EXACT value of “EmpName” with the lowercase string “jo”.

In other contexts, the %ALPHAUP and %UPPER functions simply convert indi-
vidual values. The SELECT clause:

SELECT %ALPHAUP(EmpName)_“ -- ”_Phone

returns a value consisting of the “EmpName” field converted to ALPHAUP for-
mat concatenated with the constant “ -- ” concatenated with the EXACT value of
the “Phone” field, for example:

RADCLIFF,CHRIS -- 723-8255
Open M/SQL Developer Guide 9-41

Chapter 9—Open M/SQL Implementation of SQL
Changing the Default Collation Sequence

Under some circumstances, you may want to change the default M collation
sequence to be something other than EXACT. Though it is possible, you should
do this only with extreme caution. Three possible reasons for changing the
EXACT collating sequence are:

1. To handle global data that was created previously with a particular collation
sequence.

2. To build an application that uses a national character set different from the
default character set.

3. To build an application requiring non-standard ordering of strings containing
numbers.

Changing Collation Sequence on ISM Systems

Collation sequence consists of two components:

1. Character set — This is a string of ASCII character codes that gives the
members of the set and their collation order.

2. String collation switch — If ON, the collation order applies to all strings
including numbers. If OFF (default), canonic numeric strings (x=+x) are col-
lated first in numeric order followed by all other strings in collation order.

You can change these two components independently, as follows:

 n For a particular process, the $ZU(23) function changes the character set and
string collation switch for the M variable] (“follows”) operator and for
$ORDER on local variables.

 n For a particular global, you may use the %GCREATE utility to create n M
global with a revised character set and string collation switch. You cannot
change this again later for the created global.

You may use the System Manager’s Modify System Parameters (MSP) utility to
define the initial $ZU(23) setting for processes and to define the character set and
string collation switch associated with a particular directory. The character set
and string collation switch of a directory are used as the default values for newly
created globals in the directory. Also, when a process switches to a new directory
using $ZU(5), the $ZU(23) setting for the process is set to the new directory’s
character set and string collation switch.

You may also use the MSP utility to define a system-wide default for the charac-
ter set and string collation switch.
9-42 Open M/SQL Developer Guide

Collation Sequence
To avoid inconsistent results from SQL queries on a database, you must define
the collation sequences for all of the globals in the database as well as $ZU(23) to
be identical.

Changing Collation Sequence on Non-ISM Systems

If you are running Open M/SQL on a non-ISM host M system, please consult
your M vendor's system management guide for information on changing the M
collating sequence.
Open M/SQL Developer Guide 9-43

Chapter 9—Open M/SQL Implementation of SQL
%NOCHECK

InterSystems’ SQL supports the use of the %NOCHECK keyword in SQL
INSERT, UPDATE, and DELETE statements to suppress the following valida-
tion checking:

 n Field Validation Code
 n Base Table Validation Code
 n Checking for required fields
 n Checking for field uniqueness

%NOCHECK does not suppress External-to-Internal Conversion Code nor does
it suppress the execution of filing triggers when appropriate.

The syntax for using the %NOCHECK keyword is:

INSERT %NOCHECK ...

UPDATE %NOCHECK ...

DELETE %NOCHECK ...

Use of the %NOCHECK keyword is appropriate in an application that reads rows
from one table and writes them directly to another. If the validation and conver-
sion code is the same for both tables, there is no need to check a row that is read
from the first table before filing it to the second.

Similarly, you may want an application to do its own validation checking and
conversion, and bypass the code built into the Data Dictionary to avoid redundant
checking.
9-44 Open M/SQL Developer Guide

SQL Transaction Processing
SQL Transaction Processing

ANSI-Standard SQL supports two transaction processing statements, COMMIT
and ROLLBACK.

In ANSI-Standard SQL, unlike Open M/SQL, every operation (SELECT,
UPDATE, etc.) automatically begins a transaction if one is not already in
progress.

InterSystems’ SQL gives explicit control of transactions to the application pro-
grammer and provides two extension keywords for this purpose:

 n %BEGTRANS — begins a transaction
 n %INTRANS — sets the variable SQLCODE to one of the following values:

In order to perform a ROLLBACK operation, journalling must be enabled for the
system (i.e., %INTRANS must return a non-negative value) as well as for every
global whose modifications are to be considered part of the transaction (i.e.,
whose modifications need to be rolled back as part of the ROLLBACK opera-
tion).

The following example of embedded SQL uses the %INTRANS keyword to
determine whether a transaction is in progress and, if not, begins one:

new oldtrans
&sql(%INTRANS) set oldtrans=SQLCODE
if 'oldtrans &sql(%BEGTRANS)
...
if failed &sql(ROLLBACK) go done
...
if 'oldtrans go done
&sql(COMMIT)
done ...

If a transaction was not previously in progress, this code begins a new one and
commits it at the end. If a transaction already was in progress, this code does not
commit it. If an error occurs during processing, the code performs a rollback
instead of a commit.

Return Value Meaning

 0 Transaction not in progress

 -1 Transaction in progress (but journalling was not
enabled when the transaction started)

 >0 Transaction in progress (and journalling was enabled
when the transaction started)
Open M/SQL Developer Guide 9-45

Chapter 9—Open M/SQL Implementation of SQL
Transactions include not only SQL modifications but also any direct global sets
and kills performed by a M program.

Open M/SQL supports SQL transaction processing only on those platforms that
support M transaction processing. Currently, Open M/SQL supports transaction
processing when running on the following host M systems:

 n ISM
 n DSM
9-46 Open M/SQL Developer Guide

Privilege Operators
Privilege Operators

InterSystems’ SQL supports the SQL keyword USER in accordance with ANSI-
Standard SQL.

InterSystems’ SQL also supports the SQL GRANT and REVOKE statements, as
defined in ANSI-Standard SQL, with several extensions specific to Open
M/SQL.

ANSI-Standard SQL permits the granting and revoking of privileges only on
base tables. InterSystems’ SQL extends ANSI-Standard by allowing the granting
and revoking of privileges on all of the following objects:

 n Base Tables
 n Views
 n Forms
 n Menu Objects
 n Menus (Old-Style)
 n Reports
 n Queries

GRANT

You may use the SQL GRANT statement to grant access privileges on specified
objects to Open M/SQL users. The GRANT statement has an option to allow the
user to grant access to other users.

Note The owner of an object automatically holds all privileges on that object.

The GRANT statement uses the following syntax:

GRANT <list of actions>
ON [<object type>]<object name>
TO <grantees> [WITH GRANT OPTION]

For example:

GRANT %ALTER, SELECT, INSERT
ON Patients
TO Chris WITH GRANT OPTION
Open M/SQL Developer Guide 9-47

Chapter 9—Open M/SQL Implementation of SQL
The table below describes the elements of the GRANT statement syntax:

Table 9-4: GRANT Statement Syntax Elements

Syntax Element Meaning

<list of actions> Here you specify a list of Open M/SQL privileges actions, delimited
by commas. You may specify an asterisk (*) or ALL PRIVILEGES to
indicate privileges on all actions, or you may list one or more of the
privilege actions shown in the table below.

<object type> Here you specify the type of object on which you want to grant privi-
leges.
The default object type is base table. Omit this parameter to specify
base table as the object type.
Alternatively, you may specify any of the following object types:
 n %FORM
 n %MENUOBJECT
 n %MENU
 n %REPORT
 n %QUERY
You may grant privileges only on one object type at a time.
Note: A view is also a valid object type on which privileges may be

granted. SQL treats views as tables.

<object name> Specify the name(s) of the specific object(s) on which you want to
grant privileges, or an asterisk (*) to indicate all object names of the
specified object type. If you specify a list of individual objects, you
must delimit the object names by commas.
You may grant privileges on multiple objects at once (though they
must all be the same object type).

<grantees> Specify IDs for the user(s) to whom you wish to grant privileges.
These IDs may be any of the following:
 n Role name(s)
 n UserName(s) of user(s) registered in the User table
 n UserName(s) of user(s) not registered in the User table
You may also enter an asterisk (*) or _PUBLIC to grant privileges to
all users. When you do this, Open M/SQL assigns the privileges to
the UserName “_PUBLIC”, which means unrestricted access for all
users.

[WITH GRANT
OPTION]

You may optionally specify the WITH GRANT OPTION keyword to
allow the user(s) to whom you are granting these privileges to grant
the same privileges to other users.
9-48 Open M/SQL Developer Guide

Privilege Operators
The table below lists and describes the privilege actions you can grant to or
revoke from Open M/SQL users on Open M/SQL objects:

REVOKE

You may use the SQL REVOKE statement to revoke access privileges on speci-
fied objects from Open M/SQL users. Only the grantor of privileges has the
authority to revoke those privileges.

The SQL REVOKE statement uses the following syntax:

REVOKE [GRANT OPTION FOR] <list of actions>
ON [<object type>] <object name>
FROM <grantees> [CASCADE]

For example:

REVOKE %ALTER, SELECT, INSERT
ON %FORM PatientInfo
FROM Chris CASCADE

The <list of actions>, <object type>, <object name>, and <grantees> syntax ele-
ments have the same meaning in the REVOKE statement as they do in the
GRANT statement.

Table 9-5: Open M/SQL Privilege Actions

Privilege Action Meaning

%ALTER Privileges to modify the definition of an object

SELECT Privileges to retrieve information from a base table or view, or to
run an object such as a form

INSERT Privileges to insert a row

UPDATE Privileges to update an existing row

DELETE Privileges to delete an existing row

REFERENCES Privileges to create designative references to a table
Open M/SQL Developer Guide 9-49

Chapter 9—Open M/SQL Implementation of SQL
The table below describes the two optional keywords supported by the REVOKE
statement:

%CHECKPRIV Keyword

The %CHECKPRIV keyword is an InterSystems SQL extension that allows an
Open M/SQL user to check whether or not s/he holds a specified privilege on a
specified Open M/SQL object.

The syntax for using %CHECKPRIV is:

%CHECKPRIV [GRANT OPTION FOR] <action>
ON <object type> <object name>

For example:

%CHECKPRIV %ALTER
ON %FORM PatientInformation

If the user holds the specified privilege, the query returns an SQLCODE value of
0 (success). If the user does not hold the specified privilege, the query returns an
SQLCODE value of 100.

%CHECKPRIV may check only one action on only one object at a time.

The <action>, <object type>, and <object name> syntax elements have the same
meaning in the %CHECKPRIV statement as they do in the GRANT and
REVOKE statements.

The GRANT OPTION FOR keyword is optional. If you specify this keyword, the
query checks whether or not the user holds the GRANT privilege on the specified
privilege— not whether or not the user holds the specified privilege itself.

Table 9-6: REVOKE Statement Syntax Elements

Keyword Meaning

[GRANT
OPTION FOR]

You may optionally specify this keyword to revoke only the GRANT
option (the user’s ability to grant the privileges to other users) for the
specified privileges and not the privileges themselves.

[CASCADE] You may optionally specify this keyword to strip the privileges on the
specified object from all users who received them from the revokee
(or via the revokee).
For example, if you revoke privileges from user A, and user A had
previously granted those same privileges to user B, then under the
Cascade option you also revoke those privileges from user B (as well
as from any users to whom user B may have granted the privileges).
9-50 Open M/SQL Developer Guide

Privilege Operators
In order to run a %CHECKPRIV query, you must ensure that an Authorization
ID is established prior to executing the query. You can establish an Authorization
in any of the following ways:

 n By executing the query from any of the following locations within Open
M/SQL:
 • Interactive Query Editor
 • A menu option of action type SQL
 • A trigger item of action type SQL
When Open M/SQL is running, the Authorization ID is always defined.

 n By issuing an M command with the following syntax prior to running the
query:

> do setaid^%msql(“<UserName>”)

where <UserName> is a UserName that is registered in the User Table.
For example:

> do setaid^%msql(“Zeus”)

SQLCODE Values

After a %CHECKPRIV query, the SQLCODE variable has the value 0 if the user
holds the tested privilege, or 100 if the user does not hold the tested privilege.

GRANT and REVOKE queries set the SQLCODE variable to 0 when they suc-
cessfully complete the intended operation. If a GRANT or REVOKE query is
inapplicable because a user already held (or did not hold in the case of
REVOKE) the specified privileges, the query sets SQLCODE to 100.

For a complete listing of other SQL error messages and their meanings, refer to
Appendix A: SQL Error Messages.
Open M/SQL Developer Guide 9-51

Chapter 9—Open M/SQL Implementation of SQL
Using Subqueries

InterSystems’ SQL allows the use of subqueries in accordance with ANSI-Stan-
dard SQL.

A subquery is an SQL SELECT statement query embedded within another SQL
SELECT statement query.

According to ANSI-Standard SQL, a subquery must be embedded within a
WHERE clause or a FROM clause. When embedded within a WHERE clause,
the result of the subquery must be an atomic data value (one column, aggregate,
or expression) or a truth value. When embedded within a FROM clause, the
result of the subquery is a virtual table that may consist of many columns and
many rows.

In addition to permitting subqueries in WHERE clauses and FROM clause, Inter-
Systems’ SQL also permits subqueries to be embedded within the SELECT
clauses.

You may nest all subqueries may to any number of levels.

Subqueries normally appear as complete queries enclosed within parentheses in a
WHERE clause. An SQL query that has the form:

SELECT...
FROM...
WHERE...

may contain a subquery in the WHERE clause, thus the form:

SELECT...
FROM...
WHERE... (SELECT... FROM... WHERE...)

Using a Subquery in a WHERE Clause

The set of rows yielded by a subquery is used to restrict the outside query. Below
are some examples of various ways to use subqueries in logical conditions within
WHERE clauses.

Note Currently, Open M/SQL supports only correlated subqueries—queries in which
the result of the subquery depends on the value of the specific row of the outer
query. Non-correlated subqueries, in which the outer and inner queries are com-
pletely independent, are not supported at this time.
9-52 Open M/SQL Developer Guide

Using Subqueries
Expression Matches Some Value in Subquery Output

In the example:

WHERE <expr> IN (SELECT... FROM... WHERE...)

the subquery retrieves one column for some set of rows, and the predicate is the
truth value of <expr> being equal to the data value of the column for any of the
retrieved rows.

Expression Does Not Match Any Value in Subquery Output

In the example:

WHERE <expr> NOT IN (SELECT... FROM... WHERE...)

the subquery retrieves one column from some set of rows, and the predicate is the
truth value of <expr> NOT being equal to the data value of the column for any of
the retrieved rows.

Subquery Retrieves At Least One Row

In the example:

WHERE EXISTS (SELECT... FROM... WHERE...)

the predicate tests for the existence of one or more rows specified by the sub-
query. Typically, the subquery takes the form:

SELECT *
FROM...
WHERE...

Expression Compares With Values in Subquery Output

In the example:

WHERE <expr> <Compar-op> (SELECT... FROM... WHERE...)

the subquery must retrieve an atomic value (one column or aggregate), and the
predicate is the truth value of the comparison operation of <expr> with rows
from the subquery output.
Open M/SQL Developer Guide 9-53

Chapter 9—Open M/SQL Implementation of SQL
Expression Compares with Some Values in Subquery Output

In the example:

 WHERE <expr> <Compar-op> SOME (SELECT... FROM... WHERE...)

the subquery retrieves some set of rows, and the predicate tests the truth value of
the comparison operation of <expr> with any row from the subquery output.

Expression Compares with All Values in Subquery Output

In the example:

WHERE <expr> <Compar-op> ALL (SELECT... FROM... WHERE...)

the subquery retrieves some set of rows, and the predicate tests the truth value of
the comparison operation of <expr> with all rows from the subquery output.

Using a Subquery in a FROM clause

When you use a subquery in a FROM clause, the results of the subquery define
the virtual table on which the outer query is based. This virtual table may consist
of many columns and many rows.

You must observe the following restrictions when defining subqueries in the
FROM clause:

1. You may not put anything else in the FROM clause of the outer query—the
subquery must be alone

2. The subquery may not have a subquery in its FROM clause.

However, it may have subqueries anywhere else (in its WHERE clause or in
its SELECT clause), and those subqueries may have subqueries anywhere
(including in their FROM clauses).

3. The subquery may not contain aggregates or DISTINCT.

Note The use of query-based views in a FROM clause is equivalent to specifying the
view’s query as a subquery in the FROM clause. Therefore, the above restrictions
also apply to query-based views. For more information on query-based views, see
the section of this chapter entitled “Query-Based Views” on page 9-57.
9-54 Open M/SQL Developer Guide

Using Subqueries
Open M/SQL Subquery Extensions

InterSystems’ SQL provides two extensions to the ANSI-Standard SQL specifi-
cations for subqueries:

1. While ANSI-Standard SQL permits subqueries to be embedded only within
WHERE clauses, Open M/SQL adds the ability to embed subqueries within
SELECT clauses, in the form shown below:

SELECT (SELECT... FROM... WHERE...)
FROM...
WHERE...

2. InterSystems’ SQL supports two logical operators, FOR SOME and FOR
ALL, which enable you to invoke subqueries more succinctly.

Subquery Embedded in SELECT Clause

Subqueries embedded within a SELECT clause are scalar subqueries—they
always return one scalar value.

The following SQL query contains a scalar subquery embedded in the SELECT
clause:

SELECT Snum,Sname,Scity,(SELECT Count(Pnum)
FROM Parts WHERE Suppliers.Scity=Parts.Pcity)

FROM Suppliers

This query yields the following output table:

In the following examples, note the use of the “patientnum” field, which is the
Row ID of the “Patients” table and the parent reference within the child table
“Tests”.

Snum Sname Scity Count

S1 Klein Provo 1

S2 James Daytona

S3 Travers Boston 1

S4 Martin Provo 1
Open M/SQL Developer Guide 9-55

Chapter 9—Open M/SQL Implementation of SQL
FOR ALL Operator

The FOR ALL logical operator tests whether every value of one expression satis-
fies the condition(s) of a second embedded expression. Essentially, FOR ALL
provides a shorthand version of a subquery.

FOR ALL uses the following syntax:

FOR ALL expr1(expr2)

For example, the following query uses the FOR ALL operator:

&sql(SELECT PatientName,Age
FROM Patients
WHERE FOR ALL tests (tests.Result=”Positive”

AND patients.patientnum=tests.patientnum))

and is equivalent to:

&sql(SELECT PatientName,Age
FROM Patients
WHERE NOT EXISTS (SELECT * FROM Tests

WHERE NOT (tests.Result = “Positive”
AND patients.patientnum = test.patientnum)))

FOR SOME Operator

The FOR SOME logical operator tests whether at least one value of one expres-
sion satisfies the condition(s) of a second embedded expression. Essentially, FOR
SOME provides a shorthand version of a subquery.

FOR SOME uses the following syntax:

FOR SOME expr1(expr2)

For example, the following query uses the FOR SOME operator:

&sql(SELECT PatientName,Age
FROM Patients
WHERE FOR SOME Tests (Tests.patientnum=Tests.patientnum

AND Tests.Result=“Positive”))

and is equivalent to:

&sql(SELECT PatientName,Age
FROM Patients
WHERE patientnum =SOME (SELECT patientnum

FROM Tests
WHERE Tests.Result=“Positive”))
9-56 Open M/SQL Developer Guide

Query-Based Views
Query-Based Views

InterSystems’ SQL supports the following SQL DDL statements for use in creat-
ing, editing, and deleting query-based views:

 n CREATE VIEW
 n ALTER VIEW
 n DROP VIEW

When you create a query-based view, you are explicitly defining the query that
joins the base table in the view.

You may issue SQL queries using these DDL statements in either of two places:

 n Via the Interactive Query Editor
 n As embedded SQL in M macro source code

You may compile these SQL statements in any directory with the same result.
Open M/SQL performs no referential integrity checking on these SQL statements
at compile time. It checks referential integrity only at run time.

CREATE VIEW

The CREATE VIEW statement uses the following syntax:

CREATE VIEW <viewname> AS SELECT...FROM...WHERE...

For example:

CREATE VIEW Outstanding_Charges AS
SELECT Patient_Name, Date, Amount_Due FROM Billing
WHERE (Billing.Lab_Charges!=“Paid”

OR (Billing.Office_Visit_Charges!=“Paid”)

ALTER VIEW

The ALTER VIEW statement uses the following syntax:

ALTER VIEW <viewname> AS SELECT...FROM...WHERE...

ALTER VIEW uses exactly the same syntax as CREATE VIEW.

When you use ALTER VIEW, you delete and recreate the entire view, retaining
the same view name and internal view number.
Open M/SQL Developer Guide 9-57

Chapter 9—Open M/SQL Implementation of SQL
DROP VIEW

The DROP VIEW statement uses the following syntax:

DROP VIEW <viewname>

Restrictions on Defining Query-Based Views

You must observe the following restrictions when defining query-based views:

 n The query may not contain aggregates or DISTINCT.
 n The query may not itself reference another query-based view.

You May Name Query-Based Views in FROM Clause

InterSystems’ SQL allows you to name query-based views in the FROM clause
of SQL SELECT statement queries.

However, a query that names a query-based view in its FROM clause cannot
name any additional items in the FROM clause.

Furthermore, a query-based view cannot appear in the FROM clause of a query
as report data source.
9-58 Open M/SQL Developer Guide

Open M/SQL Devel
CHAPTER

10
Query Generation and Processing
Open M/SQL provides two facilities for creating SQL queries on an ad hoc basis,
the Query Generator and the Interactive Query Editor.

This chapter describes how to use these query generation facilities to create, run
save, and copy queries.

Specifically, it covers the following topics:

 n Facilities for Creating SQL Queries
 n Using the Query Generator
 n Using the Interactive Query Editor
 n Running Queries
 n ASCII-Delimited Output for Queries
 n Copying Queries
 n List Queries Report
 n Detailed Query Listing Report
oper Guide 10-1

Chapter 10—Query Generation and Processing
Facilities for Creating SQL Queries

The table below summarizes the capabilities and relative advantages of the two
Open M/SQL query generation facilities:

Both the Query Generator and the Interactive Query Editor can compile the fin-
ished query and execute it on your command.

The output of SELECT-statement queries appears in standard tabular report for-
mat. You may print this output in any of the following ways:

 n To your screen
 n To a hard copy printer
 n To a file in ASCII-delimited output format

Accessing the Query Generation Facilities

The Open M/SQL query generation facilities (Query Generator and Interactive
Query Editor) as well as several query management utilities are available as
options on the SQL menu.

Procedure To access the SQL menu:

1. At the M programmer prompt, type the following command to enter
Open M/SQL:

> do ^%msql

Table 10-1: Query Generation Facilities

Facility Description Advantages

Query Generator Provides an easy-to-use template
of SQL SELECT statement syntax
equipped with fields for the appro-
priate SQL clauses, including
SELECT, FROM, WHERE, ORDER
BY, GROUP BY, and HAVING.

You can define a SELECT
query by simply filling in the
template.
You do not need to know SQL
syntax rules.

Interactive Query
Editor

Provides a free-form SQL editor
environment (similar to the Full
Screen Editor) where you can cre-
ate and run any valid SQL query.
Provides full screen editing capabili-
ties.

You can define any valid SQL
query, making the Interactive
Query Editor more flexible
than the Query Generator.
10-2 Open M/SQL Developer Guide

Facilities for Creating SQL Queries
You see the Open M/SQL Main Menu, as shown below:

2. From the Open M/SQL Main Menu, select the Queries option.

Note: You may type q to select this option—it is a mnemonic accelerator.

You see the SQL Menu, as shown below:

The table below lists and describes the options on the SQL menu:

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄOpen M/SQL MenuÄÄÄ¿
 ³ ³
 ³ Data Dictionary ³
 ³ Forms ³
 ³ Reports ³
 ³ Queries ³
 ³ Menu Generator ³
 ³ System Management ³
 ³ Privileges ³
 ³ Developer Utilities ³
 ³ User Utilities ³
 ³ Server Management ³
 ³ Relational Gateway ³
 ³ Help Options ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

Open M/SQL Menu 03:50PM Press <Help> For Help

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄÄÄÄÄÄÄÄÄSQLÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Define Queries ³
 ³ Interactive SQL Queries ³
 ³ Run Existing Queries ³
 ³ Copy Query ³
 ³ List Queries ³
 ³ Detailed Query Listing ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Friday Jul 14, 1995 01:14PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

SQL 01:14PM Press <Help> For Help
Open M/SQL Developer Guide 10-3

Chapter 10—Query Generation and Processing
Table 10-2: Options on SQL Menu

Option Description

Define Queries Select this option to access the Query Generator, which pro-
vides a template for defining SQL SELECT statement queries.

Interactive SQL Que-
ries

Select this option to access the Interactive Query Editor, which
provides a full screen editing environment for creating and exe-
cuting SQL statements using any valid syntax.

Run Existing Queries Select this option to access the Run Existing Queries utility,
which allows you to select any query defined via the Query Gen-
erator or Interactive Query Editor and run it.

Copy Query Select this option to access the Copy Query utility, which allows
you to select any query defined via the Query Generator or
Interactive Query Editor and copy its definition to create a new
query.

List Queries Select this option to print the List Queries report, which displays
an alphabetical listing of all queries defined within the current
database.

Detailed Query Listing Select this option to print the Detailed Query Listing report,
which displays various information about one or more specified
queries.
10-4 Open M/SQL Developer Guide

Using the Query Generator
Using the Query Generator

The Query Generator provides an easy-to-use template for defining SQL
SELECT statement queries. The template is equipped with fields for the appro-
priate SQL clauses, including SELECT, FROM, WHERE, ORDER BY, GROUP
BY, and HAVING. This enables you to create a SELECT query by simply filling
in the template.

The Query Generator automatically generates your query as a cursor-based
SELECT statement query, meaning it can retrieve multiple data rows into the
output table.

Since the Query Generator automatically generates the cursor-based SELECT
statement syntax, you do not need to use any of the following SQL commands:

 n DECLARE CURSOR
 n OPEN CURSOR
 n FETCH CURSOR
 n CLOSE CURSOR
 n INTO

Procedure To define a SELECT statement query using the Query Generator:

1. From the SQL Menu, select the Define Queries option.

You see the Query Definition lookup window, as shown below:

2. At the Query Name field in the Query Definition lookup window, enter a
query name, and press <RETURN>.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄQuery
DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ ³
³ ³
³ Query Name _______________ Description ______________________________ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Query Definition Selecting Press <Help> For Help
Open M/SQL Developer Guide 10-5

Chapter 10—Query Generation and Processing
3. At the Query Description field, enter a query description, and press
<RETURN>.

You can retrieve an existing query to edit or create a new one.

a. To retrieve an existing query, enter a complete or partial query name in
the Query Name field and/or a complete or partial query description in
the Query Description field, and press <RETURN>. You see a lookup box
that lists all matching entries.
To see a lookup box that lists all queries defined in the current database,
leave the Query Name and Query Description fields blank and press the
<SEARCH CURRENT TABLE> key. Use the cursor positioning keys to navi-
gate within the lookup box, and press <RETURN> to select an entry.

b. To create a new query, enter a new query name (it must not match the
name of any existing query) in the Query Name field, optionally enter a
query description in the Query Description field, and press <RETURN>.
You see the “IS THIS A NEW QUERY?” dialog box, as shown below:.

Here, you may create a new query by pressing <RETURN> on the <Yes>
action field.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄQuery
DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ ³
³ ³
³ Query Name patients1______ Description Average Age By Ward, Sex______ ³
³ ³
³ ³
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
³ ³ IS THIS A NEW QUERY? ³ ³
³ ³ ³ ³
³ ³ < Yes > < No > ³ ³
³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Query Definition Selecting Press <Help> For Help
10-6 Open M/SQL Developer Guide

Using the Query Generator
When you have entered a query name (either new or existing), the Query
Definition window fills out with the full template for defining a SELECT
statement query:.

The table below lists and describes the fields located on the Query Definition
window’s SELECT statement template:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄQuery
DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Display Fields from Tables Advanced Features Compile & Run ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Query Name patients1______ Description Average Age By Ward, Sex______ ³
³ ³
³ Select ___³
³ (00/1) ___³
³ ³
³ From _______________________________________ (one table name per line)³
³ _______________________________________ ³
³ ³
³ Where ___³
³ (00/1) ___³
³ ³
³ Order By ___________________ Group By __________________________________³
³ (00/1) ___________________________ (00/1) __________________________³
³ ³
³ Having ___³
³ (01/1) ___³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Query Definition Press <Help> For Help

Table 10-3: Fields on Query Definition Window

Field Description

Query Name This is the name that identifies the query. The name may range from
1 to 30 characters in length and may include any alphanumeric char-
acters, including the underscore character. The name must always
begin with an alphabetic character.
This is a required field.

Query Description Here you may enter a brief description for the query. The description
may be up to 60 characters in length and may include any alphanu-
meric characters, including underscores and blank spaces.

SELECT Here you may enter one or more expressions, separated by commas,
that specify the data columns to appear in the query output. The
expressions may contain field names, aggregate functions, and the
InterSystems’ SQL extension keywords %FOREACH, %AFTERHAV-
ING, and DISTINCT BY. (For more information on these and other
SQL extensions, see Chapter 9, Open M/SQL Implementation of
SQL).
The SELECT clause may also contain subqueries.
All field names specified in the SELECT clause must originate in a
base table or view that is listed in the From clause. Each line of this
field scrolls to right and can accommodate up to 250 characters. If
you continue the expression onto the next line, you must end the pre-
vious line with a comma.
Open M/SQL Developer Guide 10-7

Chapter 10—Query Generation and Processing
FROM Here you may specify the data source of the query. You may specify
one or more base tables or views as the data source, or you may
specify one query-based view.
You may select only base tables/views that are defined in the current
database. To see a list of all base tables/views defined in the current
database, you may press the <LIST CHOICES> key.
Each new base table or view name you enter must occupy a separate
line. After a base table name you may optionally specify an alias for
the base table, separated by a space from the base table name.

WHERE Here you may enter one or more conditional expression(s) that quali-
fies or disqualifies specific rows from the query output. You must link
multiple expressions together by AND or OR.
Use this clause to restrict the query's data capture to very specific
sets of information. The WHERE clause accepts all comparison oper-
ators and the BETWEEN, LIKE, NULL, IN, EXISTS, FOR ALL, and
FOR SOME predicates, but may not contain any aggregate functions.
You may also embed subqueries in the WHERE clause.

ORDER BY Here you may specify one or more field(s) or expression(s), sepa-
rated by commas, to designate the sort order for rows in the query
output.
You may specify field(s) and/or expression(s) that do not appear in
the SELECT clause, as well as those that do. You may reference a
field either by name or by its ordinal number in the SELECT clause, if
it appears there. If you specify multiple items, each successive item
has lesser precedence in the sort evaluation. Sorts may be per-
formed in ascending (the default) or descending order, as specified
Note: If you enter one ORDER BY field name per line, it is not nec-

essary to enter a comma at the end of each line.

GROUP BY Here you may specify one or more fields, separated by commas, that
will be used to break up the final query output into groups. For each
distinct group, the query will return only one row.
For example, if you group by the field “sex”, and “sex” contains only
the two values “Male” and “Female”, the query will discern two groups
and output only one row for each of them. In such case, a name field
listed in the SELECT clause is rendered not meaningful, as the query
will output only one name corresponding to each value of “sex”.
The GROUP BY clause is conceptually similar to the Open M/SQL
extension %FOREACH, but GROUP BY operates on an entire query,
while %FOREACH allows selection of aggregates on sub-popula-
tions without restricting the entire query population.
Note: If you enter one GROUP BY field name per line, it is not nec-

essary to enter a comma at the end of each line.

Table 10-3: Fields on Query Definition Window (Continued)

Field Description
10-8 Open M/SQL Developer Guide

Using the Query Generator
4. Enter the appropriate text into the fields of the Query Definition tem-
plate to define a SELECT-statement query that queries the database for
the information you are seeking.

5. When you have finished defining your query, press the <PROCEED> key
to save your query definition and exit the Query Definition template.

You return to a blank Query Definition lookup window, where you may cre-
ate or select another query.

6. To return to the SQL menu, press the <PREVIOUS> key.

Example

Below is a sample query defined in the Query Definition template:.

HAVING Here you may enter a conditional expression that determines
whether or not a given group should be included in the query output.
This field enables you to set restrictions on data groups. The HAVING
clause operates on groups of data in much the same fashion as the
WHERE clause operates on individual rows of data. By specifying the
HAVING clause, you can effectively isolate very specific sets of infor-
mation.
Unlike the WHERE clause, the HAVING clause may contain aggre-
gate functions.

Table 10-3: Fields on Query Definition Window (Continued)

Field Description

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄQuery
DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Display Fields from Tables Advanced Features Compile & Run ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Query Name patients1______ Description Average Age By Ward, Sex______ ³
³ ³
³ Select ward,sex,AVG(age)__³
³ (00/1) ___³
³ ³
³ From Patients_______________________________ (one table name per line)³
³ _______________________________________ ³
³ ³
³ Where ___³
³ (00/1) ___³
³ ³
³ Order By ward,sex___________________ Group By ward,sex__________________³
³ (00/1) ___________________________ (00/1) __________________________³
³ ³
³ Having AVG(age) < 62__³
³ (01/1) ___³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Query Definition Press <Help> For Help
Open M/SQL Developer Guide 10-9

Chapter 10—Query Generation and Processing
This query considers all patients in the “Patients” table. It yields groups that cor-
respond to each sex within each ward where the average age of that group is less
than 62. It orders the output rows first by ward, then by sex.

The query shown in the Query Definition template above can be written out as
follows:

SELECT ward,sex,AVG(age)
FROM Patients
GROUP BY ward,sex
ORDER BY ward,sex
HAVING AVG(age) < 62

The following table shows a sample output for this query. Each column repre-
sents a SELECT clause expression, and each row represents a distinct GROUP
BY row:

This example omits wards 3 and 5 because both sex groups within each ward fail
to satisfy the condition in the HAVING clause, i.e. the average age of each group
is greater than 62. The table omits the row corresponding to “Male” in ward 4 for
the same reason.

Note ANSI-Standard SQL does not support column title control and other output format-
ting features. Therefore, query output will not appear as neatly formatted as
shown in the above example. To query the database and produce neatly format-
ted reports, you should the Open M/SQL M/PACT report writer tool.

Table 10-4: Sample Query Output

Ward Sex Average Age

1 F 43.53

1 M 47.21

2 F 17.33

2 M 18.10

4 F 59.69

6 F 35.46

6 M 36.71
10-10 Open M/SQL Developer Guide

Using the Query Generator
Query Definition Menu Bar

Located at the top of the Query Definition template is the Query Definition menu
bar, which contains options that provide additional functionality to the Query
Generator environment.

To access the Query Definition menu bar, press the <ENHANCE> key twice from
within the Query Definition main window.

To select an option from the Query Definition menu bar, use the <RIGHT ARROW>
and <LEFT ARROW> keys to position the select bar on a desired option and press
<RETURN>, or type the highlighted letter in the name of a desired option.

The table below lists and describes the three options on the Query Definition
menu bar:

Displaying Fields From Tables and Views

You may use the Display Fields from Tables option on the Query Definition
menu bar to see a list of all fields located on all base tables and views specified in
the query’s FROM clause.

The list displays all fields located on the table/view specified on the first line of
the FROM clause followed by all fields on the table/view specified on the second
line of the FROM clause, and so on.

This list may help you identify which fields are available for use in other clauses
of the query.

The list is for informational purposes only; you cannot select items from it.

Table 10-5: Options on Query Definition Menu Bar

Name Description

Display Fields from
Tables

Select this option to see a list that displays all fields located on
all base tables and views specified in the FROM clause of the
query

Advanced Features Select this option to access the Query Definition Advanced Fea-
tures window, which displays various information about the
query and allows you to define parameters for printing the query
in ASCII-delimited output format.

Compile & Run Select this option to compile and run the query
Open M/SQL Developer Guide 10-11

Chapter 10—Query Generation and Processing
Procedure To display a list of all fields located on the base tables/views specified in
the FROM clause:

1. From the Query Definition main window, press the <ENHANCE> key
twice to access the Query Definition menu bar.

2. From the Query Definition menu bar, press <RETURN> to select the Dis-
play Fields from Tables option.

You see a display similar to the following:

3. Use the <UP ARROW> and <DOWN ARROW> keys to scroll up or down in
order to see more field names.

The tag “more” appears in the bottom right-hand corner of the display box to
indicate the presence of more fields below and in the upper right-hand corner
of the display box to indicate the presence of more fields above.

Note: This option does not list fields from designated tables that are
pointed to by Designative Reference fields within the listed base
tables. You may, however, reference such fields within the query
using proper join (arrow) syntax. For more information on how to do
this, refer to the section entitled “Implicit Joins” in Chapter 9, Open
M/SQL Implementation of SQL.

4. Press the <PREVIOUS> key to return to the Query Definition menu bar.

 Field Name Description Relation
ÚÄÄÄ
ÄÄÄÄÄÄÄÄÄÄ¿
³ address1 Home Address Patients ³
³ address2 Work Address Patients ³
³ admit Admittance Date Patients ³
³ age Age Patients ³
ÀÄÄÄ
ÄÄÄÄÄÄmoreÙ
10-12 Open M/SQL Developer Guide

Using the Query Generator
Query Definition Advanced Features

You may use the Advanced Features option on the Query Definition menu bar to
access the Query Definition Advanced Features window.

The Query Definition Advanced Features window displays the following infor-
mation about your query:

 n Owner (this value is read-only)
 n Run-Time Measure (this value is read-only)
 n Routine Name (this value is modifiable)

The Query Definition Advanced Features window also lets you define parame-
ters for printing your query in ASCII-delimited output format.

Open M/SQL supports the output of queries to ASCII-Delimited text files, which
are formatted for import into many PC software packages.

Procedure To access and use the Query Definition Advanced Features window:

1. From the Query Definition main window, press the <ENHANCE> key
twice to access the Query Definition menu bar.

2. From the Query Definition menu bar, type a to select the Advanced Fea-
tures option.

You see the Query Definition Advanced Features window, as shown below:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄQuery
DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Display Fields from Tables Advanced Features Compile & Run ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Query Name patients1______ DescÚÄÄÄÄÄÄÄÄÄÄÄAdvanced
FeaturesÄÄÄÄÄÄÄÄÄÄ¿
³ ³ ³
³ Select ward,sex,AVG(age)__________³ Query Owner Run Time Measure ³
³ (00/1) ___________________________³ _SYSTEM 1195 ³
³ ³ ³
³ From Patients___________________³ Routine Name mq9____ ³
³ ___________________________³ ³
³ ³ ASCII-Delimited Files Only? No__ ³
³ Where ___________________________³ ³
³ (00/1)
___________________________³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³
³ ³ ³
³Order By ward,sex___________________³ Quote Character “________ ³
³ (00/1) ___________________________³ ³
³ ³ End Of Field Delimiter ,________ ³
³ Having AVG(age) < 62______________³ ³
³ (00/1) ___________________________³ End Of Record Delimiter 13,10____ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Advanced Features Press <Help> For Help
Open M/SQL Developer Guide 10-13

Chapter 10—Query Generation and Processing
The following table lists and describes the fields located on the Query Defi-
nition Advanced Features window:

Table 10-6: Fields on Query Definition Advanced Features Window

Field Description

Query Owner This field shows the UserName of the user who created (and
therefore owns) the query. You cannot edit this field.

Run Time Measure This field provides a relative measure of the system cost associ-
ated with running the query. The number shown is based on the
complexity of both the query and the database. Typically, the larger
the number, the more slowly the query executes. Open M/SQL cal-
culates the run-time measure when you compile the query and
recalculates it every time you recompile. This value is read-only
and cannot be altered in any way.

Routine Name This field displays the prefix for all routine names generated by the
query.
Open M/SQL assigns a default prefix, such as “mq9” in the above
example. You may optionally override the default prefix by replac-
ing it with a string of 1 to 7 alphanumeric characters (first character
must be alphabetic) to serve as the override prefix.
All routines generated for the query consist of this prefix followed
by a single character (1-9, then A-Z, then a-z), which is appended
by the compiler.
Specifying your own routine prefix may help you to remember it
when attempting to call the query directly from M using the query
call syntax, as described in the section of this chapter entitled
“Running a Query from M Code” on page 10-31.

ASCII-Delimited
Files Only?

Here you may specify ASCII-Delimited as the only allowable output
format for the query, i.e. no printed format is allowed.
Answer Yes to specify ASCII-Delimited as the only allowable out-
put format for the query. This enables you to download an unlim-
ited number of fields to the ASCII-Delimited file.
Answer No to not restrict output of the query to ASCII-delimited for-
mat only. If you answer No, you can still send query output to an
ASCII-Delimited file, but the number of fields you may select is lim-
ited to the number of fields supported by a standard printed query.
No is the default response.
For more information on sending query output to ASCII-delimited
files, see the section of this chapter entitled “ASCII-Delimited Out-
put for Queries” on page 10-36.

