
Open M with SQL Data Dictionary Guide
Version: Open M with SQL F.10

Revision Date: April 18, 1997

Legacy Archive Acrobat File Generated on: January 22, 2004

Part Number
IS-SQL-8-F.10A-CP-B
Print History
Creation Date: June 1991
Revision Date: August 1992

June 1994
March 1997

Open M with SQL Data Dictionary Guide
Copyright © InterSystems Corporation

1997

All rights reserved

NOTICE

PROPRIETARY — CONFIDENTIAL

This document contains trade secret and confidential information which is the property of InterSystems Corpo-
ration, One Memorial Drive, Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the
operation and maintenance of the products of InterSystems Corporation. No part of this publication is to be
used for any other purpose, and this publication is not to be reproduced, copied, disclosed, transmitted, stored in
a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in
part, without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited
except to the limited extent set forth in the standard software license agreement(s) of InterSystems Corporation
covering such programs and related documentation. InterSystems Corporation makes no representations and
warranties concerning such software programs other than those set forth in such standard software license
agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or aris-
ing out of the use of such software programs is limited in the manner set forth in such standard software license
agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS
IMPOSED BY INTERSYSTEMS CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM,
ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION REFERENCE SHOULD BE MADE TO
THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION, COP-
IES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves
the right, in its sole discretion and without notice, to make substitutions and modifications in the products and
practices described in this document.

M/SQL®, M/PACT®, and M/NET® are registered trademarks, and InterSystems™, Open M™, Open
M/SQL™, ISM™, DTM™, DT-MAX™, DT Windows™, DSM™, and DASL™ are trademarks of
InterSystems Corporation.

DSM DDP™, VAX™, VMS™, Open VMS™, and DEC™ are trademarks of Digital Equipment Corp.

Microsoft®, MS-DOS®, Microsoft Access®, and, Excel® are registered trademarks and Windows™,
Windows NT, Visual Basic™, and Visual C++™ are trademarks of Microsoft Corporation.

ORACLE® is a registered trademark of Oracle Corporation
For Support questions about any InterSystems products, contact the InterSystems Worldwide Support Center:

Phone: US: +1 617 621-0700 Europe: +44 (0) 1753 830-077
Fax: US: +1 617 374-9391 Europe: +44 (0) 1753 861-311
Internet — support@intersys.com FTP Site -— ftp.intersys.com
World Wide Web — www.intersys.com
BBS: General Use: +1 (617) 225-0475 Europe: +44 (0) 1753-853-534

Developers: +1 (617) 494-0867

Preface
The Open M with SQL Data Dictionary Guide describes the Open M with SQL
Data Dictionary. You use the Data Dictionary to define tables to represent the
logical structure of a relational database, or map the physical structure of an
existing database to relational tables. These tables act as the foundation on which
Open M with SQL relational database applications are built.

Open M with SQL combines two ANSI-standard languages — M, the only pro-
cedural programming language designed specifically for database applications,
and SQL (Structured Query Language), the most widely used relational query
language.

M is the name for an ANSI-standard database-oriented procedural language for-
merly known as MUMPS. Open M is the InterSystems implementation of that
language. As with the other components of the Open M with SQL relational data-
base application development system, you can use the Data Dictionary with
Open M, or other vendors' versions of M.

Open M with SQL is an integrated environment for developing and running data-
base applications. It includes an advanced relational database management sys-
tem, an application and report generator, and a procedural programming
language.

Open M with SQL provides two program development environments:

 n The M environment, in which you can execute system management com-
mands, and create, modify, and execute M routines.

 n The Open M Developer relational environment, in which you define the data-
base in relational terms and use the application generator tools to create,
modify, and execute advanced relational database applications.

This document is specifically concerned with the relational environment.
Open M with SQL Data Dictionary Guide iii

Preface
Open M with SQL’s relational environment is a complete RDBMS (Relational
Database Management System)—it includes a development environment for cre-
ating advanced relational database applications, a management system for main-
taining them, and a run-time environment for executing them.

The other guides which complete the description of the RDBMS application
development system are Open M/SQL: A Gentle Introduction, the Open M/SQL
Developer Guide, the Open M/SQL Form Generator Guide, and the Open M/SQL
M/PACT Guide.

Refer to the M Language Reference Guide for a complete description of Inter-
Systems' Open M with SQL M and DTM. See the Open M/SQL M Programming
Guide to learn how to develop applications using Open M. Refer to the Open M
with SQL System Guide for your platform to learn about running Open M on
your system. See the DataTree Programmer's Guide to learn how to develop
applications using DTM.

Refer to the Open M/SQL Server Programming Guide and the Open M/SQL
Server User Guide to learn about the Open M with SQL Relational Server prod-
uct and how you can use it to access your M database from third party applica-
tions.
iv Open M with SQL Data Dictionary Guide

Preface
Audience

This guide is designed for use by developers of relational database applications.
It assumes that you have M and SQL programming experience and understand
your own application's database requirements.

This document describes how to configure, manage, and maintain an Open M
with SQL relational database environment, including both the application devel-
opment environment and the application run-time environment. Its goal is to help
you achieve a smoothly operating Open M with SQL system.

For sites that use the Open M with SQL Relational Server to make Open M with
SQL data available to external applications, this document also describes how to
configure, manage, and maintain the Relational Server, with its goal to help you
achieve a smoothly operating Server environment.
Open M with SQL Data Dictionary Guide v

Preface
Organization of This Guide

This guide is divided into four parts, plus appendices, a glossary, and an index.

Part I, “Introduction,” contains the following four chapters:

 n Chapter 1, Introduction to the Data Dictionary
 n Chapter 2, The Open M with SQL Relational Database
 n Chapter 3, Using the Data Dictionary Interface
 n Chapter 4, Designing a Sample Application

Part II, “Basic Operations,” contains the following eleven chapters:

 n Chapter 5, Defining a Base Table
 n Chapter 6, Defining Base Table Fields
 n Chapter 7, Implicit Joins
 n Chapter 8, Base Table Lookups
 n Chapter 9, Index Maps
 n Chapter 10, Data Conversion and Validation
 n Chapter 11, Base Table Triggers
 n Chapter 12, Base Table Help and Error Messages
 n Chapter 13, Field Help and Error Messages
 n Chapter 14, Views
 n Chapter 15, Data Dictionary Reports

Part III, “Physical Structure” contains the following three chapters:

 n Chapter 16, Default Physical Structure
 n Chapter 17, Relational Definition of an M Database
 n Chapter 18, Creating a Customized Map Definition

Part IV, “Special Topics” contains the following two chapters:

 n Chapter 19, The FileMan Interface
 n Chapter 20, Importing Data Definitions
vi Open M with SQL Data Dictionary Guide

Preface
The three Appendices to this guide are as follows:

 n Appendix A, Data Dictionary Specifications, which lists the maximum val-
ues for base table and field parameters.

 n Appendix B, Keyboard Actions, which shows the keyboard mapping of form
actions for all supported keyboards.

 n Appendix C, SQL Reserved Words, which lists reserved words which should
not be used as names base tables, views, or fields.

 n Appendix D, Base Table Design Charts, which provides charts for designing
the base tables in a relational application.