Quote Character Here you may specify the character(s) used to enclose field values
when using ASCII-delimited output format. You may specify any
text of ten characters or less.
The default is the double quote character (“).
10-14 Open M/SQL Developer Guide

Using the Query Generator
3. At the Routine Name field, you may optionally replace the default rou-
tine prefix assigned to your query by Open M/SQL with an override rou-
tine prefix.

The routine prefix may be 1 to 7 characters in length and may include any
alphanumeric characters, except for the first character, which must be alpha-
betic.

4. At the ASCII-Delimited Files Only? field, answer Yes or No to indicate
whether or not you want to restrict the query to ASCII-Delimited output
format only.

No is the default response.

5. At the Quote Character field, specify the character(s) used to enclose
field values when using ASCII-delimited output format.

The default is the double quote character (“).

6. At the End of Field Delimiter field, specify the character(s) used to act as
the separator between field values when using ASCII-delimited output
format.

The default is the comma character (,).

7. At the End of Record Delimiter Field, specify the character(s) used to act
as the separator between records (rows) when using ASCII-delimited
output format.

The default value is the ASCII sequence 13,10 (same as <CR><LF>).

8. When you complete your work in the Query Definition Advanced Fea-
tures window, press the <PROCEED> key to save your definitions and
exit.

End of Field Delim-
iter

Here you may specify the character(s) used to act as the separator
between field values when using ASCII-delimited output format.
You may specify any text of ten characters or less.
The default is the comma character (,).

End of Record
Delimiter

Here you may specify the character(s) used to act as the separator
between records (rows) when using ASCII-delimited output format.
You may specify a list of ASCII values (numbers) separated by
commas.
The default value is the ASCII sequence 13,10 (same as
<CR><LF>).

Table 10-6: Fields on Query Definition Advanced Features Window

Field Description
Open M/SQL Developer Guide 10-15

Chapter 10—Query Generation and Processing
Compile and Run the Query

You may use the Compile & Run option on the Query Definition menu bar to
compile and run your query.

When you select this option, you see the following prompt at the bottom of the
screen:

Parse, Optimize and Compile in the Background? No__

Press <RETURN> at this prompt to compile the query in the foreground. Compil-
ing in the foreground means that you see compiler messages as they scroll onto
the screen. It also means that Open M/SQL automatically propmts you to run the
query after it has been compiled.

To compile the query in the background, delete the default No response, replace it
with Yes, and press <RETURN>. If you elect to compile the query in the back-
ground, you return to the Query Definition template and may continue working
while Open M/SQL compiles the query underneath. Open M/SQL does not
prompt you to run the query after it has been compiled.

Note InterSystems recommends that you always compile in the foreground.

If you elect to compile the query in the foreground, a series of informational mes-
sages will scroll onto the screen as the Compiler moves through its sequence of
operations. These messages include a list of the names of the M routines into
which the query is being compiled. When the compilation is complete, the Com-
piler will briefly display the message “...DONE”.

After compiling the query (in the foreground), Open M/SQL displays the device
selection script to request information about where to send the query output.

You may press the <PREVIOUS> key to back out and not run the query at this time,
or you may provide device selection information and proceed with running the
query.

For more information on running queries, see the section of this chapter entitled
“Running Queries” on page 10-29.

After compiling the query (if you back out before running it) or after running the
query, you return to the Query Definition template.
10-16 Open M/SQL Developer Guide

Using the Interactive Query Editor
Using the Interactive Query Editor

The Interactive Query Editor provides an alternative, less restrictive way to spec-
ify SQL queries.

Unlike the Query Generator, the Interactive Query Editor does not limit you to
SELECT-only queries nor does it place you within a prescribed template for
query definition. Rather, it provides a free-form SQL editor environment (similar
to the Full Screen Editor) where you can create and run any syntactically valid
SQL query.

Like the Query Generator, the Query Editor lets you save query definitions for
future reuse and save a compiled version of the query to be run at a later time.

Query Types

The table below lists and describes the types of SQL queries supported by Open
M/SQL. You may issue queries of any of these statement types via the Interactive
Query Editor:

Table 10-7: Query Types Supported By Open M/SQL

Statement Type Description

ALTER VIEW Alters the definition of a query-based view. ALTER VIEW queries
essentially delete and recreate an existing query-based view, while
retaining the same view name and internal view number.

%CHECKPRIV This query type is an InterSystems SQL extension.
Allows a user to check whether or not s/he holds a specified privilege
on a specified Open M/SQL object. If the specified privilege exists,
the query returns an SQLCODE value of 0 (success). If the privilege
does not exist, the query returns an SQLCODE value of 100 (failure).
For more information on %CHECKPRIV, see Chapter 9, Open
M/SQL Implementation of SQL.

CREATE VIEW Creates a query-based view.

DELETE Deletes rows from a base table.
Note: DELETE operates on the entire table, unless a WHERE

clause is specified to restrict the scope of the delete.

DROP VIEW Deletes a query-based view.

GRANT Grants access privileges on specified objects (base table, view, form,
menu object, menu, report, query) to Open M/SQL users with an
option to allow the user to grant access to other users.

INSERT Inserts new rows into a base table.

REVOKE Revokes access privileges on specified objects (base table, view,
form, menu object, menu, report, query) from Open M/SQL users.
Only the grantor of privileges has the authority to revoke those privi-
leges.
Open M/SQL Developer Guide 10-17

Chapter 10—Query Generation and Processing
Note With the exception of %CHECKPRIV, Open M/SQL implements all of these query
statement types according to ANSI-Standard SQL. For information about Open
M/SQL-specific extensions and limitations to the syntax for these statements, see
Chapter 9, Open M/SQL Implementation of SQL.

Creating a Query in the Interactive Query Editor

Using the Interactive Query Editor you may create queries of any statement type
supported by Open M/SQL.

You must give each query you create a query definition name for identification
purposes.

Each query definition may consist of only one SQL statement.

Procedure To create a query using the Interactive Query Editor:

1. From the SQL menu, select the Interactive SQL Queries option.

SELECT Retrieves a row or multiple rows from a table and outputs them in
standard tabular format.
There are two types of SELECT-statement queries:
 n Non-cursor-based queries (retrieve a single row of data)
 n Cursor-based queries (retrieve multiple rows of data)
The Query Editor automatically converts the syntax of your SELECT
statement into a cursor-based SELECT (with all the required SQL
DECLARE, OPEN, FETCH, and CLOSE statements).
Note: You may also use the Query Generator to create cursor-

based SELECT statement queries.

UPDATE Updates column values for one or more existing base table rows.
Note: UPDATE operates on the entire base table, unless a

WHERE clause is specified to restrict the scope of the
UPDATE.

Table 10-7: Query Types Supported By Open M/SQL (Continued)

Statement Type Description
10-18 Open M/SQL Developer Guide

Using the Interactive Query Editor
You see the Query Editor lookup window, as shown below:

2. At the Query Name field in the Query Editor lookup window, enter a
query name, and press <RETURN>.

3. At the Description field, you may optionally enter a brief description for
the query, and press <RETURN>.

You can retrieve an existing query to edit or create a new one.

a. To retrieve an existing query, enter a complete or partial query name in
the Query Name field and/or a complete or partial query description in
the Description field, and press <RETURN>. You see a lookup box that
lists all matching entries.
To see a lookup box that lists all queries defined in the current database,
leave the Query Name and Description fields blank and press the
<SEARCH CURRENT TABLE> key. Use the cursor positioning keys to navi-
gate within the lookup box, and press <RETURN> to select an entry.

b. To create a new query, enter a new query name (it must not match the
name of any existing query) in the Query Name field, optionally enter a
query description in the Description field, and press <RETURN>.

 ÚÄÄÄÄSelect Interactive QueryÄÄÄÄ¿
 ³ ³
 ³ Query Name ³
 ³ ______________________________ ³
 ³ ³
 ³ Description ³
 ³ ______________________________ ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Select Query Selecting Press <Help> For Help
Open M/SQL Developer Guide 10-19

Chapter 10—Query Generation and Processing
You see the “IS THIS A NEW QUERY?” dialog box, as shown below:

Here, you may create a new query by pressing <RETURN> on the <Yes>
action field.

When you have entered a query name (either new or existing), you see the
Select Query window, as shown below::

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ IS THIS A NEW QUERY? ³
 ³ ³
 ³ < Yes > < No > ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ Description ³
 ³ ______________________________ ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Select Query Selecting Press <Help> For Help

 ÚÄÄÄÄÄÄÄÄÄÄSelect QueryÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Query Name ³
 ³ tstq1_________________________ ³
 ³ ³
 ³ Description ³
 ³ ______________________________ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Select Query Selecting Press <Help> For Help
10-20 Open M/SQL Developer Guide

Using the Interactive Query Editor
The table below lists and describes the fields located on the Select Query
window:

4. Press the <PROCEED> key to invoke the Interactive Query Editor.

The Interactive Query Editor appears as a blank screen, into which you may
type your SQL statement.:

At the bottom of the Query Editor Screen is a status line. On the far right, the
status line displays the name of the query you are creating.

Below the status line is the Query Editor horizontal options menu. See below
for more information about the options on this menu.

5. Type in your SQL code without any preprocessor syntax.

SQL commands and identifiers are not case-sensitive, meaning that you may
enter them in upper or lower case, or in a mixture of both.

You may enter only one SQL statement per query definition.

Table 10-8: Fields on Select Query Window

Field Description

Query Name This is the name that identifies the query. The name may range from
1 to 30 characters in length and may include any alphanumeric char-
acters, including the underscore character. The name must always
begin with an alphabetic character.
This is a required field.

Description Here you may enter a brief description for the query. The description
may be up to 60 characters in length and may include any alphanu-
meric characters, including underscores and blank spaces.

INTERACTIVE SQL QUERY::tstq1

 Help Save Compile Advanced
 & Run Options
Open M/SQL Developer Guide 10-21

Chapter 10—Query Generation and Processing
The example below shows an UPDATE-statement query called “tstq1”
entered via the Query Editor:

Note: You may type the query all on one line, or break it up into any
number of lines.

6. To save your query definition, press the <GO TO BOTTOM MENU> key to
access the Query Editor horizontal options menu, and select the Save
option from this menu.

7. To exit the current query definition, press the <PREVIOUS> key.

Be sure to save the query definition before exiting. If there are unsaved
changes in your query definition when you attempt to exit, the Query Editor
displays the following prompt:

Quit Without Saving Changes?

Type Y (to quit) or N (to return to the Editor), and press <RETURN>.

When you exit the Query Editor, you return to the Query Editor lookup win-
dow, where you may create or retrieve another query definition.

8. From the Query Editor lookup window, press the <PREVIOUS> key again
to return to the SQL menu.

UPDATE %NOCHECK patients
set age_status=”Senior”
where age > 64

INTERACTIVE SQL QUERY::tstq1

 Help Save Compile Advanced
 & Run Options
10-22 Open M/SQL Developer Guide

Using the Interactive Query Editor
Editing Commands

The table below lists and describes the editing capabilities supported by the Inter-
active Query Editor:

Query Editor Horizontal Options Menu

Located at the bottom of the Query Editor display screen is the Query Editor hor-
izontal options menu, which contains options that provide additional functional-
ity to the Query Editor environment.

To access the Query Editor horizontal options menu, press the <GO TO BOTTOM
MENU KEY> key from within the Query Editor.

To select an option from the Query Editor horizontal options menu, use the
<RIGHT ARROW> and <LEFT ARROW> keys to position the select bar on a desired
option and press <RETURN>, or type the first letter in the name of a desired option
to position the select bar, and press <RETURN>.

The table below lists and describes the options on the Query Editor horizontal
options menu:

Table 10-9: Editing Capabilities Supported by the Interactive Query Editor

Function Description Keystrokes to Use

Select Selects a block of text for cutting and
pasting.

Press the <LIST CHOICES> key, or
<CTRL-E> <S>

Cut Deletes a block of selected text. Press the <REMOVE> key, or
<CTRL-E> <C>

Paste Pastes a block of selected text at the
point where the cursor is located.

Press the <INSERT> key, or
<CTRL-E> <C>

Table 10-10: Options on Query Editor Horizontal Options Menu

Options Description

Help Select this option to invoke a submenu of on-line help options

Save Select this option to save your query definition in its current form.
After saving, this option returns you to the Query Editor to continue
working.

Compile & Run Select this option to compile and run the query.

Advanced Options Select this option to access the Query Definition Advanced Fea-
tures window, which displays various information about the query
and allows you to define parameters for printing the query in
ASCII-delimited output format.
Note: Output formatting is applicable to SELECT-statement

queries only.
Open M/SQL Developer Guide 10-23

Chapter 10—Query Generation and Processing
Using On-line Help

The Interactive Query Editor provides a Help submenu for accessing on-line help
on any of the following topics:

 n General Help
 n SQL Syntax
 n Select
 n Insert
 n Update
 n Delete
 n Grant & Revoke
 n %CHECKPRIV

Procedure To access the Help submenu:

1. From the Query Editor screen, press the <GO TO BOTTOM MENU> key.

The Help submenu replaces the top-level Query Editor horizontal options
menu at the bottom of the screen, as shown below:

2. To select an option from the Help submenu, use the <RIGHT ARROW> and
<LEFT ARROW> keys to position the select bar on a desired option and
press <RETURN>, or type the first letter in the name of a desired option to
position the select bar, and press <RETURN>.

This displays a series of on-line help screens that provide detailed informa-
tion on the selected topic.

3. To exit an on-line help screen, press the <PREVIOUS> key.

UPDATE %NOCHECK patients
set age_status=”Senior”
where age > 64

INTERACTIVE SQL QUERY::tstq1

 General SQL Select Insert Update Delete Grant & %CHECKPRIV
 Help Syntax Revoke
10-24 Open M/SQL Developer Guide

Using the Interactive Query Editor
Query Editor Advanced Options

You may use the Advanced Options option on the Query Editor horizontal
options menu to access the Query Editor Advanced Options window.

The Query Editor Advanced Options window displays the following information
about your query:

 n Owner (this value is read-only)
 n Run-Time Measure (this value is read-only)
 n Routine Name (this value is modifiable)

The Query Editor Advanced Options window also lets you define parameters for
printing your query in ASCII-delimited output format.

Open M/SQL supports the output of SELECT-statement queries to ASCII-
Delimited text files, which are formatted for import into many PC software pack-
ages.

Procedure To access and use the Query Editor Advanced Options window:

1. From the Query Editor screen, press the <GO TO BOTTOM MENU> key to
access the Query Editor horizontal options menu.

2. From the Query Editor horizontal options menu, select the Advanced
Options option.

You see the Query Editor Advanced Options window, as shown below.

UPDATE %NOCHECK patients
set age_status=”Senior”
where age > 64

 ÚÄÄÄÄÄÄÄÄÄÄÄAdvanced OptionsÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Query Owner _SYSTEM ³
 ³ ³
 ³ Routine Name mq11___ ³
 ³ ³
 ³ ASCII-Delimited Files Only? No__ ³
 ³ ³
 ³ Quote Character “_________ ³
 ³ ³
 ³ End Of Field Delimiter ,_________ ³
 ³ ³
 ³ End Of Record Delimiter 13,10_____ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Advanced Features Press <Help> For Help
Open M/SQL Developer Guide 10-25

Chapter 10—Query Generation and Processing
The following table lists and describes the fields located on the Query Editor
Advanced Options window:

Table 10-11: Fields on Query Editor Advanced Options Window

Field Description

Query Owner This field shows the UserName of the user who created (and
therefore owns) the query. You cannot edit this field.

Run Time Measure This field provides a relative measure of the system cost associ-
ated with running the query. The number shown is based on the
complexity of both the query and the database. Typically, the larger
the number, the more slowly the query executes. Open M/SQL cal-
culates the run-time measure when you compile the query and
recalculates it every time you recompile. This value is read-only
and cannot be altered in any way.

Routine Name This field displays the prefix for all routine names generated by the
query.
Open M/SQL assigns a default prefix, such as “mq11” in the above
example. You may optionally override the default prefix by replac-
ing it with a string of 1 to 7 alphanumeric characters (first character
must be alphabetic) to serve as the override prefix.
All routines generated for the query consist of this prefix followed
by a single character (1-9, then A-Z, then a-z), which is appended
by the compiler.
Specifying your own routine prefix may help you to remember it
when attempting to call the query directly from M using the query
call syntax, as described in the section of this chapter entitled
“Running a Query from M Code” on page 10-31.

ASCII-Delimited
Files Only?

Here you may specify ASCII-Delimited as the only allowable output
format for the query, i.e. no printed format is allowed.
Answer Yes to specify ASCII-Delimited as the only allowable out-
put format for the query. This enables you to download an unlim-
ited number of fields to the ASCII-Delimited file.
Answer No to not restrict output of the query to ASCII-delimited for-
mat only. If you answer No, you can still send query output to an
ASCII-Delimited file, but the number of fields you may select is lim-
ited to the number of fields supported by a standard printed query.
No is the default response.
Note: Output formatting is applicable to SELECT-statement

queries only.
For more information on sending query output to ASCII-delimited
files, see the section of this chapter entitled “ASCII-Delimited Out-
put for Queries” on page 10-36.

Quote Character Here you may specify the character(s) used to enclose field values
when using ASCII-delimited output format. You may specify any
text of ten characters or less.
The default is the double quote character (“).
10-26 Open M/SQL Developer Guide

Using the Interactive Query Editor
3. At the Routine Name field, you may optionally replace the default rou-
tine prefix assigned to your query by Open M/SQL with an override rou-
tine prefix.

The routine prefix may be 1 to 7 characters in length and may include any
alphanumeric characters, except for the first character, which must be alpha-
betic.

4. At the ASCII-Delimited Files Only? field, answer Yes or No to indicate
whether or not you want to restrict the query to ASCII-Delimited output
format only.

No is the default response.

5. At the Quote Character field, specify the character(s) used to enclose
field values when using ASCII-delimited output format.

The default is the double quote character (“).

6. At the End of Field Delimiter field, specify the character(s) used to act as
the separator between field values when using ASCII-delimited output
format.

The default is the comma character (,).

7. At the End of Record Delimiter Field, specify the character(s) used to act
as the separator between records (rows) when using ASCII-delimited
output format.

The default value is the ASCII sequence 13,10 (same as <CR><LF>).

8. When you complete your work in the Query Editor Advanced Options
window, press the <PROCEED> key to save your definitions and exit.

End of Field Delim-
iter

Here you may specify the character(s) used to act as the separator
between field values when using ASCII-delimited output format.
You may specify any text of ten characters or less.
The default is the comma character (,).

End of Record
Delimiter

Here you may specify the character(s) used to act as the separator
between records (rows) when using ASCII-delimited output format.
You may specify a list of ASCII values (numbers) separated by
commas.
The default value is the ASCII sequence 13,10 (same as
<CR><LF>).

Table 10-11: Fields on Query Editor Advanced Options Window (Continued)

Field Description
Open M/SQL Developer Guide 10-27

Chapter 10—Query Generation and Processing
Compile and Run the Query

You may use the Compile & Run option on the Query Definition menu bar to
compile and run your query.

When you select this option, Open M/SQL automatically (re)compiles the query.

As the Compiler moves through its sequence of operations, informational mes-
sages will scroll onto the screen. These messages include a list of the names of
the M routines into which the query is being compiled. When the compilation is
complete, the Compiler will briefly display the message “...DONE”.

After compiling the query, Open M/SQL runs it.

INSERT, UPDATE, DELETE, GRANT, REVOKE, CREATE VIEW, ALTER
VIEW, and DROP VIEW statement queries produce no examinable output.
When you run a query of any of these types, Open M/SQL returns a success mes-
sage (if the query has completed successfully) or an error message (if the query
has failed) to your screen, for example:

‘tstq1’ Query Successfully Completed

%CHECKPRIV queries return a message to the screen that indicates the exist-
ence/nonexistence of the queried privilege, for example:

The Requested Privilege Exists

SELECT-statement queries generate examinable output that must be directed to a
specified destination. Open M/SQL displays a device selection script to request
information about where to send the query output.

You may press the <PREVIOUS> key to back out and not run the query at this time,
or you may provide device selection information and proceed with running the
query.

For more information on running SELECT-statement queries (output device
selection and output formatting), see the section of this chapter entitled “Running
Queries” on page 10-29.

After compiling the query (if you back out before running it) or after running the
query, you return to the Query Editor screen.
10-28 Open M/SQL Developer Guide

Running Queries
Running Queries

You can run a query from any of three locations:

 n From within its definition environment (Query Generator or Query Editor)
 n Using the Run Existing Queries utility on the SQL menu
 n From M code

Privileges Required to Run Queries

In order to run any query, you must hold SELECT privileges on the query defini-
tion.

Furthermore, in order to run certain query types you must hold certain privileges
on the base tables named in the query, as described in the table below:

Running a Query From its Definition Environment

You can run queries directly from the Query Generator or the Query Editor.

Procedure To run a query from within the Query Generator:

1. From the Query Definition template, press the <ENHANCE> key twice to
access the Query Definition menu bar.

2. From the Query Definition menu bar, type c to select the Compile & Run
option.

Open M/SQL automatically (re)compiles the query, and then displays a
device selection script to request information about where to send the query
output (see below for a discussion of the Device Selection window). Remem-
ber that all queries defined using the Query Generator are SELECT-statement
queries, and therefore produce examinable output.

Table 10-12: Privileges Required to Run Query Types

Query Type Privileges Required

SELECT Must have SELECT privileges on each of the base tables named in the
query.

INSERT Must have INSERT privileges on each of the base tables named in the
query.

UPDATE Must have %ALTER privileges on each of the base tables named in the
query.

DELETE Must have DELETE privileges on each of the base tables named in the
query.
Open M/SQL Developer Guide 10-29

Chapter 10—Query Generation and Processing
Procedure To run a query from within the Query Editor:

1. From the Query Editor screen, press the <GO TO BOTTOM MENU> key to
access the horizontal options menu.

2. Select the Compile & Run option from the Horizontal Options menu and
press <RETURN>.

Open M/SQL automatically (re)compiles the query and then runs it.

If it is an UPDATE, INSERT, DELETE, GRANT, REVOKE, %CHECK-
PRIV, CREATE VIEW, ALTER VIEW, or DROP VIEW statement query, the
query returns a success/fail message to the screen when it finishes.

If it is a SELECT statement query, Open M/SQL displays a device selection
script to request information about where to send the query output (see below
for a discussion of the Device Selection window).

Using the Run Existing Queries Utility

You can use the Run Existing Queries utility to select any query defined via the
Query Generator or Query Editor and run it.

Procedure To use the Run Existing Queries utility:

1. From the SQL menu, select the Run Existing Queries option.

You see the Run Query lookup window, as shown below:

2. To select a query, enter a complete or partial query name in the Query
Name field and/or a complete or partial query description in the
Description field, and press <RETURN>.

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄRun QueryÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Query Name Description ³
 ³ ____________ ______________________________ ³
 ³ ³
 ÀÄÄÄÙ

Run Query Selecting Press <Help> For Help
10-30 Open M/SQL Developer Guide

Running Queries
You see a lookup box that lists all matching entries.

To see a lookup box that lists all queries defined in the current database,
leave the Query Name and Description fields blank and press the <SEARCH
CURRENT TABLE> key.

3. Use the <UP ARROW> and <DOWN ARROW> keys to navigate within the
lookup box, and press <RETURN> to select an entry.

4. When your have selected a query, press the <PROCEED> key to execute it.

If the query has not been recompiled since changes were last saved, Open
M/SQL will automatically recompile the query before executing it.

Running a Query from M Code

It is also possible to run a query by calling it directly from M code.

To do this, you use the M query call syntax. You may use this entry point to
invoke a query in any of the following ways:

 n From a trigger item of action type M Code
 n From menu option of action type M code
 n From within an M routine
 n From the M programmer prompt

The M query call syntax is as follows:

do query^%msql(queryname,user,device,format,batchsw)

The following table lists and describes the parameters associated with the M
query call syntax:

Table 10-13: Parameters Associated with M Query Call Syntax

Parameter Meaning

queryname The name of the query you want to run. This is a required parame-
ter.

user This is a moot parameter; Open M/SQL no longer uses this infor-
mation. Enter the null indicator (“”) to skip this parameter.

device The optional name of an output device.
Open M/SQL Developer Guide 10-31

Chapter 10—Query Generation and Processing
format The optional name of a device format.

batchsw An optional flag that specifies whether to run the query in the fore-
ground or in the background.
Set to 1 display the query results in the background.
Set to 0 to display the results in the foreground.
0 is the default setting.

Table 10-13: Parameters Associated with M Query Call Syntax (Continued)

Parameter Meaning
10-32 Open M/SQL Developer Guide

Running Queries
Selecting an Output Device

When you run a SELECT-statement query, Open M/SQL invokes a device selec-
tion script to request information about where to send the query output. You must
specify an output device as well as print format parameters for the device.

The appearance of device selection script differs across the various M systems
supported by Open M/SQL. When you run Open M/SQL on top of a DSM,
DTM, or Micronetics’ MSM host M system, Open M/SQL calls out to the device
handling routine supported by your M system. Refer to your implementation-spe-
cific M programming manual for information on how your device handling rou-
tine works.

Procedure To select an output device for a SELECT-statement query:

1. Run a SELECT-statement query.

If you are running Open M/SQL on an ISM system, you see the Device
Selection window, as shown below:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄRun QueryÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Query Name Description ³
 ³ patients2___ Patients with name “S”________ ³
 ³ ÚÄÄÄÄÄÄÄÄDevice SelectionÄÄÄÄÄÄÄÄ¿
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ Device ³
 ³ /dev/ttyp6__________ ³
 ³ ³
 ³ Description ³
 ³ dpv 15 Dec 94 ³
 ³ ³
 ³ Print Format ³
 ³ Normal______________ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Device Selection Press <Help> For Help

 Exit Without selecting
Open M/SQL Developer Guide 10-33

Chapter 10—Query Generation and Processing
The following table lists and describes the fields located on the Open M/SQL
for ISM Device Selection window:

2. In the Device field, enter the name of the device to which you want to
send the query.

You can send the query to any valid output device that is linked to your cur-
rent device.

The default device is your current device.

To send the query to your screen, press the <PROCEED> key.

To send the query to another device (such as a printer), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>
key.

3. When you have entered a device name and the appropriate print format
parameters, press the <PROCEED> key.

This executes the query.

Table 10-14: Fields on Open M/SQL for ISM Device Selection Window

Field Description

Device This field always defaults to your current device (the current value of
$IO). You may change the default to any valid output device to which
your device is linked.

Description This field reflects the description given to the specified device in the
device table.

Print Format Here you may select any print format defined for the specified device.
10-34 Open M/SQL Developer Guide

Running Queries
The example below shows sample output for the following query:

SELECT name,sex,age,AVG(age %FOREACH(sex))
FROM Patients
WHERE name %STARTSWITH “S”
ORDER BY name

Note: When output to the screen, the query displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

Device Selection for ASCII-Delimited Output Format

To print a query in ASCII-Delimited output format, enter “ASCII-Delimited” at
the Print Format field.

If you designated the query for ASCII-Delimited output only (this option is
located in the Advanced Options window), the Print Format field in the Device
Selection window automatically defaults to “ASCII-Delimited” and cannot be
changed.

Note that Open M/SQL does not require that you specify a file as the output
device in order to generate ASCII-Delimited output. You may find it useful to
send ASCII-Delimited records to a terminal device, such as an asynchronous
communications line, or to a spooler device.

Name Sex Age expression
_________________________ ______ ____ __________
Salisbury, Harvey Male 51 49
Sanderson, George Male 63 49
Sawyer, Eleanor Female 77 57
Schmidt, Mitchell Male 44 49
Scott, Denise Female 46 57
Scott, Michael Male 33 49
Shapiro, Oscar Male 79 57
Silva, Louise Female 61 57
Simmons, Virginia Female 84 57
Smith, Charlotte Female 91 57
Smith, Joe Male 49 49
Smith, Timothy Male 19 49
Snyder, Estelle Female 67 57
Spring, Jonathon Male 79 49
Stevens, Charles Male 60 49
Stevens, Theresa Female 22 57
Stewart, Frederick Male 37 49
Stone, Julia Female 31 57
Sullivan, Betty Female 42 57
Sullivan, Wayne Male 46 49
Sweeney, Terrence Male 28 49

Press <Return> to continue, <Options> to scroll, <Exit> to Exit
Open M/SQL Developer Guide 10-35

Chapter 10—Query Generation and Processing
ASCII-Delimited Output for Queries

Open M/SQL supports the ability to direct the output from SELECT-statement
queries defined via the Query Generator or Interactive Query Editor to ASCII-
Delimited text files. These files are formatted for import into many PC software
packages.

Contents of an ASCII-Delimited File

In an ASCII-Delimited file, each record consists of one or more field(s) enclosed
in a user-defined quotation character and delimited by a user-defined delimiter
character. A user-defined end-of-record sequence follows each record. A sample
record might appear as follows:

“3”,”Smith,John”,”12345”,”Male”,”675.2”,””,””,”Fractured
Tibia”<CR><LF>

where the Quote Character is (“), the End of Field Delimiter is (,), and the End of
Record Delimiter is (<CR><LF>).

All occurrences of the Quote Character will be stripped from your data prior to
the formatting of output records.

For each detail line output, Open M/SQL generates a sequential record identifier,
which may be used as a key field to identify the record within your application.
The first field of each record will always be the record identifier. All other fields
are output in the order they were specified in the query definition. If a SELECT
statement query was used, the output columns are ordered by table column num-
ber.

Open M/SQL does not restrict the maximum length for ASCII-Delimited output
records. However, you should be aware of any record length limitations imposed
by the application importing the ASCII-Delimited file.

Queries Support Dual Output Formats

In Open M/SQL, a single query definition can produce both standard printed out-
put and ASCII-Delimited file output.

For standard printed queries, Open M/SQL currently restricts the maximum num-
ber of fields that can you can select. To surmount this limitation you may desig-
nate the query for ASCII-Delimited output only. By choosing this option you
relinquish all formatting control over the output, but gain the privilege of includ-
ing an unlimited number of fields in the ASCII-Delimited output file. This choice
is also reversible, i.e., you may initially designate a query for ASCII-Delimited
output only and later modify it to allow both types of output. However, if you do
this you may need to reduce the number of query fields in order to permit printed
output.
10-36 Open M/SQL Developer Guide

Copying Queries
Copying Queries

You may use the Copy Query utility to make a copy of a query definition.

This utility creates a copied query that is virtually identical to the source query.

As soon as the copy is made, the copied query relinquishes all ties to its source
query. You may use the copied query in all the same ways you use a regular
query. Specifically, you may:

 n Edit it
 n Run it
 n Use it as the data source of a view or report
 n Use it in the FROM clause of another query

You may copy any query, regardless of whether or not you hold privileges on it.
However, in order to run a copied query, you must hold SELECT privileges on
the source query. And in order to edit a copied query, you must hold %ALTER
privileges on the source query.

Procedure To copy a query:

1. From the SQL menu, select the Copy Query option.

You see the Copy Query Selection lookup window, as shown below:

2. At the Copy Query field, enter the name of the source query (the query
you want to copy), and press <RETURN>.

 ÚÄÄÄÄÄÄCopy Query Selection WindowÄÄÄÄÄÄ¿
 ³ ³
 ³ Copy Query ³
 ³ ______________________________ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Copy Query Selection Window Selecting Press <Help> For Help
Open M/SQL Developer Guide 10-37

Chapter 10—Query Generation and Processing
You may select any query defined via the Query Generator or the Query Edi-
tor.

To select a query, enter the complete or partial name of an existing query, and
press <RETURN>. You see a lookup box that lists all matching entries.

To see a lookup box that lists all queries defined in the current database,
leave the Copy Query field blank and press the <SEARCH CURRENT TABLE>
key.

3. Use the cursor positioning keys to navigate within the lookup box, and
press <RETURN> to select an entry.

The Copy Query Selection window fills out with its complete set of fields, as
shown below:

4. At the To Query field, enter the name of the new query to be created.

A query name may range from 1 to 30 characters in length and may include
any alphanumeric characters, including the underscore character. The name
must always begin with an alphabetic character.

This name must not already be in use by another query.

5. At the Run New Query? field, answer Yes or No to indicate whether or
not you want to compile and run the new query as soon as it is copied.

Answer Yes to compile and run the new query immediately after creating it.

No is the default response.

 ÚÄÄÄÄÄÄCopy Query Selection WindowÄÄÄÄÄÄ¿
 ³ ³
 ³ Copy Query ³
 ³ patients1 ³
 ³ ³
 ³ To Query ³
 ³ ______________________________ ³
 ³ ³
 ³ Run New Query Yes_ ³
 ³ ³
 ³ ³
 ³ Query Type Is Form Defined ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Copy Query Selection Window Press <Help> For Help
10-38 Open M/SQL Developer Guide

Copying Queries
The Query Type Is field shows the type of query that you have specified as
the source query. This field may have either of the following two values:

 • Interactive (defined in the Query Editor)
 • Form-Defined (defined using the Query Generator)

6. Press the <PROCEED> key to copy the query.

When the copy is complete, Open M/SQL displays the following message at
the bottom of the screen:

Query Copy Successful

If you typed No in the Run New Query? field, you return to the SQL menu.

If you typed Yes in the Run New Query? field to request Open M/SQL to
compile and run the query immediately after creating it, you see the follow-
ing message at the bottom of the screen:

 Compiling and running Query <query name>

After compiling the query, Open M/SQL displays the appropriate device
selection script for your M system to request information about where to
send the query output.

7. Enter a device name and appropriate print format parameters, then
press the <PROCEED> key to execute the query.
Open M/SQL Developer Guide 10-39

Chapter 10—Query Generation and Processing
List Queries Report

The List Queries utility lets you generate a screen or hard copy report that lists all
queries defined in the current database (via the Query Generator and Interactive
Query Editor) and provides the following information about each one.

 n Query Name — Name of the query (queries are listed in alphabetical order)
 n Query Description — Description given to the query

Procedure To run the List Queries report:

1. From the SQL menu, select the List Queries option.

You see the device selection script native to your host M system.

If you are running Open M/SQL on an ISM system, you see the Device
Selection window.

2. Enter the name of the output device to which you want to send this
report and specify the appropriate print format parameters.

3. When you have entered a device name and the appropriate print format
parameters, press the <PROCEED> key.

This executes the report.

Below is a sample List Queries report:

Note: When output to the screen, this report displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

4. Press the <PREVIOUS> key to exit the List Queries report and return to
the SQL menu.

Query Query
Name Description
------------------------------ ------------------------------
ages
Census1994 Census for year 1994
CensusMay95 Count Patients for May 95
Count_Admissions Total Number of Admissions
CountPatients Count of Number of Patients
ListMRN List Current Medical Rec. #s
Males65 List Males over 65
Occupancy Calculate Occupancy
oldpats
Patient_Count Count of Patient Entries
patients1 Average Age by Ward, Sex
patients2 Patients with name “S”
PatStates
personnel
Revenue1994 Revenue for Year 1994
RevenueMay94 Revenue for May 1994
States
tstq1 Test Query

Press <Return> to Exit
10-40 Open M/SQL Developer Guide

Detailed Query Listing Report
Detailed Query Listing Report

The Detailed Query Listing utility lets you generate a screen or hard copy report
that lists a specific query, all queries, or a range of queries whose query names
begin with a similar character string.

The Detailed Query Listing Report provides the following information about
each query:

 n Query Name — Name of the query (queries are listed in alphabetical order)
 n Query Description — Description given to the query
 n Query Owner — UserName of the user who created the query
 n Routine Prefix — Name of the routine prefix used by all routines generated

for the query by Open M/SQL
 n SQL Text — Text of the query

All queries defined in the current database (via the Query Generator and Interac-
tive Query Editor) are available to this report.

Procedure To run the Detailed Query Listing report:

1. From the SQL menu, select the Detailed Query Listing option.

You see the device selection script native to your host M system.

If you are running Open M/SQL on an ISM system, you see the Device
Selection window.

2. Enter the name of the output device to which you want to send this
report and specify the appropriate print format parameters.

3. When you have entered a device name and the appropriate print format
parameters, press the <PROCEED> key.
Open M/SQL Developer Guide 10-41

Chapter 10—Query Generation and Processing
You see the Detailed Query Listing Run-Time Conditions window, as shown
below:

4. In the Starts With field specify the query or queries you want to list in
the report.

To specify all queries defined in the current database, leave the Starts With
field blank.

To specify just the “patients1” query, type the literal string “patients1”.

To specify all queries that begin with the letter “P”, type the letter “P”.

5. Press the <PROCEED> key to execute the report.

ÚÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ¿
³ Run Time Conditions ³
³ For Report: Detailed Query Listing ³
³ ³
³ QueryName Starts With ___________________________________ ³
³ ³
³ (From table: Query with description Query Name) ³
³ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Run Time Conditions Press <Help> For Help
10-42 Open M/SQL Developer Guide

Detailed Query Listing Report
Below is a sample Detailed Query Listing report for all queries that begin
with the letter “P”:

Note: When output to the screen, this report displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

6. Press the <PREVIOUS> key to exit the Detailed Query Listing report and
return to the SQL menu.

 Date: 17 Jul 95 Page: 1

 InterSystems Corporation
 Detailed Query Listing
 ==

Query: patients1 Description: Average Age By Ward, Sex
Owner: _SYSTEM Routine: mq9

SQL: SELECT ward,sex,AVG(age)
 FROM Patients
 GROUP BY ward,sex
 ORDER BY ward,sex
 HAVING AVG(age) < 62

-=

Query: patients2 Description: Patients with name “S”
Owner: _SYSTEM Routine: mq10

SQL: SELECT name,sex,age,AVG(age %FOREACH(sex))
 FROM Patients
 WHERE Name %STARTSWITH “S”
 ORDER BY name

Press <Return> to continue, <Options> to scroll, <Exit> to Exit
Open M/SQL Developer Guide 10-43

PART

IV
Application Programming
Chapter 11

Programmer Interface to
Applications

Chapter 12

Open M/SQL Developer Utilities

Open M/SQL Devel
CHAPTER

11
Programmer Interface to
Applications
In Open M/SQL, you can insert M and SQL code at designated locations within
object definition windows to customize forms, reports, and the underlying base
table operations of lookup and filing to your precise specifications. Specifically,
this inserted code can customize base table and window triggers, lookup queries,
filing routines, and operations that calculate, validate, and convert data fields. In
each case, the inserted code must observe specific conventions for communicat-
ing with the application that calls it.

Open M/SQL supplies entry points that enable you to call forms, reports, queries,
and menus from routines as well as from the M programmer prompt. Other utility
entry points perform functions that emulate forms. All entry points observe spe-
cific conventions for parameter passing.

Embedded SQL provides a way for an M program to operate the machinery of
retrieval and filing within Open M/SQL base tables.

This chapter discusses the following topics:

 n Open M/SQL Variables
 n Entry Points to the %msql Routine
 n Open M/SQL Globals
 n Inserting Code into Open M/SQL Applications
 n Calling Open M/SQL Objects from M Programs
 n Emulating Form Behavior from M Programs
 n Establishing Authorization ID from Programmer Mode
 n Intermixing Open M/SQL Objects with User-Defined M Routines
 n Contents of Applications
oper Guide 11-1

Chapter 11—Programmer Interface to Applications
Open M/SQL Variables

All local variables used by Open M/SQL begin with the percent sign (%) and
have all-lowercase names. A list of these variable names appears below. Do not
use these names for any other purpose than what is documented. InterSystems
reserves the right to add to this list of percent variables in future releases, and
therefore strongly advises that you do not use any user-defined variables that
begin with the percent sign.

Open M/SQL uses variables with lowercase names to run forms and reports. To
avoid the possibility of conflict, InterSystems recommends that you do not use
all-lowercase variable names in any M code you insert into your Open M/SQL
applications or in any routines called by your applications.

Embedded SQL uses its own percent variables without protecting them by a
NEW command. These variables all begin with the prefix %mmm and thus do
not run a high risk of conflict. When defining variables in a program containing
embedded SQL, make sure your variables do not begin with %mmm.

List of Open M/SQL Percent (%) Variables

The following table lists and describes the percent variables used by Open
M/SQL to communicate with applications, or used by programs that call applica-
tions.

You will note that some of these percent variables are enclosed in curly braces,
such as {%action}. The curly brace syntax indicates that these are not raw M
variables, but rather Open M/SQL interpreted variables. Variables of this syntax
remain the same even when the names of the underlying variables they represent
change.

Table 11-1: Open M/SQL Percent (%) Variables

%variable Function Where Used

%msql Stores the current UserName and Ter-
minal Type, as well as other user pref-
erences.

General

%is() array Stores terminal-specific command
strings to be executed by routines.

General

%mode() array Stores terminal-specific appearance
attributes to be written by routines.

General

%val Stores the data value of a field for use
in external-to-internal and internal-to-
external conversion and user-defined
additional validation code.

Data Dictionary
& Form Generator

%ok Flag that can be set to 0 to disallow
the filing of an invalid field value.

Data Dictionary
& Form Generator
11-2 Open M/SQL Developer Guide

Open M/SQL Variables
%msg Stores text message returned by vali-
dation code when rejecting an invalid
field value.

Data Dictionary
& Form Generator

%data(icol) Stores the data value of the current
field of the current row, whether saved
or unsaved.

Form Generator

%edit(icol) Stores the disk value of the current
field of the current row when that field
has been edited but not saved. Unless
%data(icol) is unsaved, %edit is unde-
fined.

Form Generator
(for database fields only)

%new Stores the new value of an edited field.
This variable is used to allow valida-
tion code to examine the new field
value.

Form Generator

%newext Stores the new external value of an
edited field. This variable is used to
allow validation code to examine this
value.

Form Generator

%old Stores the old value of an edited field.
This variable is used to allow valida-
tion code to examine the old field
value.

Form Generator

%oldext Stores the old external value of an
edited field. This variable is used to
allow validation code to examine this
value.

Form Generator

{%parent_reference} For forms based on child tables,
{%parent_reference} holds the parent
reference ID (the RowID of the current
row in the parent table).
For forms not based on child tables,
the value of {%parent_reference} is “”.

Form Generator
Specifically:
 n All form trigger loca-

tions
 n Variable Window

Placement
 n Form-only Field Com-

pute Code

{%caller} Stores the current value of the Caller
ID.

Form Generator
Specifically:
 n All form trigger loca-

tions
 n Variable Window

Placement
 n Menu Object Defini-

tion

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
Open M/SQL Developer Guide 11-3

Chapter 11—Programmer Interface to Applications
{%action} Stores the last keyboard action
entered by the user. It can have any of
the following values:
 n PROCEED
 n PREVIOUS
 n GETOUT
 n GETOUTALL
 n Up Arrow
 n Down Arrow
 n Return
 n Tab

Form Generator
Specifically:
 n Post-Form triggers
 n Post-Field triggers
 n Post-Window triggers

{%filetype} Stores the type of filing currently in
effect. Possible values are:
 n “Update” — indicates that the cur-

rent form is in data entry mode.
 n “Inquiry” — indicates inquiry mode.
 n “Insert”— indicates that you have

just confirmed insertion of a row.

Form Generator
Specifically:
 n Post-Form triggers
 n Post-Window triggers
 n Post-Field triggers
 n Pre-Row triggers
 n Post-Row triggers
 n Variable Window

Placement

{%presave} Flag that indicates whether or not data
ha been saved within the current form.
If %savedata is 1, data has been
saved. If it is 0, no data has been
saved.

Form Generator
Specifically:
 n Post-Form triggers
 n Post-Window triggers
 n Post-Field triggers
 n Variable Window

Placement

{%savedata} Flag that indicates whether or not the
current form contains unsaved data. If
%savedata is 1, there is unsaved data
within the current form. If it is 0, there
is no unsaved data.

Form Generator
Specifically:
 n Post-Form triggers
 n Post-Window triggers
 n Post-Field triggers
 n Variable Window

Placement

{%timeout} Flag that indicates whether or not the
form was exited as the result of a time-
out action. If %timeout is 1, the form
did time out, If it is 0, the form did not
time out.

Form Generator
Specifically:
 n All form trigger loca-

tions

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
11-4 Open M/SQL Developer Guide

Open M/SQL Variables
{%return_action} Stores the value of %action from the
form that was last exited. It can have
any of the following values:
 n PROCEED
 n PREVIOUS
 n GETOUT
 n GETOUTALL
 n Up Arrow
 n Down Arrow
 n Return
 n Tab

Form Generator
Specifically:
 n All form trigger loca-

tions

{%return_filetype} Stores the value of %filetype from the
form that was last exited.

Form Generator
Specifically:
 n All form trigger loca-

tions

{%return_presave} Stores the value of %presave from the
form that was last exited.

Form Generator
Specifically:
 n All form trigger loca-

tions

{%return_savedata} Stores the value of %savedata from
the form that was last exited.

Form Generator
Specifically:
 n All form trigger loca-

tions except Pre-Row
triggers

{%return_timeout} Stores the value of %timeout from the
form that was last exited.

Form Generator
Specifically:
 n All form trigger loca-

tions

{%inquiry_mode} Flag that indicates whether or not the
form is currently in inquiry-only mode. I
%inquiry is 1, the form is in inquiry-
only mode. I it is 0, the form is not in
inquiry-only mode.

Form Generator
Specifically:
 n All form trigger loca-

tions
 n Menu Object Defini-

tion

{%linenum} Stores the line number of the current
line in a multi-line field.

Form Generator
Specifically:
 n Field Definition for

multi-line fields

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
Open M/SQL Developer Guide 11-5

Chapter 11—Programmer Interface to Applications
{%retrieved} Flag that is set to 1 if any rows are
retrieved when a multi-row form is run,
0 otherwise.
This variable applies to multi-row
forms only.

Form Generator
Specifically:
 n All form trigger loca-

tions except Pre-Form
and Pre-Window trig-
gers

{%menubar} Stores the name of the currently active
menu bar.

Form Generator
Specifically:
 n All form trigger loca-

tions except Pre-Row
and Post-Row trig-
gers

 n Menu Object Defini-
tion

{%menuid} Stores the internal identification num-
ber of currently active menu bar.

Form Generator
Specifically:
 n All form trigger loca-

tions except Pre-Row
and Post-Row trig-
gers

 n Menu Object Defini-
tion

{%menutype} Stores the type of the currently active
menu object. Its value is either “menu
bar” or “pop-up menu”.

Form Generator
Specifically:
 n Menu Object Defini-

tion

{%cellar_tuple} Flag that is set to 1 when the user of a
multi-row form inserts a row at the bot-
tom of the form.

Form Generator
Specifically:
 n Pre-Row triggers

{%date} Stores the current date in an M/PACT
report.

M/PACT

{%time} Stores the current time in an M/PACT
report.

M/PACT

{%agg} Stores the calculation for the aggre-
gate function you have specified.

M/PACT

{%pagenum} Stores the current page number in an
M/PACT report.

M/PACT

{%newpage} Forces a page feed in an M/PACT
report.

M/PACT

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
11-6 Open M/SQL Developer Guide

Open M/SQL Variables
{%report-end} Flag to indicate whether or not a report
ran to completion.
If user exits report before completion
by pressing the <PREVIOUS> key,
{%report-end} is set to “user abort”.
If the report ran to completion, it is set
to NULL (“”).

M/PACT
Specifically:
 n Post-Report triggers

{%background} Flag to indicate whether or not a report
is being run in the foreground.
If the report is being run in the fore-
ground, {%background} is set to 0.
If a report is being run in the back-
ground, it is set to a number greater
than 0.

M/PACT
Specifically:
 n Pre-Report triggers
 n Post-Report triggers

Table 11-1: Open M/SQL Percent (%) Variables (Continued)

%variable Function Where Used
Open M/SQL Developer Guide 11-7

Chapter 11—Programmer Interface to Applications
Entry Points to the %msql Routine

The %msql routine supports several utility entry points, which you may use in M
programs to perform the following functions:

 n Call Open M/SQL objects
 n Emulate various aspects of form behavior
 n Establish an Authorization ID

The following tables list and briefly describe these utility entry points to %msql.

Use the following entry points to call Open M/SQL objects from an M program:

Use the following entry points to emulate various aspects of form behavior:

Use the following entry point to establish an Authorization ID (identify a user to
Open M/SQL):

For more information about these entry points, refer to the sections found later in
this chapter entitled “Calling Open M/SQL Objects from M Programs” on page
11-27, “Emulating Form Behavior from M Programs” on page 11-34, and
“Establishing Authorization ID from Programmer Mode” on page 11-39.

Table 11-2: Entry Points For Calling Open M/SQL Objects

Entry Point Function

orm^%msql Calls a form

menu^%msql Calls an old-style menu

query^%msql Calls a pre-defined query

report^%msql Calls a report

Table 11-3: Entry Points For Emulating Form Behavior

Entry Point Function

help^%msql Displays scrolling help text

write^%msql Writes a message on the screen

$$read^%msql Reads a data value

windcln^%msql Cleans up screen by erasing the residual display of windows after
they have been exited

Table 11-4: Entry Point for Establishing an Authorization ID

Entry Point Function

setaid^%msql Establishes an Authorization ID (identifies a user to Open M/SQL)
11-8 Open M/SQL Developer Guide

Open M/SQL Globals
Open M/SQL Globals

There are two groups of globals used by Open M/SQL, object definition globals
and percent (%) globals.

Object Definition Globals

The object definition globals are located in each development direc-
tory/UCI/namespace.

Caution Do not delete these globals. Doing so will delete your object definitions.

Most of the object definition globals begin with the letter “m”.

Note InterSystems reserves the syntax ^m* for its own use.

The following table lists the Open M/SQL object definition globals and briefly
describes the information stored in each:

Table 11-5: Open M/SQL Object Definition Globals

Global Contents

^ROUTINE Macro source and intermediate code routines (for Open M/SQL on
ISM systems only)

^mroutine Macro source and temporary intermediate code routines (for Open
M/SQL on ISM systems only)

^UTILITY Scratch information for utilities (for Open M/SQL on ISM systems
only)

^mcompd Object compile driver configuration definitions

^mconv Information about which conversion programs have been run on the
major objects in this directory

^mdd Base table definitions and view definitions

^mddc Information for compiled base tables

^mexpnew Export/import definitions (for the new-style Export/Import utility)

^mexport Export/import definitions (for the old-style Export/Import utility)

^mform Form definitions

^mformc Information for compiled forms

^mhelp Information for the Open M/SQL Help Menu

^mlock Locking information for rows

^mmenu Old-style menu definitions

^mmisc Routine name prefixes
Open M/SQL Developer Guide 11-9

Chapter 11—Programmer Interface to Applications
^mobject Menu object definitions, help document definitions, help topic defini-
tions, and video attribute definitions

^mpriv Privilege allocation definitions for Open M/SQL objects

^mql Pre-defined query definitions

^mreport M/PACT report definitions

^mreportc Information for compiled M/PACT reports

^mtemp* Miscellaneous run-time information

^mterm Saved terminal specifications to be restored upon exiting Open
M/SQL

^mutil Miscellaneous utility definitions

^mxdd Base table definitions queued for export using the Export/Import util-
ity

^mxform Form definitions queued for export using the Export/Import utility

^mxreport Report definitions queued for export using the Export/Import utility

^mxql Query definitions queued for export using the Export/Import utility

^mxmenu Old-style menu definitions queued for export using the Export/Import
utility

^mxmenob Menu object definitions queued for export using the Export/Import
utility

^mxdoc Help document definitions queued for export using the Export/Import
utility

^mxhtop Help topic definitions queued for export using the Export/Import util-
ity

Table 11-5: Open M/SQL Object Definition Globals (Continued)

Global Contents
11-10 Open M/SQL Developer Guide

Open M/SQL Globals
Object Definition Globals Located in Common Directory

The following object definition globals are also located in the common direc-
tory/UCI/namespace (/usr/msql/common):

 n ^mdd
 n ^mddc
 n ^mform
 n ^mformc
 n ^mhelp
 n ^mmenu
 n ^mmisc
 n ^mobject
 n ^mpriv
 n ^mreport
 n ^mreportc

If you are using the Open M/SQL Relational Server, you will also find the fol-
lowing globals in the common directory/UCI/namespace (/usr/msql/common):

 n ^mroutine
 n ^mtemp

Caution Do not delete these globals from the common directory under any circumstances.
If you do so, you will have to reinstall Open M/SQL.
Open M/SQL Developer Guide 11-11

Chapter 11—Programmer Interface to Applications
Open M/SQL Percent (%) Globals

The percent (%) globals are located in the Open M/SQL System Manager’s
directory.

Caution Do not delete these globals from the System Manager’s directory. If you do so,
you may have to reinstall Open M/SQL.

Also, do not change the default global protection status of these globals, and do
not edit these globals by hand (with the exception of %rakeys).

The following table lists the Open M/SQL percent (%) globals and briefly
describes the information stored in each:

Table 11-6: Open M/SQL Percent (%) Globals

Global Contents

^%RDE Full Screen Editor information

^%dafmlog Results of FileMan->Open M/SQL links and updates

^%mmsg Information for the “Message of the Day”

^%mobject System help objects

^%msql Miscellaneous Open M/SQL information

^%muser Open M/SQL UserName definitions. Default protection status allows
users to read/write/delete this global. To edit the contents of this global,
use the User Security Definition window

^%omc Relational Gateway information

^%oms Open M/SQL Server configuration information.The System Manager
can edit the contents of this global by editing Server configuration
parameters

^%qarmisc Miscellaneous M/PACT information

^%rakey Open M/SQL keyboard definition information

^%rakeys Open M/SQL keyboard definition information. Default protection status
allows users to read/write/delete this global. This is the only % global
that you might have occasion to edit by hand (see the Open M/SQL
Database Administrator’s Guide for more information).

^%rde Full Screen Editor information

^%rekey Open M/SQL keyboard definition information

^%sys Open M/SQL system information

^%task Open M/SQL Task Manager information. Default protection status
allows users to read/write/delete this global. To edit the contents of this
global, use the M/SQL Task Queue window
11-12 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
Inserting Code into Open M/SQL Applications

Open M/SQL provides a variety of locations where you may directly insert M
code or SQL code into an application. This enables you to customize the applica-
tion to your exact specifications.

The following table lists the locations within the Open M/SQL application devel-
opment environment where inserted code is supported and shows what type of
code you can insert:

Table 11-7: Locations Where M/SQL Permits Inserted Code

Location Type of Code

Triggers in base tables
(Action Types: M Code, SQL Code, Routine)

M code lines
SQL statement

Triggers in forms
(Action Types: M Code, SQL Code, Routine, Set Field)

M code lines
SQL statement

Triggers reports
(Action Types: M Code, Routine)

M code lines

Override queries for base table and form lookups SQL WHERE and ORDER
BY statements

Computed fields in base tables, forms, and reports M code lines
M IF conditions

Internal-to-External and External-to-Internal Conversion
Code in base tables and forms

M code lines

Additional Validation Code in base tables and forms M code lines

Conditions for Required-Maybe fields in base tables and
forms

M IF conditions

Conditions for executing variable window placement M IF conditions

Expressions for map subscripts and pieces M expressions

NEXT Subroutine in maps M code lines

Conditions for conditional maps M IF conditions

General Mapping M code lines

Menu object options
(Action Types: M Code, SQL Code, Routine)

M code lines
SQL statement

Code to use mnemonic as accelerator in stand-alone menu
bar attributes

M expressions

Conditions for exiting menu bar after invoking menu option M expression

Conditions for setting the Active flag for a menu option M expression

Conditions for suppressing display of a menu option M expression
Open M/SQL Developer Guide 11-13

Chapter 11—Programmer Interface to Applications
The types of inserted code referenced in the Type of Code column in the preced-
ing table have the following meanings:

 n M code — consists of one or more lines of valid M commands and argu-
ments, without tags.

 n M expression — M code that contains no commands and evaluates to a
value.

 n M IF condition — one or more M expressions separated by commas, as
would follow an M IF command.

 n SQL statement — SQL code that performs a single operation, e.g. SELECT,
INSERT, UPDATE, DELETE, etc.

Inserted Code Can Reference Fields

Inserted M code can reference single-line as well as multi-line fields in the cur-
rent base table.

To reference single-line fields, use the curly brace syntax, as follows:

{fieldname}

To reference multi-line fields, use the following syntax:

{fieldname(expression)}

Defining the Caller ID for a menu action M expression

Conditions for executing variable menu placement (for
menu objects only)

M IF conditions

Code to clear the screen before menu option invocation
and restore the screen after option invocation

M expression

Conditions for exiting the Pop-Up Menu after invocation of
a menu option

M expression

Conditions for collapsing all Pop-Up Menus, or the current
Pop-Up Menu after the menu option is invoked

M expression

Menu options (for old-style menus)
Action types: M Code, Routine

M code lines

Specification for Row ID for the form to call (when the tar-
get form is a single-row form)

M expression

Specification for the parent reference (when the source
table of the target form is a child table with a known parent)

M expression

Table 11-7: Locations Where M/SQL Permits Inserted Code (Continued)

Location Type of Code
11-14 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
This syntax requires that you specify an expression to indicate which line of the
multi-line field you are targeting.

For example, the following code:

SET AddLine2={Address(2)}

sets the variable “AddLine2” to the second line of the “Address” field.

The expression cannot contain any of the following:

 n Other fields
 n The wildcard character “*”
 n Curly braces

Open M/SQL does not check the expression for correctness. An incorrect expres-
sion may cause the code to fail.

Inserted Code Can Reference Variables and Globals

Inserted M code can reference local variables and globals. For each type of
inserted code, certain percent (%) variables are uniquely applicable, while others
are not applicable. This topic is discussed in more depth in the following sec-
tions.

To avoid potential conflicts with system code, your inserted M code should not
reference variables with all-lowercase names, unless the inserted code is a trigger
action (and therefore called as a subroutine) and protects its variables with a
NEW command.

Anywhere you can insert M code you can also insert macro source code.

Open M/SQL Performs Syntax Checking on Inserted M Code

Open M/SQL automatically performs syntax checking on all inserted M code
throughout the Open M/SQL environment, with the exception of the General
Mapping facility in the Data Dictionary (where you may define a customized
physical structure for a base table).

Whenever you exit a line of inserted M code, Open M/SQL checks it for proper
syntax and reports any errors at the bottom of the screen.

Open M/SQL does not check SQL code for proper syntax.

Note Open M/SQL supports syntax checking for ISM systems only.
Open M/SQL Developer Guide 11-15

Chapter 11—Programmer Interface to Applications
Triggers

Triggers are sequences of actions that you may define to automatically take place
at various points during the execution of an Open M/SQL application.

You may define triggers at the following levels within the Open M/SQL applica-
tion development environment:

 n Base table
 n Form
 n Report

Trigger Action Types

A trigger may consist of one trigger item or a sequence of multiple trigger items.

Each trigger item must have an action type, which specifies the kind of action the
trigger item will execute. The set of action types available to a trigger definition
depends on where in the Open M/SQL environment the trigger is located.

For each trigger item, you may define an associated condition in the form of an
M IF expression to control its execution. When the condition associated with a
trigger item evaluates to TRUE, the specified trigger action executes. When the
condition associated with a trigger item evaluates to FALSE, the specified trigger
action does not execute.

Base Table Triggers

Base table triggers are defined in the Data Dictionary. They are sequences of
database actions initiated by an INSERT, UPDATE, or DELETE action per-
formed on a base table. These triggers help to maintain integrity constraints and
other data dependencies.

There are six types of base table triggers, including:

 n Pre-filing INSERT Triggers
 n Pre-filing UPDATE Triggers
 n Pre-filing DELETE Triggers
 n Post-filing INSERT Triggers
 n Post-filing UPDATE Triggers
 n Post-filing DELETE Triggers
11-16 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
Base Table Trigger Action Types

Base table triggers support the following action types:

 n M Code
 n Routine
 n SQL code

Each of these action types permits you to insert your own code.

Form Triggers

Form triggers extend the conventional notion of triggers to form, window, and
field interaction. They are defined in the Form Generator to perform various
operations tailored to the needs of the application end-user. Form triggers can
execute at the form, window, and field levels of an application and are often used
to define the control structure for application processing.

There are nine types of form triggers, including:

 n Pre-Form Triggers (one per form)
 n Post-Retrieval Triggers (one per form)
 n Post-Form Triggers (one per form)
 n Pre-Row Triggers (one per form, for multi-row forms only)
 n Post-Row Triggers (one per form, for multi-row forms only)
 n Pre-Window Triggers (one per window)
 n Post-Window Triggers (one per window)
 n Pre-Field Triggers (one per field)
 n Post-Field Triggers (one per field)

When used to file data, a form invokes the filing operations of base tables, thus
causing base table triggers to be pulled.

Form Trigger Action Types

Form triggers support a very long list of action types, many of which emulate
very specific programming functions (e.g., invoke a specified form, window, or
menu). Most form trigger action types do not permit you to insert your own code.

For a complete list of all action types supported by form triggers, see the Open
M/SQL User Interface Programming Guide.
Open M/SQL Developer Guide 11-17

Chapter 11—Programmer Interface to Applications
The form trigger action types that permit you to insert your own code include:

 n M Code
 n SQL Code
 n Routine
 n Set Field (which lets you set a specified field equal to an M expression).

Report Triggers

Report triggers are defined in M/PACT. They may be used to execute lines of M
code, call pre-defined M routines, or invoke forms either before or after the exe-
cution of a report, with the resultant action usually depending on the evaluation
of some M/PACT percent (%) variable.

There are two types of report triggers:

 n Pre-Report Triggers
 n Post-Report Triggers

Pre-Report triggers are pulled before the report runs, but after the report output
device is opened and used. Any output from a Pre-Report trigger is sent to the
output device for that run of the report.

Post-Report triggers are pulled after the report runs, but before the device has
been closed, so that output from a Post-Report trigger is also sent to the output
device for that run of the report.

Report Trigger Action Types

Report triggers support the following action types:

 n M Code
 n Routine
 n Form

The M Code and Routine action types permit you to insert your own code.

You should only the Form action type if you intend to send the report to a termi-
nal.
11-18 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
Referencing Fields in a Trigger

When defining triggers, you may reference any fields associated with the current
base table in the following places:

 n M IF condition expression associated with any trigger item
 n M Code window for a trigger item of action type M Code
 n Set Field window for a trigger item of action type Set Field
 n Parameters to the routine specified for a trigger item of action type Routine

To reference a field, enclose the field name in curly braces, for example:

SET NAME={Name}

sets the M local variable “NAME” equal to the (internal) value of the “Name”
field in the current base table.

Note The syntax {Table.Field} is not allowed in triggers.

Referencing Open M/SQL Percent (%) Variables in Triggers

When defining triggers, you may reference Open M/SQL percent (%) variables
in the following places:

 n M IF condition expression of any trigger item
 n M Code window of a trigger item of action type M Code

The Open M/SQL percent (%) variables store information about system mode
and recent user actions. You may use them to set up execution conditions for nav-
igation actions or other programmer-defined operations.

For a complete list of the Open M/SQL percent (%) variables, see Table 12-1,
“Open M/SQL Percent (%) Variables”.

Many percent variables appear enclosed in curly braces, a syntax used to denote
internally stored system information. These variables are interpreted by Open
M/SQL at run time.
Open M/SQL Developer Guide 11-19

Chapter 11—Programmer Interface to Applications
A few of the percent variables you may find most useful when defining triggers
are:

 n {%action}
 n {%filetype}
 n {%presave}
 n {%savedata}
 n {%timeout}
 n {%caller}
 n {%inquiry_mode}
 n {%retrieved}
 n {%parent_reference}

For example, the M IF condition expression of a trigger item might test the value
of the {%presave} variable, which is 1 if the current row has been filed, 0 other-
wise.

Open M/SQL also supports the a list of return prefix percent variables that corre-
spond to certain non-prefixed percent variables, as shown in the table below:

Whereas the non-prefixed percent variables store current values, the return prefix
percent variables store the same values for the form that was last exited (i.e., the
values that were active at the time of the last Post-Form Trigger).

Triggers can also make use of other Open M/SQL variables for a variety of pur-
poses. For more information on defining triggers, see the Open M/SQL Data Dic-
tionary Guide (base table triggers) or the Open M/SQL User Interface
Programming Guide (form triggers).

Table 11-8: Return Prefix Percent Variables

Percent Variable Return Prefix Percent Variable

{%action} {%return_action}

{%filetype} {%return_filetype}

{%presave} {%return_presave}

{%savedata} {%return_savedata}

{%timeout} {%return_timeout}
11-20 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
Using SQL Code in a Trigger

A trigger item of action type SQL Code may contain a single SQL statement,
occupying one or more lines. The SQL statement can be any of the following:

 n SELECT
 n INSERT
 n UPDATE
 n DELETE
 n GRANT
 n REVOKE
 n %CHECKPRIV
 n CREATE VIEW
 n ALTER VIEW
 n DROP VIEW

An example of a trigger item of action type SQL Code occurs in the pre-filing
delete trigger for a parent table. This trigger item deletes all child rows belonging
to a parent row when the parent row is deleted. It uses the following SQL syntax:

DELETE FROM ChildTable
WHERE ChildTable.ParentRef = :parid

where “parid” is a variable set to the Row ID of the parent table currently being
deleted. This trigger item ensures referential integrity by making sure that there
are no orphan child rows.

Note When entering SQL code for a trigger item, you must insert a space character
between consecutive lines that should be separated by a space. The SQL Code
definition window does not embed a space when it wraps from one line to the
next.

Using M Code in a Trigger

A trigger item of action type M Code may contain one or more lines of M code.
Each line may be up to 255 characters in length.

The M code lines you define are called as a subroutine. Therefore:

 n You may use a QUIT statement to exit the trigger item and move on to evalu-
ate the next item (if one exists) in the sequence.

 n You may use a NEW statement to protect local variables referenced in the
trigger so that they do not affect the caller.

The M Code defined in triggers may contain DO statements and may therefore
call user-defined M routines.
Open M/SQL Developer Guide 11-21

Chapter 11—Programmer Interface to Applications
Override Queries for Lookups

Open M/SQL lets you define lookup specifications at both the base table and
form levels.

When you define lookup specifications, Open M/SQL automatically generates a
default SQL query for each lookup query you define. You can optionally modify
this default SQL query to customize lookup selection logic to your exact specifi-
cations.

Specifically, you can modify the WHERE and ORDER BY clauses of each gen-
erated lookup query. When you modify a generated lookup query you create an
override lookup query. You must always use valid SQL syntax when modifying a
generated lookup query.

You can modify a generated lookup query to do the following:

 n Change an exact match lookup query to a partial match, or vice versa,
 n Use a different transformation function from the standard for a given data

type (ALPHAUP, UPPER, or your own function),
 n Make a lookup query more restrictive by excluding rows that do not satisfy

some set of criteria,
 n Modify the order in which the rows are displayed in the lookup box.

Computed Fields

A computed field is a field whose value is calculated by one or more lines of M
statements. The M statements may reference other fields within the current base
table using the curly brace syntax, and may use M $ functions. Computed fields
may also include embedded SQL statements delimited by the ##sql preprocessor
function. Open M/SQL lets you define computed fields for base tables, forms,
and reports.

A computed field must always set itself equal to the value of the calculation spec-
ified in the M statement(s). You may reference the computed field itself by
enclosing an asterisk in curly braces, {*}. For example:

SET {*}={Qty}*{Price}
SET {*}=$SELECT({City}=“Dallas”:“LOCAL”,1:“REMOTE”)

You may also define IF conditions associated with the computed field that cause
the field to produce a NULL result. An IF condition consists of one or more M
expressions separated by commas and can contain field names in curly braces.
When an IF condition evaluates to true, the computed field is NULL.
11-22 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
Internal/External Conversion Code

You may define external-to-internal and internal-to-external conversion code for
fields. This code converts field values between external display format and inter-
nal storage format. It consists of M statements that modify the value of %val.

External-to-Internal Conversion Code

External-to-internal conversion code finds the external value of a field in %val
and sets %val to an internal value. In addition, if it detects a problem with the
external value, it can set %ok to zero and %msg to an error message, as described
below in the section entitled “Additional Validation Code”. For example, the fol-
lowing conversion code translates a date from external format to internal ($H)
format:

SET %DS=%val do INT^%DATE SET %val=%DN
IF %val=-1 set %ok=0,%msg=“Invalid date”

the entry point INT^%DATE receives input from the variable %DS and sends
output to the variable %DN.

Internal-to-External Conversion Code

Internal-to-external conversion code finds the internal value of a field in %val
and sets %val to the external value. The following code translates a date from
internal format to external format:

set %val=$zd(%val)

The variable %ok has no effect in internal-to-external conversion code.

Other Conversion Code Variables

Conversion code can also reference the following variables:

 n %old — internal value of a field as it existed when last retrieved from the
base table.

 n %oldext — external value of a field as it existed when last retrieved from the
base table.

 n %new — internal value of a field as it currently appears.
 n %newext — external value of a field as it currently appears.

For example, to prevent the field “WasSeen” from being changed from Yes to
No, the conversion code for “WasSeen” might include the following line:

IF %oldext[“Y”,%newext[“N” set %ok=0,%msg=“Can't...”
Open M/SQL Developer Guide 11-23

Chapter 11—Programmer Interface to Applications
Additional Validation Code

Open M/SQL automatically performs some validation checking of base table and
form-only fields based on the specified data type and information associated with
the data type. For example, Open M/SQL tests a date for valid syntax. It also tests
date fields to make sure that an entry is not earlier than the earliest allowable
date, as mandatorily specified in Date Field Definition window.

The author of a base table or form can specify additional validation code to fur-
ther refine the scope of allowable entries. Additional validation code consists of
M statements that may optionally reference field names using the curly brace
syntax. The internal value of a field resides in the variable %val. Additional vali-
dation code can be used to reject an invalid value for %val by setting %ok to zero
and %msg to a text error message, as follows:

IF %val>$H SET %ok=0,%msg=“No future dates please.”

Additional validation code can reference the variables %old, %oldext, %new,
and %newext, as described above in the section entitled “Internal/External Con-
version”.

Required-Maybe Fields

Required-Maybe is an option for base table and form-only fields that allows you
to specify an M condition that determines whether or not the field is required.
When the M condition you specify evaluates to TRUE, the field becomes
required. When the M condition you specify evaluates to FALSE, the field
becomes not required.

The M condition can be any sequence of M expressions separated by commas. It
can also contain field names using curly brace syntax.

For example, suppose you want the base table field “Employees.LicenseNum-
ber” to become required whenever the field “Employees.ParkingSpot” is not null.
To do this, you can make “Employees.LicenseNumber” a Required-Maybe field
based on the status of the “Employees.ParkingSpot” field, by specifying the fol-
lowing Required-Maybe condition:

{Employees.ParkingSpot}’=“”

This condition evaluates to TRUE unless “Employees.ParkingSpot” is null or
contains a null internal and external value separated by $C(1).
11-24 Open M/SQL Developer Guide

Inserting Code into Open M/SQL Applications
Map Subscripts and Pieces

In the Open M/SQL General Mapping facility where you map base tables to
underlying global structures, you can specify subscripts and pieces in base table
maps as M expressions. These M expressions may contain field names in curly
braces.

For example, a constant subscript “DATA” is specified as:

“DATA”

A subscript consisting of the value of the “Dept” field in the base table is speci-
fied as:

{Dept}

A subscript can also be an expression, such as:

$select({Dept}=“SALES”:“MARKETING”,1:{Dept})

Open M/SQL also allows master map subscripts to be expressions. In master map
subscripts, fields in curly braces {} are limited to the RowID and fields on which
the RowID is based.

See the Open M/SQL Data Dictionary Guide for more information on master
map subscripts.

NEXT Subroutine

If you want a particular map subscript to be traversed by M code other than the
default $ORDER on the subscript value, you can define an override NEXT sub-
routine for that subscript. A NEXT subroutine consists of one or more lines of M
code that set the value of:

{Li}

where i is the number of the subscript.

You can skip a subscript value by executing a GOTO the label “NEXT”. For
example, the following NEXT subroutine for subscript 2:

SET {L2}=$ORDER(^({L2})) GOTO NEXT:{L2}#100=0

skips values that are multiples of 100.

Since a null subscript value indicates that there are no more rows, you should not
use a null condition for the NEXT test. Also, do not use an IF command to per-
form the test.
Open M/SQL Developer Guide 11-25

Chapter 11—Programmer Interface to Applications
The NEXT subroutine can execute a QUIT statement and use a NEW statement
to protect any local variables that it uses.

Conditional Map

A conditional map is a map that Open M/SQL applies to base table data if a spec-
ified M condition evaluates to true.

The M condition consists of one or more M expressions separated by commas
and can contain field names in curly braces.

For example, suppose you wanted to create an index of female patients only. You
might define an IF condition for a conditional map, as follows:

IF {Patients.Sex}=“F”
11-26 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs
Calling Open M/SQL Objects from M Programs

The following sections describe how to call forms, reports, queries, menu
objects, and old-style menus from within an M program or directly from the M
programmer prompt using the M call syntax.

The M call syntax lets you invoke Open M/SQL objects from any of the follow-
ing locations:

 n From a trigger of action type M Code
 n From menu option of action type M Code
 n From within an M routine
 n From the M programmer prompt

Calling Forms

Programmer-defined M code, including routines and inserted M code, can invoke
Open M/SQL forms using the M form call syntax. There are two ways to use the
form call syntax:

 n Using the form’s name or internal identification number
 n Using the form’s routine prefix

When calling forms that are compiled as NEW, you may use either syntax.

When calling forms that are compiled as OLD, you must use the name/ID# syn-
tax.

Calling a Form By Its Name/ID#

To call a form by its form name or internal identification number, use the follow-
ing syntax:

do form^%msql(form,user,rowid,parentid,inquiry,noloop,
update,callerid,default_array,currrent_array,
edit_array,scroll)

where form is the name or internal identification number of the form you want to
invoke. It is the only required parameter
Open M/SQL Developer Guide 11-27

Chapter 11—Programmer Interface to Applications
Calling a Form By Its Routine Prefix

To call a form by its routine prefix, use the following syntax:

do ^<routine_prefix>1(rowid,user,parentid,inquiry,
noloop,update,callerid,default_array,currrent_array,
edit_array,scroll)

where <routine_prefix> is the routine prefix associated with the form you want
to invoke and “1” is the system supplied identifier appended to the prefix of the
entry point routine.

Note You may find a form’s routine prefix in the Routine Prefix field of the form-level
Advanced Features window for that form.

Form Call Syntax Parameters

Both versions of the form call syntax use approximately the same parameter list.
The only difference is the order of the rowid and user parameters, which is
switched.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark a place.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The entire parameters list is optional. You may type empty parentheses () to skip
the entire list.

The following table lists and describes the parameters associated with the M form
call syntax:

Table 11-9: Parameters Associated with M Form Call Syntax

Parameter Meaning

rowid The Row ID of a row in the form's base table. This causes the form
to invoke the specified row. If null, the row selection window will
appear (for single-row forms).

user This is a non-meaningful parameter; Open M/SQL no longer uses
this information. Enter the null value (“”) to skip this parameter.
Note: Open M/SQL stores UserName information in the %msql

variable.
11-28 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs
parentid If the target form is associated with a child table and the form is
designed to be called from a known parent, this parameter must
reflect the Row ID of a row in the parent table. Otherwise, it is
ignored.

inquiry Set this flag to 1 to specify that the form is to be run in inquiry
mode. Set to 0 for data entry mode. 0 is the default.

noloop Set this flag to 1 to turn form looping OFF. Set to 0 to turn form
looping ON. 0 is the default. This parameter applies to single-row
database forms only.

updatestatus You may set this flag as follows:
“u” — forces an update of a single row. If set to “u”, you must

specify the RowID of a current row or a parent refer-
ence using the “rowid” or “parentid” parameters
(parameters 2, 4).

“i” — forces row insert. If set to “i”, the “rowid” parameter is
optional, and Open M/SQL will assign it if none is spec-
ified.

“d” — displays a form. If set to “d”, you must specify the
RowID or parent reference of the row you want to dis-
play, unless the form is a form-only form.

callerid Set this flag to the name of a caller to activate specifications for
variable window placement or other uses of the {%caller} variable.

default_array Here you may specify an array (actual name is your choice) to
pass in field defaults. For database forms, this applies exclusively
to database fields. For non-database forms, it applies to form-only
fields.

current_array Here you may specify an array (actual name is your choice) that
will hold current field values on file after the form is exited.
For database forms, this applies exclusively to database fields.
For non-database forms, it applies to form-only fields but only
when the non-database form files data.

edit_array Here you may specify an array (actual name is your choice) that
will hold the original values of fields that were edited. For database
forms, this applies exclusively to database fields. For non-data-
base forms, it applies to form-only fields but only when the non-
database form transacts filing.

scroll Set this flag to 1 to activate roll-and-scroll mode, 0 or NULL for
normal windowing mode. You can only activate roll-and-scroll
mode if it is enabled for the current form in the form-level
Advanced Features window.

Table 11-9: Parameters Associated with M Form Call Syntax (Continued)

Parameter Meaning
Open M/SQL Developer Guide 11-29

Chapter 11—Programmer Interface to Applications
Calling Reports

Programmer-defined M code, including routines and inserted M code, can invoke
M/PACT reports using the M report call syntax, as shown below:

do report^%msql(report_name,user,device,format,batchsw)

where “report_name” is the only required parameter.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark a place.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The table below lists and describes the parameters associated with the M report
call syntax:

Table 11-10: Parameters Associated with M Report Call Syntax

Parameter Meaning

report_name Specify the name or internal report identification number of the report you
want to run.

user This is a non-meaningful parameter; Open M/SQL no longer uses this
information. Enter the null value (“”) to skip this parameter.
Note: Open M/SQL stores UserName information in the %msql vari-

able.

device Here you may optionally specify the name of any valid output device to
which your system is linked.

format Here you may optionally specify the name of an output format for the
specified device.

batchsw Set this flag to 1 to specify that the report is to be run in the background.
Set to 0 to specify that the report is to be run in the foreground. The
default is 0.
11-30 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs
Calling Queries

Programmer-defined M code, including routines and inserted M code, can invoke
Open M/SQL queries using the M query call syntax, as shown below:

do query^%msql(query_name,user,device,format,batchsw)

where “query_name” is the only required parameter.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark a place.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The table below lists and describes the parameters associated with the M query
call syntax:

Table 11-11: Parameters Associated with M Query Call Syntax

Parameter Meaning

query_name Specify the name or internal report identification number of the query you
want to run.

user This is a non-meaningful parameter; Open M/SQL no longer uses this
information. Enter the null value (“”) to skip this parameter.
Note: Open M/SQL stores UserName information in the %msql vari-

able.

device Here you may optionally specify the name of any valid output device to
which your system is linked.

format Here you may optionally specify the name of an output format for the
specified device.

batchsw Set this flag to 1 to specify that the query is to be run in the background.
Set to 0 to specify that the query is to be run in the foreground. The
default is 0.
Open M/SQL Developer Guide 11-31

Chapter 11—Programmer Interface to Applications
Calling Old-Style Menus

Programmer-defined M code, including routines and inserted M code, can invoke
old-style menus using the M menu (old-style) call syntax, as shown below:

do menu^%msql(menu_name,user,loginsw,callerid)

where “menu_name” is the only required parameter.

The parameters are position-sensitive, which means that you must assign some
value to the first parameter before you can assign a value to the second parame-
ter, and to the second parameter before you can assign a value to the third param-
eter, etc.

A null value will mark a place.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

The table below lists and describes the parameters associated with the M menu
call syntax:

Calling Menu Objects

Programmer-defined M code, including routines and inserted M code, can invoke
menu objects in either of two ways:

 n Using a menu call entry point
 n Using the menu object’s routine name

Table 11-12: Parameters Associated with M Menu Call Syntax

Parameter Definition

menu_name Specify the name or internal report identification number of the old-style
menu you want to invoke.

user This is a non-meaningful parameter; Open M/SQL no longer uses this
information. Enter the null value (“”) to skip this parameter.
Note: Open M/SQL stores UserName information in the %msql vari-

able.

loginsw This is an optional flag that controls the appearance of the User Identifi-
cation window. Set this flag to 1 to invoke the User Identification window
before running the menu. Set it to 0 to skip the User Identification win-
dow. The default is 0.

callerid You may optionally set this parameter to a particular CallerID to activate
any conditions associated with the menu that are based on a certain
value being held by the {%caller} variable.
11-32 Open M/SQL Developer Guide

Calling Open M/SQL Objects from M Programs
Calling Menu Objects Using a Menu Call Entry Point

The menu call entry point uses the following syntax:

do menuobj^raznm3(imn,fmtype,tmtype)

The following table lists and describes the parameters associated with the menu
call entry point:

Calling a Menu Object By Its Routine Name

Alternatively, you may call a menu object directly from M code using its routine
name. To do so, you must know the routine prefix for the menu object (the rou-
tine name is formed by the concatenation of the routine prefix and the number 1.)