A glossary defines the terminology used in this guide.
Open M with SQL Data Dictionary Guide vii

Preface
Other References

Depending on the configuration of your system, you may also wish to refer to the
following guides:

 n The Open M/SQL Developer’s Guide, which describes the Open M with SQL
relational database program development capabilities, including develop-
ment of macro source routines and use of routine editing utilities, as well as
Open M with SQL’s implementation of SQL and the various methods for
using SQL to query an Open M with SQL relational database.

 n The Open M/SQL User Interface Programming Guide, which describes how
to use the application generation tools within Open M Developer to create a
user interface for your relational database. These application generation tools
include the Form Generator — used to create ready-to-run data screens
through which end users can add, retrieve, edit, and delete database informa-
tion; the Menu Generator — used to create pop-up menus and menu bars
which unite the various components of an application in a logical and visu-
ally sophisticated manner and structure an application by defining how it is
organized and how it is presented to users; and the Application Help Facil-
ity — used to create and deploy a context-sensitive on-line help system for
your Open M with SQL relational database application.

 n The Open M/SQL Relational Client User Guide, which describes how to
access an Open M with SQL relational database (retrieve and modify data)
from various third-party application development tools.

 n The Open M/SQL Server Programming Guide, which describes how to
access an Open M with SQL relational database from applications created
using the C or C++ programming language.

 n The M/PACT Guide, which describes how to create and run sophisticated
end-user data reporting applications that interact with the Data Dictionary.

 n An tutorial entitled Open M/SQL: A Gentle Introduction, which uses a
project management demonstration application to show how to develop and
use an Open M with SQL application.

 n The Open M/SQL M Programming Guide, which describes ISM (InterSys-
tems’ original implementation of the M programming language), including
global database concepts, the development of intermediate code routines, and
the use of ISM utilities.

 n The appropriate system guide for your Open M system platform, which
describes the system-specific elements of using Open M on your particular
computer and operating system.
viii Open M with SQL Data Dictionary Guide

Preface
Typographic Conventions Used in This Guide

This guide observes the following typographic conventions:

Convention Description Example

Body text appears in Times
Roman type.

The Database Administrator sets all system con-
figuration parameters via the System Configura-
tion window.

Computer generated informa-
tion appears in Courier type.

Linking/Syntax Checking...DONE

User input appears in Courier
italic type.

Yes

Keystrokes appear in upper-
case and enclosed within
angle brackets.

<RETURN>

Simultaneous keystrokes
appear hyphenated, in upper-
case, and enclosed within
angle brackets.

<CTRL-Z>

Procedure titles appear in bold
Helvetica type. Procedures
and Examples are designated
by an underlined sidehead
prefix.

ProcedureTo access the System Configura-
tion window:

Note, Caution,and Warning
statements appear in Helvetica
type with an appropriate side-
head.

Note Turning DBMS security OFF is a useful way
to guarantee access to current applications
by users who will need them while you are
in the process of implementing a privilege
system.

Titles of other guides and other
chapters within this guide
appear in Times Italic type.

Open M/SQL User Interface Programming Guide
Open M with SQL Data Dictionary Guide ix

Preface
x Open M with SQL Data Dictionary Guide

Table of Contents
Preface
Audience. v
Organization of This Guide . vi
Other References . viii
Typographic Conventions Used in This Guide . ix

Part I—Introduction

1 Introduction to the Data Dictionary
The Open M with SQL Application Development Environment. 1-2

Defining a Relational Database in the Data Dictionary. 1-2
Open M with SQL Combines Two ANSI-Standard Languages: SQL and M

1-3
M Language . 1-3
Open M Developer. 1-4
Open M with SQL Server Opens Your Relational Database. 1-5
How is Open M with SQL “Open” . 1-5
Developing Relational Applications . 1-6

Defining a Relational Database in the Data Dictionary 1-7
Mapping the Functional Specifications of Your Database 1-7
Defining the Data Structure in the Data Dictionary 1-8
Defining Existing M Databases Relationally. 1-8
Accessing Data . 1-9
Defining Base Tables in the Data Dictionary . 1-9
Defining Database Fields in Base Tables . 1-11
Defining Views in the Data Dictionary . 1-12

Mapping a Relational Database to M Globals . 1-13
Selecting Default or Customized Physical Structure. 1-13
Open M with SQL Data Dictionary Guide xi

Table of Contents
When to Use Default Physical Structure. 1-14
When to Use Customized Physical Structure . 1-14

The Data Dictionary Provides Many Benefits. 1-15
Developer Productivity . 1-15
Existing Applications . 1-16
Referential Integrity . 1-16

2 The Open M with SQL Relational Database
Relational Database Is a Collection of Tables. 2-2
Open M with SQL Supports Two Types of Tables . 2-3

Base Tables Contain Data Stored on Disk . 2-4
Virtual Tables Exist in Temporary Memory. 2-4
A View Produces a Virtual Table . 2-5

Open M with SQL Tables Follow First Normal Form 2-6
Open M with SQL Implements Schemas as M Directories. 2-8

Open M with SQL Database Structure for Non-ISM Implementations of M
2-8

Accessing Data in an Open M with SQL Relational Database 2-9
Using SQL to Query the Database . 2-9
Cartesian Product . 2-10
Project . 2-12
Restrict . 2-13
Joins . 2-14

InterSystems’ Extensions to the Relational Model . 2-16
One-Way Outer Joins . 2-16
Implicit Joins. 2-18
Multi-Line Fields . 2-23

3 Using the Data Dictionary Interface
Accessing the Data Dictionary . 3-2
Understanding the Data Dictionary Interface . 3-5

Single-Row Forms . 3-5
Multi-Row Forms . 3-5
Accessing the Base Table Definition Window . 3-5
 Elements of a Window. 3-7

Navigating in Forms . 3-9
Keyboard Actions . 3-9

Using On-Line Help . 3-11
Saving a Base Table Definition and Exiting the Form 3-13

Save Menu. 3-14
xii Open M with SQL Data Dictionary Guide

Table of Contents
Save on PROCEED Menu . 3-14

4 Designing a Sample Application
Designing a Relational Database . 4-2

Mapping the Functional Specifications . 4-2
Defining the Data Structure in the Data Dictionary 4-3

Overview of Sample Application . 4-4
Sample Application Uses Default Physical Structure 4-4

Base Tables in Documentation Tracking System. 4-5
Relationships Between Base Tables . 4-6
Base Table Fields. 4-7