When you call a menu object by its routine name, you may optionally pass in a
value for the Caller ID.

To call a menu object by its routine name, use the following syntax.

do ^<routine_prefix>1(callerid)

For example, if your pop-up menu prefix is “mp1”, and you want to pass in a
Caller ID of “Admissions”, you would issue the following:

> do ^mp11(“Admissions”)

Table 11-13: Parameters Associated with the Menu Call Entry Point

Parameter Meaning

imn This parameter is required. Enter either the internal identification num-
ber or the name of the menu object you want to invoke.
Note: If you identify the menu object by its name, you must use quo-

tation marks to delimit the string.

fmtype This is an optional parameter that you may use to declare the type of
menu from which the menu you are calling is being called. You may
enter the following:

0 or NULL — Pop-Up Menu
1 — Menu Bar

This is useful when you have programmed a menu to respond in certain
ways depending on the menu type of its calling menu, a value which is
stored in the {%menutype} system variable.

tmtype This is an optional parameter that you may use to declare the mode in
which you want to invoke this menu. You may enter the following:

0 or NULL — Pop-Up Menu
1 — Menu Bar
Open M/SQL Developer Guide 11-33

Chapter 11—Programmer Interface to Applications
Emulating Form Behavior from M Programs

Open M/SQL provides several utility entry points to the Open M/SQL routine
%msql that allow programmer-defined M code to emulate the behavior of Open
M/SQL forms.

The table below lists and describes these entry points to %msql:

Like the entry points for invoking Open M/SQL objects, these utility entry points
allow you to pass certain required and non-required parameters.

In all cases, the parameters are position-sensitive, which means that you must
assign some value to the first parameter before you can assign a value to the sec-
ond parameter, and to the second parameter before you can assign a value to the
third parameter, etc.

A null value will mark a place.

You may close the parentheses after the last positively defined parameter, and
Open M/SQL will assume null values for all remaining parameters.

Displaying Help Text in a Help Text Box

You may use the help^%msql utility entry point to display one or more lines of
help text in a bordered box at a specified location on the screen.

This entry point uses the following syntax:

do help^%msql(helpref,x,y)

where “helpref” is the only required parameter.

Table 11-14: Entry Points For Emulating Form Behavior

Entry Point Function

help^%msql Displays scrolling help text in a box.

write^%msql Writes a message on the screen.

$$read^%msql Reads a data value.

windcln^%msql Cleans up screen by erasing the residual display of windows
after they have been exited.
11-34 Open M/SQL Developer Guide

Emulating Form Behavior from M Programs
The table below lists and describes the parameters associated with the
help^%msql utility:

The help^%msql utility automatically draws a box that is large enough to accom-
modate all the help text that you provide, unless there is insufficient space on the
screen below the starting position of the box to accommodate the help text. If
there is insufficient space, the help text will scroll.

In a scrolling help text box, users may use the <UP ARROW> and <DOWN ARROW>
as well as <PREVIOUS SCREEN> and <NEXT SCREEN> keystrokes to navigate the
help text lines.

For example, the following call to help^%msql:

>do help^%msql(“^rh(12,6)”,20,10)

displays help text lines as follows:

^rh(12,6,1)=first line
^rh(12,6,2)=second line
...

in as large a box as necessary with its upper left corner at screen position (20,10).

Writing Message Text

The write^%msql utility entry point writes a message to the screen using the
same conventions for timeout and erase as used by Open M/SQL forms.

This entry point uses the following syntax:

do write^%msql(message,timeoutsec,erasesw,x,y)

where “message” is the only required parameter.

Table 11-15: Parameters Associated with help^%msql Utility

Parameter Meaning

helpref Here you must specify a reference to the variable or global node that
contains the lines of help text you want to display.

x,y Here you may optionally specify the coordinates for drawing the upper
left corner of the help box.
The value of x can range from 1 to 80, and the value of y can range from
1 to 24. The upper left corner of the screen is represented by the coordi-
nates (1,1).
The x and y coordinates must both be non-null, or they must both be null.
If they are both null, the utility uses the current cursor position, as
reflected in the variables $x and $y, i.e. x=$x+1, y=$y+1.
Open M/SQL Developer Guide 11-35

Chapter 11—Programmer Interface to Applications
The table below lists and describes the parameters associated with the
write^%msql utility:

Reading Fields

The $$read^%msql utility entry point mimics the behavior of a field on an Open
M/SQL form. This function displays a text caption and a data entry slot of defin-
able length to the screen at specified coordinates. It then reads in the data value
input by the user. It supports both editing and horizontal scrolling capabilities.

This entry point uses the following syntax:

set <glvn>=$$read^%msql(prompt,x,y,scrlen,maxlen,default)

where <glvn> is a global or variable name and “prompt” is the only required
parameter.

The table below lists and describes the parameters associated with the
$$read^%msql utility:

Table 11-16: Parameters Associated with write^%msql Utility

Parameter Meaning

message Here you must specify the text of the message you want to write to the
screen.
You must enclose the message text in quotation marks.

timeoutsec Here you may optionally specify a number of seconds to wait for a read
after the message is printed.
If you set the timeout to a number greater than 0, the cursor will pause
for the specified number of seconds (or until the user presses a key), and
then return.
If you set the timeout to 0 or null, the cursor will return immediately after
printing the message.

erasesw Here you may set a flag to specify whether the utility should erase the
message before returning.
Set this flag to 1 to erase the message before returning.
Note: You should use this parameter in conjunction with a timeoutsec

value greater than 0.

x,y Here you may optionally specify the coordinates for the cursor position at
which to start the message.
The value of x can range from 1 to 80, and the value of y can range from
1 to 24. The upper left corner of the screen is represented by the coordi-
nates (1,1).
The x and y coordinates must both be non-null, or they must both be null.
If they are both null, the utility uses the current cursor position, as
reflected in the variables $x and $y, i.e. x=$x+1, y=$y+1.
11-36 Open M/SQL Developer Guide

Emulating Form Behavior from M Programs
Table 11-17: Parameters Associated with $$read^%msql Utility

Parameter Meaning

prompt Here you may specify the text of the caption that precedes the field’s
data entry slot.
This is a required parameter, though you may set it to null to not display a
caption.
Note: Open M/SQL automatically draws the data entry slot using

underscores.

x,y Here you may optionally specify the coordinates for the cursor position at
which to start displaying the caption text.
The value of x can range from 1 to 80, and the value of y can range from
1 to 24. The upper left corner of the screen is represented by the coordi-
nates (1,1).
The data entry slot begins one space after the prompt or, if prompt is null,
at the specified (x,y) coordinates.
The x and y coordinates must both be non-null, or they must both be null.
If they are both null, the utility uses the current cursor position, as
reflected in the variables $x and $y, i.e. x=$x+1, y=$y+1.

scrlen Here you may optionally specify the length of the field’s data entry slot on
the screen.
This value cannot exceed the value for the maxlen parameter. It also
cannot exceed the value of 80 minus the length of the prompt parameter.
If this value is less than the value for the maxlen parameter, the field
allows horizontal scrolling.
If this value is null, maxlen is assumed to be null also.

maxlen Here you may optionally specify the maximum length for a field value.

default Here you may specify an optional default value for the field.
Open M/SQL Developer Guide 11-37

Chapter 11—Programmer Interface to Applications
Cleaning Up Windows

You can use the Window Cleanup function (windcln^%msql) to erase windows
from the screen after they have been exited. This function helps to resolve prob-
lems related to the residual display of window graphics after a window has been
exited.

In Open M/SQL, whenever a user exits a window, the system schedules the win-
dow to be erased at the next opportune moment. Opportune moments normally
occur before a new window is painted, or when the cursor is sitting on a prompt
waiting for user input. While this is sufficient in most situations, sometimes it
causes the erasure of windows to be delayed. This can be especially troubling if
you are using M code or routines as an intermediary between Open M/SQL
objects.

For example, suppose a menu object calls an M routine, and in turn the M routine
makes calls to various form routines. As each of the forms is exited, it is possible
for residual instructions that erase windows on the form to be left unresolved
until such time as another form is called. This can cause strange behavior, such as
windows transiently flashing on the screen, or portions of windows from the pre-
viously called form remaining unerased.

The Window Cleanup function erases all window graphics associated with any
object that has been exited and is, therefore, waiting in the erase queue.

The Window Cleanup function uses the following syntax:

do windcln^%msql

There are two cases after a window/menu object is exited where the Window
Cleanup function does not have any effect:

1. The window/menu object is set to not erase upon exit

2. A user exits via the GETOUTALL action

In these cases, Open M/SQL does not schedule any windows for erasure, there-
fore the Window Cleanup action has no effect.

Note Whenever you call a form or menu object directly from M code, you should always
check the value of the %r variable upon returning to the M routine. If %r>103, this
indicates that the user exited via a GETOUTALL action, in which case the M rou-
tine should quit immediately. This is important because when a user exits via a
GETOUTALL action, Open M/SQL does not schedule any windows to be erased.
Therefore, if the M routine calls another form or menu object, it may encounter
unerased screen clutter from the previous form/menu object.
11-38 Open M/SQL Developer Guide

Establishing Authorization ID from Programmer Mode
Establishing Authorization ID from Programmer Mode

Open M/SQL requires that each user have an Open M/SQL Authorization ID in
order to use the system. The Authorization ID is a character string that identifies
the current user to Open M/SQL and recalls the Open M/SQL privileges and
setup parameters assigned to that user. All Open M/SQL security is based on the
Authorization ID.

Open M/SQL stores the Authorization ID of the current user in the %msql vari-
able.

Typically, users establish their Authorization IDs by entering a UserName and
Password into the User Identification window, which Open M/SQL displays dur-
ing login. However, users may also establish their Authorization IDs by setting
%msql directly from M.

To pass the Authorization ID directly into %msql, issue a command using the fol-
lowing syntax at the M prompt before entering Open M/SQL:

> do setaid^%msql(“<UserName>”)

where <UserName> is a UserName that is registered in the User Table.

For example:

> do setaid^%msql(“Zeus”)

Note When setting the Authorization ID this way, you do not need to specify a pass-
word.

After issuing this command, user “Zeus” can log in to Open M/SQL by typing
the following command:

> do ^%msql

If the value passed into %msql corresponds to a valid UserName, Open M/SQL
acknowledges all development environment access privileges and object-level
privileges assigned to that user.

If the value passed into %msql does not correspond to a valid UserName, Open
M/SQL gives the user an Authorization ID of “unknown.” Users classified as
“unknown” are limited to minimal development environment access privileges
(basically, run-time access only) and have object privileges only for those objects
on which privileges are granted to user “_PUBLIC”.

If a user passes his/her Authorization ID directly into %msql, Open M/SQL does
not display the User Identification window at user login.
Open M/SQL Developer Guide 11-39

Chapter 11—Programmer Interface to Applications
Intermixing Open M/SQL Objects with User-Defined M
Routines

Open M/SQL provides a programmer utility called %msqlutl that helps to pre-
vent potential conflicts between user-defined M routines and critical Open
M/SQL variables.

Currently, %msqlutl supports three functions called by the following entry
points:

 n pushvars^%msqlutl
 n popvars^%msqlutl
 n $$msqlvars^%msqlutl

pushvars^%msqlutl

The pushvars^%msqlutl function protects critical Open M/SQL variables by
pushing them out onto a stack.

You should use this entry point prior to invoking any user-defined M code that
might potentially kill or overwrite some of these variables. You can call this entry
point in either of two modes:

1. Local Variables mode

In Local Variables mode, pushvars^%msqlutl pushes only those variables
which are local to specific Open M/SQL objects, while leaving intact Open
M/SQL global variables, which are needed to communicate between various
Open M/SQL objects.

To call pushvars^%msqlutl in Local Variables mode, use the following syn-
tax:

do pushvars^%msqlutl(0)

Or, when running Open M/SQL on a DTM system, use the following syntax:

do pushvars^%MSQLUTL(0)

You may want to use this mode when your application is executing some
combination of user-defined routines and Open M/SQL objects, as for exam-
ple in the following sequence of events:

User Routine --> Menu Object --> User Routine --> Form
11-40 Open M/SQL Developer Guide

Intermixing Open M/SQL Objects with User-Defined M Routines
2. All Variables mode

In All Variables mode, pushvars^%msqlutl pushes not only the local Open
M/SQL variables but the global variables as well.

To call pushvars^%msqlutl in All Variables mode, use the following syntax:

do pushvars^%msqlutl(1)

Or, when running Open M/SQL on a DTM system, use the following syntax:

do pushvars^%MSQLUTL(1)

You may want to use this mode when your application is calling from an
Open M/SQL object into a user-defined routine and does not invoke any
other Open M/SQL objects, as for example in the following sequence of
events:

Menu Object -> UserRtn1 -> UserRtn2 -> UserRtn3

popvars^%msqlutl

The popvars^%msqlutl function reinstates the Open M/SQL variables which
have been pushed out onto a stack.

You should use this entry point when returning from user-defined code after a
previous call to pushvars^%msqlutl.

popvars^%msqlutl accepts no arguments.

To call popvars^%msqlutl, use the following syntax:

do popvars^%msqlutl

Or, when running Open M/SQL on a DTM system, use the following syntax:

do popvars^%MSQLUTL
Open M/SQL Developer Guide 11-41

Chapter 11—Programmer Interface to Applications
$$msqlvars^%msqlutl

The $$msqlvars^%msqlutl function displays a list of critical Open M/SQL global
variables which must never be killed or overwritten by user-defined M code.

You might use this function as an argument for an exclusive kill list, for example:

SET list=$$msqlvars^%msqlutl
KILL(list)

The list of critical Open M/SQL variables stored by the $$msqlvars^%msqlutl
function includes the following:

db,%DIR,%dir,fro,h,kt,%is,lang,%mode,%msql,%mstack,%mw,
%mwo,%r,%rdsm,repaint,%trans,%volset,%wa,%wbvats,%we,
%wft,%wh,%wipe,%wmb,%wr,%ws
11-42 Open M/SQL Developer Guide

Contents of Applications
Contents of Applications

The remainder of this chapter describes the routines and globals that comprise
base tables, forms, menu objects, old-style menus, reports, and queries.

Routine Names

Each form, menu object, report, or pre-defined query must be compiled before it
can be run.

Note Old-style menus do not require compilation.

Furthermore, each base table associated with a form, report, or query must be
compiled before the form, report, or query can be compiled.

Compilation generates a set of executable routines. These routines perform func-
tions such as lookup and filing for a base table, drawing windows for a form, and
printing output and calculating totals for a report.

Machine requirements limit the maximum size of a single routine. If more code is
needed than can fit in a single routine, Open M/SQL generates multiple routines.
To ensure compatibility across implementations, InterSystems recommends that
you limit the maximum size of a single routine to 8KB, though this limit is not
universal.

Each base table, form, menu object, report, and query has a routine prefix used to
produce the names of all of its associated routines when it is compiled. The rou-
tine prefix is an alphanumeric name (leading character alphabetic) with a maxi-
mum length of 7 characters. When defining an object, you have the option of
specifying a customized routine prefix or accepting the default routine prefix.
Open M/SQL creates full routine names by appending a single character to this
prefix. The following table shows the default routine name prefixes for all com-
pilable objects:

where n is a one-character unique identifier appended by the compiler.

Table 11-18: Default Routine Name Prefixes

Object Default Prefix

Table mtn

Form mwn

Menu Bar mbn

Pop-Up Menu mpn

Report mrn

Query mqn
Open M/SQL Developer Guide 11-43

Chapter 11—Programmer Interface to Applications
The compiler generates the one-character unique identifier in the sequence 1-9,
followed by uppercase A-Z, followed by lowercase a-z. This amounts to a maxi-
mum of 61 distinct routine names that can be associated with a particular base
table, form, menu object, query, or report.

For example, given a base table with the routine prefix “rtname”, the compiler
generates the following consecutive routine names:

rtname1
...
rtname9
rtnameA
...
rtnameZ
rtnamea
...
rtnamez

If you change the routine prefix of a base table, form, menu object, report, or
query, you must be sure that the routine names generated from the new routine
prefix do not cause conflicts with any existing user-defined routine names. Open
M/SQL will not detect these conflicts.

For example, you should not assign the routine prefix “rdf” to any object in a
directory that contains user-defined routine names such as “rdf1”, “rdff”, or
“rdfX”, etc. You may, however, assign the routine prefix “rdf” to an object in a
directory that contains a user-defined routine called “rdf11, since the compiler
generates routine names by appending only one character to the routine prefix.

Note When you change a routine prefix, Open M/SQL does NOT delete the routines
with names that begin with the old prefix.

Contents of Base Table Routines

The compiled routines for an Open M/SQL base table contain all of the follow-
ing:

 n Filing code for INSERT, UPDATE, and DELETE operations, including data
type and other validation checking and internal/external conversion code.

 n A compiled SQL query for retrieving the old values for a row, which is used
during UPDATE operations to determine which values have changed. This
query is called the Update Query for the base table.

 n A compiled SQL query for each base table field specified as “Unique” in the
base table definition, which is used to determine whether another row exists
with an identical value. This query is called the Uniqueness Query for a base
table field.
11-44 Open M/SQL Developer Guide

Contents of Applications
 n Compiled SQL queries for default lookup specifications (row selection crite-
ria), which are used by forms to select rows from the base table.

 n Compiled M code or an SQL statement for each base table trigger item.

Entry Points to Primary Base Table Routine

The first compiled routine for a base table, whose name is the table’s routine pre-
fix concatenated with 1, contains three entry points to the filing operations for the
base table (insert, update, and delete). These filing entry points operate on base
table rows by calling the associated SQL statement, e.g. INSERT, UPDATE, or
DELETE. You should not call these entry points directly from the M programmer
prompt.

The tags for the three filing entry points are:

Base Table Definition Globals

Open M/SQL stores additional information about base tables in the ^mdd and
^mddc globals, as described in the following table:

Table 11-19: Filing Entry Points to Primary Base Table Routine

Entry Point Function

insert M code that validates and then inserts a new row into the base
table.

update M code that validates and then updates a base table row.

delete M code that validates and then deletes a row from the base table.

Table 11-20: Storage of Base Table Information

Global Contents

^mdd(1,irn) Stores base table information, where irn is a unique identifying num-
ber for the base table.

^mddc(1,irn) Stores information about the compiled base table routines.
Open M/SQL Developer Guide 11-45

Chapter 11—Programmer Interface to Applications
Contents of Form Routines

The compiled routines for an Open M/SQL form contain all code necessary to
run the form, including the following:

 n Code to draw each window in the form and handle user interaction with data
entry fields.

 n Compiled SQL queries for lookup specifications (row selection criteria) to
select rows from the base table associated with the form.

 n Compiled M code or an SQL statement for each form, window, and field trig-
ger.

Form Definition Globals

Open M/SQL stores additional information about forms in the ^mform and
^mformc globals, as described in the following table:

Contents of Menu Object Routines

The compiled routines for an Open M/SQL menu object contain the following:

 n Code to draw menu bars or pop-up menus and handle user interaction with
data entry fields.

Menu Object Definition Globals

Open M/SQL stores additional information about menu objects in the ^mobject
global, as described in the following table:

Table 11-21: Storage Of Form Information

Global Contents

^mform(iform) Stores form, window, and form field information for the form,
where iform is a unique form identifier.

^mformc(iform) Stores information about the compiled form routines.

Table 11-22: Storage Of Menu Object Information

Global Contents

^mobject(“object”,
“menu”,imn)

Stores information about the compiled menu object routines.
11-46 Open M/SQL Developer Guide

Contents of Applications
Contents of Old-Style Menu Routines

Old-style menus do not require compilation; therefore Open M/SQL does not
generate any compiled routines for them.

Open M/SQL stores all information about old-style menus in the global
^mmenu(imenu), where imenu is a unique menu identifier.

Contents of Report Routines

The compiled routines for an M/PACT report contain compiled SQL queries and
the necessary code to calculate subtotals, totals, and all user-defined code (e.g.
computed fields) and to print headers, trailers, and all data.

Report Definition Globals

Open M/SQL stores additional information about reports in the ^mreport and
^mreportc globals, as described in the following table:

Contents of Query Routines

The compiled routines for a pre-defined query created via the Query Generator or
Interactive Query Editor contain compiled SQL queries and the necessary code to
print the query results.

Open M/SQL stores additional information about the query in the global
^mql(iquery), where iquery is a unique query identifier.

Table 11-23: Storage Of Report Information

Global Contents

^mreport(ireport) Stores report information where ireport is a unique report
identifier.

^mreportc(0,ireport) Stores information about the compiled report routines.
Open M/SQL Developer Guide 11-47

Chapter 11—Programmer Interface to Applications
11-48 Open M/SQL Developer Guide

Open M/SQL Devel
CHAPTER

12
Open M/SQL Developer Utilities
Open M/SQL provides a group of utilities to help application programmers man-
age their Open M/SQL applications. These utilities are available on the Devel-
oper Utilities menu, which is accessible via an option on the Open M/SQL Main
Menu.

This chapter describes how to use each of the utilities on this menu.

Specifically, it covers the following topics:

 n Accessing the Developer Utilities Menu
 n Using the Object Compile Driver Utility
 n Checking the Integrity of Open M/SQL Objects
 n Searching for Strings in Open M/SQL Objects
 n Invoking Macro Source Routine Utilities
 n Querying Objects by Routine Prefix
 n National Language Reports
oper Guide 12-1

Chapter 12—Open M/SQL Developer Utilities
Accessing the Developer Utilities Menu

The Developer Utilities menu contains utilities that can help you manage your
Open M/SQL applications.

Procedure To access the Developer Utilities menu:

1. At the M programmer prompt, type the following command to enter
Open M/SQL:

> do ^%msql

You see the Open M/SQL Main Menu, as shown below:

2. From the Open M/SQL Main Menu, select the Developer Utilities
option.

Note: You may type v to select this option—it is a mnemonic accelerator.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄOpen M/SQL MenuÄÄÄ¿
 ³ ³
 ³ Data Dictionary ³
 ³ Forms ³
 ³ Reports ³
 ³ Queries ³
 ³ Menu Generator ³
 ³ System Management ³
 ³ Privileges ³
 ³ Developer Utilities ³
 ³ User Utilities ³
 ³ Server Management ³
 ³ Relational Gateway ³
 ³ Help Options ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

Open M/SQL Menu 03:50PM Press <Help> For Help
12-2 Open M/SQL Developer Guide

Accessing the Developer Utilities Menu
You see the Developer Utilities menu, as shown below:

Note: The Database Administrator can restrict users from accessing the
Developer Utilities menu by disabling the Developer Utilities option
in the User Security Definition form.

The following table lists and describes the options located on the Developer
Utilities menu:

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄÄM/SQL Developer UtilitiesÄÄÄÄ¿
 ³ ³
 ³ Export/Import Options ³
 ³ Object Compile Driver ³
 ³ M/SQL Object Integrity Checking ³
 ³ Object String Search Utility ³
 ³ Full Screen Editor ³
 ³ Macro Routine Utilities ³
 ³ Query Object By Routine Prefix ³
 ³ National Language Reports ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Wednesday Jul 05, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

M/SQL Developer Utilities 03:50PM Press <Help> For Help

Table 12-1: Options on Developer Utilities menu

Option Description

Export/Import Options Select this option to use the Export/Import utility (EIU), an auto-
mated, window-based utility that allows you to port Open M/SQL
object definitions between different directories and different
computers.
We do not document the use of the Export/Import utility in this
guide. For complete documentation on how to use this utility,
see the Open M/SQL Database Administrator’s Guide.

Object Compile Driver
utility

Select this option to use the Object Compile Driver utility, which
allows you to define compilation configurations for groups of
multiple objects or entire applications. When you run a compila-
tion configuration, it batch-compiles the code for all included
objects.

Object Integrity
Checker utility

Select this option to use the Object Integrity Checker utility. This
utility checks the integrity of specified object definitions or
groups of object definitions in the current directory and gener-
ates a report of all integrity errors that it finds. You can also set
the Integrity Checker to automatically correct some of the integ-
rity errors it finds.
Open M/SQL Developer Guide 12-3

Chapter 12—Open M/SQL Developer Utilities
Object String Search
utility

Select this option to use the Object String Search utility. This util-
ity searches through specified object definitions for a specified
text string.

Full Screen Editor Select this option to enter the Full Screen Editor environment,
where you may create and edit routines. When you exit the Full
Screen Editor, you return to the Developer Utilities menu.

Macro Routine Utilities Selecting this option invokes a submenu called Routine Utilities.
The Routine Utilities submenu displays a list of Open M/SQL
routine utilities. You may select any option on the Routine Utili-
ties submenu to invoke and use the corresponding routine utility.
When you exit the routine utility, you return to the Routine Utili-
ties menu.

Query Object By Rou-
tine Prefix

Select this option to access the Object Routine Prefix utility. This
utility lets you look up any Open M/SQL routine prefix to obtain
information about where the routine is being used.

National Language
Reports

Select this option to print the National Language Report, which
displays the translations provided for all system-generated mes-
sages, key labels, menu titles, and menu option text throughout
the Open M/SQL environment.

Table 12-1: Options on Developer Utilities menu (Continued)

Option Description
12-4 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
Using the Object Compile Driver Utility

The Object Compile Driver utility lets you define and store lists of Open M/SQL
objects for serial compilation.

Using this utility, you can recompile large sections of your application or all of
your application, with a single command.

To use the Object Compile Driver utility, you create and store compilation con-
figurations. Each compilation configuration can include multiple objects of all of
the following types:

 n Base Tables
 n Forms
 n Menu Objects
 n Reports
 n Queries
 n Routines

When you compile an Object Compile Driver configuration, you batch-compile
all included objects.

The Object Compile Driver utility is available as an option on the Developer
Utilities menu.

Procedure To use the Object Compile Driver utility:

1. From the Developer Utilities menu, select the Object Compile Driver
option.

You see the Object Compile Driver lookup window, as shown below:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ ³
³ ³
³ Configuration Name _______________________________________ ³
³ ³
³ ³
³ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÙ
Open M/SQL Developer Guide 12-5

Chapter 12—Open M/SQL Developer Utilities
2. At the Configuration Name field in the Object Compile Driver lookup
window, enter a configuration name, and press <RETURN>.

You can retrieve an existing compilation configuration to edit or create a new
one.

To retrieve an existing compilation configuration, enter a complete or partial
name, and press <RETURN>. You see a lookup box that lists all matching
entries. To see a lookup box that lists all existing entries, leave the Configura-
tion Name field blank and press the <SEARCH CURRENT TABLE> key. Use the
cursor positioning keys to navigate within the lookup box, and press
<RETURN> to select an entry.

To create a new compilation configuration, enter a new configuration name
(it must not match the name of any existing compilation configuration). You
see the “Is this a NEW Object Compilation Configuration?” dialog box, as
shown below: .

Here, you may create a new compilation configuration by pressing <RETURN>
on the <Yes> action field.

Object Compile Driver Selecting Press <Help> For Help

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ ³
³ ³
³ Configuration Name Sample Configuration____________________ ³
³ ³
³ ³
³ ÚÄÄÄ¿
³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄ³ Is this a NEW Object Compilation Configuration?
³ÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ ³
 ³ < Yes > < No > ³
 ÀÄÄÄÙ

Object Compile Driver Selecting Press <Help> For Help
12-6 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
When you have entered a configuration name (either new or existing), the
Object Compile Driver window fills out with its complete set of fields, as
shown below:

The table below lists and describes the fields located on the Object Compile
Driver window:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Set Compilation Option Defaults ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Configuration Name Sample Configuration____________________ ³
³ ³
³ < Edit Configuration > < Compile Configuration > < Last Compile Results >³
³ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Object Compile Driver Unsaved Data Press <Help> for Help

Table 12-2: Fields on Object Compile Driver window

Field Description

Configuration Name Here you may edit the name specified for compilation config-
uration in the lookup window. Names may range from 1 to 40
characters in length and may contain any alphanumeric or
punctuation characters, including underscores and blank
spaces.
This is a required field.

<Edit Configuration> Press <RETURN> on this action field to access the Object
Compile Driver Items window, where you may define the con-
tents of your compilation configuration.

<Compile Configuration> Press <RETURN> on this action field to run the compilation
configuration.

<Last Compile Results> Press <RETURN> on this action field to access the Object
Compile Driver Results window, where you review the results
from the last time the current compilation configuration was
compiled.
Open M/SQL Developer Guide 12-7

Chapter 12—Open M/SQL Developer Utilities
Setting Compilation Option Defaults

For each compilation configuration you create, you may set up a series of compi-
lation option defaults to control how Open M/SQL compiles the various objects
in the list.

These compilation option defaults operate on a configuration-wide basis, i.e.,
they affect either all objects defined in the entire compilation list or all objects of
a certain object type defined in the list.

You can edit these compilation option defaults at any time.

Procedure To set defaults for compilation options:

1. From the Object Compile Driver window, press the
<ENHANCE><ENHANCE> keystroke sequence to access the Object Com-
pile Driver menu bar.

2. From the Object Compile Driver menu bar, select the Set Compilation
Option Defaults option.

Note: This is the only option on the Object Compile Driver menu bar.

You see the Compilation Options window, as shown below:

ÚÄÄÄÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄCompilation
OptionsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ÄÄÄÄ¿
³ Se³ ³ ³
³ÄÄÄ³ Configuration Wide Settings ³ÄÄÄÄ³
³ ³ ³ ³
³ ³ Compile for Vendor InterSystems________ ³ ³
³ ³ ³ ³
³
<³ÄÄÄ
ÄÄ³ts >³
³ ³ Form Compilation Default Options ³ ³
ÀÄÄÄ³ ³ÄÄÄÄÙ
 ³ Compile Using Local Storage? Same as Last Compile ³
 ³ Compile Tied Menu Objects? Same as Last Compile ³

³ÄÄÄ
ÄÄ³
 ³ Menu Object Compilation Default Options ³
 ³ ³
 ³ Menu Object Compile Type? Same as Last Compile____ ³
 ³ Compile Using Local Storage? Yes_ ³

³ÄÄÄ
ÄÄ³
 ³ Routine Compilation Default Options ³
 ³ ³
 ³ Check Routine's Syntax? Yes_ ³
 ³ File Routine's Object Code? Yes_ ³

ÀÄÄÄ
ÄÄÙ

Enter the vendor to compile the objects for. Press <CHOICE> for list.
12-8 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
The following table lists and describes the fields on the Compilation Options
window:

Table 12-3: Fields on Compilation Options Window

Field Definition
Objects
Affected

Compile for
Vendor

Here you specify the name of the M implementation for which
you want to compile the objects in your compilation list. You
may choose among the following M implementations:
 n DSM
 n DTM
 n InterSystems
 n MSM
The host M system on which you are currently running is the
default response.
When you run a compilation configuration, Open M/SQL gen-
erates intermediate code for the M implementation you spec-
ify here.
This option gives you the ability to compile the objects in your
compilation list for an M implementation other than the one
you are currently using.
You can use this option to generate intermediate code for an
application before moving it to a run-time environment on
another M system. For example, you might want to develop
your application on an InterSystems UNIX platform and run
your application on a PC with DTM. To do this, you could build
a compilation configuration for the complete application and
compile it for DTM, then move the globals and the .INT code
for the compiled routines from the UNIX machine to the PC.

All objects
in list

Compile
Using Local
Storage?

The Local Storage option is designed to help you avoid situa-
tions where <STORE> errors occur during the compilation of
a form due to the building of large queries.
If you answer No to this field, Open M/SQL compiles all forms
included in the compilation list using globals and not in local
storage. This protects against <STORE> errors but slows
compilation time.
If you answer Yes to this field, Open M/SQL compiles all
forms included in the compilation list using local arrays. This
makes the compilation faster. When the forms you are com-
piling are not unusually large or complex, you can safely cap-
italize on the speed advantages of using local storage. If,
however, you encounter a <STORE> error while compiling in
local storage, you should change your response to No.
If you answer Same as Last Compile, Open M/SQL compiles
every form the same way it was last compiled.
Same as Last Compile is the default response.

Forms
only
Open M/SQL Developer Guide 12-9

Chapter 12—Open M/SQL Developer Utilities
Compile
Tied Menu
Objects?

Here you may answer Yes, No, or Same as Last Compile to
indicate whether or not you want Open M/SQL to recompile
menu objects that are tied to the forms in your compilation list.
In order to be recompiled under this option, a menu object
must be explicitly tied to the form, not just attached to it.
Note: This option only applies to forms that are compiled

as NEW.
Same as Last Compile is the default response.

Forms
only

Menu Object
Compile
Type

Here you may specify how you want Open M/SQL to compile
the menu objects in your compilation list.
Press the <LIST CHOICES> key to see a list of the menu object
compilation options from which you may choose. They
include:
 n Pop-Up Menu — Compile all menu objects as pop-up

menus.
 n Menu Bar — Compile all menu objects as menu bars.
 n Both Pop-Ups and Menu Bars — Compile all menu

objects as both pop-up menus and menu bars.
 n Same as Last Compile — Compile all menu objects the

same way as they were last compiled.
The default option is Same as Last Compile.

Menu
Objects
only

Compile
Using Local
Storage?

Here you may answer Yes or No to indicate whether or not
you want to compile the menu objects included in your compi-
lation list using local storage.
Answer Yes to compile menu objects using local arrays. This
makes the compilation faster but may cause <STORE> errors
to occur.
Answer No to compile menu objects using globals. This pre-
vents space allocation errors but makes the compilation
slower.
Yes is the default response.

Menu
Objects
only

Check Rou-
tine’s Syn-
tax?

Answer Yes or No to specify whether or not you want Open
M/SQL to perform syntax checking on the routines included in
your compilation list.
Yes is the default response.

Routines
only

File Rou-
tine’s Object
Code?

Answer Yes or No to specify whether or not you want Open
M/SQL to file the object code generated by compiling the rou-
tines included in your compilation list.
Yes is the default response.

Routines
only

Table 12-3: Fields on Compilation Options Window (Continued)

Field Definition
Objects
Affected
12-10 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
3. In the Compile for Vendor field, specify the name of the M implementa-
tion for which you want to compile the objects in your compilation list.

The host M system on which you are currently running is the default
response.

Note: You may compile for an M implementation other than the one you
are currently using.

4. At the Use Local Storage During Compile field, answer Yes, No, or Same
as Last Compile to indicate whether you want to compile the forms
included in your compilation list using local arrays or globals.

This field applies only to forms being compiled as NEW.

Same as Last Compile is the default response.

5. At the Recompile Any Tied Menu Objects? field, answer Yes, No, or
Same as Last Compile to recompile menu objects that are explicitly tied
to the forms in your compilation list.

Same as Last Compile is the default response.

6. At the Menu Object Compile Type field, select an option to indicate how
you want Open M/SQL to compile the menu objects included in your
compilation configuration.

You may press the <LIST CHOICES> key to see a lookup box that lists the
menu object compilation options from which you may choose. They include:

 • Pop-Up Menu
 • Menu Bar
 • Both Pop-Ups and Menu Bars
 • Same as Last Compile

Same as Last Compile is the default response.

7. At the Compile Using Local Storage? field, answer Yes or No to indicate
whether you want to compile the menu objects included in your compila-
tion list using local arrays or globals.

Yes is the default response.

8. At the Check Routine Syntax? field, Answer Yes or No to specify
whether or not you want Open M/SQL to perform syntax checking on
the routines included in your compilation list.

Yes is the default response.
Open M/SQL Developer Guide 12-11

Chapter 12—Open M/SQL Developer Utilities
9. At the File Routine’s Object Code? field, Answer Yes or No to specify
whether or not you want Open M/SQL to file the object code generated
by compiling the routines included in your compilation list.

Yes is the default response.

10. When you finish defining the compilation options for your compilation
configuration, press the <PROCEED> key to save your definitions and exit
the Compilation Options window.

Defining the Contents of a Compilation Configuration

Your compilation configuration can include multiple objects the following types:

 n Base Tables
 n Forms
 n Menu Objects
 n Reports
 n Queries
 n Routines

You may add as many objects to your compilation configuration as you wish.

You do not need to have privileges on an object to include it in your compilation
configuration.

Procedure To define the contents of a compilation configuration:

1. From the Object Compile Driver window, press <RETURN> on the <Edit
Configuration> action field.
12-12 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
You see the Object Compile Driver Items window, as shown below:

The table below lists and describes the fields located on the Object Compile
Driver Items window:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Set Compilation Option Defaults ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Configuration Name Sample Configuration____________________ ³
³ ³
³ < Edit Configuration > < Compile Configuration > < Last Compile Results >³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile Driver
ItemsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Object Type Object Name Compile? ³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÙ

Object Compile Driver Items Press <Help> For Help

Table 12-4: Fields on Object Compile Driver Items window

Field Description

Object Type Here you specify the type of the object you want to add to the
compilation list.
Press the <LIST CHOICES> key to see a list of the object types
from which you may choose. They include:
 n Base Tables
 n Forms
 n Menu Objects
 n Reports
 n Queries
 n Routines

Object Name Here you specify the name of the particular object you want to
add to your compilation list.
Press the <LIST CHOICES> key to see a list of all objects (of the
specified object type) defined in the current database.
Note: When specifying the name of a routine, you must

explicitly specify a routine extension, either .MAC or
.INT.
Open M/SQL Developer Guide 12-13

Chapter 12—Open M/SQL Developer Utilities
Note: To skip ahead to the next field on the Object Compile Driver Items
window, use the <TAB> key or the <RIGHT ARROW> key. To move
back to the previous field, use the <LEFT ARROW> key.

2. At the Object Type field, specify the type of the object you want to add to
the compilation list.

You may press the <LIST CHOICES> key to see a lookup box that lists all
object types from which you may choose.

3. At the Object Name field, specify the name of the particular object you
want to add to the compilation list.

You may press the <LIST CHOICES> key to see a list of all objects (of the spec-
ified object type) defined in the current database.

Note: When specifying the name of a routine, you must explicitly specify a
routine extension, either .MAC or .INT.

4. At the Compile? field, enter Yes or No to indicate whether or not you
want the current object to be compiled when you run the compilation
configuration.

Yes is the default response.

Compile? Here you may enter Yes or No to indicate whether or not you
want to compile the current object when you run the compilation
configuration.
Enter Yes to compile it, No to not compile it.
Yes is the default response.
You can change the setting of this switch back and forth to
selectively include or exclude objects from the compilation list.

<Advanced Opts> This field is only accessible if the object you are specifying is a
form, menu object, or routine. For all other objects, the cursor
cannot land on this field.
When specifying a form, menu object, or routine, you may press
<RETURN> on this action field to access a small popup window
that lets you define several compilation options associated with
the current object. These options override any default options
specified in the configuration-wide Compilation Options window.

<Edit> Press <RETURN> on this action field to access the object defini-
tion form for the current object. Within the object definition form,
you may edit the definition of the current object however you
wish. When you exit the object definition form, you return to the
Object Compile Driver Items window.

Table 12-4: Fields on Object Compile Driver Items window (Continued)

Field Description
12-14 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
5. If the object you are currently entering is a form or menu object, you
may press <RETURN> on the <Advanced Opts> action field to access a
small popup window that lets you specify compilation options specifi-
cally associated with the specific object (see “Advanced Options for
Compilation List Items” below).

6. You may press <RETURN> on the <Edit> action field to activate a direct
link into the current object’s definition form, where you may view or
edit the definition (see “Editing an Object Definition” below).

7. Continue entering additional objects to the compilation list in the same
way as described above.

8. When you have entered all objects that you want to be included in your
compilation configuration, press the <PROCEED> key to save your defini-
tions and exit the Object Compile Driver Items window.

Advanced Options for Compilation List Items

 The <Advanced Options> action field on the Object Compile Driver Items win-
dow is only accessible if the object you are currently defining is a form, a menu
object, or a routine. For all other objects, this field is skipped.

For forms, menu objects, and routines, you may use this option to access a win-
dow that lets you specify compilation options specifically associated with the
current object.