Reports in Documentation Tracking System . 4-15

Part II—Basic Operations

5 Defining a Base Table
Base Table Definition Overview . 5-2

Base Table Definition Checklist . 5-2
Defining a Base Table . 5-4

Horizontal Options Menu . 5-8
Defining a Child Table . 5-11

Creating a Child Table from the Parent Table . 5-11
Defining a Designative Reference to Child Table 5-14

Generating Default Physical Structure . 5-15
Edit the Default Global Name . 5-15
Open M with SQL Generates Structure Automatically 5-15
Physical Structure Updates Automatically . 5-16
Row ID Field Created . 5-16

Compiling a Base Table . 5-17
Compilation Produces Routines. 5-17
Base Table Routine Names . 5-17
Routine Size. 5-18
Number of Routines. 5-19

Compiling Related Objects. 5-20
Editing a Base Table Definition . 5-21

Do Not Change Global Name Once Data Entered 5-21
You Cannot Change Status of a Child Table. 5-21
Pre-Delete Trigger Updated if Parent Reference Edited 5-21

Deleting a Base Table Definition . 5-23
Open M with SQL Data Dictionary Guide xiii

Table of Contents
Restrictions on Deleting a Base Table Definition. 5-23

6 Defining Base Table Fields
Field Definition Overview. 6-2
Field Definition Checklist . 6-3

Field Definition Checklist. 6-3
Steps 1 & 2: Specify a Field Name and Description . 6-4
Step 3: Specify the Data Type . 6-9

Exercise Care When Mapping to an Existing M Database. 6-10
Defining a Date Field . 6-11
Defining a Designative Reference Field . 6-14
Defining a Multiple Choice Field . 6-16
Defining a Name Field . 6-18
Defining a Time Field . 6-25
Defining a Yes/No Field . 6-27

Collation Sequence Affects Name and Text Data Types 6-28
Numbers Come First . 6-28
EXACT . 6-28
ALPHAUP . 6-29
Minus . 6-29
Plus . 6-30
Space . 6-30
UPPER . 6-30
Effects of Collation Sequence. 6-31

Step 4: Specify Maximum Length of Data . 6-33
 Step 5: Specify If Values Must be Unique . 6-34

Index Maps for Unique Fields . 6-34
Step 6: Specify the Number of Distinct Values. 6-35

Enter a Number . 6-35
Enter NUMROWS . 6-35
Use Rows in Designated Table for Designative Reference Fields 6-36

Step 7: Specify If the Field is Multi-Line . 6-37
Displaying Multi-Line Fields on Forms and Reports 6-37
Multi-Line Fields May be Computed Fields. 6-37
Two Storage Modes . 6-37
Referencing Multi-Line Fields . 6-39

Step 8: Define Computed Field Calculations . 6-42
Benefits and Limitations of Computed Fields 6-42
Two Types of Computed Fields . 6-42

Step 9: Define User Update Features. 6-46
Defining Field Protection . 6-48
xiv Open M with SQL Data Dictionary Guide

Table of Contents
Defining a Required Field . 6-49
Defining Default Field Values . 6-50
Examples of Default Values . 6-51

Step 10: Define Data Conversion and Validation Code. 6-52
Step 11: Define Error and Help Messages . 6-52
Step 12: Define Additional Options . 6-52

Define Column Titles for Reports . 6-54
Step 13: Save the Field Definition . 6-56
Copying a Field Definition. 6-57
Editing and Deleting a Field Definition . 6-59

Deleting a Field Definition . 6-59

7 Implicit Joins
Use Designative Reference to Join Independent Tables 7-2

Defining a Designative Reference Field . 7-2
Tables Joined by Designative Reference are Independent 7-2
Many-to-One Relationship . 7-2
Relational Foreign Key Implemented as a Pointer to Row ID 7-2
Designative Reference is a One Way Outer Join. 7-3
Multiple Designative Reference Fields . 7-4
Designative Reference to a Child Table . 7-4
Designative References from Multiple Tables . 7-4

Use Characteristic Relationship to Join Dependent Tables 7-5
Automatically Created Trigger Deletes Child Rows 7-5
One-to-many Parent to Child Relationship . 7-5
Characteristic Relationship is an Inner Join . 7-5
Multi-Generation Parent-Child Relationships . 7-5

Benefits of Implicit Joins . 7-7
Extended Arrow Syntax. 7-7
Referential Integrity Constraints . 7-8
Efficient Data Access. 7-8

8 Base Table Lookups
What is a Lookup? . 8-1
Where to Define Lookups . 8-3

Lookups and Index Maps. 8-3
Lookup Specifications . 8-3

Lookup Fields . 8-3
Lookup Display Fields. 8-4

Types of Lookup Queries . 8-5
Open M with SQL Data Dictionary Guide xv

Table of Contents
Unqualified Lookup Query . 8-5
Single Field Lookup Query. 8-5
Compound Lookup Query . 8-6
Enabling Lookup Queries . 8-6
Precedence Given to Most Restrictive Queries. 8-6

Defining Base Table Lookups . 8-7
Designative Display Fields in Lookup Specifications 8-10

Defining Lookups for a Child Table . 8-13
Two Types of Lookups . 8-13

Matching . 8-14
Field Matching Functions . 8-15
Field Conversion Code . 8-17
Summary of Case Transformation and Field Conversion Code 8-18

Customizing a Lookup Query . 8-18
You Can Toggle Between Default and Override Versions. 8-19
Suppress Lookup Box . 8-19
Lookup Queries Use InterSystems' SQL Extensions 8-21

9 Index Maps
Index Maps Speed Row Selection . 9-2

Advantages of Indexing . 9-2
Disadvantages of Indexing . 9-2

Structure of Index Maps . 9-3
Index Field and Row ID Values are Subscripts 9-3
Index Maps are Small . 9-3
Rows with Null Value In Index Field Not Included 9-3
Make Indexed Fields Required to Avoid Null Values 9-3

Which Fields Should You Index? . 9-4
Unique Fields . 9-4
Fields Used to Retrieve Rows. 9-4
Fields You Sort By . 9-5

Default Structure Index Maps . 9-5
Defining Additional Fields to Index . 9-5

Customized Structure Index Maps. 9-7
Populating an Index Map. 9-8

10 Data Conversion and Validation
Overview of Data Conversion and Validation. 10-2

Data Conversion . 10-2
Data Validation . 10-2
xvi Open M with SQL Data Dictionary Guide

Table of Contents
Fields Can Have Internal and External Values 10-2
Automatically Generated Conversion and Validation Code 10-3

Field Conversion Code . 10-4
Field Validation Code. 10-7
Variables for Field Conversion and Validation Code 10-9
Order of Field Conversion and Validation Events . 10-10
Modifying Field Conversion and Validation Code 10-11
Base Table Validation Code. 10-15

Defining Base Table Validation Code . 10-16

11 Base Table Triggers
Overview of Open M with SQL Triggers. 11-2

You Can Associate Triggers with Different Kinds of Objects 11-2
Overview of Base Table Triggers. 11-4

Pre-Filing Triggers. 11-4
Post-Filing Triggers . 11-5
SQL Code Triggers . 11-5
M Code Triggers . 11-6
M Routine Triggers . 11-6

Base Table Trigger Code . 11-7
Trigger Items . 11-7
Trigger Action Types. 11-7
Conditional Execution of Triggers . 11-7
Execution of Multiple Trigger Items . 11-8
You May Reference Field Values in Base Table Triggers 11-8
%-Variables in Base Table Triggers . 11-8

Defining a Base Table Trigger . 11-10
Automatic Trigger Deletes Child Table Rows 11-14

Examples of Base Table Triggers. 11-15

12 Base Table Help and Error Messages
Base Table Access Privileges . 12-2
Base Table Advanced Options . 12-3
Help Text . 12-5
Row Insert and Delete Messages . 12-7
Developer Comments . 12-11

Comment Reports . 12-12
Open M with SQL Data Dictionary Guide xvii

Table of Contents
13 Field Help and Error Messages
Overview of the Field Help Facility . 13-2

M with SQL Help Menu . 13-2
Three Types of Field Help . 13-2
Error Messages . 13-2
Users Press <Explain> to Display Help . 13-2
Override Help . 13-3
Choosing Between Long Help and Override Help 13-3

Defining Long Help and Error Messages . 13-4
Translations. 13-4

Defining Override Help . 13-8

14 Views
What Is a View?. 14-2
How to Use Views . 14-3
Types of Views . 14-4

All Views Based on SELECT Queries . 14-4
Creating a View . 14-5
Defining a Table-Based View . 14-8

Starting Table Is the Table on Which View is Based 14-8
Join Specifications Link Base Tables . 14-8
Examples of Join Specifications . 14-10
Sub-Views Copy Join Specifications Automatically 14-11
You Must Designate Fields to Appear in the View 14-11

Defining a Query-Based View. 14-17
Observe These Restrictions on Query-Based Views 14-17
Copy an Existing Query Into the Current View 14-18
Copy Another View's Query Into the Current View. 14-19
You Can Convert a Query-Based View to Table-Based. 14-20
You Cannot Convert a Table-Based View to Query-Based 14-20
View-Related DDL Statements for Query-based Views 14-20

View Definition Options Menu . 14-21
View Definition Advanced Options . 14-21
View Definition Reports . 14-22
View Definition Comments . 14-22

Editing a View . 14-23
Deleting a View . 14-24

Deleting a View Automatically Deletes Dependent Objects 14-24
Changing a View's Starting Table . 14-25

Restrictions on the Use of This Utility . 14-25
xviii Open M with SQL Data Dictionary Guide

Table of Contents
Copying a View . 14-28
You Must Have Privileges to Copy a View. 14-28

15 Data Dictionary Reports
How To Run a Data Dictionary Report . 15-2
List of Base Tables Report . 15-4
Base Table (Order by Field Name) Report. 15-5
Base Table (Order by Column Number) Report . 15-6
Series of Base Tables Report . 15-7
List Table Relationships Report . 15-8
List of Views Report . 15-9
View -- Sorted by Path Report . 15-9
View -- Sorted by Fields Report. 15-11
Global Documentation Report . 15-13
Global Doc -- Map Version Report . 15-15

Part III—Physical Structure

16 Default Physical Structure
Overview of Default Physical Structure. 16-2

Examining Default Physical Structure is Optional 16-2
Converting from Default to Custom Physical Structure 16-3

Examining the Row ID Field Definition . 16-3
Row ID Definition in Non-Child Tables . 16-4
Row ID Definition in Child Tables . 16-5

Accessing the Master Map and Index Maps. 16-10
Examining a Default Master Map . 16-12

New and Old Master Map Structures . 16-12
SET Commands for Master Map Structure . 16-14
Map Definition Master Window . 16-15
Access Path Specifications . 16-18
Full Row Reference . 16-19
Map Data Specifications . 16-19
Row ID Specifications . 16-20
Child Table Default Master Map . 16-20

Examining a Default Index Map . 16-22
Index Maps for Name Data Type Fields . 16-24

Changing the Global Name in a Default Physical Structure 16-25
Open M with SQL Data Dictionary Guide xix

Table of Contents
Changing a Global’s System or Directory. 16-26
Updating Default Physical Structure . 16-27

17 Relational Definition of an M Database
Overview of Creating a Relational Definition. 17-2

Existing M Database . 17-2
New M Database. 17-2
Examples. 17-2

Checklist for Creating a Relational Definition . 17-4
Relational Definition Checklist. 17-4

Step 1: Design a Relational Definition . 17-5
Identify Potential Tables . 17-5
Identify Characteristic Relationships . 17-6
Identify Fields in Each Table . 17-7
NULL Values in Fields . 17-7
Identify the Row ID of Each Table. 17-7
Complex Global Structures. 17-9

Step 2: Create a Base Table . 17-9
Define Child Tables . 17-9
Define Fields Using Default Physical Structure 17-9

Step 3: Edit Row ID Field(s) . 17-10
Change to Customized Structure Before Editing Row ID Field and Mapping

17-10
Default Row ID Field in Non-Child Tables . 17-10
Default Row ID Fields in Child Tables . 17-11
Row ID Field is a Single Data Field . 17-11
Full Row is a Delimited Piece of a Global Node 17-12

Step 4: Define One Data Field. 17-13
Step 5: Create Preliminary Master Map . 17-13

You Must Define Row ID. 17-13
A Master Map Cannot Be a Conditional Map 17-13
How to Create a Preliminary Master Map . 17-13

Step 6: Test Access Path Specifications . 17-14
Step 7: Define Remaining Base Table Fields . 17-16

Some Fields You Define May Not Be in M Database 17-16
Step 8: Complete Master Map Definition . 17-16
Step 9: Create Index Maps. 17-16

Row ID Must Exist in Global Index Structure 17-16
Step 10: Create Conditional Maps. 17-17
Step 11: Test Your Map Definitions . 17-17
xx Open M with SQL Data Dictionary Guide

Table of Contents
Step 12: Complete Base Table Definition . 17-19
Example Using Enhanced ^SAMPLE Global . 17-19

Description of Enhancement . 17-19
Identify Potential Tables . 17-20
Identify Fields in Each Table. 17-20
Identify the Row ID of Each Table . 17-20
Create a Base Table . 17-20
Edit Row ID Field . 17-21
Define One Data Field . 17-21
Create Master Map. 17-21

Example Using ^ACCT Global . 17-22
Description of ^ACCT Global . 17-22
Identify Potential Tables . 17-23
Identify Characteristic Relationships. 17-24
Identify Fields in Each Table. 17-24
NULL Values in Fields . 17-26
Identify Row ID of Table. 17-26
Edit Row ID Fields . 17-27