Note The options you specify in this window override the configuration-wide compilation
options specified in the Compilation Options window (accessed via the Object
Compile Driver menu bar).
Open M/SQL Developer Guide 12-15

Chapter 12—Open M/SQL Developer Utilities
Advanced Options for Forms

When adding a form to the compilation list, you may press <RETURN> on the
<Advanced Options> action field to access the Form Advanced Options popup
window, as shown below:

The table below lists and describes the options located on the Form Advanced
Options window:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Set Compilation Option Defaults ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Configuration Name Sample Configuration____________________ ³
³ ³
³ < Edit Configuration > < Compile Configuration > < Last Compile Results >³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile Driver
ItemsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Object Type Object Name Compile? ³
³ Base Table_ Doctor_________________________ Yes_ <Advanced Opts> <Edit>³
³ Form_______ Doctors________________________ Yes_ <Advanced Opts> <Edit>³
³ Query______ Sort_Query_____________________ Yes_ <Advanced Opts> <Edit>³
³ Report_____ Residents______________________ Yes_ <Advanced Opts> <Edit>³
³ Menu Object Doctors Menu___________________ Yes_ <Advanced Opts> <Edit>³
³ Form_______ Patients_______________________ Yes_ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄForm Advanced
OptionsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³Compile Type NEW Use Local Storage?No__ Compile Tied Menu Objects Yes_ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Form Advanced Options Press <Help> For Help

Table 12-5: Options on Form Advanced Options window

Field Description

Compile Type This is an output-only field that shows the type of the last compi-
lation, i.e., the version of the Forms Compiler last used to com-
pile the form. This field can have either of the following two
values:
 n NEW (post-Vesrion D version of the Forms Compiler)
 n OLD (pre-Version E version of the Forms Compiler)
The cursor cannot land on this field.

Use Local Storage? Here you may answer Yes or No to indicate whether or not you
want to compile the current form using local storage.
Answer Yes to compile the form using local arrays. This makes
the compilation faster but may cause <STORE> errors to occur.
Answer No to compile the form using globals. This prevents
space allocation errors but makes the compilation slower.
No is the default response.
12-16 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
When you finish specifying compilation instructions on the Form Advanced
Options window, press the <PROCEED> key to save your definitions and exit the
window.

Advanced Options for Menu Objects

When adding a menu object to the compilation list, you may press <RETURN> on
the <Advanced Options> action field to access the Menu Object Advanced
Options popup window, as shown below:

Compile Tied Menu
Objects?

Here you may answer Yes or No to indicate whether or not you
want Open M/SQL to recompile any menu objects that are tied
to the current form.
In order to be recompiled under this option, a menu object must
be explicitly tied to the form, not just attached to it.
Note: This option only applies to forms that are compiled as

NEW.
Yes is the default response.

Table 12-5: Options on Form Advanced Options window (Continued)

Field Description

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Set Compilation Option Defaults ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Configuration Name Sample Configuration____________________ ³
³ ³
³ < Edit Configuration > < Compile Configuration > < Last Compile Results >³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile Driver
ItemsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Object Type Object Name Compile? ³
³ Base Table_ Doctor_________________________ Yes_ <Advanced Opts> <Edit>³
³ Form_______ Doctors________________________ Yes_ <Advanced Opts> <Edit>³
³ Query______ Sort_Query_____________________ Yes_ <Advanced Opts> <Edit>³
³ Report_____ Residents______________________ Yes_ <Advanced Opts> <Edit>³
³ Menu Object Doctors Menu___________________ Yes_ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄMenu Object Advanced
OptionsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Compile Type? Both Pop-Ups and Menu Bars Use Local Storage? Yes_ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Form Advanced Options Press <Help> For Help
Open M/SQL Developer Guide 12-17

Chapter 12—Open M/SQL Developer Utilities
The table below lists and describes the options located on the Menu Object
Advanced Options window:

When you finish specifying compilation instructions on the Menu Object
Advanced Options window, press the <PROCEED> key to save your definitions
and exit the window.

Table 12-6: Options on Menu Object Advanced Options window

Field Description

Compile Type Here you may specify how you want Open M/SQL to compile
the current menu object. Press the <LIST CHOICES> key to see a
list of the menu object compilation options from which you may
choose. They include:
 n Pop-Up Menu — Compile all menu objects as pop-up

menus.
 n Menu Bar — Compile all menu objects as menu bars.
 n Both Pop-Ups and Menu Bars — Compile all menu objects

as both pop-up menus and menu bars.
The default option is Both Pop-Ups and Menu Bars.

Use Local Storage? Here you may answer Yes or No to indicate whether or not you
want to compile the current menu object using local storage.
Answer Yes to compile the menu object using local arrays. This
makes the compilation faster but may cause <STORE> errors to
occur.
Answer No to compile the menu object using globals. This pre-
vents space allocation errors but makes the compilation slower.
Yes is the default response.
12-18 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
Advanced Options for Routines

When adding a routine to the compilation list, you may press <RETURN> on the
<Advanced Options> action field to access the Routine Advanced Options popup
window, as shown below:

The table below lists and describes the options located on the Routine Advanced
Options window:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile
DriverÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Set Compilation Option Defaults ³
³ÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄ³
³ ³
³ Configuration Name Sample Configuration____________________ ³
³ ³
³ < Edit Configuration > < Compile Configuration > < Last Compile Results >³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compile Driver
ItemsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Object Type Object Name Compile? ³
³ Base Table_ Doctor_________________________ Yes_ <Advanced Opts> <Edit>³
³ Form_______ Doctors________________________ Yes_ <Advanced Opts> <Edit>³
³ Query______ Sort_Query_____________________ Yes_ <Advanced Opts> <Edit>³
³ Report_____ Residents______________________ Yes_ <Advanced Opts> <Edit>³
³ Menu Object Doctors Menu___________________ Yes_ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
³ ___________ _______________________________ ____ <Advanced Opts> <Edit>³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄRoutine Advanced
OptionsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Check Routine’s Syntax? Yes_ File this Routine’s Object Code? Yes_ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Form Advanced Options Press <Help> For Help

Table 12-7: Options on Routine Advanced Options window

Field Description

Check Routine’s Syn-
tax

Here you may answer Yes or No to indicate whether or not you
want Open M/SQL to perform syntax checking on this routine
when it is compiled.
Answer Yes perform syntax checking.
Answer No to skip syntax checking.
Yes is the default response.

File this Routine’s
Object Code

Here you may answer Yes or No to indicate whether or not you
want to file the object code associated withthis routine when it is
compiled.
Answer Yes to generate and file the object code for the routine.
Answer No to generate only intermediate (.INT) code for the
routine.
Yes is the default response.
Open M/SQL Developer Guide 12-19

Chapter 12—Open M/SQL Developer Utilities
When you finish specifying compilation instructions on the Routine Advanced
Options window, press the <PROCEED> key to save your definitions and exit the
window.
12-20 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
Editing an Object Definition

The Object Compile Driver utility lets you directly view or edit the definition of
any object you include in the compilation configuration.

By pressing <RETURN> on the <Edit> action field you activate a direct link into
the current object’s definition form. Once you have accessed the object definition
form, you may view or edit the definition.

Important You must have %ALTER privileges on an object in order to activate the direct link
into its object definition form

When you exit a link-accessed object definition form, you return to the Object
Compile Driver Items window, exactly where you activated the link.

For example, if you include the form “Doctors” in the compilation configuration
and then you press <return> on the <Edit> action field, you see the Form Defini-
tion form for the “Doctors” form, as shown below::

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄForm
DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Form Name Doctors_______________________ ³
³ ³
³ ³
³ Data Source Doctor_____________________________ ³
³ ³
³ Form Type Single Row_ ³
³ ³
³ ³
³ < Windows > ³
³ < Lookups > ³
³ < Filing Code > ³
³ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÙ

Form Definition Press <Help> For Help

 Create/Edit Pre Form Post Retrieval Post Form Advanced
 Field Trigger Trigger Trigger Features
Open M/SQL Developer Guide 12-21

Chapter 12—Open M/SQL Developer Utilities
Compiling the Configuration

To compile a compilation configuration, press <RETURN> on the <Compile Con-
figuration> action field.

Open M/SQL sequentially compiles each object in the list. While the compilation
is happening, you see a compilation monitor window. For each object being com-
piled, the compilation monitor window displays the following information:

 n Object Type
 n Object Name
 n Compilaton results message (either “Compiled Successfully” or “Compiled

with Errors”)

When all objects in the list have been compiled, the compilation monitor window
prompts you to press <RETURN>.

A sample compilation monitor window is shown below:

Press <RETURN> to return to the Object Compile Driver main window.

Compiling Table: Doctor... Compiled Successfully
Compiling Form: Doctors... Compiled With Errors
Compiling Query: Sort_Doctors... Compiled Successfully
Compiling Report: Residents... Compiled Successfully
Compiling Menu Object: Doctors Menu... Compiled Successfully
Compiling Form: Patients... Compiled Successfully
Compiling Table: Patient... Compiled Successfully

Press <RETURN> to Continue
12-22 Open M/SQL Developer Guide

Using the Object Compile Driver Utility
Viewing the Results of the Last Compilation

The <Last Compile Results> option on the Object Compile Driver main window
lets you view the results from the last time the current compilation configuration
was compiled.

Press <RETURN> on the <Last Compile Results> action field to access the Object
Compilation Driver Results window, as shown below:

The Object Compile Results window lists all objects in the compilation list by
object type and object name and display a message in the Compilation Status col-
umn to indicate the results of compilation. This message can be either “Success”
or “Failure”.

Compilation Error Messages

For objects whose Compilation Status message is “Failure”, you may view the
error message associated with the failure of the compilation.

To do this, use the <UP ARROW> and <DOWN ARROW> keys to position the cursor
on the <View Err> field corresponding to the failed object.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compilation Driver
ResultsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Compilation ³
³ Object Type Object Name Status ³
³ Base Table Doctor Success___ <View Err>³
³ Form Doctors Failure___ <View Err>³
³ Query Sort_Doctors Success___ <View Err>³
³ Report Residents Success___ <View Err>³
³ Menu Object Doctors Menu Success___ <View Err>³
³ Form Patients Success___ <View Err>³
³ Base Table Patient Success___ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄCompilation Error
MessageÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ __ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Object Compilation Driver Results Inquiry Press <Help> For Help
Open M/SQL Developer Guide 12-23

Chapter 12—Open M/SQL Developer Utilities
The error message displays the Compilation Error Messages window at the bot-
tom of the screen, as shown below:

See your system guide for an explanation of Open M/SQL error messages.

Press the <PREVIOUS> key to return to the Object Compile Driver main window.

Compiling a Compilation Configuration from M Program Code

You can run predefined compilation configurations directly from M program
code using the “objcd” entry point to the %mcompil utility.

To do this, use the following syntax:

do objcd^%mcompil(Ocd_Identifier)

where Ocd_Identifier is the name or ID# of a compilation configuration.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Compilation Driver
ResultsÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Compilation ³
³ Object Type Object Name Status ³
³ Base Table Doctor Success___ <View Err>³
³ Form Doctors Failure___ <View Err>³
³ Query Sort_Doctors Success___ <View Err>³
³ Report Residents Success___ <View Err>³
³ Menu Object Doctors Menu Success___ <View Err>³
³ Form Patients Success___ <View Err>³
³ Base Table Patient Success___ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
³ __________ <View Err>³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄCompilation Error
MessageÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ STORE___ ³
ÀÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÙ

Object Compilation Driver Results Inquiry Press <Help> For Help
12-24 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects
Checking the Integrity of Open M/SQL Objects

The Object Integrity Checker utility checks the integrity of various object defini-
tions in the current directory and prepares a report of all integrity errors that it
finds. This utility enables application developers to easily identify and repair
integrity errors in their applications.

InterSystems recommends that you run the Integrity Checker utility on your
applications at a regular interval, such as once a week. You also should run it
before exporting objects to a new database.

You can use the Object Integrity Checker to check any of the following objects:

 n All Objects
 n Base Tables
 n Views
 n Forms
 n Reports
 n Menu Objects
 n Triggers

It checks all objects of the specified type that reside in the current directory and
generates a report of integrity errors. You can send this report to a flat file or
printer.

You can set the Object Integrity Checker to automatically correct some of the
integrity errors it finds. When it corrects an error, it reports the correction in the
Integrity Check Results report. The Integrity Checker cannot fix all errors it
finds. When it encounters an error that it cannot fix, it also reports this in the
Integrity Check Results report.

When correcting object integrity problems, the Object Integrity Checker does not
check privileges on the objects it modifies. It assumes that the Database Admin-
istrator is running the utility.

The following sections list the checks made by the Integrity Checker on each
supported object.
Open M/SQL Developer Guide 12-25

Chapter 12—Open M/SQL Developer Utilities
Checks on Base Tables

For base tables, the Integrity Checker makes sure that:

 n The base table has a name
 n The field definition for each field in the base table is intact
 n The base table does not have any pointers to non-existent triggers
 n Any Designative Reference fields in the base table point to a designated table

that exists
 n All fields that are referenced in the computation code for computed fields are

valid
 n All fields that are part of the “Computation produces a NULL result IF” code

for computed fields are valid
 n All fields that are referenced in the “Update field when following field

changes” list are valid
 n The base table definition stores a list of all views the base table is defined on.

The Integrity Checker makes sure all the views in this list actually exist.
 n The base table definition stores a list of all forms for which it serves as the

data source. The Integrity Checker makes sure all the forms in this list actu-
ally exist.

 n The “ifn” index is defined for each field in the base table
 n All base tables defined in the “m” index exist
 n All base tables defined in the “rv” index exist
 n All indexed fields defined in the “ifn” index exist
 n All indexed fields defined in the “field name” index exist

Checks on Views

For views, the Integrity Checker makes sure that:

 n The view’s starting table is valid (it must be a base table or view)
 n All table links in the ^mdd(3,ivn,10) tree are valid (Note: These links are not

mapped; they are set up in %daview.)
 n All fields in the view are valid base table fields.
 n All view link tables are valid
 n The view field links index (“f1 index”) are valid base table fields
 n All fields in the view have field names
12-26 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects
Checks on Forms

For forms, the Integrity Checker makes sure that:

 n The form’s data source is valid (if the form has a data source)
 n All database fields exist
 n All form-only fields exist
 n The form does not have any pointers to non-existent triggers
 n All Designative Display fields have valid field names.
 n All form-only fields have field names that do not duplicate the field names of

database fields on the same form.
 n All fields in the window-order list exist (if the form is a window-ordered

form)
 n All fields that are referenced in the computation code for computed fields are

valid
 n All fields that are part of the “Computation produces a NULL result IF” code

for computed fields are valid
 n All fields that are referenced in the “Update field when following field

changes” list are valid

Checks on Reports

For reports, the Integrity Checker makes sure that:

 n The report’s data source is valid (the data source may be base table, view, or
query)

 n Each report column is a valid field (base table, view, report, or query field)
 n Each report sort field is a valid field (base table, view, report, or query field)
 n Each sort trailer field is a valid field (base table, view, report, or query field)
 n All report summary computed fields are valid fields. Checks the FieldName,

Within, and ForEach fields (base table, view, report, or query fields)
 n Report data selection conditions reference valid fields Checks FieldName

and CompField fields (base table, view, report, or query fields.)
 n Report header, report trailer, page header, and page trailer fields are valid

fields (base table, view, report, or query fields.)
 n All field references in the M code lines for report computed fields are valid.
 n If it is a report chain, all members of the chain are valid reports
Open M/SQL Developer Guide 12-27

Chapter 12—Open M/SQL Developer Utilities
Checks on Menu Objects

For menu objects, the Integrity Checker utility makes sure that:

 n The menu object has a name
 n If the menu object is tied to a form, the parent form exists
 n The menu object has at least one option

Checks on Menu Object Options

For menu object options, the Integrity Checker utility makes sure that:

 n The option text is not null
 n The option has an action type
 n The option has an action name (if required)

If the menu object option action calls another object, the Integrity Checker makes
the following checks:

Table 12-8: Integrity Checks Made When a Menu Option Calls Another
Object

If the called object is a ... Make sure that ...

Form The form exists

Report The report exists

Query The query exists

Pop-Up Menu The menu object exists

Menu Bar Menu The menu object exists

Help Topic The help topic exists

Window n It is a tied form
 n The form the menu is tied to is the same as the menu

the window is on
 n The window exists on the form
12-28 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects
Checks on Triggers

The Integrity Checker checks all triggers to make sure that:

 n All base table trigger pointers exist
 n All form trigger pointers exist
 n All report trigger pointers exist
 n All trigger definitions are valid
 n All trigger items are valid

Base Table Trigger Checks

For all base tables, the Integrity Checker checks the validity of:

 n All Pre-Filing INSERT, UPDATE, and DELETE triggers
 n All Post-Filing INSERT, UPDATE, and DELETE triggers

Form Trigger Checks

For all forms, the Integrity Checker checks the validity of:

 n All Pre-Form triggers
 n All Post-Retrieval triggers
 n All Post-Form triggers
 n All Pre-Row triggers (for multi-row forms only)
 n All Post-Row triggers (for multi-row forms only)
 n All Pre-Window triggers
 n All Post-Window triggers
 n All Pre-Field triggers
 n All Post-Field triggers

Report Trigger Checks

For all reports, the Integrity Checker checks the validity of:

 n All Pre-Report triggers
 n All Post-Report triggers
Open M/SQL Developer Guide 12-29

Chapter 12—Open M/SQL Developer Utilities
Trigger Definition Checks

For all trigger definitions, the Integrity Checker checks to make sure:

 n The trigger definition is valid
 n Integrity from trigger definitions back to their host objects is valid
 n If the trigger calling type is a form, the form exists.
 n If the trigger calling type is a base table, the base table exists.
 n If the trigger calling type is a report, the report exists

Trigger Items

The Integrity Checker makes the following checks on the validity of form trigger
items:

Table 12-9: Trigger Items Verified by the Integrity Checker

If the trigger action type is ... The Integrity Checker checks the existence of ...

Menu The menu

Form The form

Query The query

Window The window

Go To Field The target field

Set Field The target field

Erase Form The target form

Erase Window The target window

Display Window The target window

Display Form The target form

Pop-up Menu The target menu object

Menu Bar The target menu object
12-30 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects
Running the Integrity Checker Utility

When running the Integrity Checker utility, your Open M/SQL database must be
perfectly idle. No activity that affects the Open M/SQL objects being checked is
allowed to occur.

To ensure that this is the case, the Integrity Checker will not run if it detects that
the ^mlock global is defined. The presence of the ^mlock global indicates that
Open M/SQL objects are in use.

Al users must exit Open M/SQL before you can run this utility.

Once the Integrity Checker starts, users may not enter Open M/SQL or run any
Open M/SQL objects.

When correcting object integrity problems, the Object Integrity Checker does not
check privileges on the objects it modifies. It assumes that the Database Admin-
istrator is running the utility.

Procedure To run the Open M/SQL Integrity Checker utility:

1. From the Developer Utilities menu, select the M/SQL Object Integrity
Checking option.

You see the M/SQL Integrity Check Utility menu, as shown below:

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄM/SQL Integrity Check UtilityÄÄ¿
 ³ ³
 ³ All M/SQL Objects ³
 ³ Base Tables ³
 ³ Views ³
 ³ Forms ³
 ³ Reports ³
 ³ Menu Objects ³
 ³ Triggers ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Monday Aug 21, 1995 12:19AM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

M/SQL Integrity Check Utility 12:19AM Press <Help> For Help
Open M/SQL Developer Guide 12-31

Chapter 12—Open M/SQL Developer Utilities
Note: If your Open M/SQL database is not completely idle, you see the
following message:

The ^mlock global is defined in this database
which indicates OPEN M/SQL is in use. Please run
the OPEN M/SQL integrity checkers when the OPEN
M/SQL objects are not in use in this database.

You cannot run the Integrity Checker utility while there are users in
Open M/SQL.

2. From the M/SQL Integrity Check Utility menu, select the appropriate
option for the objects you want to check.

If you selected “Trigger Definitions”, you see following window:

3. Answer Yes or No at the prompt “Do You Want The Integrity Checker
To Fix Errors?” to indicate whether or not you want the Integrity
Checker to correct some of the integrity errors it finds.

Note: You may type Q or ^ to exit the Integrity Checker utility.

The Object Integrity Checker can correct some but not all of the integrity
errors it finds. When it corrects an error, it reports the correction in the Integ-
rity Check Results report. When it encounters an error that it cannot fix, it
also reports this in the Integrity Check Results report. You must correct these
errors manually.

 THIS UTILITY WILL CHECK FOR INCONSISTENCIES IN ALL OPEN M/SQL TRIGGER
 DEFINITIONS. YOU HAVE THE OPTION OF JUST PRINTING THE ERRORS, OR
 HAVING OPEN M/SQL FIX THE PROBLEMS IT CAN AUTOMATICALLY.

Do You Want The Integrity Checker To Fix Errors?
12-32 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects
If you answer Yes at the “Do You Want The Integrity Checker To Fix
Errors?” prompt, you see the following prompt asking you to specify which
error fixing mode you want the Integrity Checker to use:

Select Error Fixing Mode:
1 - Fix all errors without prompting
2 - Prompt for permission to fix each error

Select Error Fixing Mode:

Type 1 to specify “Fix without prompting” mode, where the Integrity
Checker automatically fixes any errors that it can fix.

Type 2 to specify “Prompt before fixing” mode, where the Integrity Checker
displays each error, indicates whether or not it can be fixed automatically,
and prompts the user with to “confirm” before fixing it.

Note: When correcting object integrity problems, the Object Integrity
Checker does not check privileges on the objects it modifies. It
assumes that the Database Administrator is running the utility.

If you answer No at the “Do You Want The Integrity Checker To Fix Errors?”
prompt, the Integrity Checker will not correct any errors that it finds, though
it still reports all errors in the Integrity Check Results report.

You see the Device Selection window, as shown below:

 ÚÄÄÄÄÄÄÄÄDevice SelectionÄÄÄÄÄÄÄÄ¿
 ³ Device ³
 ³ /dev/tty07__________ ³
 ³ ³
 ³ Description ³
 ³ Laser Printer ³
 ³ ³
 ³ Print Format ³
 ³ Normal Format_______ ³

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Device Selection Press <Help> For Help
Open M/SQL Developer Guide 12-33

Chapter 12—Open M/SQL Developer Utilities
The following table lists and describes the fields located on the Device Selec-
tion window:

4. In the Device field, enter the name of the device to which you want to
send this report.

You can send the report to any valid output device that is linked to your cur-
rent device. The default device is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as a printer), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>
key.

5. When you have entered a device name and the appropriate print format
parameters, press the <PROCEED> key.

This executes the Integrity Check Results report.

Below is a sample Integrity Check Results report for Trigger Definitions:

Table 12-10: Fields on Device Selection Window

Field Description

Device This field always defaults to your current device (the current value of
$IO). You may change the default to any valid output device to which
your device is linked.

Description This field reflects the description given to the specified device in the
device table.

Print Format Here you may select any print format defined for the specified device.

TYP OBJ NAME TRIG# ITEM ERROR
--- --------------------- ----- ---- --
frm Doctors ... 1 1 FORM Trigger calls an undefined form.
 Trigger Location - PostFld Trig: field3
 This must be fixed manually.

frm Big Test ... 166 1 POPUP MENU Trigger calls an undefined
 menu object. Trigger Location - PostFld
 Trig: BigPopUpTest This must be fixed
 manually.

??? ReportTriggers 225 Pre-Report Trigger not called from
 report. Trigger Location - Pre-Report

??? ReportTriggers 226 Post-Report Trigger not called from
 report. Trigger Location - Post-Report

frm JLD237 ... 289 1 FORM Trigger calls an undefined form.
 Trigger Location - PostFld Trig:
 GlucoseTest This must be fixed manually.

MORE ('^' or 'Q' to quit) >

12-34 Open M/SQL Developer Guide

Checking the Integrity of Open M/SQL Objects
Note: When output to the screen, the report displays one screen of errors
at a time and prompts you to press <RETURN> to scroll ahead to the
next screen.

The Integrity Check Results report for Trigger Definitions provides the fol-
lowing information about each integrity error it finds:

 • Object Type — type of object to which the trigger belongs. It may be a
form (frm), a base Table (tbl), or a Report (rpt). Sometimes, the object to
which the trigger belongs is not know (???)

 • Object Name — name of the specific object to which the trigger belongs
(if the object is known)

 • Trigger # — internal identification number of the trigger in which the
integrity error was found

 • Trigger Item # — number of the particular item in the trigger item
sequence in which the integrity error was found

 • Error Message — message that describes the integrity error

6. Press the <PREVIOUS> key to exit the report.
Open M/SQL Developer Guide 12-35

Chapter 12—Open M/SQL Developer Utilities
Error Fixing Mode

If you have enabled error fixing, the Integrity Checker can automatically correct
some of the errors it finds.

Error fixing has two modes:

1. Fix errors without prompting

2. Prompt before fixing errors

The behavior of the Integrity Checker depends on which of these modes you
select.

Fix Errors Without Prompting

In this mode, the Integrity Checker displays one error per screen and automati-
cally fixes all errors that it can fix.

If it fixes the error, you see the message:

Fixed

If it cannot fix the error, you see the message:

This error must be manually fixed

Prompt Before Fixing Errors

In this mode, the Integrity Checker displays one error per screen and prompts the
user to confirm a fix before it fixes an error.

If it can fix the error, you see the message:

OK to fix this error?

If it cannot fix the error, you see the message:

This error must be manually fixed
12-36 Open M/SQL Developer Guide

Searching for Strings in Open M/SQL Objects
Searching for Strings in Open M/SQL Objects

The Object String Search utility searches through Open M/SQL object defini-
tions for specified text strings.

The Object String Search utility can search any of the following object types:

 n Base Tables
 n Views
 n Queries
 n Reports
 n Forms
 n Menus (Old Style)
 n Menu Objects
 n Help Topics
 n Help Documents

The utility can search through all objects in the current directory, or it can search
through selected objects. You may select objects by object type, and you may fur-
ther select objects by specific object name within a certain object type.

The utility can search for one string or many different strings.

Procedure To use the Object String Search utility:

1. From the Developer Utilities menu, select the M/SQL Object Integrity
Checking option.

You see the Device Selection window, as shown below:

 ÚÄÄÄÄÄÄÄÄDevice SelectionÄÄÄÄÄÄÄÄ¿
 ³ Device ³
 ³ /dev/tty07__________ ³
 ³ ³
 ³ Description ³
 ³ Laser Printer ³
 ³ ³
 ³ Print Format ³
 ³ Normal Format_______ ³

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Device Selection Press <Help> For Help
Open M/SQL Developer Guide 12-37

Chapter 12—Open M/SQL Developer Utilities
2. In the Device field, enter the name of the device to which you want to
send this report.

You can send the report to any valid output device that is linked to your cur-
rent device. The default device is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as a printer), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>
key.

3. When you have entered a device name and the appropriate print format
parameters, press the <PROCEED> key.

4. You see the following prompt:

Search String #1 (^to quit):

Here, you may enter the text of the first search string, and press <RETURN>.

You may enter any number of search strings.

Note: The list of search strings is an inclusive OR list, which means that if
the utility finds ANY one of the specified search strings within an
object definition, it returns a “string found” message.

Each time you enter a new search string, you see the following prompt:

EXACT MATCH? No==>

5. At the EXACT MATCH prompt, press <RETURN> to accept the No
default, or type Y and press <RETURN>.

Answer Yes to indicate that you want the Object String Search utility to
search for an EXACT match (case sensitive) of the specified string.

Answer No to indicate that you want the Object String Search utility to
search for an ALPHAUP match (case insensitive) of the specified string.

The utility continues to prompt you to enter additional search strings.

6. When you have finished entering search strings, press <RETURN> at the
Search String prompt.

You see the following prompt:

Object Type To Search (^to quit, ? for list):

7. At the Object Type To Search prompt, you may specify the object type(s)
you want to search.
12-38 Open M/SQL Developer Guide

Searching for Strings in Open M/SQL Objects
To search all object types, enter *. Otherwise, enter a number from 1 to 9 to
represent the object type you want to search. Type ? to see a list of the object
type choices and their numbers. The table below shows the number that cor-
responds to each object type:

You may specify one object type or all object types.

When you select an object type, you see the following prompt:

<Object Type> (enter name or * for all)

8. At the Object Name prompt, you may enter the names of the specific
objects you want the utility to search.

For example, if you specified Base Tables as the object type, you may enter
any number of specific base table names. Or, to search through all objects of
the specified type, you may type * at this prompt.

When selecting object names, you may type the first few characters of an
object name, then press the <SEARCH CURRENT TABLE> key to see a lookup
box that lists all matching entries for the specified object type.

Note: If you are searching through all object types, the utility automatically
searches through all object names within each object type. You
cannot restrict this search.

Object Type #

Base Tables 1

Views 2

Queries 3

Reports 4

Forms 5

Menus (old-style) 6

Menu Objects 7

Help Topics 8

Help Documents 9

All object types *
Open M/SQL Developer Guide 12-39

Chapter 12—Open M/SQL Developer Utilities
9. When you have finished entering object names, press <RETURN> at the
Object Name prompt.

The utility sends output to the specified device.

The Object String Search utility outputs a header page that lists each search
string and all of its criteria, including the string matching criteria ([EXACT]
or [ANY]).

A sample of the Open M/SQL Object Text Search header page is shown
below:

10. Press <RETURN> to view the String Search report.

Following the header page, the utility outputs a detailed listing of all matches
found. For each match, the report provides the following information:

 • Object Type
 • Object Name
 • Sub-object Type (when applicable)
 • Sub-object Name (when applicable)
 • Location (attribute) where the match was found
 • Text string in which the match was found

 OPEN M/SQL OBJECT TEXT SEARCH PRINTOUT

Search Criteria:

 1) [ANY] leo

<PRESS RETURN>
12-40 Open M/SQL Developer Guide

Searching for Strings in Open M/SQL Objects
For example, you might see the following entry for an EXACT match on
string “^ABC” found in the INSERT Validation Code for Base Table
“Patients”:

Base Table - 'Patients'
LOCATION: Insert Validation Code
TEXT: i {Status}=”” s %ok=0 d ^ABC({Patient})

Typically, the report identifies the exact location of the matching text string.
For example, if it finds a match within Additional Validation Code for a field
(which can have any number of text lines defined), the report prints only the
matching text lines. In the case of individual trigger actions and individual
lookup specifications, the report prints the entire trigger action specification
or entire lookup specification, in order to provide a meaningful context for
the text match.

Below is a sample of the String Search report:

11. Press the <PREVIOUS> key to exit the report.

Base Table: 'jld087'
LOCATION = Base Table Name
TEXT = jld087

Base Table: 'jld087'
LOCATION = Base Table Description
TEXT = jld087 Test (irn = 1)

Base Table: 'jld087' - Field: 'jld087'
LOCATION = Field Name
TEXT = jld087

Base Table: 'jld087' - Field: 'jld087'
LOCATION = Field Description
TEXT = jld087 Row ID

Base Table: 'jld087' - Map: 'Data Master Map' - Access Level: L3
LOCATION = Map Access Level Expression
TEXT = {jld087}

MORE ('^' or 'Q' to quit) >
Open M/SQL Developer Guide 12-41

Chapter 12—Open M/SQL Developer Utilities
Invoking Macro Source Routine Utilities

Open M/SQL provides a number of utilities for examining and manipulating M
macro source code routines and include files. These utilities are useful for both
developing and maintaining Open M/SQL applications.

The Open M/SQL routine utilities include:

 n Routine Output (%urprint)
 n Routine Input (%urload)
 n Routine Directory (%urdir)
 n Routine Change (%urchange)
 n Routine Compile (%urcomp)
 n Routine Copy (%urcopy)
 n Routine Search (%urfind)
 n Routine Search All (%urfand)
 n Routine Delete (%urdel)
 n Set Maximum Number of Backups (%urverma)
 n Routine Backup Purge (%urpurge)

You may invoke and use these utilities via the Developer Utilities menu.

Procedure To run macro source routine utilities from the Developer Utilities menu:

1. From the Developer Utilities menu, select the Macro Routine Utilities
option.

You see the M/SQL Routine Utilities menu, as shown below:

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M/SQL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄÄÄÄÄÄÄÄM/SQL Routine UtilitiesÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Routine Output (%urprint) ³
 ³ Routine Input (%urload) ³
 ³ Routine Directory (%urdir) ³
 ³ Routine Change (%urchange) ³
 ³ Routine Compile (%urcomp) ³
 ³ Routine Copy (%urcopy) ³
 ³ Routine Search (%urfind) ³
 ³ Routine Search All (%urfand) ³
 ³ Routine Delete (%urdel) ³
 ³ Set Maximum No. of Backups (%urverma) ³
 ³ Routine Backup Purge (%urpurge) ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Wednesday Aug 09, 1995 03:50PM Directory: /us/land/
Licensed to Development Testing. Copyright (c) 1993 - InterSystems Corporation

M/SQL Routine Utilities 03:50PM Press <Help> For Help
12-42 Open M/SQL Developer Guide

Invoking Macro Source Routine Utilities
2. From the M/SQL Routine Utilities menu, select the routine that you
want to run.

Open M/SQL runs the selected routine utility in a window.

For example, if you selected the Routine Search utility (%urfind), you would
see the following screen:

3. Answer all prompts as appropriate.

Note: For complete information on how to use all of the Open M/SQL
routine utilities, see Chapter 7, Open M/SQL Routine Management
Utilities.

When you exit the selected routine utility, you return to the Routine Utilities
menu.

This routine changes all occurrences of a string in
routines/include files.

 1. Change every:
Open M/SQL Developer Guide 12-43

Chapter 12—Open M/SQL Developer Utilities
Querying Objects by Routine Prefix

The Object Routine Prefix utility lets you look up any routine prefix that is asso-
ciated with an Open M/SQL object in the current directory.

When you look up a routine prefix, the utility displays information about where
that routine is being used. Specifically, it provides the following information:

 n Routine Prefix
 n Object Type
 n Object Identification #
 n Object Name

When compiling large applications, you may receive warning and error messages
that cite routine names. These messages do not always specify which object the
routine belongs to. For example, the message “Syntax error in mp3261” does not
provide any information about routine “mrp3261”. In order to correct this error,
you need to find out where this routine is located. The Object Routine Prefix util-
ity enables you to do this.

This utility is also useful when deleting routines to clean up your directory

Procedure To use the Object Routine Prefix utility:

1. From the Developer Utilities menu, select the Query Object By Routine
Prefix option.

You see the Object Lookup by Routine Prefix lookup window, as shown
below:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Lookup By Routine
PrefixÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Routine Prefix ________ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³

ÀÄÄÄ
ÄÄÙ
12-44 Open M/SQL Developer Guide

Querying Objects by Routine Prefix
2. At the Routine Prefix field, enter the name of the routine prefix you want
to look up.

You may perform both unqualified and qualified lookups on the directory of
routine prefix names.

To perform an unqualified lookup, press the <SEARCH CURRENT TABLE> key
with the Routine Prefix field blank. You see a lookup box that lists all routine
prefixes.

To perform a qualified lookup, enter the first one or more characters of the
routine prefix you want to find, and press the <SEARCH CURRENT TABLE>
key. You see a lookup box that lists all matching entries.

3. Within the lookup box, use the <UP ARROW> and <DOWN ARROW> keys
to position the cursor on the routine prefix you want to examine, and
press <RETURN> to select it.

You see the Object Routine Prefix window, as shown below:

The Object Routine Prefix window displays information about the routine
prefix you selected.

All fields on this window are read-only.

4. To exit the Object Routine Prefix window, press <RETURN>.

Object Routine Prefix Selecting Press <Help> For Help

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄObject Routine
PrefixÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ³
 ³ Routine Prefix mt1 ³
 ³ ³
 ³ Object Type table ³
 ³ Object Id 1 ³
 ³ Object Name Doctor ³
 ³ ³
 ÀÄÄ<
proceed >Ù

Object Routine Prefix Press <Help> For Help
Open M/SQL Developer Guide 12-45

Chapter 12—Open M/SQL Developer Utilities
You return to an empty Object Lookup By Routine Prefix window, where
you may select another routine prefix to examine.
12-46 Open M/SQL Developer Guide

National Language Reports
National Language Reports

The National Language Reports utility lets you generate a screen or hard copy
report that displays the translations provided for all system-generated messages,
key labels, menu titles, and menu option text throughout the Open M/SQL envi-
ronment.

The report is organized alphabetically by message. For each message, the report
provides the following information:

 n The English text for the message, key label, menu title, or menu option text
 n The maximum translation length (based on the length of the English text)
 n List of supported languages with the appropriate translation of the message

(if supplied)

Procedure To print the National Language report:

1. From the Developer Utilities menu, select the National Language
Reports option.

You see the Device Selection window.

2. In the Device field, enter the name of the device to which you want to
send this report.

You can send the report to any valid output device that is linked to your cur-
rent device. The default device is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as a printer), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>
key.

3. When you have entered a device name and the appropriate print format
parameters, press the <PROCEED> key.

This executes the National Language report.
Open M/SQL Developer Guide 12-47

Chapter 12—Open M/SQL Developer Utilities
Below is a sample page from the National Language Report:

Note: When output to the screen, this report displays one screen at a time
and prompts you to press <RETURN> to scroll ahead to the next
screen.

4. You may press the <PREVIOUS> key at any time to exit the National Lan-
guage Report and return to the Developer Utilities menu.

Enter Translations For System MPage: 3

WARNING: Ensure that length of translations for system messages does not
 exceed the length of the English text being translated. Call
 InterSystems if this limitation is unacceptable.

 Also, if no English text is provided, it is not necessary
 to enter translations.

MESSAGE CONTEXT: ALTER
English Message: %ALTER
Maximum Length: 15

Enter Translations:
 Dansk (Danish) -
 Deutsch (German) - %ALTER
 Dutch (Netherlands) -
 Espanol (Spanish) -
 Finska (Finnish) -
 Francais (French) - %ALTER
 Italiano (Italian) - %Altera
 Norsk (Norwegian) - %Forandere
 Portuguese - Altere
 Svenska (Swedish) - %Andra

Press <Return> to continue, <Options> to scroll, <Exit> to Exit
12-48 Open M/SQL Developer Guide

Open M/SQL Deve
APPENDIX

A
SQL Error Messages
Whenever you issue an SQL statement, it returns a non-descriptive numerical
message to the variable SQLCODE.

The message indicates one of the following:

 n Successful completion
 n Error

The tables in this Appendix list all message codes that can be returned to the
SQLCODE variable and describes the meaning of each code.
loper Guide A-1

Appendix A — SQL Error Messages
Successful Completion Messages

The following table lists the codes for successful completion:

Table A-1: Codes Returned on Successful Completion

Error Code
Number Meaning

0 Query completed successfully

100 Query completed successfully, but no row was found to satisfy the query
A-2 Open M/SQL Developer Guide

Error Messages
Error Messages

The following table lists the codes for errors found during parsing:

Table A-2: SQL Error Messages

Error Code
Number Function

-1 Invalid SQL statement

-2 Exponent digits missing after 'E'

-3 Closing quote (") missing

-4 A term expected, beginning with either of: identifier, constant, aggregate,
%ALPHAUP,%UPPER, %EXACT, $$, :, +, -, (, NOT, or EXISTS

-5 Column-number specified in ORDER does not match the SELECT list

-6 ORDER must specify column number, not names, when after UNION

-7 ORDER column is not in SELECT list

-9 Incompatible SELECT lists used in UNION

-10 The SELECT list of the query must have exactly one item

-11 A scalar expression expected, not a condition

-12 A term expected, beginning with either of: identifier, constant, aggregate,
$$, (, :, +, -, or %ALPHAUP, %UPPER, or %EXACT

-13 An expression other than a subquery expected here

-14 A comparison operator is required here

-15 A condition expected after NOT

-16 A qualifier SOME or ALL expected after the FOR in the for-expression

-17 A for-condition expected after the (in the for-expression

-18 IS (IS NOT) NULL predicate can be applied only to a field

-19 An aggregate function cannot be used in a WHERE clause

-20 Name conflict in the FROM list over label <label>

-22 ORDER must specify column names, not numbers, when after 'SELECT *'

-23 Label <label> is not listed in FROM

-25 Input (<token>) encountered after end of query

-26 Missing FROM clause

-27 Ambiguous labels for field <name>

-28 Host variable name must begin with either % or a letter, not <symbol>

-30 Table <tablename> not found
Open M/SQL Developer Guide A-3

Appendix A — SQL Error Messages
-31 Field <fieldname> not found in table(s) <tablename>

-32 Outer join symbol (=*) must be between two fields

-33 No fields found for table <tablename>

-34 Contradictory conditions: 'f is NULL' vs. 'f=constant'

-35 Contradictory conditions: 'f IS NULL' vs. 'f in range'

-36 Contradictory conditions: 'f IS NULL' vs. 'f=expression'

-37 Contradictory conditions: constants should satisfy <condition>

-38 No master map for table <tablename>

39 No Row ID field for table <tablename>

-41 An extrinsic function call must have the form $$tag^rou(...