Example Using ^FLAVORS Global . 17-29
Description of ^FLAVORS Global . 17-29
Identify Fields and Tables . 17-29
Identify Characteristic Relationships. 17-30
Identify Fields in Each Table. 17-31
Identify Row ID of Table. 17-31
Edit the Row ID Field(s) . 17-32

18 Creating a Customized Map Definition
Overview of Customized Map Definition . 18-2

Sample Globals and Base Tables. 18-2
Map Definition Checklist . 18-3
Field Names for Map Definition . 18-4
Step 1: Compose SET Command to Insert Row . 18-5
Step 2: Enter Map Definition Form . 18-6

If You Started Using Customized Physical Structure 18-6
If You Started Using Default Physical Structure. 18-7
Examining the Map Definition Master Window 18-8

Step 3: Specify Global Name . 18-11
Data Stored in One Global. 18-11
Extended Global Reference . 18-11
Data Stored in Two or More Globals. 18-12
Data Stored in Local Array . 18-12
Open M with SQL Data Dictionary Guide xxi

Table of Contents
Step 4: Define Standard Access Path Specifications. 18-14
A. Enter Access Path Specifications Form . 18-15
B. Examine, and If Necessary, Override, Data Access Expression . . 18-17
C. Specify How to Reach Current Access Level 18-20
Examples of Access Path Specifications . 18-26
Delete Access Level Specifications . 18-27

Step 5: Specify Special Access Code . 18-29
How Open M with SQL Accesses and Validates a Row 18-29
Define Special Access Code to Validate Row 18-30
Types of Special Access Code . 18-31
Range of Subscript Values Not Part of Base Table 18-32
Single Value Access and Invalid Values . 18-33
NEXT Subroutine to Access Valid Access Level Values. 18-34
Example of Using Special Code . 18-36

Step 6: Specify Additional Data Access Variables 18-39
Names of Additional Data Access Variables 18-39
Where You Can Use Data Access Variables 18-39

Step 7: Specify Override to Full Row Reference . 18-41
Default Full Row Reference . 18-41
{%row} Represents Full Row Reference . 18-41
Override Full Row Reference . 18-41

Step 8: Edit Row ID Specifications . 18-43
Step 9: Define Map Data Specifications . 18-45

Two Ways to Define Field's Location . 18-45
Standard Specifications. 18-45
Examples of Standard Map Data Specifications. 18-47
Retrieval M Code . 18-50
Examples of Map Data Specifications . 18-52

Step 10: Define Override Filing Code . 18-55
Two Ways to Define Override Filing Code . 18-55
Referencing Fields in Filing Code . 18-55

Step 11: Define an Index Map as a Conditional Map 18-58

Part IV—Special Topics

19 The FileMan Interface
Overview of the FileMan Interface . 19-2

Database Normalization . 19-2
Conversion Logic . 19-2
Identifiers . 19-3
FileMan Preferences . 19-4
xxii Open M with SQL Data Dictionary Guide

Table of Contents
File Specifications . 19-5
Field Specifications . 19-6
Indices . 19-7
FileMan Interface Does Not Link ScreenMan Applications 19-7

Accessing the FileMan Interface . 19-8
Creating the FileMan-Open M Link. 19-10

Creating The Link for All FileMan Files Within a Range. 19-10
Creating The Link One File at a Time. 19-12

Extending, Updating, and Deleting the FileMan-Open M Link 19-13
Link Maintenance Facility Runs Many Operations in Succession . . . 19-13
Accessing the Link Maintenance Facility . 19-13
Extending the FileMan-Open M with SQL Link. 19-15
Updating the FileMan-Open M with SQL Link 19-18
Deleting the FileMan-Open M with SQL Link 19-20

Generating Views of FileMan Files . 19-23
FileMan-Open M with SQL Cross Reference Report 19-25
Conversion Error Log. 19-27

Print Conversion Error Log Report . 19-27
Purge Conversion Error Log . 19-28

Using the FileMan Interface with Open M with SQL PDP 19-29
Limitations to the FileMan Interface . 19-30
FileMan Interface Questions and Answers. 19-32

20 Importing Data Definitions
Overview of Data Dictionary Import . 20-2

Create ^mxdd Global . 20-2
Basic Structure of ^mxdd Import Global . 20-2

Provide Definition as Described in Data Dictionary 20-2
Values Provided as Subscripts and Node Values 20-2
Abbreviations Used to Represent Values . 20-3
Fixed Subscript Values . 20-3
Identify Object as Base Table or View . 20-3
Required and Default Values. 20-3
Multi-Line Node Structure. 20-4

Base Table Node Structure. 20-5
Base Table Basic Definition . 20-5
Base Table Field Definitions . 20-7
Base Table Field Error Translations . 20-13
Base Table Field Help Translations. 20-14
Base Table Triggers Definition . 20-15
Base Table Map Node Structure . 20-17
Open M with SQL Data Dictionary Guide xxiii

Table of Contents
Base Table Map Access Path Specifications Structure. 20-18
Base Table Map Data Access Variable. 20-21
Base Table Row ID Specifications . 20-22
Base Table Map Data Specifications Structure. 20-23
Default Physical Structure Index Definitions 20-23

View Node Structure . 20-25
View Basic Definition. 20-25
View Join Specification . 20-26
View Field Definition . 20-27

Privileges Definition Node Structure. 20-30

A Data Dictionary Specifications
Data Dictionary Specifications . A-1

B Keyboard Actions
Altos . B-1
ANSI . B-3
CIT-500. B-4
COBRA. B-6
DECTERM . B-7
DTM-PC Console . B-9
DESQView Console . B-9
ED3638 . B-9
FALCO . B-11
Generic . B-12
IBM 3151-ANSI . B-14
IBM 3151 Ascii Display . B-15
IBM 6091 . B-17
IBM PC . B-18
IBM PC With Color . B-20
MSM PC Console . B-22
NT Console . B-23
Open M Terminal . B-25
PC Console . B-26
SUN. B-28
TV905 . B-29
Unisys Console . B-31
VT100 . B-32
VT220 . B-34
WAYTEC . B-35
WYSE60 (Native) . B-37
WYSE85 . B-39
xxiv Open M with SQL Data Dictionary Guide

Table of Contents
Xterm . B-40

C SQL Reserved Words

D Base Table Design Charts

Glossary of Terms
Open M with SQL Data Dictionary Guide xxv

PART

I
Introduction
Chapter 1

Introduction to the Data Dictionary

Chapter 2

The Open M with SQL Relational
Database

Chapter 3

Using the Data Dictionary Interface

Chapter 4

Designing a Sample Application

Open M with SQL Data Dicti
CHAPTER

1
Introduction to the Data Dictionary
InterSystems’ Open M with SQL Data Dictionary is the foundation upon which
an Open M with SQL relational database application is built.

This chapter provides an overview of the Open M with SQL application develop-
ment environment, focusing particular attention on the role played by the Data
Dictionary.

Specifically, it covers the following topics:

 n The Open M with SQL Application Development Environment page 1-2
 n Defining a Relational Database in the Data Dictionary page 1-7
 n Mapping a Relational Database to M Globals page 1-13
 n The Data Dictionary Provides Many Benefits page 1-15
onary Guide 1-1

Chapter 1—Introduction to the Data Dictionary
The Open M with SQL Application Development
Environment

Open M with SQL is an integrated environment for developing and running data-
base applications. It includes an advanced relational database management sys-
tem, an application and report generator, and a procedural programming
language.

Open M with SQL combines two ANSI-standard languages — M, the only pro-
cedural programming language designed specifically for database applications,
and SQL (Structured Query Language), the most widely used relational query
language.

Open M with SQL provides two program development environments:

 n The M environment, in which you can execute system management com-
mands, and create, modify, and execute M routines.

 n The relational environment, in which you define the database in relational
terms and use the application generator tools to create, modify, and execute
advanced relational database applications.

Open M with SQL’s relational environment is a complete RDBMS (Relational
Database Management System)—it includes a development environment for cre-
ating advanced relational database applications, a management system for main-
taining them, and a run-time environment for executing them.

Defining a Relational Database in the Data Dictionary

You define a relational database using the Data Dictionary.

You do this by defining tables to represent the logical structure of a relational
database, or by mapping the physical structure of an existing database to rela-
tional tables. These tables act as the foundation on which Open M with SQL rela-
tional database applications are built.

Open M with SQL implements your database on the physical level as an M glo-
bal database. If you already have an existing M database, you can define a rela-
tional “view” of it in the Data Dictionary. You do not need to know anything
about M programming to design a relational database in the Data Dictionary.

Defining a relational database using the Open M with SQL Data Dictionary
allows you to take advantage of the programming ease and efficient I/O of M
while gaining centralization of data control and the data access power provided
by SQL.
1-2 Open M with SQL Data Dictionary Guide

The Open M with SQL Application Development Environment
Open M with SQL Combines Two ANSI-Standard Languages: SQL and M

Open M with SQL combines two ANSI-Standard programming languages, SQL
and M. The merger of these two languages provides a powerful standards-based
system that offers extremely high performance.

Although you can develop fully functional relational applications without writing
any code yourself, you also can take advantage of these two ANSI-Standard lan-
guages to customize generated applications to your exact specifications.

SQL

SQL is the most widely used relational query language. SQL has several compo-
nent parts, including DDL, a data definition language, and DML, a data manipu-
lation language. Open M with SQL primarily implements the DML component
of SQL, although it also implements a small portion of the DDL component.

In Open M with SQL, you can use SQL to query the database, or to insert,
update, or delete database rows. You can create and run SQL queries using the
Query Generator or the Interactive Query Editor, or by embedding SQL queries
within M macro source routines. Open M with SQL uses SQL internally to
access data in Form Generator forms and M/PACT reports. SQL respects all the
data constraints you define in the Data Dictionary.

InterSystems has implemented a number of extensions to SQL. These extensions
include outer joins and extended arrow syntax to refer to implicit joins, both of
which are discussed in this guide. For information on all InterSystems extensions
to SQL, see the Open M/SQL Developer Guide.

M Language

M is a database-oriented procedural programming language for developing and
running performance-critical online applications.

In M, data stored on disk are called globals. You can think of a global as a perma-
nent variable. You refer to a global by its name; for instance, you might give a
global a value by issuing the command, SET ^name=“Jane Doe”.

You can make direct global references to the M globals you define relationally in
the Data Dictionary, as well as to M globals you have not defined relationally.
However, when you access data directly with M global references, Open M does
not respect the data constraints you define in the Data Dictionary. For this reason,
InterSystems recommends that you do not use M global references to access your
relationally described data, except during the conversion of a non-relational M
application to an Open M with SQL relational application.

The Open M product family encompasses several dialects of M—ISM, DTM,
and DSM. Each of these dialects is tailored to a particular hardware platform.
Open M with SQL Data Dictionary Guide 1-3

Chapter 1—Introduction to the Data Dictionary
For more information about the M language, see the M Language Reference,
which is a comprehensive reference manual for both the ISM and DTM imple-
mentations of M.

Open M Developer

Open M Developer is InterSystems’ application development environment for
creating highly sophisticated relational database applications.

Open M Developer has the following components:

 n Form Generator — an application generation tool used to create ready-to-
run data screens through which end users can add, retrieve, edit, and delete
database information.
See the Open M/SQL User Interface Programming Guide for complete infor-
mation on creating forms.

 n Menu Generator — an application generation tool used to create pop-up
menus and menu bars which unite the various components of an application
in a logical and visually sophisticated manner and structure an application by
defining how it is organized and how it is presented to end users.

 n Query Generator — environment in which you can create and run database
queries on an ad-hoc basis.

 n M/PACT (Report Generator) — a report-writing tool used to create and run
sophisticated end-user data reporting applications that interact with the Data
Dictionary.

Note: M/PACT is an add-on option.

See the Open M/SQL Developer Guide and Open M/SQL User Interface Pro-
gramming Guide for information on using the Open M with SQL application
development environment.
1-4 Open M with SQL Data Dictionary Guide

The Open M with SQL Application Development Environment
Open M with SQL Server Opens Your Relational Database

The Open M Relational Server is an add-on component to the Open M Developer
product that allows non-M applications to access and modify your Open M with
SQL relational database.

The Relational Server opens your data to new computing technologies by allow-
ing diverse applications to access your Open M with SQL relational database.

The Relational Server is designed to let you retrieve and modify M data using the
following application development tools:

 n Software packages such as spreadsheets, graphical user interface develop-
ment tools, computer aided software engineering (CASE) tools, natural lan-
guage data access interfaces, and executive information systems.

 n Applications developed in the C programming language.

For information on how to configure, manage, and maintain the Relational
Server, see the Open M with SQL Database Administrator’s Guide.

For information on how to access an Open M with SQL relational database
(retrieve and modify data) from various third-party application development
tools, see the Open M/SQL Server User Guide.

For information on how to access an Open M with SQL relational database from
applications created using the C or C++ programming language, see the Open
M/SQL Server Programming Guide.

How is Open M with SQL “Open”

The “Open” in Open M with SQL refers to its open systems architecture, which
makes applications easily portable and opens data to a wide variety of computing
technologies.