-42 Closing quotes (") missing following pattern match

-51 An SQL statement expected, <token> found

-52 Cursor <cursorname> already DECLAREd or not DECLAREd

-53 Constant or variable expected as new value

-54 Array designator (last subscript omitted) expected after VALUES

-55 Invalid GRANT <role> to or revoke <role> from

-56 Action not applicable to an object of this type

-58 Object type not found

-59 Cannot have more than one field

-60 An action (%ALTEr, SELECT, UPDATE, etc.) expected

-61 Cursor not updatable

-62 Additional new values expected for INSERT/UPDATE

-63 Data exception - invalid escape character

-70 Incorrectly defined RowID

-99 Privilege violation

-101 OPEN attempted on a cursor that is already open

-102 Cursor operation (FETCH, CLOSE, UPDATE, DELETE) attempted on an
unopened cursor

-103 Positioned UPDATE or DELETE attempted but the cursor is not positioned
on any row

-104 Field validation failed in INSERT

Table A-2: SQL Error Messages (Continued)

Error Code
Number Function
A-4 Open M/SQL Developer Guide

Error Messages
-105 Field validation failed in UPDATE

-106 Row to DELETE not found

-107 Table validation failed

-108 Required field missing; INSERT or UPDATE not allowed

-109 Cannot find the row designated for UPDATE

-110 Locking conflict in filing

-111 Operation not licensed on this system

-112 Access violation

-113 %THRESHOLD violation

-201 Table or view name not unique

-212 Unrecognized or invalid input device

-213 Keyword ON expected

-214 Left parenthesis expected

-215 Right parenthesis expected

-216 Comma expected

-217 Unexpected End-of-Field

-218 Unexpected End-of-Query

-219 Incorrect or missing field name

-220 Incorrect or missing data type

-221 Invalid length/scale specification

-222 Default value exceed field length

-223 Datatype/qualifier mismatch

-224 Unrecognized or conflicting qualifiers

-225 Multiple primary key specification

-226 Incomplete primary fields specification

-227 Missing quote introducing or ending description

-228 Missing or illegal global name

-229 Query rejected

-230 Bad column constraint

Table A-2: SQL Error Messages (Continued)

Error Code
Number Function
Open M/SQL Developer Guide A-5

Appendix A — SQL Error Messages
-231 SQL reserved word not allowed
Note: For a list of Open M/SQL reserved words, see Appendix B.

-232 Single quotation expected instead of double quotation

-233 Repeated key definition or conflict constraints

-234 Bad default value

-235 Repeated index definition

-236 Data type error

-237 More than one index defined at the same time here

-238 More than one CREATE TABLE statement in one SQL macro

-239 More than one DROP TABLE statement in one SQL macro

-240 The field is required and can’t have NULL value

-242 General DDL parsing error

-243 Scales with character data types

-244 Scales with integer data types

-245 Specifying length for this data type not allowed

-246 Decimal part with integer default value

-248 Default value is not allowed for this data type

-1000 Maximum open cursors exceeded
Note: Up to 255 cursors are permitted for a given connection

-1001 Invalid cursor

-1002 Fetch out of sequence

-1003 No statement parsed

-1006 Bind variable does not exist

-1007 Variable not in select list

-1008 Not all variables bound

-1012 Not logged on

-1013 User requested cancellation of current operation

-1017 Invalid user name/password

-1024 Invalid data type in ‘obndrv’, ‘obndrn’, or ‘odefin’ call

-1031 Insufficient privileges

-1405 Warning: Fetched column value is NULL

Table A-2: SQL Error Messages (Continued)

Error Code
Number Function
A-6 Open M/SQL Developer Guide

Error Messages
Note Error codes used by the Open M/SQL Relational Client and Server are docu-
mented in the Open M/SQL Relational Client User Guide.

-1406 Warning: Fetched column value was truncated

-1454 Cannot convert select item value to numeric data type

-1455 Value overflows specified integer data type

-1459 Invalid length specified for variable character string

-1483 Invalid length for DATE or NUMBER bind variable

Table A-2: SQL Error Messages (Continued)

Error Code
Number Function
Open M/SQL Developer Guide A-7

Appendix A — SQL Error Messages
A-8 Open M/SQL Developer Guide

Open M/SQL Deve
APPENDIX

B
Open M/SQL Reserved Words
Open M/SQL reserves certain keywords for its own use.

This means that you cannot use these words as identifiers (names of database
objects such as base tables, forms, fields, etc.).

The following table lists the Open M/SQL reserved words:

Table B-1: Open M/SQL Reserved Words

%AFTERHAVING %ALPHAUP %ALTER

%BEGTRANS %CATALOG %CHECKPRIV

%EXACT %EXTERNAL %FOREACH

%FORM %INTALL %INTERNAL

%INTOBUILD %INTRANS %LEVEL

%MENU %MENUOBJ %NOCHECK

%QUERY %REPORT %ROWCOUNT

%STARTSWITH %THRESHOLD %UPPER

ADMIN ALL ALTER

AND ANY AS

ASC AUTHORIZATION AVG

BEGIN BETWEEN BY

CASCADE CHAR CHARACTER

CHECK CLOSE COBOL

COMMIT CONSTRAINT CONTINUE

COUNT CREATE CURRENT

CURSOR DATE DEC
loper Guide B-1

Appendix B — Open M/SQL Reserved Words
Note Some of these reserved words are used for the SQL Data Definition Language
(DDL), which is currently under implementation by InterSystems.

DECIMAL DECLARE DELETE

DESC DISTINCT DOUBLE

DROP END ESCAPE

EXEC EXISTS FETCH

FILE FLOAT FOR

FOREIGN FORTRAN FOUND

FROM GO GOTO

GRANT GROUP HAVING

IN INDEX INDICATOR

INSERT INT INTEGER

INTO IS LANGUAGE

LIKE MAX MIN

MODULE NOT NULL

NUMERIC OF ON

OPEN OPTION OR

ORDER PASCAL PLI

PRECISION PRIMARY PRIVILEGES

PROCEDURE PUBLIC REAL

REFERENCES RELATION REVOKE

ROLE ROLLBACK SCHEMA

SECTION SELECT SET

SMALLINT SOME SQL

SQLCODE SQLERROR SOME

TABLE TIME TO

UNION UNIQUE UPDATE

USER VALUES VARCHAR

VARYING VIEW WHENEVER‘

WHERE WITH WORK

Table B-1: Open M/SQL Reserved Words (Continued)
B-2 Open M/SQL Developer Guide

Open M/SQL Deve
APPENDIX

C
Open M/SQL Supported Terminal
Types
Open M/SQL supports the following terminal types:

Table C-1: Open M/SQL Supported Terminal Types

Type Name Description

Video ALTOS 5 Altos 5 Terminal

Video ANSI ANSI Terminal

Video ANSI Color ANSI Color Terminal

Video CIT-500 CIT-500 (Emulates VT 132)

Video COBRA COBRA Terminal

Video D200 General Dasher Terminal D214 & D215

Video D200 Gen/Perfect Dasher Terminal D214 & D215

Video D470C Dasher Terminal DG mode

Video DTM PC
(Supported for Open M/SQL
on DTM)

DTM PC Console

Video DTM PC Color DTM PC Color Console

Video FALCO Falco Emulating a VT 220

Video Generic Pure Roll-and-Scroll

Video IBM 3151 IBM 3151 ASCII Display Station

Video IBM 6091 IBM 6091-19 Terminal

Video LANSI Long ANSI Terminal

Video MSM PC
(Supported for Open M/SQL
on MSM)

MSM PC Console

Video MSM PC Color MSM PC Color Console
loper Guide C-1

Appendix C—Open M/SQL Supported Terminal Types
Video PC IBM PC Terminal

Video PC Color IBM PC Terminal With Wired Color

Video QUME QUME Terminal

Video SUN SUN Terminal

Video TV9320 TeleVideo 9320 Terminal

Video VT100
(Supported for Open M/SQL
on DSM & MSM)

DEC VT 100 Terminal

Video VT220
(Supported for Open M/SQL
on DSM & MSM)

DEC VT 220 Terminal

Video VT240
(Supported for Open M/SQL
on DSM & MSM)

DEC VT 240 Terminal
(Regis-md)

Video VT420
(Supported for Open M/SQL
on DSM & MSM)

DEC VT 420 Terminal

Video WYSE30 WYSE30

Video WYSE60 (D210) WYSE60
(Emulating Dasher D210)

Video WYSE60N WYSE60 Native Mode Terminal

Video WYSE85 C-WYSE-85
(DEC VT 220 Emulation)

Hard Copy
Video

DEC

Printer HPIII Hewlett-Packard LaserJet III

Printer LASER Generic Laser Printer

Printer LN03 Digital LN03

Printer LT100 DEC Letterprinter 100

Printer SQ Sunquest PostScript Printer

Printer TI Texas Instruments Printer

Table C-1: Open M/SQL Supported Terminal Types (Continued)

Type Name Description
C-2 Open M/SQL Developer Guide

Open M/SQL for DSM

Open M/SQL supports the following terminal types for use in the DSM environ-
ment:

 n DEC VT 100 and compatibles
 n DEC VT 220 and compatibles

Open M/SQL for DTM

Open M/SQL supports the DTM-PC Console terminal type for use in the DTM
environment. The Console device should always use this terminal type.

Open M/SQL also supports dumb terminals in the DTM environment. If you
invoke DTM in multi-user mode, you can log on to a dumb terminal. The default
terminal type for a dumb terminal is “VT100”, though you may select any sup-
ported terminal type at the “Terminal Type” prompt.

Open M/SQL for MSM Environment

Open M/SQL supports the following terminal types for use in the MSM environ-
ment:

 n DEC VT 100 and compatibles
 n DEC VT 220 and compatibles
 n DEC VT 240 and compatibles
 n DEC VT 420 and compatibles
 n FALCO
 n GENERIC
 n MSM PC Console
 n WYSE85

Open M/SQL supports the MSM PC Console terminal type for use in the Open
M/SQL MSM-PC/386 environment. In order to connect terminals other than the
MSM PC console, you must use a serial port, an Arnet or other board, or a LAT.
The MSM-PC/386 environment supports only keyboards whose function keys
generate the DEC VT escape sequences.

It may be possible to use personal computers connected to a serial port, provided
that they use VT terminal emulation software that supports the function keys and
generates the correct escape sequences.

Some dumb terminals may also work if they support a VT100 or VT220 emula-
tion mode. You should consult with individual hardware vendors to ascertain
this.
Open M/SQL Developer Guide C-3

Appendix C—Open M/SQL Supported Terminal Types
C-4 Open M/SQL Developer Guide

Open M/SQL Deve
APPENDIX

D
Full Screen Editor Keyboard
Actions
The following tables show the key mapping scheme for using the Full Screen
Editor on the keyboards associated with the terminal types supported by Open
M/SQL.

The tables below contain the following information:

 n The first column, “Editor Action,” lists the actions supported by the Full
Screen Editor environment.

 n The second column, “Key(s) To Press,” lists the primary keystroke or key-
stroke sequence used to invoke each action.

Altos

Table D-1: Altos Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Help Menu <F13><F15>

Beginning of Area <F13><Left Arrow>

Bottom <F13>
<F13><SCRN Next>

Bottom of Window <F13><Down Arrow>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character
loper Guide D-1

Appendix D—Full Screen Editor Keyboard Actions
Delete Character <CTRL-D>
<DEL Char>

Delete Word <CTRL-W>

Do Editor Action <CTRL-\>
<CTRL-E><A>
<CTRL-E><\>

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <F13><CTRL-K>
<F13><Right Arrow>

Enhance <CTRL-G>
<F13>

Erase Area <CTRL-L>
<F13>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Y>
<CTRL-Z>
<F13><Y>
<F13><Z>
<CTRL-E><?>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Field Help <F14>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>
<CTRL-H>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <SCRN NEXT>

Next Word <CTRL-F>

Table D-1: Altos Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-2 Open M/SQL Developer Guide

Altos
One Window <CTRL-E><1>

Other Options <CTRL-E><O>
<CTRL-E><CTRL-O>

Previous <F16>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <SCRN Prev>

Previous Word <CTRL-B>

Query Replace <CTRL-E><Q>
<CTRL-E><R>
<CTRL-E><CTRL-Q>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Return <RETN>

Right Arrow <CTRL-K>
<Right Arrow>

Save and Compile Buffer <F12>
<CTRL-E><F12>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

Tab <Tab>

Toggle Select <CTRL-E><S>
<CTRL-E><CTRL-S>

Top <F13><SCRN Prev>
<F13><T>

Top of Window <F13><Up Arrow>

Two Windows <CTRL-E><2>

Up Arrow <Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F15>

Word Capitalize <CTRL-E><->

Table D-1: Altos Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-3

Appendix D—Full Screen Editor Keyboard Actions
ANSI

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-1: Altos Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor

Editor Action Keys(s) To Press

Help Menu <F1><F3>

Advance <CTRL-A>
<F1><A>

Beginning of Area <F1><Left Arrow>

Bottom <CTRL-V>
<F1><Page Down>
<F1><V>

Bottom of Window <F1><CTRL-J>
<F1><Down Arrow>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character < <- >
<Delete>

Delete Character <CTRL-D>
<F1><D>

Delete Word <CTRL-W>
<F1-W>
D-4 Open M/SQL Developer Guide

ANSI
Do Editor Action <CTRL-^>
<CTRL-E><A>
<CTRL-E><CTRL-A>

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <F1><CTRL-K>
<F1><Right Arrow>

Enhance <CTRL-G>
<F1>

Erase Area <CTRL-L>
<F1>< <- >

Erase to Beginning <F1><Delete Key>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Y>
<CTRL-Z>
<F1><Y>
<F1><Z>
<CTRL-E><?>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Field Help <F2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Error in Buffer <CTRL-E><E>
<CTRL-E><CTRL-E>

Next Find <F6>
<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Tag <CTRL-N>
<F1><N>

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press
Open M/SQL Developer Guide D-5

Appendix D—Full Screen Editor Keyboard Actions
Next Screen <Page Down>

Next Word <CTRL-F>
<F1><F>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Paste <Insert>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <Page Up>

Previous Tag <CTRL-P>
<F1><P>

Previous Word <CTRL-B>
<F1>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <CTRL-R>
<F1><R>

Return <RETURN>

Right Arrow <CTRL-K>
<Right Arrow>

Save Options <F4>

Save and Compile Buffer <F5>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

Tab <F1><I>
<Tab>

Toggle Select <CTRL-E><S>

Toggle Syntax Checking <CTRL-E><@>

Top <CTRL-T>
<F1><Page Up>
<F1><T>

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press
D-6 Open M/SQL Developer Guide

CIT-500
CIT-500

Top of Window <F1><CTRL-U>
<F1><Up Arrow>

Two Windows <CTRL-E><2>

Undo <CTRL-X>
<F1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

View Intermediate Source <CTRL-E><V>
<CTRL-E><CTRL-V>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-2: ANSI Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor

Editor Action Keys(s) To Press

Help Menu <F15>

Advance <CTRL-A>
<PF1><A>

Begin Select <Home>

Beginning of Area <PF1><CTRL-H>
<PF1><Left Arrow>

Bottom <PF1>
<PF1><Center>

Bottom of Window <PF1><CTRL-J>
<PF1><Down Arrow>
Open M/SQL Developer Guide D-7

Appendix D—Full Screen Editor Keyboard Actions
Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <Underscore>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Delete>

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<PF1><W>

Do Editor Action <CTRL-^>
<CTRL-E><CTRL-A>
<CTRL-E><a>
<PF1><^>

Down Arrow <CTRL-J>
<Down Arrow>

End Select <PF1><Home>

End of Area <PF1><CTRL-K>
<PF1><Right Arrow>

Enhance <CTRL-G>
<PF1>

Erase Area <CTRL-L>

Erase to Beginning <PF1><Delete>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Z>
<PF1><Y>
<PF1><Z>
<CTRL-E><?>
<CTRL-E><F15>

GETOUTALL <PF1><F20>
<PF1><PF4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press
D-8 Open M/SQL Developer Guide

CIT-500
Field Help <PF2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <CTRL-H>
<Left Arrow>

List Buffers <CTRL-E><F9>

Macro Definition <PF1><K>

Make Buffer <PF1><F16>
<CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <F9>
<PF1><PF2>
<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <Center>
<PF1><N>

Next Tag <CTRL-N>
<PF1><N>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Only Save Buffer <F19>

Other Options <CTRL-E><O>

Paste <EOL>
<PF1><EOL>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <EOP>
<PF1><P>

Previous Tag <PF1><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press
Open M/SQL Developer Guide D-9

Appendix D—Full Screen Editor Keyboard Actions
Retreat <CTRL-R>
<PF1><R>

Return <RETURN>

Right Arrow <CTRL-K>
<Right Arrow>

Save Options <F20>
<PF4>

Save and Compile Buffer <F16>
<CTRL-E><F16>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

Tab <PF1><I>
<PF1><Tab>
<Tab>

Toggle Select <CTRL-E><S>

Top <PF1><EOP>
<PF1><T>

Top of Window <PF1><CTRL-U>
<PF1><Up Arrow>

Two Windows <CTRL-E><2>

Undo <CTRL-X>
<PF1><Underscore>
<PF1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-3: CIT-500 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press
D-10 Open M/SQL Developer Guide

Dasher
Dasher

Table D-4: Dasher Keyboard Mapping for the Full Screen Editor

Editor Action Keys(s) To Press

Help Menu <F10>

Beginning of Area <C1><Left Arrow>

Bottom <C1>
<C1><F12>

Bottom of Window <C1><Down Arrow>

Break <CTRL-C>

Buffer Options <CTRL-E><CTRL-B>
<CTRL-E>

Copy <CTRL-E><CTRL-D>
<CTRL-E><D>

Cut or Paste <CTRL-E><CTRL-C>
<CTRL-E><C>

Delete Back Character <Delete>

Delete Character <CTRL-D>

Delete Word <CTRL-K>

Do Editor Action <CTRL-E><CTRL-A>
<CTRL-E><A>

Down Arrow <Down Arrow>

End of Area <C1><Right Arrow>

End Select <CTRL-E>

Enhance <C1>
<CTRL-G>

Enlarge Current Window <CTRL-E><+>

Erase Area <CTRL-L>
<Erase Page>

Erase to Beginning <C1><Delete>

Field Help <C2>

Find <F11>
<CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-E><?>
Open M/SQL Developer Guide D-11

Appendix D—Full Screen Editor Keyboard Actions
GETOUTALL <C1><C4>

Goto Tag <CTRL-E><CTRL-G>
<CTRL-E><G>

Last Buffer <CTRL-E><CTRL-L>
<CTRL-E><L>

Left Arrow <Left Arrow>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><CTRL-M>
<CTRL-E><M>

Next Find <CTRL-E><CTRL-N>
<CTRL-E><N>

Next Screen <F12>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Previous <C4>

Previous Find <CTRL-E><CTRL-P>
<CTRL-E><P>

Previous Screen <F13>

Previous Tag <CTRL-P>

Previous Word <CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Return <New Line>

Right Arrow <Right Arrow>

Show Current Time <CTRL-E><CTRL-T>
<CTRL-T>

Switch to Other Window <CTRL-E><CTRL-W>
<CTRL-E><W>

Tab <C1><I>
<C1><Tab>
<Tab>

Toggle Select <CTRL-E><S>

Table D-4: Dasher Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press
D-12 Open M/SQL Developer Guide

IBM 3151 ASCII Display Station
IBM 3151 ASCII Display Station

Top <C1><F13>
<C1><T>

Top of Window <C1><Up Arrow>

Two Windows <CTRL-E><2>

Undo <C1><X>

Up Arrow <Up Arrow>

Use Buffer <CTRL-E><CTRL-U>
<CTRL-E><U>

Window Options <C3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-4: Dasher Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Keys(s) To Press

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Advance <F1><A>
<CTRL-A>

Begin Select <F8>

Beginning of Area <F1><Left Arrow>

Bottom <F1>
<CTRL-V>

Bottom of Window <F1><Down Arrow>
<F1><CTRL-J>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>
Open M/SQL Developer Guide D-13

Appendix D—Full Screen Editor Keyboard Actions
Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <F7>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Backspace>

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<F1><W>

Do Editor Action <CTRL-^>
<CTRL-E><A>
<CTRL-A>
<F1><^>

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <F1><CTRL-K>
<F1><Right Arrow>

Enhance <CTRL-G>
<F1>

Erase Area <CTRL-L>

Erase to Beginning <F1><Backspace>

Field Help <F2>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Z>
<CTRL-E><Help>
<CTRL-E><?>
<F1><Y>
<F1><Z>

Get Out All <F1><F4>
<F12>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>
<F1><L>

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-14 Open M/SQL Developer Guide

IBM 3151 ASCII Display Station
Left Arrow <Left Arrow>

List Buffers <CTRL-E><Find>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>
<F1><F12>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>
<F9>

Next Tag <CTRL-N>
<F1><N>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Only Save Buffer <F11>

Other Options <CTRL-E><O>

Paste <F6>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <Home>

Previous Tag <CTRL-P>
<F1><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <CTRL-R>
<F1><R>

Return <RETURN>

Right Arrow <CTRL-K>
<Right Arrow>

Save and Compile Buffer <F1><F>
<F10>
<CTRL-E><Do>

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-15

Appendix D—Full Screen Editor Keyboard Actions
Save Options <F4>
<F1><S>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-W>

Tab <F1><I>
<Tab>

Toggle Select <CTRL-E><S>

Top <CTRL-T>
<F1><T>
<F1><Home>

Top of Window <F1><CTRL-U>
<F1><Up Arrow>

Two Windows <CTRL-E><2>

Undo <CTRL-X>
<F1><F7>
<F1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-5: IBM 3151 Key Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-16 Open M/SQL Developer Guide

IBM PC
IBM PC

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Advance <F1><A>
<CTRL-A>

Help Menu <F1><F3>

Beginning of Area <F1><Left Arrow>

Bottom <F1><End>
<F1><V>
<F1><Page Down>

Bottom of Window <F1><CTRL-J>
<F1><CTRL-V>
<F1><Down Arrow>
<End>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <F1>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Backspace>
<CTRL-H>
<Delete>

Delete Character <CTRL-D>
<F1><D>

Delete Word <CTRL-W>
<F1><W>

Do Editor Action <CTRL-^>
<CTRL-E><A>
<CTRL-E><CTRL-A>

Down Arrow <CTRL-J>
<CTRL-V>
<Down Arrow>

End of Area <F1><CTRL-K>
<F1><Right Arrow>
Open M/SQL Developer Guide D-17

Appendix D—Full Screen Editor Keyboard Actions
End Select <CTRL-E><E>

Enhance <CTRL-G>
<F1>

Erase Area <CTRL-L>

Erase to Beginning <F1><Backspace>
<F1><CTRL-H>
<F1><Delete>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Y>
<CTRL-Z>
<F1><Y>
<F1><Z>
<CTRL-E><?>

Get Out All <F1><F4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Field Help <F2>
<F1><F2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>
<F6>

Next Screen <PgDn>

Next Tag <CTRL-N>
<F1><N>

Next Word <CTRL-F>
<F1><F>

One Window <CTRL-E><1>

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-18 Open M/SQL Developer Guide

IBM PC
Other Options <CTRL-E><O>

Paste <Ins>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <PgUp>

Previous Tag <CTRL-P>
<F1><P>

Previous Word <F1>
<CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <CTRL-R>
<F1><R>

Return <Enter>

Right Arrow <CTRL-K>
<Right Arrow>

Save and Compile Buffer <F1><F10>
<F5>

Save Options <F10>
<F4>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

Tab <F1><I>
<Tab>

Toggle Select <CTRL-E><S>

Top <CTRL-T>
<F1><T>
<F1><Home>
<F1><PgUp>

Top of Window <F1><Up Arrow>
<F1><CTRL-U>

Two Windows <CTRL-E><2>

Undo <CTRL-X>
<F1><X>

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-19

Appendix D—Full Screen Editor Keyboard Actions
QUME

Up Arrow <Up Arrow>
<CTRL-U>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-6: IBM PC Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press

Table D-7: QUME Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Help Menu <PF1><PF3>

Advance <CTRL-A>
<PF1><A>

Beginning of Area <PF1><CTRL-H>

Bottom of Window <PF1><CTRL-J>

Bottom <PF1><V>
<CTRL-V>

Break <CTRL-C>

Buffer Options <CTRL-E><CTRL-B>
<CTRL-E>

Copy <CTRL-E><CTRL-D>
<CTRL-E><D>

Cut or Paste <CTRL-E><CTRL-C>
<CTRL-E><C>

Delete Back Character <CTRL-J>

Delete Word <PF1><W>
<CTRL-W>
D-20 Open M/SQL Developer Guide

QUME
Delete Character <PF1><D>
<CTRL-D>

Do Editor Action <CTRL-E><CTRL-A>
<CTRL-E><A>
<CTRL-^>

Down Arrow <CTRL-L>

End Select <CTRL-E><D>

End of Area <PF1><CTRL-K>
<PF1><CTRL-L>

Enhance <CTRL-G>
<PF1>

Enlarge Current Window <CTRL-E><+>

Exchange Point and Mark <PF4>

Find <CTRL-E><CTRL-F>
<CTRL-E><F>

General Help <CTRL-E><?>

GETOUTALL <PF4>

Goto Tag <CTRL-E><CTRL-G>
<CTRL-E><G>

Last Buffer <CTRL-E><CTRL-L>
<CTRL-E><L>

Left Arrow <CTRL-H>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><CTRL-M>
<CTRL-E><M>

Next Find <CTRL-E><CTRL-N>
<CTRL-E><N>

Next Tag <CTRL-N>

Next Word <PF1><F>
<CTRL-F>

Next Tag <PF1><N>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Table D-7: QUME Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-21

Appendix D—Full Screen Editor Keyboard Actions
Previous Tag <PF1><P>
<CTRL-P>

Previous Find <CTRL-E><CTRL-P>
<CTRL-E><P>

Previous Word <PF1>
<CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <PF1><R>
<CTRL-R>

Return <CTRL-M>

Right Arrow <CTRL-K>

Show Current Time <CTRL-E><CTRL-T>
<CTRL-E><T>

Switch to Other Window <CTRL-E><CTRL-W>
<CTRL-E><W>

Tab <PF1><I>
<CTRL-I>

Toggle Select <CTRL-E><S>

Top of Window <PF1><CTRL-U>

Top <PF1><T>
<CTRL-T>

Two Windows <CTRL-E><2>

Undo <PF1><X>
<CTRL-X>

Up Arrow <CTRL-U>

Use Buffer <CTRL-E><CTRL-U>
<CTRL-E><U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-7: QUME Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-22 Open M/SQL Developer Guide

Sun
Sun

Table D-8: Sun Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Advance <CTRL-A>
<F1><A>

Begin Select <F7>

Beginning of Area <F1><Left Arrow>

Bottom <F1><Page Down>
<F1><End>

Bottom of Window <End>
<F1><Down Arrow>

Break <CRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Delete>
<Backspace>

Delete Character
<CTRL-D>

Delete Word <CTRL-W>

Do Editor Action <CTRL-\>
<CTRL-E><A>
<CTRL-E><\>

Down Arrow <Down Arrow>
<CTRL-J>

End of Area <F1><Right Arrow>
<F1><CTRL-K>

End Select <F1><F7>

Enhance <F1>
<CTRL-G>

Erase Area <CTRL-L>
<F1>

Erase to Beginning <F1><Delete>
Open M/SQL Developer Guide D-23

Appendix D—Full Screen Editor Keyboard Actions
Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Y>
<CTRL-E><?>

GETOUTALL <F10>
<F1><F10>
<F1><F4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Help Menu <Help>
<F1><F3>

Enlarge Current Window <CTRL-E><+>

Field Help <F2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <Left Arrow>
<CTRL-H>

List Buffers <CRTL-E><F6>

Macro Definition <F1><K>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Error in Buffer <CTRL-E><E>
<CTRL-E><CTRL-E>

Next Find <F6>
<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <Page Down>
<F1><N>

Next Word <CTRL-F>

Next Tag <CTRL-N>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Only Save Buffer <F9>

Table D-8: Sun Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-24 Open M/SQL Developer Guide

Sun
Paste <Insert>
<F1><Insert>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <Page Up>
<F1><P>

Previous Word <CTRL-B>
<F1>

Previous Tag <CTRL-P>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

RETURN <RETURN>

Retreat <CTRL-R>

Right Arrow <Right Arrow>
<CTRL><K>

Save Options <F4>

Save and Compile Buffer <F5>
<F1><F>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

TAB <Tab>
<F1><I>

Toggle Select <CTRL-E><S>
<CTRL-E><CTRL-S>

Toggle Syntax Checking <CTRL-E><@>

Top <F1><Page Up>
<F1><Home>
<CTRL><T>

Top of Window <F1><Up Arrow>
<Home>
<F1><CTRL-U>

Two Windows <CTRL-E><2>

Up Arrow <Up Arrow>
<CTRL-U>

Table D-8: Sun Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-25

Appendix D—Full Screen Editor Keyboard Actions
Televideo 905

Undo <CTRL-X>

View Intermediate Source <CTRL-E><V>
<CTRL-E><CTRL-V>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-8: Sun Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press

Table D-9: Televideo 905 Key Mapping for Full Screen Editor

Editor Action Key(s) To Press

Advance <CTRL-A>
<F1><A>

Beginning of Area <F1><Left Arrow>

Bottom <F1><V>

Bottom of Window <F1><Down Arrow>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character

Delete Character <CTRL-D>
<F1><D>
D-26 Open M/SQL Developer Guide

Televideo 905
Delete Word <CTRL-W>
<F1><W>

Do Editor Action <CTRL><^>
<CTRL-E><a>
<CTRL-E><CTRL-A>

Down Arrow <Down Arrow>
<CTRL-v>

End of Area <F1><Right Arrow>

Enhance <F1>
<CTRL-G>

Erase Area <Line Erase>

Erase to Beginning <F1>

Erase to End <CTRL-U>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <F2>

GETOUTALL <F1><F4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Help Menu <F1><F3>

Enlarge Current Window <CTRL-E><+>

Field Help <PF2>

Left Arrow <Left Arrow>

Make Buffer <CTRL-E><=>
<CTRL-E><[>

Next Screen <F1><N>

Next Word <CTRL-F>
<F1><F>

Next Tag <CTRL-N>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Paste <Line Insert>

PREVIOUS <F4>

Previous Screen <F1><P>

Table D-9: Televideo 905 Key Mapping for Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-27

Appendix D—Full Screen Editor Keyboard Actions
Previous Word <CTRL-B>
<F1>

Previous Tag <CTRL-F>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

RETURN <RETURN>

Retreat <CTRL-R>
<F1><R>

Right Arrow <Right Arrow>

Save Options <F1><F>

Save and Compile Buffer <Esc><Esc>

TAB <Tab>
<F1><I>

Toggle Select <CTRL-E><S>

Top <F1><T>
<CTRL-T>

Top of Window <F1><Up Arrow>

Two Windows <CTRL-E><2>

Up Arrow <Up Arrow>
<CTRL-K>

Undo <CTRL-X>
<F1><X>

Window Options <F3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-9: Televideo 905 Key Mapping for Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-28 Open M/SQL Developer Guide

DEC VT 100
DEC VT 100

Table D-10: VT100 Key Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Help Menu <PF1><PF3>

Advance <CTRL-A>
<PF1>

Beginning of Area <PF1><Left Arrow>
<PF1><CTRL-H>

Bottom <PF1>

Bottom of Window <PF1><Down Arrow>
<PF1><CTRL-J>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><CTRL-D>
<CTRL-E><D>

Cut or Paste <CTRL-E><CTRL-C>
<CTRL-E><C>

Delete Back Character <DELETE>

Delete Character <CTRL-D>

Delete Word <CTRL-W>

Do Editor Action <CTRL-^>
<CTRL-E><CTRL-A>
<CTRL-E><A>

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <PF1><Right Arrow>
PF1><CTRL-K>

End Select <CTRL-E><E>

Enhance <CTRL-G>
<PF1>

Enlarge Current Window <CTRL-E><+>

Erase Area <CTRL-L>

Erase to Beginning <PF1>

Field Help <PF2>
Open M/SQL Developer Guide D-29

Appendix D—Full Screen Editor Keyboard Actions
Find <CTRL-E><CTRL-F>
<CTRL-E><F>

General Help <CTRL-Z>
<PF1><K>
<PF1><Y>
<PF1><Z>
<CTRL-E><?>

Get Out All <PF1><PF4>

Goto Tag <CTRL-E><CTRL-G>
<CTRL-E><G>

Last Buffer <CTRL-E><CTRL-L>
<CTRL-E><L>

Left Arrow <CRTL-H>
<Left Arrow>

Make Buffer <PF1><PF2>
<CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><CTRL-M>
<CTRL-E><M>

Next Find <CTRL-E><CTRL-N>
<CTRL-E><N>

Next Tag <PF1><N>
<CTRL-N>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Other Options <CTRL-E><O>

Previous Find <CTRL-E><CTRL-P>
<CTRL-E><P>

Previous Tag <PF1><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <CTRL-R>
<PF1><R>

Return <RETURN>

Table D-10: VT100 Key Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-30 Open M/SQL Developer Guide

DEC VT 100
Right Arrow <CTRL-K>
<Right Arrow>

Save Options <PF1><S>
<PF4>

Show Current Time <CTRL-E><CTRL-T>
<CTRL-E><T>

Switch to Other Window <CTRL-E><CTRL-W>
<CTRL-E><W>

Tab <PF1><I>
<PF1><Tab>
<Tab>

Toggle Select <CTRL-E><S>

Top <PF1><T>

Top of Window <PF1><Up Arrow>
<PF1><U>

Two Windows <CTRL-E><2>

Undo <PF1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><CTRL-U>
<CTRL-E><U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-10: VT100 Key Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-31

Appendix D—Full Screen Editor Keyboard Actions
DEC VT 200

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Advance <CTRL-A>
<PF1><A>

Help Menu <Help>

Begin Select <Select>

Beginning of Area <PF1><CTRL-H>
<PF1><Left Arrow>

Bottom <PF1>
<PF1><Next Screen>

Bottom of Window <PF1><CTRL-J>
<PF1><Down Arrow>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>

Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <Remove>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character <Delete>

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<PF1><W>

Do Editor Action <CTRL-\>
<CTRL-^>
<PF1><^>
<CTRL-E><CTRL-A>
<CTRL-E><A>

Down Arrow <CTRL-J>
<Down Arrow>

End Select <PF1><Select>

End of Area <PF1><CTRL-K>
<PF1><Right Arrow>
D-32 Open M/SQL Developer Guide

DEC VT 200
Enhance <CTRL-G>
<PF1>

Erase Area <CTRL-L>

Erase to Beginning <PF1><Delete>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Z>
<PF1><Y>
<PF1><Z>
<CTRL-E><?>
<CTRL-E><Help>

Get Out All <PF1><F20>
<PF1><PF4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Help <PF2>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>

Left Arrow <CTRL-H>
<Left Arrow>

List Buffers <CTRL-E><Find>

Macro Definition <PF1><K>

Make Buffer <PF1><Do>
<CTRL-E><=>
<CTRL-E><[>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <Find>
<PF1><PF2>
<CTRL-E><N>
<CTRL-E><CTRL-N>

Next Screen <Next Screen>
<PF1><N>

Next Tag <CTRL-N>
<PF1><N>

Next Word <CTRL-F>

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-33

Appendix D—Full Screen Editor Keyboard Actions
One Window <CTRL-E><1>

Only Save Buffer <F19>

Other Options <CTRL-E><O>

Paste <Insert Here>
<PF1><Insert Here>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <PF1><P>
<Prev Screen>

Previous Tag <PF1><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <CTRL-R>
<PF1><R>

Return <RETURN>

Right Arrow <CTRL-K>
<Right Arrow>

Save Options <F20>
<PF4>

Save and Compile Buffer <Do>
<CTRL-E><Do>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

Tab <PF1><I>
<PF1><Tab>
<Tab>

Toggle Select <CTRL-E><S>

Top <PF1><Prev Screen>
<PF1><T>

Top of Window <PF1><CTRL-U>
<PF1><Up Arrow>

Two Windows <CTRL-E><2>

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-34 Open M/SQL Developer Guide

DEC VT 220
DEC VT 220

Undo <CTRL-X>
<PF1><Remove>
<PF1><X>

Up Arrow <CTRL-U>
<Up Arrow>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-11: VT200 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor

Editor Action Key(s) To Press

Advance <PF1><A>
<CTRL-A>

Help Menu <Help>

Begin Select <Select>

Beginning of Area <PF1><CTRL-H>
<PF1><Left Arrow>

Bottom <PF1>
<PF1><Next Screen>

Bottom of Window <PF1><CTRL-J>
<PF1><Down Arrow>

Break <CTRL-C>

Buffer Options <CTRL-E>
<CTRL-E><CTRL-B>
Open M/SQL Developer Guide D-35

Appendix D—Full Screen Editor Keyboard Actions
Copy <CTRL-E><D>
<CTRL-E><CTRL-D>

Cut <Remove>

Cut or Paste <CTRL-E><C>
<CTRL-E><CTRL-C>

Delete Back Character

Delete Character <CTRL-D>

Delete Word <CTRL-W>
<PF1><W>

Do Editor Action <CTRL-^>
<PF1><^>
<CTRL-E><A>
<CTRL-E><CTRL-A>

Down Arrow <CTRL-J>
<Down Arrow>

End of Area <PF1><CTRL-K>
<PF1><Right Arrow>

End Select <PF1><Select>

Enhance <CTRL-G>
<PF1>

Erase Area <CTRL-L>

Erase to Beginning <PF1><Delete>

Field Help <PF2>

Find <CTRL-E><F>
<CTRL-E><CTRL-F>

General Help <CTRL-Z>
<CTRL-E><Help>
<CTRL-E><?>
<PF1><Y>
<PF1><Z>

GETOUTALL <PF1><PF4>

Goto Tag <CTRL-E><G>
<CTRL-E><CTRL-G>

Enlarge Current Window <CTRL-E><+>

Last Buffer <CTRL-E><L>
<CTRL-E><CTRL-L>
<PF1><L>

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-36 Open M/SQL Developer Guide

DEC VT 220
Left Arrow <Left Arrow>
<CTRL-H>

List Buffers <CTRL-E><Find>

Macro Definition <PF1><K>

Make Buffer <PF1><Do>
<CTRL-E><[>
<CTRL-E><=>

Mark Options <CTRL-E><M>
<CTRL-E><CTRL-M>

Next Find <CTRL-E><N>
<CTRL-E><CTRL-N>
<Find>
<PF1><PF2>

Next Tag <CTRL-N>
<PF1><N>

Next Screen <PF1><N>
<Next Screen>

Next Word <CTRL-F>

One Window <CTRL-E><1>

Only Save Buffer <F19>

Other Options <CTRL-E><O>

Paste <Insert Here>
<PF1><Insert Here>

Previous Find <CTRL-E><P>
<CTRL-E><CTRL-P>

Previous Screen <PF1><P>
<Prev Screen>

Previous Tag <PF1><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E><R>
<CTRL-E><CTRL-R>

Redraw Screen <CTRL-E></>

Retreat <CTRL-R>
<PF1><R>

Return <RETURN>

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
Open M/SQL Developer Guide D-37

Appendix D—Full Screen Editor Keyboard Actions
Right Arrow <CTRL-K>
<Right Arrow>

Save and Compile Buffer <Do>
<CTRL-E><Do>
<PF1><F>

Save Options <PF4>
<PF1><S>

Show Current Time <CTRL-E><T>
<CTRL-E><CTRL-T>

Switch To Other Window <CTRL-E><W>
<CTRL-E><CTRL-W>

Tab <Tab>
<PF1><Tab>
<PF1><I>

Toggle Select <CTRL-E><S>

Top <PF1><T>
<PF1><Prev Screen>

Top of Window <PF1><CTRL-U>
<PF1><Up Arrow>

Two Windows <CTRL-E><2>

Undo <CTRL-X>
<PF1><Remove>
<PF1><X>

Up Arrow <Up Arrow>
<CTRL-U>

Use Buffer <CTRL-E><U>
<CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E><->

Word Lowercase <CTRL-E><_>

Word Uppercase <CTRL-E><^>

Table D-12: VT220 Keyboard Mapping for the Full Screen Editor (Continued)

Editor Action Key(s) To Press
D-38 Open M/SQL Developer Guide

WYSE-60 (Native Mode)
WYSE-60 (Native Mode)

Table D-13: WYSE-60 Key Mapping for the Full Screen Editor

Editor Action Primary Key Alternate Key(s)

Advance <Enhance><A> <CTRL-A>

Beginning of Area <Enhance><Left Arrow> <Enhance><CTRL-H>
<Backspace>

Bottom of List <Enhance><Page Down> <Enhance>-V
<End>

Bottom of Window <Enhance><Down Arrow> <Enhance><CTRL-J>

Break <CTRL-C>

Buffer Options <CTRL-E>/B <CTRL-E><CTRL-B>

Copy <CTRL-E>/D <CTRL-E><CTRL-D>

Cut <Delete>

Cut or Paste <CTRL-E>/C <CTRL-E><CTRL-C>

Delete Word <CTRL-W>

Delete Previous Character

Delete Character <CTRL-D>

Do Editor Action <Ins> <Enhance>-^

Down Arrow <Down Arrow> <CTRL-J>

End of Area <Enhance><Right Arrow>

End Select <CTRL-E>/E

Enhance <PF1> <CTRL-G>

Erase Area <PF12> <CTRL-U>

Erase to Beginning <Enhance>

Explain <PF2>

Find <CTRL-E>/F <CTRL-E><CTRL-F>

GETOUT <PF10> <Enhance><F>

GETOUTALL <Enhance><PF10> <Enhance><PF4>

General Help <Enhance><K> <CTRL-Z>

Goto Tag <CTRL-E>/G <CTRL-E><CTRL-G>

Grow Current Window <CTRL-E>/+
Open M/SQL Developer Guide D-39

Appendix D—Full Screen Editor Keyboard Actions
Help Menu <Enhance><PF3>

Insert/Typeover Toggle <Ins> <Enhance><Ins>

Key Help <Enhance><PF2>

Last Buffer <CTRL-E>/L <CTRL-E><CTRL-L>

Left Arrow <Left Arrow> <CTRL-H>
<Backspace>

Make Buffer <CTRL-E> = <CTRL-E> [

Mark Options <CTRL-E> M <CTRL-E><CTRL-M>

Next Find <PF6> <CTRL-E> <N>

Next Screen <Page Down>

Next Tag <CTRL-N> <Enhance><N>

Next Word <CTRL-F>

Other Options <CTRL-E> O

One Window <CTRL-E> 1

Paste <Insert> <Enhance><Insert>
<Enhance><G>

Previous Find <CTRL-E> P <CTRL-E><CTRL-P>

Previous Screen <Page Up>

Previous Tag <Enhance><P>

Previous Word <CTRL-B>

Query Replace <CTRL-E> R <CTRL-E><CTRL-R>

Redraw Screen <CTRL-E> /

Retreat <CTRL-R> <Enhance><R>

RETURN <Return>

Right Arrow <Right Arrow> <CTRL-L>

SAVE Options <PF4> <PF9
<>Enhance><S>

Save and Compile Buffer <PF5> <Esc><Esc>

Show Current Time <CTRL-E> <T> <CTRL-E><CTRL-T>

Switch to Other Window <CTRL-E> <W> <CTRL-E> <CTRL-W>

Tab <Tab>

Toggle Select <CTRL-E> <Y>

Table D-13: WYSE-60 Key Mapping for the Full Screen Editor (Continued)

Editor Action Primary Key Alternate Key(s)
D-40 Open M/SQL Developer Guide

WYSE-60 (Native Mode)
Top of Window <Enhance><Up Arrow> <Enhance>-<CTRL-K>

Top <Enhance><Page Up> <Enhance><T>

Two Windows <CTRL-E> <2>

Undo <CTRL-X> <Enhance>-<CTRL-X>

Up Arrow <Up Arrow> <CTRL-K>

Use Buffer <CTRL-E> U <CTRL-E><CTRL-U>

Window Options <PF3>

Word Capitalize <CTRL-E> -

Word Lowercase <CTRL-E> _

Word Uppercase <CTRL-E> ^

Table D-13: WYSE-60 Key Mapping for the Full Screen Editor (Continued)

Editor Action Primary Key Alternate Key(s)
Open M/SQL Developer Guide D-41

Appendix D—Full Screen Editor Keyboard Actions
D-42 Open M/SQL Developer Guide

Glossary of Terms
Application

A set of forms, reports, and other objects and programs linked together by menus
to form a structure that provides a working user interface to a database.