Specifically, Open M with SQL is open in the following ways:

 n All Open M with SQL applications are completely portable across M imple-
mentations — you can develop Open M with SQL applications on top of any
vendors’ M system and then run the application on the same M system or on
any other M system.
For example, you can develop an Open M with SQL application on top of
Micronetics’ MSM and then run the application on MSM or on any other M
system.

 n All Open M with SQL applications are completely portable across hardware
platforms — you can develop applications on one hardware platform and
then run them on another.
Open M with SQL Data Dictionary Guide 1-5

Chapter 1—Introduction to the Data Dictionary
For example, you might develop an Open M with SQL application on a VAX
DSM system, and then recompile and run the application on a SCO worksta-
tion.

 n You may use the Open M Relational Server to access data stored in an Open
M with SQL relational database from various third-party software applica-
tions as well as from applications developed in the C programming language.

 n You may access data in your Open M with SQL relational database using a
variety of distributed data processing protocols, including InterSystems’ pro-
prietary ISNET protocol over Ethernet or TCP systems as well as DSM-DDP
and OMI.

Developing Relational Applications

Open M with SQL offers a variety of strategies for developing relational applica-
tions:

 n Automated application generation — using the Data Dictionary, Form Gen-
erator, M/PACT, and Menu Generator

 n Hand-coded programming — using M and/or SQL
 n Mixed strategy

Most commonly, applications are developed in a mixed environment that
includes programs created using M as well as automatically-generated forms,
reports, and SQL queries created using the Open M with SQL application gener-
ation tools. It generally makes sense to use the application generator tools to
develop as much of the application as possible, then to use hand-coded program-
ming to articulate the refinements and customizations that even the advanced
customization features do not handle.

For example, a laboratory application might perform most of its data entry
through data entry screens created using the Form Generator, but it may use
hand-coded M routines for direct data input from specialized instruments. The
result is an integrated application created and run entirely within Open M with
SQL.

For more information on application development stratgies, see the Open M/SQL
Developer Guide.
1-6 Open M with SQL Data Dictionary Guide

Defining a Relational Database in the Data Dictionary
Defining a Relational Database in the Data Dictionary

The Data Dictionary is the foundation of the Open M with SQL application
development environment. The Data Dictionary provides an advanced, windows-
based environment in which you define the elements of a relational database.

A relational database in Open M with SQL is a functionally-related group of base
tables which are explicitly linked together in the Data Dictionary. You can join
base tables within a single database to create views. Views are considered virtual
tables because they appear as tables to the end user but are not stored as such in
the database.

Data Dictionary maps define the connection between the logical structure and
physical storage structure of a database. The Data Dictionary can automatically
generate maps to create a default physical structure for your database. Alterna-
tively, advanced M programmers may wish to define their own maps to conform
with the global structures of existing applications or to design a new database
structure compliant with application specifications.

Once you have defined a relational database in the Data Dictionary, you can use
the other components of the Open M with SQL application development environ-
ment—the Form Generator, Menu Generator, Application Help Facility, SQL
query facilities, and the M/PACT Report Generator—to quickly and easily build
a complete relational database application.

Although describing the database in the Data Dictionary is essential to the use of
the Form Generator, the SQL query facilities, and M/PACT, it is not required for
M programs that access the database only through direct global references.

Mapping the Functional Specifications of Your Database

The first step in creating a database is to organize the logical structure of the data
on paper as a series of tables, just as you might design a paper filing system. To
do this, consider the functional needs of your application and make a list of all
the different pieces of data that you need. The object of the design is to describe
the tables that constitute the database and how those tables will interact with one
another. For example, one database application might have a customer table, an
invoice table, an invoice line item table, a parts table, etc. The customer table
might then consist of fields for customer name, address, phone, current balance,
etc.
Open M with SQL Data Dictionary Guide 1-7

Chapter 1—Introduction to the Data Dictionary
Defining the Data Structure in the Data Dictionary

Once you have designed a data structure on paper, you next define the data struc-
ture in the Data Dictionary, along with integrity constraints on the data.

Integrity constraints may be very simple; for example, you can specify a range of
valid numbers that can be entered for a field. Other constraints may be more
complex; perhaps you want to specify that an invoice cannot be entered into an
invoice table without a corresponding customer entry in the customer table. Even
more complex constraints may require the addition of complete SQL queries or
procedural M code.

You describe relationships among tables in the Data Dictionary by defining char-
acteristic or designative links between tables. For example, where rows of an
invoice line item table cannot exist without a corresponding row in an invoice
table, you should define the line item table as a characteristic table of the invoice
table. You might also define one field in the invoice table as a designative refer-
ence to rows in the customer table. When you define these relationships, the Data
Dictionary creates “implicit” joins between the tables. These joins are automati-
cally generated in queries, freeing the programmer and end-user from the tedious
and demanding task of specifying explicit joins in SQL statements.

You may also define processing triggers in the Data Dictionary. Triggers are
sequences of actions defined to automatically occur, or be triggered, when cer-
tain other events occur. A trigger definition usually consists of an SQL query or
lines of M code that are invoked at row insert, update, or delete time. For exam-
ple, if a medical record for a given patient is deleted, you may want to establish a
trigger that will automatically delete all of that patient's lab test information from
various lab files.

Defining Existing M Databases Relationally

You can use the Data Dictionary to link the physical storage of an existing non-
relational M database to the logical structure of the relational tables you define in
the Data Dictionary. For more information about converting your existing data-
bases, see the section of this chapter entitled “Mapping a Relational Database to
M Globals” on page 1-13.

Once you provide a relational picture of your M database in the Data Dictionary,
you can access it using both SQL and direct M global references. In this way
existing M applications can incorporate the use of SQL over time; immediate
conversion is not required.
1-8 Open M with SQL Data Dictionary Guide

Defining a Relational Database in the Data Dictionary
Accessing Data

You can choose to access data in the relational database in the following ways:

 n Form Generator forms
 n M/PACT reports
 n SQL queries

 • Defined via the Query Generator or Interactive Query Editor
 • Embedded in M macro source routines
 • In triggers

Note: Triggers are special actions you define to occur under certain cir-
cumstances, such as when a user enters a particular value in a
field on a Form Generator form, saves new data in a base table,
or selects a particular option on a menu

 n Direct global references in M routines

Note: The data constraints you define in the Data Dictionary are not
respected when you access data using M global reference.

Defining Base Tables in the Data Dictionary

The base table is the fundamental structure in an Open M with SQL relational
database. Most of your work in the Data Dictionary will be spent creating and
defining base tables.

For every base table you define in the Data Dictionary, you can specify:

 n How you will define the underlying M global structure that the base table
represents:
 • Using default physical structure
 • Using your own customized physical structure

 n The name of the M global or globals that contain the data defined in the base
table.

 n The lookup fields into which users can enter data on a Form Generator form
to retrieve a row from a base table.

 n Actions, called triggers, that occur at row insert, update, or delete time.
 n Other base tables that contain data related to the data this table—these other

base tables are associated by characteristic relationships or designative refer-
ences.