Application Help Facility

A suite of help features and utilities that allows you to develop and deploy a con-
text-sensitive on-line help system for your Open M/SQL applications.

Application Mode

The mode in which application end-users interact with a database using forms
and windows designed by the application developer. In application mode, users
enter the application directly from the operating system prompt and never see the
M prompt. Navigation is typically guided by a menu structure designed by the
application developer.

Application Program Interface (API)

Software on your client machine that handles the interface between an applica-
tion tool or C application and the server, and manages communications with the
server. The Relational Client supports two APIs, the ORACLE Call Interface
(OCI) and Microsoft’s Open Database Connectivity (ODBC).

Auxiliary Window

Any window defined for a form that is neither the form’s master window nor its
row selection window, i.e., any window in a form that is not the first window to
appear when the form is invoked. Forms may have multiple auxiliary windows.
Open M/SQL Developer Guide Glossary-1

Glossary
Base Table

A collection of data represented in a simple 2-dimensional format consisting of
one or more rows with one or more columns. Each row has at most one value for
each column, and each row is unique, meaning that it differs by at least one col-
umn value from every other row. Base tables are mapped directly to physical
storage structures.

Branching Field

A form-only field of data type Branching whose sole purpose is to serve as a
mask for an underlying trigger action, which typically branches to another win-
dow within the current form or to the master window of another form. Branching
fields can also invoke other actions besides a window branch. On a window,
branching fields are represented by their captions, which always appear enclosed
in brackets.

Caller ID

Identifier that allows each menu item or form trigger that calls a form, window,
or menu to identify itself to the called object. The Caller ID is stored in the
{%caller} external reference variable.

Cascading Menus

Term used to describe the style of presentation for a pop-up menu that is called
by another pop-up menu. Multiple pop-up menus called in succession cascade on
the screen so as not to overlap.

Characteristic Relationship

A programmer-defined join between base tables in which rows in a “child table”
are existence-dependent on rows in a “parent table” in a many-to-one manner—a
single parent row can have many child rows.

Child Form

A form whose data source is a child table. Child forms may be single-row or
multi-row and may access rows with the parent “known” or “not known”. If the
parent is known, rows are called from the RowID in the parent table, which limits
row selection to children of the parent table RowID. If the parent is not known,
all child table rows are selected.
Glossary-2 Open M/SQL Developer Guide

Glossary
Child Table

A base table that is existence-dependent on another table (its parent) in a charac-
teristic relationship. Rows in a child table must have a pointer to a row in the par-
ent table.

Code Generation

The process by which the Open M/SQL compiler generates executable M rou-
tines from programmer specifications. This happens when you compile an Open
M/SQL base table, form, menu object, or report.

Column

See Field.

Communications Protocol

A set of conventions that defines how data is transferred between computers on a
network. More specifically, it is the software that determines how a message
packet is formatted. Communication protocols are used to talk to a network inter-
face device. More than one communication protocol can share the same physical
interface device. The Open M/SQL Relational Client currently supports the fol-
lowing communication protocols: TCP/IP, DECnet (for VAX/VMS systems
only), and Memory-to-Memory (for DTM systems only).

Compilation

The process in which programmer specifications are translated by the Open
M/SQL compiler into macro source code and stored as .MAC routines. The
macro preprocessor uses macro source code routines to produce intermediate
code, which is then saved as executable M code (called object code).

Computed Field

A field whose value is derived from a calculation defined in M code. The M code
can reference other fields in the associated base table as well as M functions and
special variables.

Conversion Code

M code used by Open M/SQL to convert field data values from external input
formats to internal storage formats and from internal storage formats to external
display formats.
Open M/SQL Developer Guide Glossary-3

Glossary
Cursor

An identifier for an SQL request. Once a client application has established a con-
nection with the server, it creates a cursor. When the client application wants to
send an SQL request to the server, it associates the request with a cursor. An
application can have multiple cursors active within a connection. Only one SQL
request is associated with a cursor at a given point in time. Once the application
receives the server’s response to a request, however, it can reuse the cursor for
another request.

Cursor-Based SQL

A type of embedded SQL query that opens a cursor to process the query. When
your application needs to access multiple rows of data, you must use a cursor. A
cursor acts like a pointer—it focuses on accessing and processing one row at a
time, then moves from that row to the next in the sequence.

Database

A collection of related data.

Data Dictionary

A component of Open M/SQL used to describe the elements of the relational
database, including both its conceptual content and the mapping of its logical
data definitions to physical data structures in the global database.

Database Field

A field that is defined in a Data Dictionary base table. A form has access to all
database fields defined for its associated base table. You can even modify certain
display characteristics of the field at the form level.

Database Form

Any form that uses a Data Dictionary base table as its data source.

Data Source

The Data Dictionary base table from which a database form retrieves its data. A
form may have only one data source. Non-database forms do not have any data
source. Forms cannot use views as their data source.
Glossary-4 Open M/SQL Developer Guide

Glossary
Designated Table

The Data Dictionary base table that is referenced (pointed to) by a Designative
Reference field and accessed by Designative Display fields in a cross-table refer-
ence form.

Designative Display Field

A form-only field based on a Designated Reference field (defined in the associ-
ated base table) that retrieves data from (and optionally adds data to) a specified
field in the designated table. Designative Display fields are the vehicles of cross-
table referencing. You may create Designative Display fields for any fields in the
designated table, and you may place them on windows in the form.

Designative Reference

A programmer-defined join between two base tables in which one field of the
designating table contains the Row IDs of all rows in the referenced table. In
relational database terminology, the designating table has a “foreign key” on the
referenced table.

Developer

A component of Open M/SQL that allows application developers to use both pro-
gram-level code and application generator technology to create relational data-
base applications.

Device

A piece of hardware that is part of a computer system, such as a terminal, printer,
disk drive, or magnetic tape drive.

Directory

A name for a location on a disk where files can be stored.

DTM

InterSystems’ implementation of the M programming language designed to run
on IBM-compatible PCs based on Intel 80386 and higher microprocessors.

Embedded SQL

SQL statements that are directly embedded within M routines at the macro source
code level. These statements are prefixed by the M binding syntax, &sql.
Open M/SQL Developer Guide Glossary-5

Glossary
Export/Import Utility

A window-based utility that allows you to port Open M/SQL “objects” (base
tables, views, forms, reports, queries, menus, menu objects, help topics, and help
documents) between different directories and different computers.

External Value

The value of a field in its external display format, i.e., after it has passed through
internal-to-external conversion code. A field may have both an internal and an
external value.

Fields

A named unit of data in a base table row, usually representing a real world entity,
such as a name, social security number, or date of birth for that row. Also called
“column” or “attribute”.

Field Caption

The descriptive text attached to a field on a window.

Foreign Key

See Designative Reference.

Forms

A collection of one or more associated windows that either displays information
or prompts the user to enter information, or both.

Form Generator

An application generator component of Open M/SQL that allows application
developers to design highly sophisticated window-based forms that interact with
the Relational Data Dictionary (or optionally an alternative data source) to add,
update, retrieve, and delete database information.

Form-Only Field

A field that is created for a form and exists only at the form level, independent of
the Data Dictionary. Form-only fields may appear on a form but cannot file data
to the Data Dictionary. All fields on a non-database form are form-only.
Glossary-6 Open M/SQL Developer Guide

Glossary
Form-Only Form

A non-database form that does not file data to any data structure.

Full Screen Editor

An ISM (InterSystems’ original implementation of M) utility that allows you to
create, edit, and view macro source code routines, intermediate code routines,
and include files.

Global

A disk-based data storage unit specified by the M programming language stan-
dard. Also called “global variables”, these are commonly implemented using bal-
anced-tree technology.

Global Database

A database in which all data is stored in a system of multiply-subscripted arrays
called “globals”. This is the underlying logical and physical data storage struc-
ture of an Open M/SQL database. Relational tables are mapped to the global
database through the Open M/SQL Relational Data Dictionary.

Help Document

A user documentation manual for your application based on the help definitions
you have already created. You create help documents using the Help Document
Creation facility. A help document consists of chapter numbers and titles, para-
graph/section headings and numbers, screen images of menus, screen images of
forms, screen images of individual windows, long and short help messages for
menu options and fields, help topic text, and optionally an automatically gener-
ated table of contents and index.

Help Document Creation Facility

An extension to the Application Help facility that allows you to create a printed
documentation manual for your application based on the help definitions you
have already created.

Help Text Entry Facility

An extension to the Application Help facility that centralizes access to the help
attributes associated with forms and menu objects and provides an easy-to-use
interface for creating help text definitions and deploying them throughout an
application.
Open M/SQL Developer Guide Glossary-7

Glossary
Help Topic

A block of programmer-defined help text which you can make available to end-
users in a context-sensitive fashion at various points in an application by attach-
ing it to base tables, forms, windows, menu objects, and menu object choices or
by enabling it via triggers.

Horizontal Menu

A type of old-style menu that is tied to a window on a form and displays its list of
options horizontally across the bottom of the screen just below the status line of
the window to which it is tied.

Implicit Join

A programmer-defined join between related tables defined in the Data Dictionary
that allows you to query multiple tables without specifying data access restric-
tions in the WHERE clause. Implicit joins can designate characteristic relation-
ships or designative references.

Include File

Files containing definitions that can be used in the preprocessor phase of compi-
lation to expand macro source routines and determine whether optional lines of
code should be included. Include files can also be used to include a common
block of code in several routines, saving the overhead of calls to a common sub-
routine.

Index Map

A map for one or more database fields that contains the Row ID of each row in a
base table. Index maps speed up access to rows looked up by values for the index
fields and allow rapid retrieval of rows sorted by one or more index fields. The
Open M/SQL Data Dictionary automatically generates index maps for all fields
specified as lookup fields in the lookup specifications for a base table (when
default physical structure is used).

Integrity Constraints

Programmer-defined constraints on data insert, update, and delete operations that
ensure the accuracy and completeness of the application and the underlying data-
base.
Glossary-8 Open M/SQL Developer Guide

Glossary
Interactive Query Editor

Open M/SQL facility for defining and running ad hoc queries. The Interactive
Query Editor provides a free-form SQL editor environment (similar to the Full
Screen Editor) that enables users to define and run any syntactically valid SQL
query. The Interactive Query Editor also provides full screen editing capabilities.

Intermediate Source Code

The standard 3GL M source code available in all M implementations. Intermedi-
ate code is produced from macro source code by the Open M/SQL compiler. At
the intermediate code level, all preprocessor syntax, including embedded SQL, is
resolved, and the routine contains only pure M source code. You can write M
routines directly at the intermediate code level, but you cannot use embedded
SQL or other preprocessor syntax, such as macros.

Internal Value

The value of a field as stored internally by Open M/SQL, i.e., after it has passed
through external-to-internal conversion code. A field may have both an internal
and an external value.

Join

A link between base tables that defines the relationship between the data in those
tables.

Learn-As-You-Go (LAYGO)

The ability for a form to add new rows to a foreign base table at run time.

License

An agreement between InterSystems and its customer that defines the compo-
nents of Open M software available to the customer and the number of users who
can use each component. A customer must be licensed in order to run Open M.
License information is distributed in a Product Activation Key and stored on your
system in a file named MSQL.KEY.

Login

The act of signing on to a system. Database administrators and application devel-
opers log in to Open M/SQL by typing “do ^%msql” at the M prompt and then
providing UserName and Password information at the Open M/SQL User Identi-
fication window.
Open M/SQL Developer Guide Glossary-9

Glossary
Long Help Message

A multiple-line programmer-defined help text message associated with a field or
menu object choice that displays to the screen in a run-time window when the
user presses the <EXPLAIN> key twice in succession from a field or menu object
choice. For fields, you may define triggers to automatically display the long help
message based on certain run-time circumstances.

Lookup Display Field

Field or combination of fields whose values are displayed in the lookup box that
lists all matching entries retrieved by the lookup query in row selection for sin-
gle-row forms. The information displayed by these fields helps the user select the
appropriate row.

Lookup Field

Field or combination of fields used by single-row forms to select rows from the
database. When a form is run, the user enters lookup information into the lookup
field(s), and the system runs a lookup query to match the user input against actual
database values.

Lookup Specifications

The complete set of all lookup queries, including their lookup fields and lookup
display fields, defined to perform row selection for a single-row form.

Lookup Query

A set of lookup fields and lookup display fields defined to perform row selection
for a single-row form. A Single-row form may have multiple lookup queries.

M Language

An ANSI-Standard procedural programming language specifically designed for
database applications. M is the foundation technology of InterSystems’ entire
Open M product line.

M Database

A MUMPS.DAT file and, on server systems that support multivolume databases,
from 0 through 7 MUMPS.EXT files.
Glossary-10 Open M/SQL Developer Guide

Glossary
Macro Preprocessor

Phase of the Open M/SQL Compiler that converts macro source code, which may
include macro constructs and embedded SQL, into intermediate code, which is
pure M source code. The macro preprocessor resolves macros and code-gener-
ates embedded SQL.

Macro Source Code

The highest, most flexible and permissive level of code at which routines can be
written. Macro source code permits the definition of macros and embedded SQL
statements using a combination of ANSI-Standard M syntax, special macro pre-
processor commands, and ANSI-Standard SQL.

Map

A map describes the relationship of the logical structure of a base table to the
physical structure of the underlying global database. The Open M/SQL Rela-
tional Data Dictionary uses maps to describe an M global database in relational
terms.

Master Map

Each base table has exactly one master map. The master map defines the global
structure for all of the data fields in the base table. In M terminology, the master
map defines the “upright file”.

Master Window

The introductory window of any form. Every form must have a master window in
order to be compiled and run. No form can have more than one master window.

Menu

A list of one or more choices, each of which invokes an action that performs a
specific task. Menus can display their options vertically (top to bottom) or hori-
zontally (left to right). Menus are typically used to unite various components of
an application and provide access to them from a central location.

Menu Generator

An application generator component of Open M/SQL that allows application
developers to design and maintain menus for an application. Menus unite the var-
ious components of an application in a logical and visually sophisticated manner
and structure an application by defining how it is organized and how it is pre-
sented to users. You can design menu objects or old-style menus.
Open M/SQL Developer Guide Glossary-11

Glossary
Menu Object

A list of one or more choices, each of which invokes an action that performs a
specific task. A menu object can be run as either a menu bar or a pop-up menu.
Menu objects emulate the style of a graphical user interface (GUI) environment
by providing pull-down menu bar and pop-up menu capabilities.

Menu Bar

One of the two run-time modes for a menu object, a menu bar displays its options
horizontally across the screen. Menu bars can be attached to windows (in which
case they appear at the top of the window), they can be attached to forms (in
which case they appear at the top of the screen for all windows in the form), or
they can be run as stand-alone objects (in which case they can be positioned any-
where on the screen).

M/PACT

The report writer component of Open M/SQL. M/PACT lets you create and run
sophisticated end-user data reporting applications that interact with the Open
M/SQL Relational Data Dictionary.

MSQL.KEY File

The file into which you must enter the encoded version of your Open M license
in order to activate the license.

Multi-Row Form

A form that simultaneously presents multiple rows of data from its associated
base table. The master window of a multi-row form displays its set of fields in
repeating units, each unit corresponding to one database row. Multi-row forms
must always have a Data Dictionary data source—they can never be non-data-
base forms.

MUMPS.DAT File

The primary or only volume in an M database. It contains M globals and rou-
tines.

MUMPS.EXT File

A secondary volume in an M database. On Server systems that support multivol-
ume databases, an M database can contain from 0 through 7 MUMPS.EXT files,
in addition to one MUMPS.DAT file. A MUMPS.EXT file contains M globals
and routines, but cannot be referenced directly except when the SYSMGR or
MIS utility is used to add it to the database.
Glossary-12 Open M/SQL Developer Guide

Glossary
National Language Independence

An Open M/SQL internationalization feature that allows you to provide language
translations for most application text, including help and error messages, display
captions, and system-generated run-time messages. Open M/SQL supports
eleven run-time languages.

Network

A collection of computers and connections that allows users and programs on one
computer to communicate with users and programs on other computers in the
network.

Network Configuration

1. A description of the location of data within a network, and of the relation-
ships among various components in the network. The combined entries in the
Hardware Description Table, the Directory Set Location Table, and the
DSM-DDR Volume Set Translation Table form this description. Although
multiple configurations may be defined and stored in M/NET, only one at a
time can be active.

2. The actual network components and relationships.

Node

One computer in a network.

Non-Cursor-Based SQL

A type of embedded SQL query that consists of individual SELECT, INSERT,
UPDATE, and DELETE statements. A non-cursor-based SQL query must always
return a single row of data. Non-cursor-based SELECT statement queries are
appropriate when you know that a single row of data matches the WHERE
clause.

Non-Database Form

A form that is not associated with a base table in the Data Dictionary. Non-data-
base forms may be form-only forms (no data source at all), or they may be alter-
native data source forms (interact with a data structure other than the Open
M/SQL Data Dictionary).
Open M/SQL Developer Guide Glossary-13

Glossary
Object

In Open M/SQL, an object is a structural entity that has identity and behavioral
properties. Objects constitute both the structure of the databse and the structure
of applications. Objects can interact with other objects. Open M/SQL object
types include: base tables, views, forms, windows, fields, stand-alone captions,
line objects, menu objects, menus (old-style), reports, queries, help topics, and
help documents.

Object Code

The lowest level of code produced by the Open M/SQL compiler. This is the
code that is actually interpreted and executed. You cannot write routines at the
object code level.

Object Compile Driver Utility

Open M/SQL utility that allows application developers to define and store lists of
Open M/SQL objects for serial compilation. A compilation list may include mul-
tiple objects or entire applications. When run, the utility batch-compiles the code
for all objects included in the specified compilation configuration.

Object Integrity Checker Utility

Open M/SQL utility that checks the integrity of specified object definitions or
groups of object definitions in the current directory and generates a report of all
integrity errors that it finds. The Integrity Checker utility can also automatically
correct some of the integrity errors it finds. This utility enables application devel-
opers to easily identify and repair integrity errors in their applications.

Old-style Menu

The traditional Open M/SQL horizontal and vertical menus. The Menu Generator
supports the creation and deployment of both menu objects and old-style menus.
For new applications, InterSystems recommends that you create menus using the
more flexible and sophisticated menu object generation environment.

Open M

Name of InterSystems’ complete line of products, of which the foundation tech-
nology is M.

Open M refers to the foundation software on top of which Open M/SQL runs.
Glossary-14 Open M/SQL Developer Guide

Glossary
Open M/SQL

Open M/SQL is the RDBMS (Relational Database Management System) compo-
nent of Open M—it includes a development environment for creating advanced
relational database applications, a management system for maintaining them, and
a run-time environment for executing them.

Open M/SQL features an integrated development environment consisting of an
advanced relational database management system, application generator, report
generator, and procedural programming language. It combines the SQL relational
query language with the M database-oriented procedural programming language.

Open M/SQL Relational Database

An M database that is organized in a relational structure by creation in or map-
ping to the Open M/SQL Relational Data Dictionary.

One-Way Outer Join

A programmer-defined join specified by using the symbol =* in place of = in the
WHERE clause of an SQL query. This type of join designates the first table spec-
ified in the join condition as the source table and includes all rows from the
source table in the output table, even if there is no match in the second table. The
source table pulls relevant information out of the second table but never sacri-
fices its own rows for lack of a match in the second table.

Parent ID

Field automatically created by the Open M/SQL Relational Data Dictionary to
specify the Row ID in a child table when you define a characteristic relationship
between tables. The Parent ID acts like a designative reference from the child
table to the parent table and has the same name as the parent table.

Pop-Up Menu

One of the two run-time modes for a menu object, a pop-up menu displays its
options in a vertical list. Pop-up menus can be run as stand-alone objects, they
can be pulled down from menu bars, they can be called from other pop-up menus
(in which case they display in cascading style), or they can be called from within
forms.

Primary Key

A field or combination of fields used to uniquely identify each row of a base
table. In Open M/SQL, the function of the primary key is performed by the Row
ID.
Open M/SQL Developer Guide Glossary-15

Glossary
Privilege

The authority of a user to perform an action on an object. The owner of an object
has the responsibility for granting and revoking privileges to users and groups of
users on that object.

Process

An entity scheduled by the system software, which provides a context in which
an image executes. A process is associated with certain hardware and software
and uses an address space.

Product Activation Key

A paper key that arrives with your software distribution on which is printed an
encoded version of your Open M/SQL license. You must enter this information
into a file called MSQL.KEY in order to activate the license.

Programmer Mode

The mode in which all program development activity takes place. In programmer
mode, you initiate programs from the M prompt, and the M prompt reappears at
the conclusion of every program you run. Programmer mode encompasses the M
environment and all programs that can be called from it, including the Open
M/SQL development environment and run time environment. In programmer
mode, you can create applications that users subsequently run in application
mode.

Prompt

A system-generated signal requesting some user response.

Pull-Down Menu

Term used to describe the style of presentation for a pop-up menu that is called
from a menu bar.

Query

An SQL language construct that allows you to extract and manipulate the data in
a relational database. In the Open M/SQL relational environment, queries can be
embedded directly within M code, or they can be written interactively using the
Interactive Query Editor or the Query Generator (for SELECT-statement queries
only).
Glossary-16 Open M/SQL Developer Guide

Glossary
Query-Based View

A view that is based on the output of a SELECT-statement query. You may create
query-based views using the CREAE VIEW statement.

Query Generator

Open M/SQL facility for defining and running ad hoc queries. The Query Gener-
ator provides an easy-to-use template of SQL SELECT statement syntax
equipped with fields for the appropriate SQL clauses, including SELECT,
FROM, WHERE, ORDER BY, GROUP BY, and HAVING. This enables users to
create SELECT queries by simply filling in the template. The Query Generator
automatically generates all queries as a cursor-based SELECT statement queries,
which means they can retrieve multiple data rows into the output table.

Referential Integrity

Referential integrity constraints ensure that database insert, update, and delete
operations that apply to tables linked by implicit joins do not compromise the
accuracy and completeness of the database.

Relation

A link between base tables. See Characteristic Relationship and Designative
Reference.

Relational Database

A collection of related data that is organized according to the relational model.

Relational Environment

Environment in which you define the database in relational terms and use Open
M/SQL’s application generator tools to create, modify, and execute advanced
relational database applications. The Open M/SQL relational environment com-
bines two ANSI-standard languages—M and SQL.

Relational Gateway

A component of Open M/SQL which provides a function call-based interface that
enables M applications to connect with external database servers. The external
database servers can be M-based relational databases or non-M-based (“foreign”)
relational databases, such as Oracle. M applications act as clients to these exter-
nal database servers and issue SQL requests to retrieve data.
Open M/SQL Developer Guide Glossary-17

Glossary
Relational Model

The model for database management in which all data is organized in relational
tables. The SQL language is based on the relational model, as is the Open
M/SQL Relational Data Dictionary.

Relational Client

A set of drivers that resides on a client system and allows you to connect from an
external application program to an Open M/SQL relational database using the
Open M/SQL Relational Server.

Relational Server

A component of Open M/SQL that makes data stored in Open M/SQL relational
databases available to applications developed in certain Windows-based tools
such as Microsoft Excel, Microsoft Access, and Pilot LightShip, as well as appli-
cations developed in C or C++.

Report

A program defined using the M/PACT report writer that retrieves and displays
data from the relational Data Dictionary.

Required Field

A field in a base table or on a form that must contain a valid non-null value
before the row can be filed.

Row

A group of related field values that describes an entity in the domain of a rela-
tional table. For example, in a Customers table, a row describes a single cus-
tomer. Also called a “record” in traditional data processing terminology, or a
“tuple” in relational database terminology.

Row ID

In a base table defined in the Open M/SQL Relational Data Dictionary, the
RowID is a field (or combination of fields) whose value uniquely identifies each
row in the base table. A RowID field must always have a unique value. In rela-
tional terminology, the Row ID is the same as the primary key.
Glossary-18 Open M/SQL Developer Guide

Glossary
Row Selection

The process of selecting a row to be retrieved from the database for a single-row
form. The programmer defines lookup queries to perform row selection, and the
user runs a lookup query by providing the requisite lookup information.

SELECT List Item

An element in a SELECT statement that tells the server what data to retrieve. It
can be either a column name or an expression.

Server

1. The system on which the Open M/SQL Relational Server and your Open
M/SQL relational database resides.

2. An M process on the Relational Server system that communicates with the
client API.

Server Master

A component of the server software that “listens” for connection attempts from
clients connected via TCP, and spawns server processes to service those connec-
tions. Each server master is an M process.

Server Process

A JOBbed process on the server that services a single client connection. A server
master creates a server process for this purpose.

Short Help Message

A one-line programmer-defined help text message associated with a field or
menu object choice that displays at the bottom of the screen just below the status
line when the user presses the <EXPLAIN> key from a field or menu object choice.
For fields, you may define triggers to automatically display the short help mes-
sage based on certain run-time circumstances, or you may enable automatic dis-
play of the short help message for all fields on a form.

Sign-on

The act of entering Open M/SQL, in order to use M, Developer, or an Open
M/SQL application. See also login.
Open M/SQL Developer Guide Glossary-19

Glossary
Single-Row Form

A form that presents data from its associated base table one row at a time. The
users selects a row from the row selection window.

SQL (Structured Query Language)

Stands for Structured Query Language; SQL is the ANSI-Standard 4GL pro-
gramming language designed specifically for accessing and maintaining rela-
tional databases.

Stand-Alone Caption

Descriptive text that appears on a window but is not attached directly to a field.
Often used in the capacity of a window header.

Subquery

A subquery is an SQL SELECT statement query that is embedded within another
SQL SELECT statement query. Open M/SQL permits the embedding of subque-
ries within the SELECT, FROM, and WHERE clauses of the outer query. Open
M/SQL also permits the nesting of subqueries to any number of levels.

System Manager’s Directory

The directory where the Open M/SQL database resides. This directory contains
system globals, system routines, and %-utilities. You must create this directory at
the DOS level. Your Open M system automatically places the Open M/SQL data-
base in this directory during installation.

Transaction

A set of operations that forms a unit.

Trigger

A sequence of actions defined by the developer to execute at various points dur-
ing an Open M/SQL application. In Open M/SQL, you can associate triggers
with base tables and with forms. Base table triggers are database actions initiated
by INSERT, UPDATE, or DELETE actions performed on a base table. These
triggers help maintain integrity constraints and other data dependencies. Form
triggers can execute at the form, window, and field levels of an application and
provide numerous application navigation and processing functions, such as trans-
ferring control to different parts of an application.
Glossary-20 Open M/SQL Developer Guide

Glossary
Validation Code

M code used by Open M/SQL to validate field values by specifying validity con-
straints on field data values.

Variable

A symbolic name that is used to reference a data value. Variables can be local or
global. Local variables reside in the local symbol table associated with a given
partition. All Open M/SQL local variables begin with the percent sign (%). Glo-
bal variables reside on disk. Some global variables in Open M/SQL also begin
with the percent sign (%).

Variable Window Placement

The ability to display a window at different positions on the screen depending on
the context in which it is called. Variable window placement allows you to define
alternative placements for a window by specifying multiple sets of X and Y axis
coordinates, each associated with an M condition that governs its execution.

Vertical Menu

A type of old-style menu that runs in stand-alone fashion and displays its options
vertically in a list. Vertical menus typically serve as control flow maps for an
application. The Open M/SQL Main Menu is an example of a vertical menu.

View

A virtual table created using the fields from a base table or set of base tables
linked by implicit joins. Views are conceptual “windows” through which data
from one or more base tables can be “viewed”.

Virtual Field

A field that does not correspond directly to a single stored value but instead is
composed of several stored values. For example, the Row ID field for a child
table is sometimes composed of two stored values—the Row ID of the parent and
a subscript corresponding to a particular child row.

Virtual Table

A named table derived from one or more base tables that is not directly repre-
sented in physical storage. Views and query output are examples of virtual tables.
Open M/SQL Developer Guide Glossary-21

Glossary
Window

A set of fields, text captions, and line objects displayed together on the screen as
part of a form. Every form must have at least one window, its master window.

Word-Processing Field

A multi-line field of data type Text that has word-processing capabilities, includ-
ing “automatic” line wrapping, enhanced field navigation, and the ability for
users to search for a string.
Glossary-22 Open M/SQL Developer Guide

Index
A
{%action} 11-4, 11-20

Additional validation code 11-24

%AFTERHAVING 9-3, 9-14

{%agg} 11-6

Aggregate functions (in SQL) 9-11
%AFTERHAVING 9-14
as query columns 9-11
DISTINCT 9-14
DISTINCT BY 9-15
%FOREACH 9-12

%ALPHAUP 9-3, 9-41

ALPHAUP 9-38

%ALTER privilege 9-3, 9-49

ALTER VIEW statement 9-57, 10-17

Application Help facility G-1

Application mode G-1

Application Programming Interface (API)
G-1

Applications G-1
automatic generation of 1-4
contents of 11-43
defining the data structure 1-4
designing 3-4
developing forms and reports 1-5
hand-coding in M 1-6
inserting M code and SQL code 1-15,

11-13

mapping the functional specifications
1-4

mixing automatic generation and hand-
coding 1-7

portable acrros M systems 1-14
programmer interface to 11-1
programming methods 3-2
strategies for developing 1-4
system-generated routines 11-43
tying together the various components

1-6

Arrays
using the INTO clause to pass

information into M arrays 9-19

Arrow syntax 2-19, 9-7

ASCII-Delimited format (for queries) 10-35
contents of file 10-35
queries created via the Query Editor

10-26
queries created via the Query Generator

10-14
selecting an output device 10-34

Authorization ID
establishing from M code 11-39
stored in %msql local variable 11-39

Auxiliary windows G-1

B
{%background} 11-7

Backups (for routines) 6-5, 6-12
deleting 6-14, 7-29
Open M/SQL Developer Guide Index-1

Index
generated by the Full Screen Editor 6-13
restoring backup versions 6-13
setting # of backup versions to be

maintained 7-28
shuffling and renumbering of backups

6-12

Base table triggers 11-16
action types 11-17

Base tables 2-3, G-2
characteristic relationships 2-17, 9-9
checks made by Object Integrity

Checker utility 12-24
compiled routines of 11-44
designative references 2-16, 9-7
filing entry points to compiled routines

11-45
First Normal Form 2-2
storage globals 11-45
triggers 11-16

%BEGTRANS 9-3, 9-45

Branching fields G-2

Buffers (in the Full Screen Editor) 4-16
creating 4-16
displaying in windows 4-18
loading routines into 4-17
selecting 4-16
setting marks in 4-19

C
Caller ID G-2

{%caller} 11-3, 11-20

Cartesian product operation 2-7

CASCADE option (for revoking privileges)
9-50

Cascading menus G-2

{%cellar_tuple} 11-6

Characteristic relationships 2-17, 9-9, G-2
child-to-parent relationship 2-20, 9-9
parent-to-child relationship 2-20, 9-10
specifying implict join syntax in queries

2-20, 9-9, 9-10

Charactersistic relationships
specifying implict join syntax in queries

2-20

%CHECKPRIV 9-3, 9-50, 10-17

Child forms G-2

Child tables 2-17, 9-9, G-3

CLOSE statement 8-4

Code generation G-3

Collation sequence 9-37
ALPHAUP function 9-38
changing the default collation sequence

9-42
EXACT function 9-37
field-level collation 9-39
in comparisons 9-40
Minus function 9-39
Plus function 9-39
Space function 9-39
UPPER function 9-38
using ORDER BY clause 9-40

Columns 2-2, G-3

Comment lines
in macro source code 5-15

COMMIT 9-45

Common directory 11-11

Communications protocol G-3

Compilation G-3
compiling Open M/SQL objects serially

12-5
of objects 11-43
of routines 6-11

Compilation Options window 12-8
options defined 12-9

Compiler 1-11, 5-2, 6-11
generating routines for applications

11-44

Computed fields G-3
inserting code 11-22

Concatenation operator (SQL) 9-32

Conditional maps 11-26
Index-2 Open M/SQL Developer Guide

Index
Configuration
Network G-13

Conversion code 9-26, G-3
external-to-internal 11-23
internal-to-external 11-23
referencing variables 11-23

Copy Query utility 10-36

Copying
queries 10-36

CREATE VIEW statement 9-57, 10-17

Curly brace syntax 11-2, 11-19

Cursor-based SQL 8-4, G-4
declaring a cursor 8-4
opening a cursor 8-4
passing information into M variables 8-5
retrieving information into a cursor 8-5
using the INTO clause 9-18

Cursors 8-4, G-4
declaring 8-4
opening 8-4
passing information into variables 8-5
retrieving information 8-5

D
^%dafmlog 11-12

Data Dictionary 1-3, 1-10, 2-5, 3-4, G-4
accessing data from 2-6
defining data structures 1-4

Data source G-4

%data(icol) 11-3

Database 1-10, 2-1, G-4
for non-ISM systems 2-4
M G-10
Open M/SQL G-15
relational 2-2
relational model G-17

Database forms G-4

{%date} 11-6

DECLARE statement 8-4

#define 5-7

DELETE privilege 9-49

DELETE queries 10-17
in non-cursor-based SQL 8-3

Designated table 2-16, 9-7, G-5

Designative display fields G-5

Designative references 2-16, 9-7, G-5
specifying implict join syntax in queries

2-19

Detailed Query Listing utility 10-40
sample report 10-42

Developer 1-3, G-5

Developer Utilities menu 12-1
accessing 12-2
Export/Import Options 12-3
invoking routine management utilities

7-3
invoking routine mangement utilities

12-40
invoking the Full Screen Editor 4-4, 12-4
National Language Reports 12-44
Object Compile Driver utility 12-5
Object Integrity Checker utility 12-23
Object Routine Prefix utility 12-42
Object String Search utility 12-35
options defined 12-3

Device G-5

Device selection (for queries) 10-32
ASCII-delimited output format 10-34
selecting a device 10-33
selecting a print format 10-33

Device Selection window 12-31
fields defined 12-32
selecting a device 12-32
selecting a print format 12-32

Directory G-5

DISTINCT 9-14

DISTINCT BY 9-15

Distributed Cache Protocol (DCP) 1-13

Distributed data processing 1-19

DROP VIEW statement 9-58, 10-17

DSM 1-14

DT Network 1-13
list of database protocols 1-13
Open M/SQL Developer Guide Index-3

Index
DTM 1-14, G-5

Duplicate rows (in SQL queries) 9-16

E
%edit(icol) 11-3

#else, 5-11

#elseif, 5-11

Embedded SQL 1-15, 9-17, G-5
cursor-based 1-15, 8-4, G-4
example 8-10
handling internal and external values 8-8
handling multi-line fields 8-8
macro references 8-7
non-cursor-based 1-15, 8-2, G-13
portability 8-9
reserved tag and variable vames 8-9

#endif 5-11

Equijoins 2-11

Error messages (for SQL queries) A-3

%EXACT 9-3, 9-41

EXACT 9-37

Export/Import utility G-6
accessing via Developer Utilities menu

12-3

Extensions (for routines) 6-3

%EXTERNAL 9-3, 9-29

External values G-6
in SQL queries 9-26

External-to-internal conversion code 9-26,
11-23

F
FETCH statement 8-4

retrieving information into a cursor 8-5

Field captions G-6

Fields G-6
computed 11-22
database G-4
reading 11-36
referencing in M code 11-14
referencing within triggers 11-19

required 11-24

{%filetype} 11-4, 11-20

%first 4-6

First Normal Form 2-2

FOR ALL operator 9-56

FOR SOME operator 9-56

%FOREACH 9-3, 9-12

Foreign key 2-16, 9-7, G-6

%FORM 9-3

Form call syntax (from M) 11-27
calling forms by name/ID# 11-27
calling forms by routine prefix 11-28
parameters defined 11-28

Form Generator 1-3, 1-12, 3-4, G-6
creating forms 1-5

Form triggers 11-17
action types 11-17

Form-only fields G-6

Form-only forms G-7

Forms 1-5, 1-12, G-6
checks made by Object Integrity

Checker utility 12-25
child forms G-2
compiled routines of 11-46
emulating form behavior in M programs

11-34
erasing windows from screen 11-38
form-only forms G-7
invoking from M code 11-27
non-database forms G-13
single-row G-20
storage globals 11-46
triggers 11-17

FROM clause 10-8

Full Screen Editor 1-18, 3-2, 4-1, 12-4, G-7
automatic date and time stamps 4-24
automatic syntax checking 4-23
Buffers Menu options described 4-11
control key editing commands 4-20
creating a new buffer 4-16
creating routines 4-7
cursor positioning keys 4-13
Index-4 Open M/SQL Developer Guide

Index
cutting and pasting 4-15
deleting text 4-14
displaying multiple buffers 4-18
edit field 4-8
editing multiple copies of a routine 4-16
editing operations 4-13
exiting 4-23
generating backup versions for routines

6-13
getting help 4-22
Help Menu options described 4-22
horizontal options menu 4-9
inserting text 4-14
invoking from Developer Utilities menu

4-4
invoking from M programmer prompt

4-3
keyboard actions D-1
loading a routine into the current buffer

4-17
loading existing routines 4-6
loading routines automatically 4-6
lockout mechanism 4-7
Mark Menu options described 4-12
navigating the menu system 4-10
Other Menu options described 4-12
overview 4-2
preventing overwrites 4-7
Primary Menu options described 4-10
replacing strings 4-20
routine types 4-2
Save Menu options described 4-23
saving routines 4-23
screen display 4-8
searching for text strings 4-20
selecting an existing buffer 4-16
setting a mark in the current buffer 4-19
Status Line 4-9
Windows Menu options described 4-11

G
Global database 1-9, G-7

accessing 1-16

Globals 11-9, G-7
base table definition 11-45
form definition 11-46
implicit 1-19

menu object definition 11-46
object definition globals 11-9
old-style menu definition 11-47
percent globals 11-12
query definition 11-47
referencing within inserted code 11-15
report definition 11-47

Grant option (for privileges)
granting 9-48
Revoking 9-50

GRANT statement 9-47, 10-17
WITH GRANT OPTION 9-48

GROUP BY clause 10-8

H
HAVING clause 10-9

Help Document Creation facility G-7

Help documents G-7

Help text
displaying in help text box 11-34
writing messages 11-35

Help Text Entry facility G-7

Help topics G-8

help^%msql function 11-34
parameters defined 11-35

Horizontal menus 1-12, G-8

I
#if, 5-11

#ifdef, 5-11

#ifundef, 5-11

Implicit globals 1-19

Implicit joins 2-15, 9-6, G-8
arrow syntax 2-19, 9-7
as characteristic relationships 2-17, 9-9
as designative references 2-16, 9-7
integrity constraints 2-21
syntax for specifying child-to-parent

references 2-20, 9-9
syntax for specifying designative

references 2-19
Open M/SQL Developer Guide Index-5

Index
syntax for specifying parent-to-child
references 2-20, 9-10

#include 5-13

Include files 1-11, 5-3, G-8
advantages of using 5-14
creating 5-2
editing 4-2
extensions 6-3
maintaining backup versions 6-5
naming 5-3

Index map G-8

Inner joins 2-11

{%inquiry_mode} 11-5, 11-20

INSERT privilege 9-49

INSERT queries 10-17
handling mutli-line fields 9-25
in non-cursor-based SQL 8-3
passing information into M arrays 9-21
with VALUES clause 8-3, 9-23

Inserted code 1-15, 11-13
referencing fields 11-14
referencing globals 11-15
referencing variables 11-15
summary of insert locations 11-13
syntax checking 11-15
types of code 11-14
within additional validation code 11-24
within computed fields 11-22
within conditional maps 11-26
within internal/external conversion code

11-23
within map subscripts and pieces 11-25
within NEXT subroutine 11-25
within override lookup queries 11-22
within required-maybe fields 11-24
within triggers 11-16

Integrity checking
see Object Integrity Checker utility

Integrity constraints G-8

Interactive Query Editor
see Query Editor

Intermediate code routines 1-17, 3-2
converting to macro source code 6-2

creating 3-3
editing (using Full Screen Editor) 4-2
editing (using the Routine Line Editor)

3-3
extensions 6-3
maintaining backup versions 6-5

Intermediate source code 1-11, G-9

%INTERNAL 9-3, 9-29

Internal values G-9
in SQL queries 9-26

Internal-to-external conversion code 9-26,
11-23

INTO clause 9-18
passing information into M arrays 9-19
passing information into mixed variables

9-20
using in cursor declaration 9-18
with cursor-based SQL 8-5
with INSERT queries 9-21
with non-cursor-based SQL 8-3
with SELECT queries 9-19
with UPDATE queries 9-22

%INTRANS 9-3, 9-45

%is 11-2

ISM 1-14

J
Join operation 2-11

Joins 9-5, G-9
equijoin 2-11
implicit joins 2-15, 9-6, G-8
inner joins 2-11
one-way outer joins 2-14, 9-5, G-15

K
Keyboards

key mapping for Full Screen Editor
function keys D-1

Keys
Full Screen Editor function keys mapped

to your terminal type D-1

Keywords (in SQL) 9-3
reserved words B-1
Index-6 Open M/SQL Developer Guide

Index
L
Language

report on language translations 12-44

Learn-As-You-Go (LAYGO) G-9

License G-9

LIKE predicate 9-34
error handling 9-36
ESCAPE qualifier 9-35
pattern matching characters 9-34
using host variables for search pattern

9-35

{%linenum} 11-5

List Queries utility 10-39
sample report 10-39

Login G-9

Long help messages G-10

Lookup display fields G-10

Lookup fields G-10

Lookup queries G-10
inserting code within override lookup

queries 11-22

Lookup specifications G-10

M
M G-10

database G-10
vendor-independence 1-14

M code 1-10
calling forms 11-27
calling menu objects 11-32
calling old-style menus 11-32
calling queries 10-31, 11-31
calling reports 11-30
cleaning up windows 11-38
compiling an object compilation

configuration 12-22
displaying help text in a help text box

11-34
embedded SQL 8-1
establishing Authorization ID 11-39
inserting into applications 11-13
inserting into triggers 11-21

protecting critical Open M/SQL
variables 11-40

reading fields 11-36
writing message text 11-35

M database
for non-ISM systems 2-4

M directory
as schema 2-4

M operators
summary of 9-30

M programming language 1-2, 1-15
global references to the database 1-16
language processor in Open M/SQL 1-9
procedural programming 1-6

M/NET 1-13
list of database protocols 1-13

M/PACT 1-3, 1-12, G-12
generating reports 1-5

M/SQL Integrity Check Utility menu 12-29

Macro preprocessor 5-2, 5-4, G-11
commands 5-4, 5-7
functions 5-5, 5-16
macro references 5-5

Macro routine utilities
see routine management utilities

Macro source code 1-11, 5-2, G-11
advantages of using include files 5-14
#define statements 5-7
#else statements 5-11
#elseif statements 5-11
embedding SQL 5-16, 8-1
#endif statements 5-11
#if statements 5-11
#ifdef statements 5-11
#ifundef statements 5-11
#include statements 5-13
indicating comment lines 5-15
macro references 5-5
making code inter-vendor portable 5-17
nesting macros 5-9
#noshow statements 5-14
preprocessor commands 5-4
preprocessor functions 5-5
referencing include files 5-3
Open M/SQL Developer Guide Index-7

Index
#show statements 5-14
##sql preprocessor function 5-16, 8-2
&sql preprocessor function 5-16, 8-2
summary of preprocessor commands 5-7
summary of preprocessor functions 5-16
#undef statements 5-9
##vendor preprocessor function 5-17

Macro source routines 1-17, 3-2, 5-1, 6-2
compiling 5-2
creating 5-2
editing 4-2
extensions 6-3
in vendor-independent environment 1-14
macro preprocessor 5-4
maintaining backup versions 6-5
naming 5-3
portability across directories 8-9
portability across M systems 5-3

Macros 5-5
nested expansion 5-9
referencing in embedded SQL 8-7

Maps G-11
inserting code for conditional 11-26
inserting code for NEXT subroutine

11-25
inserting code for subscripts and pieces

11-25

Master map G-11

Master window G-11

^mcompd 11-9

^mconv 11-9

^mdd 11-9, 11-45

^mddc 11-9, 11-45

%MENU 9-3

Menu bars 1-12, G-12

Menu call syntax (for old-style menus) 11-32
parameters defined 11-32

Menu Generator 1-6, 1-12, G-11

Menu object call syntax 11-32
calling menu objects by routine prefix

11-33
calling menu objects with menu call

entry point 11-33

Menu objects 1-12, G-12
checks made by Object Integrity

Checker utility 12-26
compiled routines of 11-46
horizontal menus 1-12
invoking from M code 11-32
menu bars 1-12
pop-up menus 1-12
storage globals 11-46
vertical menus 1-12

{%menubar} 11-6

{%menuid} 11-6

Menus G-11
cascading G-2

Menus (old-style) 1-12, G-14
invoking from M code 11-32
storage globals 11-47

{%menutype} 11-6

%MEUNOBJ 9-3

^mexpnew 11-9

^mexport 11-9

^mform 11-9, 11-46

^mformc 11-9, 11-46

^mhelp 11-9

Minus collation sequence function 9-39

^mlock 11-9

^mmenu 11-9, 11-47

^mmisc 11-9

^%mmsg 11-12

%mobject 11-10

^%mobject 11-12

%mode 11-2

^mpriv 11-10

^mql 11-10, 11-47

^mreport 11-10, 11-46, 11-47

^mreportc 11-10, 11-47

^mroutine 11-9

%msg 11-3
Index-8 Open M/SQL Developer Guide

Index
MSM 1-14

%msql 11-2
entry point for calling forms 11-27
entry point for calling old-style menus

11-32
entry point for calling queries 11-31
entry point for calling reports 11-30
entry point for cleaning up windows

11-38
entry point for displaying help text in a

help text box 11-34
entry point for establishing

Authorization ID 11-39
entry point for reading fields 11-36
entry point for writing message text

11-35
list of entry points 11-8

^%msql 11-12

MSQL.KEY file G-12

%msqlutl utility 11-40
displaying list of critical Open M/SQL

variables 11-42
pushing Open M/SQL variables onto a

stack 11-40
reinstating variables from stack 11-41

$$msqlvars^%msqlutl function 11-42

^mtemp 7-30, 11-10

^mterm 11-10

Multi-line fields 2-21
in INSERT queries 9-25
in SELECT queries 9-24
in UPDATE queries 9-25
retrieving values in SQL 8-8, 9-24

Multi-row forms G-12

MUMPS.DAT file G-12

MUMPS.EXT file G-12

^%muser 11-12

^mutil 11-10

^mxdd 11-10

^mxdoc 11-10

^mxform 11-10

^mxhtop 11-10

^mxmenob 11-10

^mxmenu 11-10

^mxql 11-10

^mxreport 11-10

N
National language independence G-13

report on language translations 12-44

National Language Reports utility 12-44
sample report 12-45

Network G-13
Configuration G-13
DT Network 1-13
M/NET 1-13

%new 11-3

%newext 11-3

{%newpage} 11-6

NEXT subroutine 11-25

%NOCHECK 9-3, 9-44

Node G-13

Non-cursor-based SQL 8-2, G-13
passing information into M variables 8-3
using the INTO clause 9-18

Non-database forms G-13

#noshow 5-14

NOT IN operator 9-32

O
Object code 1-11, G-14

Object code routines 1-18, 5-2
extensions 6-3
maintaining backup versions 6-5

Object Compilation Driver Results window
12-21

viewing error messages 12-22

Object Compile Driver Items window 12-12
advanced options for forms 12-15, 12-16
advanced options for routines 12-18
fields defined 12-13
Open M/SQL Developer Guide Index-9

Index
Object Compile Driver utility 12-5, G-14
advanced options 12-14
compilation error messages 12-21
compiling a configuration 12-20
compiling a configuration from within

an M program 12-22
defining the contents of a compilation

configuration 12-12
editing object definitions 12-19
setting defaults for compilation options

12-8
using 12-5
viewing the results of a compilation

12-21

Object Compile Driver window 12-7
fields defined 12-7

Object definition globals 11-9
list of 11-9
located in common directory 11-11

Object definitions
checking integrity of 12-23
looking up routine prefix for 12-42
searching for strings in 12-35

Object Integrity Checker utility 12-23, G-14
automatic error fixing 12-34
checks made on base tables 12-24
checks made on forms 12-25
checks made on menu objects 12-26
checks made on reports 12-25
checks made on triggers 12-27
checks made on views 12-24
enabling error fixing mode 12-30
running 12-29
sample report 12-33

Object Routine Prefix utility 12-42
sample display 12-43
using 12-42

Object String Search utility 12-35
sample report 12-39
using 12-35

Objects G-14
stored in globals 11-9

%ok 11-2

%old 11-3

%oldext 11-3

^%omc 11-12

^%oms 11-12

One-way outer joins 2-14, 9-5, G-15

Open M G-14
Relational environment G-17

Open M/SQL 1-2, G-15
accessing the relational database 2-6
application development strategies 1-4
applications portable across M systems

1-14
common directory 11-11
compiler 1-11
defining a database 1-10
development environment 1-10, 3-4
distributed data processing 1-19
extensions to relational model 2-14
global database 1-9, 1-16
globals 11-9
hand-coded programming 1-11
hardware and operating system

environments 1-8
implementation of SQL 9-1
in a vendor-independent host M

environment 1-14
integration of M and SQL 1-15
keyboard mapping for supported

terminal types D-1
list of reserved words B-1
list of supported terminal types C-1
M language processor 1-9
memory environment 1-9
networking 1-13
open systems architecture 1-2
percent variables 11-2
program structure 1-17
programming methods 3-2
query optimizer 1-12
Relational Data Dictionary 2-5
relational database 2-1, G-15
schemas 2-4
SQL language processor 1-9
supported M systems 1-14
system-generated routines 11-43

Open M/SQL Developer 1-3
Index-10 Open M/SQL Developer Guide

Index
Open M/SQL for DSM 1-14
terminal types supported for C-3

Open M/SQL for DTM 1-14
terminal types supported for C-3

Open M/SQL for MSM 1-14
terminal types supported for C-3

Open M/SQL Main Menu 12-2

OPEN statement 8-4

Open systems 1-2

ORDER BY clause 10-8

Override lookup queries
inserting code 11-22

P
{%pagenum} 11-6

Parent ID G-15

Parent tables 2-17, 9-9

{%parent_reference} 11-3, 11-20

Percent globals 11-12
list of 11-12

Percent variables 11-2
enclosed in curly braces 11-2
list of 11-2
referencing within triggers 11-19
return prefix 11-20

Plus collation sequence function 9-39

Pop-up menus 1-12, G-15
cascading G-2
pulled down from menu bar G-16

popvars^%msqlutl function 11-41

Preprocessor commands 5-4
#; 5-15
#define 5-7
#else 5-11
#elseif 5-11
#endif 5-11
#if 5-11
#ifdef 5-11
#ifundef 5-11
#include 5-13
#noshow 5-14

#show 5-14
summary of 5-7
#undef 5-9
#undefine 5-7

Preprocessor functions 5-5
##sql 5-16, 8-2
&sql 5-16, 8-2
summary of 5-16
##vendor 5-17

{%presave} 11-4, 11-20

Primary key 2-3, G-15

Privilege operators 9-47

Privileges G-16
for running queries 10-29
granting 9-47
revoking 9-49
summary of 9-49
suppressing checks 9-50

Processes G-16

Product Activation Key G-16

Programmer mode G-16

Project operation 2-9

Prompt G-16

_PUBLIC (UserName) 9-48

Pull-down menus G-16

pushvars^%msqlutl function 11-40

Q
^%qarmisc 11-12

Queries 2-6, 10-1, G-16
ALTER VIEW 9-57, 10-17
ASCII-delimited output format 10-14,

10-26, 10-35
%CHECKPRIV 9-50, 10-17
compiled routines of 11-47
copying 10-36
CREATE VIEW 9-57, 10-17
creating via the Interactive Query Editor

10-18
creating via the Query Generator 10-5
DELETE 10-17
DROP VIEW 9-58, 10-17
Open M/SQL Developer Guide Index-11

Index
embedded in M macro source code 8-1,
9-17

formatting output for import by other
products 10-35

generation facilities 10-2
GRANT 9-47, 10-17
INSERT 10-17
invoking from M code 11-31
listing (detailed) 10-40
listing (short) 10-39
privileges needed to run 10-29
query owner 10-14, 10-26
REVOKE 9-49, 10-17
routine prefix of 10-14, 10-26
running 10-29
running from M code 10-31
run-time measure 10-14, 10-26
SELECT 10-18
selecting an output device 10-32
storage globals 11-47
UPDATE 10-18

%QUERY 9-3

Query call syntax (from M) 10-31, 11-31
parameters defined 10-31, 11-31

Query Definition Advanced Features window
10-13

fields described 10-14

Query Definition window 10-7
advanced features option 10-13
fields described 10-7
menu bar options described 10-11

Query Editor 10-17, G-9
accessing 10-2
compiling queries 10-28
copying queries 10-36
creating queries 10-18
editing commands 10-23
horizontal options menu 10-23
running queries 10-28, 10-30
screen display 10-21
supported query types 10-17
using on-line help 10-24

Query Editor Advanced Options window
10-25

fields described 10-26

Query Editor horizontal options menu 10-23
options described 10-23

Query Generator 10-5, G-17
accessing 10-2
compiling queries 10-16
copying queries 10-36
creating SELECT-statement queries 10-5
displaying list of fields from tables

named in FROM clause 10-11
running queries 10-16, 10-29

Query optimizer 1-12

Query-based views G-17
altering 9-57
creating 9-57
deleting 9-58
naming in FROM clause 9-58
restrictions on defining 9-58

Querying the database 2-6

R
^%rakey 11-12

^%rakeys 11-12

^%RDE 11-12

^%rde 11-12

$$read^%msql function 11-36
parameters defined 11-37

REFERENCES privilege 9-49

Referential integrity G-17

^%rekey 11-12

Relation G-17

Relational Client G-18

Relational Data Dictionary 2-5, 3-4
accessing data from 2-6

Relational database G-17
accessing data from 2-6
characteristics 2-2
fields 2-2
First Normal Form 2-2
for non-ISM systems 2-4
overview 2-1
querying via SQL 2-6
Index-12 Open M/SQL Developer Guide

Index
structure of 2-2
tables 2-3

Relational environment G-17

Relational Gateway G-17

Relational model 2-1, G-18
First Normal Form 2-2
implicit joins 2-15, 9-6
InterSystems extensions to 2-14
one-way outer joins 2-14, 9-5
schemas 2-4
support for multi-line fields 2-21

Relational operations 2-7
cartesian product 2-7
joins 2-11, 9-5
project 2-9
restrict 2-10

Relational Server 1-3, G-18

Remote directory syntax (for routines) 6-8
restrictions 6-9

%REPORT 9-3

Report call syntax (from M) 11-30
parameters defined 11-30

Report triggers 11-18
action types 11-18

{%report-end} 11-7

Reports 1-5, 1-12, G-18
checks made by Object Integrity

Checker utility 12-25
compiled routines of 11-47
Detailed Query Listing report 10-40
invoking from M code 11-30
List Queries report 10-39
storage globals 11-47
triggers 11-18

Required fields G-18
conditionally required fields 11-24

Reserved words B-1

Restrict operation 2-10

{%retrieved} 11-6, 11-20

Return prefix percent variables 11-20

{%return_action} 11-5, 11-20

{%return_filetype} 11-5, 11-20

{%return_presave} 11-5, 11-20

{%return_savedata} 11-5, 11-20

{%return_timeout} 11-5, 11-20

REVOKE statement 9-49, 10-17
CASCADE option 9-50
GRANT OPTION FOR keyword 9-50

ROLLBACK 9-45

^ROUTINE 11-9

Routine Line Editor 3-3, 4-2

Routine management utilities 3-3, 7-1
for non-ISM systems 1-18
invoking from Developer Utilities menu

7-3
invoking from M programmer prompt

7-3
invoking from the Developer Utilities

menu 12-40
summary of 7-2

Routine prefix
calling forms by routine prefix 11-28
calling menu objects by routine prefix

11-33
default names for all objects 11-43
using the Object Routine Prefix utility to

find origin of 12-42

Routine prefix (for queries)
created via the Query Editor 10-26
created via the Query Generator 10-14

Routine sets 6-10
creating 6-10
using 6-10

Routines 1-17
automatic syntax checking 4-23
compiling 6-11, 7-17
converting intermediate code to macro

source code 6-2
copying 7-19
creating 6-2
creating in the FSE 4-7
deleting 6-14, 7-27
deleting backup versions 6-14, 7-29
extensions 6-3
Open M/SQL Developer Guide Index-13

Index
generated for base tables 11-44
generated for forms 11-46
generated for menu objects 11-46
generated for queries 11-47
generated for reports 11-47
intermediate code routines 1-17
keeping routine levels synchronized 6-15
listing routines in current directory 7-11
load from file 7-9
loading automatically into FSE 4-6
loading into the FSE 4-6
macro source routines 1-17, 5-1, 5-2, 6-2
maintaining backup versions 6-5
management utilities 1-18, 7-1
names of system-generated routines

11-43
naming 6-3
object code routines 1-18
output to file 7-7
producing backup versions 6-12
referencing routines in other directories/

computers 6-8
restoring backup versions 6-13
routine sets 6-10
search for all in a set of text strings 7-25
search for and replace text strings 7-15
search for one in a set of text strings 7-23
set # of backup versions 7-28
shuffling and renumbering backup

versions 6-12
using wildcard symbols to specify 6-6
utility for selecting routines 7-30
writing 6-2

Row selection G-19

%ROWCOUNT 9-3

RowID 2-3, G-18

Rows 2-2, G-18

Run Existing Queries utility 10-30

S
{%savedata} 11-4, 11-20

Schema 2-4

SELECT clause 10-7

SELECT list item G-19

SELECT privilege 9-49

SELECT queries 10-18
ASCII-delimited output format 10-35
creating via Query Generator 10-5
handling multi-line fields 9-24
in non-cursor-based embedded SQL 8-2
passing information into M arrays 9-19
selecting an output device 10-32
template for defining 10-7

Server G-19

Server masters G-19

Server processes G-19

setaid^%msql function 11-39

Short help messages G-19

#show 5-14

Sign-on G-19

Single-row forms G-20

Space collation sequence function 9-39

SQL 1-2, 1-15, 2-6, G-20
accepts multi-line fields 2-21
accessing the relational database 1-16
aggregate function extensions 9-11
collating output values 9-37
creating queries via the Interactive

Query Editor 10-18
creating queries via the Query Generator

10-5
cursor-based 1-15, 8-4, G-4
embedded in M macro source code 1-15,

8-1, 9-17
extensions to SQL operators 9-32
extensions, summary of 9-2
handling duplicate rows 9-16
handling internal and external values for

fields 9-26, 9-29
handling multi-line fields 9-24
handling of subqueries 9-52
inserting SQL code into triggers 11-21
InterSystems extensions to 2-14
joins 9-5
keyword extensions 9-3
language processor in Open M/SQL 1-9
list of error messages A-1
list of reserved words B-1
Index-14 Open M/SQL Developer Guide

Index
non-cursor-based 1-15, 8-2, G-13
privilege operators 9-47
programming methods 3-2
query generation facilities 10-2
querying the relational database 2-6
relational operations 2-7
summary of supported M operators 9-30
symbol extensions 9-4
transaction processing 9-45
using the INTO clause 9-18

##sql 5-16, 8-2

&sql 5-5, 5-16, 8-2

SQL code
inserting into applications 11-13

SQL Menu 10-3
options described 10-4

SQL operators
Concatenation operator 9-32
LIKE predicate 9-34
NOT IN operator 9-32
%STARTSWITH 9-33

SQLCODE variable 9-51, A-1

Stand-alone captions G-20

%STARTSWITH 9-3, 9-33

Subqueries 9-52, G-20
extensions to 9-55
FOR ALL operator 9-56
FOR SOME operator 9-56
syntax 9-52
using in FROM clauses 9-54
using in SELECT clauses 9-55
using in WHERE clauses 9-52

Symbols (in SQL) 9-4

^%sys 11-12

System manager’s directory G-20

T
Tables 2-2

see also base tables, child table, parent
tables, virtual tables, views

^%task 11-12

Terminal types
in Open M/SQL for DSM environment

C-3
in Open M/SQL for DTM environment

C-3
in Open M/SQL for MSM environment

C-3
list of supported terminal types C-1

%THRESHOLD 9-3

{%time} 11-6

{%timeout} 11-4, 11-20

Transaction G-20

Transaction processing 9-45
%BEGTRANS 9-45
%INTRANS 9-45

Translations (for system-generated messages
and menus)

reports on 12-44

Triggers 1-5, G-20
action types 11-16
base table 11-16
checks made by Object Integrity

Checker utility 12-27
form 11-17
inserting M code 11-16, 11-21
inserting SQL code 11-16, 11-21
referencing fields 11-19
referencing Open M/SQL percent

variables 11-19
report 11-18

U
#undef 5-7, 5-9

UPDATE privilege 9-49

UPDATE queries 10-18
handling multi-line fields 9-25
in non-cursor-based SQL 8-3
passing information into M arrays 9-22
with VALUES clause 9-23

%UPPER 9-3, 9-41

UPPER 9-38
Open M/SQL Developer Guide Index-15

Index
%urchange 7-15
compiling routines 6-11
producing backup versions 6-12

%urcomp 6-11, 7-17
producing backup versions 6-12

%urcopy 7-19
compiling routines 6-11
producing backup versions 6-12
restoring backup versions 6-13

%urdel 6-14, 7-27

%urdir 7-11
long form display 7-14
short form display 7-12, 7-13

%urfand 7-25

%urfind 7-23

%urload 7-9
compiling routines 7-10
load options 7-9

%urprint 7-7
output to file 7-8
output to printer 7-8
output to screen 7-7

%urpurge 6-14, 7-29

%urset 7-30
parameters described 7-31

%urverma 6-12, 7-28

UserName
establishing from M code 11-39
stored in %msql local variable 11-39

Utilities
Copy Query 10-36
Detailed Query Listing 10-40
List Queries 10-39
%msqlutl 11-40
National Language Reports 12-44
Object Compile Driver 12-5, G-14
Object Integrity Checker 12-23, G-14
Object Routine Prefix 12-42
Object String Search 12-35
program and object management 3-4
routine management 3-3, 7-2
Run Existing Queries 10-30

^UTILITY 11-9

V
%val 11-2

Validation code 11-24, G-21

VALUES clause 8-3, 9-23

Variable window placement G-21

Variables G-21
displaying list of critical variables 11-42
list of percent variables 11-2
naming conventions 11-2
percent (%) variables 11-2
pushing onto a stack 11-40
referencing within inserted code 11-15
referencing within triggers 11-19
reinstating from stack 11-41

##vendor 5-17

Versions (for routines) 6-5

Vertical menus 1-12, G-21

Views 1-10, G-21
checks made by Object Integrity

Checker utility 12-24
query-based 9-57, G-17

Virtual fields G-21

Virtual tables 1-10, 2-3, G-21

W
WHERE clause 10-8

Wildcard symbols
for routine extensions 6-7
for routine names 6-6
for version numbers 6-7

windcln^%msql function 11-38

Window cleanup function 11-38

Windows G-22
erasing from screen 11-38

Windows (in the Full Screen Editor) 4-18

Word-processing fields G-22

write^%msql function 11-35
parameters defined 11-36
Index-16 Open M/SQL Developer Guide

	Open M/SQL Developer Guide
	Version: Open M/SQL F.6, F.7
	Revision Date: April 25, 1996
	Preface
	Audience
	Organization of this Guide
	Other References
	Typographic Conventions Used in this Guide

	Getting Started
	Introduction to Open M/SQL
	What Is Open M/SQL?
	What Is Open M/SQL Developer?
	Application Development Strategies
	Automated Program Generation
	Mapping the Functional Specifications
	Defining the Data Structure in the Data Dictionary
	Developing Forms and Reports
	Tying the Application Together with the Menu Generator

	Procedural Programming in ANSI M
	Mixed Environments

	Overview of the System Environment
	Hardware and Operating System Environments
	Memory Environment
	Global Database
	ANSI-Standard M Language Processor
	ANSI-Standard SQL Language Processor
	Relational Data Dictionary
	Program Development Environment
	Hand�Coded Programming in Open M/SQL
	Open M/SQL Interpreted Compiler

	The Form Generator and M/PACT
	Menu Generator
	Query Optimizer
	M/NET Networking
	DT Network
	Open M/SQL Runs on Top of Any M Implementation

	Integration of Two ANSI Standards
	Embedded SQL
	Cursors

	Inserted Code for Data Dictionary, Forms, and Reports

	Accessing the Global Database
	SQL � Relational Database Access
	M Global References

	Open M/SQL Program Structure
	Macro Source Routines
	Intermediate Code Routines
	Object Code Routines
	Open M/SQL Routine Utilities and Editors
	Routine Utilities for Non-ISM Implementations of M

	Distributed Data Processing

	The Open M/SQL Relational Database
	Open M/SQL Implements Relations as Tables
	Open M/SQL Tables Follow The First Normal Form
	Open M/SQL Supports Two Types of Tables
	RowID/Primary Key

	Open M/SQL Implements Schemas as M Directories
	Open M/SQL Database Structure for Non-ISM Implementations of M

	The Open M/SQL Relational Data Dictionary
	Accessing Data in an Open M/SQL Relational Database
	Using SQL to Query the Database
	Table.Name Syntax

	Cartesian Product
	Project
	Restrict
	Joins

	InterSystems’ Extensions to the Relational Model
	One-Way Outer Joins
	Implicit Joins
	Designative References
	Characteristic Relationships
	Implicit Join Syntax
	Integrity Constraints

	Multi-Line Fields

	Program Development
	Open M/SQL Program Development
	Programming Methods
	The Full Screen Editor
	Intermediate Code Routines
	Routine Line Editor

	Routine Management Utilities
	Developer Utilities
	Programmer Interface to Applications

	Full Screen Editor
	Overview of the Full Screen Editor
	Full Screen Editor Features
	Routine Types for Editing

	Invoking the Full Screen Editor
	Loading Existing Routines
	Loading Routines Automatically

	Creating New Routines
	Preventing Overwrites

	Full Screen Editor Screen Display
	Navigating the Full Screen Editor Menu System
	Primary Menu
	Buffers Menu
	Windows Menu
	Mark Menu
	Other Menu

	Editing Operations
	Moving the Cursor
	Inserting Text
	DeletingText
	Cutting and Pasting Text
	Editing Multiple Copies of a Routine
	Creating a New Buffer
	Selecting an Existing Buffer
	Loading a Routine into the Current Buffer

	Displaying Multiple Buffers
	Setting a Mark in Your Current Buffer
	Searching For Text Strings
	ReplacingText Strings
	Using Control Key Commands for Quicker Editing

	Getting Help
	Exiting the Full Screen Editor
	Automatic Syntax Checking
	Automatic Date and Time Stamps

	Developing Macro Source Routines
	Creating Macro Source Routines
	Compiling Macro Source Routines
	Macro Source Routines and Include Files
	Macro Source Routines Are Portable Across M Implementations

	The Open M/SQL Macro Preprocessor
	Macro Preprocessor Commands
	Macro Preprocessor Functions
	Macro References

	Summary of Macro Preprocessor Commands
	#define and #undef
	#define MACRONAME
	#define MACRONAME VALUE
	#define MACRONAME() VALUE
	#undef MACRONAME

	Nested Expansion
	#ifdef, #ifundef, #if, #else, #elseif, and #endif
	Syntax 1
	Syntax 2
	Syntax 3
	Syntax 4
	Notes

	#include
	Advantages of Using Include Files

	Indicating Comment Lines

	Summary of Macro Preprocessor Functions
	&sql(...)
	##vendor

	Routine Handling and Maintenance
	Routine Environment
	Writing Routines
	Converting Intermediate Code to Macro Source Code

	Routine Names, Extensions, and Version Numbers
	Routine Names Must Be Unique
	Case Sensitivity
	Routine Extensions
	When No Extension Is Specified

	Version Numbers

	Using Wildcard Symbols to Specify Routines
	Wildcards for Routine Names
	Wildcards for Extensions
	Wildcards for Version Numbers

	Referencing Routines in Other Directories
	Restrictions on Using Remote Directory Syntax

	Routine Sets
	Creating a Routine Set
	Using a Routine Set

	Compiling Routines
	Backing Up Routines
	How Backups are Shuffled and Renumbered
	The Full Screen Editor Generates Backups When You Save
	Restoring a Backup Version to the Current Version

	Deleting Routines
	%urdel
	%urpurge

	Routine Copying and Compiling Synchronization

	Open M/SQL Routine Management Utilities
	Summary of Routine Management Utilities
	Accessing the Routine Management Utilities
	Calling the Routine Utilities Directly from M
	Accessing the Routine Utilities from within Open M/SQL

	%urprint
	Selecting an Output Device
	Printing to the Screen
	Printing to a Printer
	Printing to a Storage File

	%urload
	Routine Input Options
	Compile Macro Source Routines

	%urdir
	%urchange
	%urcomp
	%urcopy
	%urfind
	%urfand
	%urdel
	%urverma
	%urpurge
	%urset
	The Global ^mtemp
	Parameters of %urset

	SQL Language Implementation
	Embedded SQL
	Preprocessor Syntax Delimits Embedded SQL
	Open M/SQL Supports Two Kinds of Embedded SQL
	Non-Cursor-Based SQL
	Use the INTO Clause to Pass Retrieved Values to M Variables
	UPDATE and DELETE Statements Can Operate on Multiple Rows

	Cursor-Based SQL
	Declaring a Cursor
	Opening a Cursor
	Use FETCH to Retrieve Information into a Cursor
	Use the INTO Clause to Pass Retrieved Values to M Variables
	INSERT, UPDATE, and DELETE Operations Follow ANSI-Standard

	Referencing Macros in Embedded SQL
	Internal and External Values
	Multi-Line Values
	Reserved Tag and Variable Names
	Portability
	Detailed Example

	Open M/SQL Implementation of SQL
	Summary of Extensions
	Added Keywords and Symbols

	Joins
	One-Way Outer Joins
	Implicit Joins
	Arrow Syntax Specifies Implicit Joins
	Designative References
	Characteristic Relationships

	Aggregate Extensions
	Aggregates as Query Columns
	%FOREACH
	%AFTERHAVING
	DISTINCT BY

	Duplicate Rows
	Embedded SQL
	Using the INTO Clause
	You May Use INTO in Cursor Declaration

	Using INTO with Arrays
	SELECT INTO Using Arrays
	SELECT INTO Using Mixed Variables

	INSERT and UPDATE INTO Using Arrays
	Using an Array Reference with an INSERT Query
	Using an Array Reference with an UPDATE Query

	VALUES Extension for INSERT and UPDATE Queries
	Multi�Line Fields
	Using Multi-Line Fields in SELECT Queries
	Using Multi-Line Fields in INSERT and UPDATE Queries

	Internal and External Values
	%INTERNAL and %EXTERNAL Functions
	M Operators
	Pattern Match Operator Can Test Variables

	Extensions to SQL Operators
	[NOT] IN Operator
	Concatenation Operator

	%STARTSWITH
	LIKE Predicate
	Special Pattern Matching Characters
	Specifying a Host Variable as the Search Pattern
	ESCAPE Qualifier
	Error Handling

	Collation Sequence
	EXACT
	ALPHAUP
	UPPER
	Plus, Minus, and Space
	Field Collation Sequence
	Collation Sequence and ORDER BY
	Collation Sequence and Comparisons
	%ALPHAUP, %UPPER, and %EXACT
	Changing the Default Collation Sequence
	Changing Collation Sequence on ISM Systems
	Changing Collation Sequence on Non-ISM Systems

	%NOCHECK
	SQL Transaction Processing
	Privilege Operators
	GRANT
	REVOKE
	%CHECKPRIV Keyword
	SQLCODE Values

	Using Subqueries
	Using a Subquery in a WHERE Clause
	Expression Matches Some Value in Subquery Output
	Expression Does Not Match Any Value in Subquery Output
	Subquery Retrieves At Least One Row
	Expression Compares With Values in Subquery Output
	Expression Compares with Some Values in Subquery Output
	Expression Compares with All Values in Subquery Output

	Using a Subquery in a FROM clause
	Open M/SQL Subquery Extensions
	Subquery Embedded in SELECT Clause
	FOR ALL Operator
	FOR SOME Operator

	Query-Based Views
	CREATE VIEW
	ALTER VIEW
	DROP VIEW
	Restrictions on Defining Query-Based Views
	You May Name Query-Based Views in FROM Clause

	Query Generation and Processing
	Facilities for Creating SQL Queries
	Accessing the Query Generation Facilities

	Using the Query Generator
	Example
	Query Definition Menu Bar
	Displaying Fields From Tables and Views
	Query Definition Advanced Features
	Compile and Run the Query

	Using the Interactive Query Editor
	Query Types
	Creating a Query in the Interactive Query Editor
	Editing Commands
	Query Editor Horizontal Options Menu
	Using On-line Help
	Query Editor Advanced Options
	Compile and Run the Query

	Running Queries
	Privileges Required to Run Queries
	Running a Query From its Definition Environment
	Using the Run Existing Queries Utility
	Running a Query from M Code
	Selecting an Output Device
	Device Selection for ASCII-Delimited Output Format

	ASCII-Delimited Output for Queries
	Contents of an ASCII-Delimited File
	Queries Support Dual Output Formats

	Copying Queries
	List Queries Report
	Detailed Query Listing Report

	Application Programming
	Programmer Interface to Applications
	Open M/SQL Variables
	List of Open M/SQL Percent (%) Variables

	Entry Points to the %msql Routine
	Open M/SQL Globals
	Object Definition Globals
	Object Definition Globals Located in Common Directory

	Open M/SQL Percent (%) Globals

	Inserting Code into Open M/SQL Applications
	Inserted Code Can Reference Fields
	Inserted Code Can Reference Variables and Globals
	Open M/SQL Performs Syntax Checking on Inserted M Code
	Triggers
	Trigger Action Types
	Base Table Triggers
	Form Triggers
	Report Triggers
	Referencing Fields in a Trigger
	Referencing Open M/SQL Percent (%) Variables in Triggers
	Using SQL Code in a Trigger
	Using M Code in a Trigger

	Override Queries for Lookups
	Computed Fields
	Internal/External Conversion Code
	External�to�Internal Conversion Code
	Internal�to�External Conversion Code
	Other Conversion Code Variables

	Additional Validation Code
	Required-Maybe Fields
	Map Subscripts and Pieces
	NEXT Subroutine
	Conditional Map

	Calling Open M/SQL Objects from M Programs
	Calling Forms
	Calling a Form By Its Name/ID#
	Calling a Form By Its Routine Prefix
	Form Call Syntax Parameters

	Calling Reports
	Calling Queries
	Calling Old-Style Menus
	Calling Menu Objects
	Calling Menu Objects Using a Menu Call Entry Point
	Calling a Menu Object By Its Routine Name

	Emulating Form Behavior from M Programs
	Displaying Help Text in a Help Text Box
	Writing Message Text
	Reading Fields
	Cleaning Up Windows

	Establishing Authorization ID from Programmer Mode
	Intermixing Open M/SQL Objects with User-Defined M Routines
	pushvars^%msqlutl
	popvars^%msqlutl
	$$msqlvars^%msqlutl

	Contents of Applications
	Routine Names
	Contents of Base Table Routines
	Entry Points to Primary Base Table Routine
	Base Table Definition Globals

	Contents of Form Routines
	Form Definition Globals

	Contents of Menu Object Routines
	Menu Object Definition Globals

	Contents of Old-Style Menu Routines
	Contents of Report Routines
	Report Definition Globals

	Contents of Query Routines

	Open M/SQL Developer Utilities
	Accessing the Developer Utilities Menu
	Using the Object Compile Driver Utility
	Setting Compilation Option Defaults
	Defining the Contents of a Compilation Configuration
	Advanced Options for Compilation List Items
	Editing an Object Definition

	Compiling the Configuration
	Viewing the Results of the Last Compilation
	Compilation Error Messages

	Compiling a Compilation Configuration from M Program Code

	Checking the Integrity of Open M/SQL Objects
	Checks on Base Tables
	Checks on Views
	Checks on Forms
	Checks on Reports
	Checks on Menu Objects
	Checks on Menu Object Options

	Checks on Triggers
	Base Table Trigger Checks
	Form Trigger Checks
	Report Trigger Checks
	Trigger Definition Checks
	Trigger Items

	Running the Integrity Checker Utility
	Error Fixing Mode
	Fix Errors Without Prompting
	Prompt Before Fixing Errors

	Searching for Strings in Open M/SQL Objects
	Invoking Macro Source Routine Utilities
	Querying Objects by Routine Prefix
	National Language Reports

	SQL Error Messages
	Successful Completion Messages
	Error Messages

	Open M/SQL Reserved Words
	Open M/SQL Supported Terminal Types
	Open M/SQL for DSM
	Open M/SQL for DTM
	Open M/SQL for MSM Environment

	Full Screen Editor Keyboard Actions
	Altos
	ANSI
	CIT-500
	Dasher
	IBM 3151 ASCII Display Station
	IBM PC
	QUME
	Sun
	Televideo 905
	DEC VT 100
	DEC VT 200
	DEC VT 220
	WYSE-60 (Native Mode)

	Glossary of Terms
	Index