See Chapter 5, Defining a Base Table , for complete information on how you
define a base table.
Open M with SQL Data Dictionary Guide 1-9

Chapter 1—Introduction to the Data Dictionary
Characteristic Relationships Join Base Tables

Your database may include a one-to-many (parent-to-child) data relationship,
where many subsets of data are associated with one particular piece of data.

For instance, perhaps you have a base table Invoices, which includes invoice
number, customer name, customer address, etc. Each invoice has many associ-
ated line items. Each line item includes item number and name, quantity pur-
chased, purchase price, etc. It is easier and more efficient to store line item data
in a separate base table.

In order to link each line item—that is, each row—in the LineItem base table to
an invoice, or row, in the Invoices base table, you define a characteristic relation-
ship between the two tables. To do so, when you define the Invoices base table,
you specify the LineItem base table as a child table of Invoices.

Once you have defined a characteristic relationship between tables, you can use
SQL (taking advantage of InterSystems’ extensions) to access data in child and
parent tables. You can also create forms that allow users to enter data into child
tables while entering data into the parent table.

For information on how to define characteristic relationships between base
tables, see Chapter 5, Defining a Base Table .

For a complete description of characteristic relationships and the way Open M
with SQL implements them as implicit joins, see Chapter 7, Implicit Joins .

Designative Reference Fields Join Base Tables

Sometimes, data in one table has a many-to-one relationship with data in another
table. To represent this type of relationship, you can define field with the special
data type, Designative Reference. Designative Reference fields associate a row
of data in one base table with a row of data in another base table.

For example, you may have two base tables: Patients and Doctors. You want to
link each row—that is, each patient—in the Patient table to a specific row—a
doctor—in the Doctors table. Many patients may be linked to the same doctor
(many-to-one).

You create this link by defining a Designative Reference field in the Patients base
table which points to the Doctors base table.

Once you have defined a Designative Reference field, you can use SQL (taking
advantage of InterSystems’ extensions) to access data in the designated table.
1-10 Open M with SQL Data Dictionary Guide

Defining a Relational Database in the Data Dictionary
When using the Form Generator to create forms based on a table that has a Des-
ignative Reference field, you may create multiple Designative Display fields—as
many as one for each field in the designated table. These Designative Display
fields allow you to display data for the corresponding fields in the designated
table.

For example, when creating a Patients data entry form, you may create Designa-
tive Display fields for DoctorName and DoctorPhone. Users run the form and
enter data on a new patient. When they reach the DoctorName field, they may
select a doctor from the doctors in the Doctors table. When they select a particu-
lar doctor, that doctor’s phone number is displayed in the DoctorPhone field.

For information on defining Designative Reference fields, see Chapter 6, Defin-
ing Base Table Fields .

For a complete description of designative relationships and the way Open M with
SQL implements them as implicit joins, see Chapter 7, Implicit Joins .

For information on creating Designative Display fields for forms, see the Open
M/SQL User Interface Programming Guide.

Defining Database Fields in Base Tables

The fields you create when defining base tables are called database fields. Data-
base fields refer to M globals. When you create forms using the Form Generator,
you associate each form with a particular base table, and you may display any
database field defined for the base table on the form. Users run these forms to
insert, edit and delete data in the database.

Note You can also create form-only fields in the Form Generator. These fields do not
relate to database fields defined in the Data Dictionary and are not stored in the
database.

You define default characteristics for database fields in the Data Dictionary. You
may override some of these characteristics at the form level in the Form Genera-
tor.
Open M with SQL Data Dictionary Guide 1-11

Chapter 1—Introduction to the Data Dictionary
Defining Attributes of Database Fields

The Data Dictionary allows you to define the following attributes for each field
in a base table:

 n Data type (including Designative Reference)
 n Descriptive caption for the field that displays in Form Generator forms and

M/PACT reports
 n Maximum length of the field
 n Allowable range
 n Default value for the field (when a new row is inserted into the base table)
 n Possible values for the field (via Multiple Choice data type)
 n Single-line or multi-line
 n External-to-Internal conversion rules for the internal storage of data
 n Internal-to-External conversion rules for external data display
 n Rules for validating the field’s value
 n M code lines to compute the value of the field based on other fields
 n Help and error messages that display when editing the field’s value in a Form

Generator form

Defining Views in the Data Dictionary

Once you have created base tables in the Data Dictionary, you can create views.
Typically, views link together multiple tables within a single database, though
you can also create views on a single table. With a view, users can see data for all
(or a subset of all) the fields defined in the base table(s) which are part of the
view.

Views are considered virtual tables because they appear to be tables to the end
user but are not stored as such in the database. A view can be used as a data
source in SQL queries and M/PACT reports. This allows you to include fields
from more than one base table in your report or query.

Views also perform a security function by restricting users’ access to specified
fields in the viewed tables.

Views can be based on any of the following:

 n A base table
 n Another view
 n A query — such views are called General Views
1-12 Open M with SQL Data Dictionary Guide

Mapping a Relational Database to M Globals
For complete information on views and how to define them, see Chapter 14,
Views .

Mapping a Relational Database to M Globals

Mapping is the process by which the Data Dictionary links the logical data struc-
tures you describe relationally in base tables to physical M globals. The Data
Dictionary can automate this process so that it happens transparently, or you may
choose to control the mapping yourself.

When the Data Dictionary maps to a global, that global need not exist. If it exists,
it need not contain data.

Each base table has a Master Map, which describes the physical storage of its
fields in M globals. It also may have one or more index maps, which enable the
SQL query processor to locate particular rows in the base table more quickly.
Base tables do not share maps. Two or more base tables can have fields linked to
the same physical global, but different maps describe their storage.

Selecting Default or Customized Physical Structure

A major strength of the Data Dictionary is that, for each base table, you can
choose among three mapping options:

 n Automatic Default-Generated Physical Structure
The Data Dictionary automatically generates a default physical structure.

 n Hand-mapped Customized Physical Structure
You specify the M global structure for the base tables you define.

 n Mixed Strategy
The Data Dictionary automatically generates a default physical structure. It
sets up the fields in the Master Map and defines an index for all lookup fields
and all unique fields. You then remove all field links to globals and replace
them with global references that reflect your M database.
Open M with SQL Data Dictionary Guide 1-13

Chapter 1—Introduction to the Data Dictionary
When to Use Default Physical Structure

The default physical structure is an optimized map definition based on base table
and field definitions that the Data Dictionary generates automatically. Using this
option, you can develop an entire database application and never examine the
map definitions or global data structures. If you are creating a new database
application (not converting an existing M database), you may find it quick and
easy to use the default physical structure, though some programmers will still
prefer to define the mapping themselves.

Using the default physical structure has the following benefits:

 n You need never enter the map definition area of the Data Dictionary or be
concerned with the underlying physical structure of your base tables. This is
desirable for programmers who intend to develop an entire database applica-
tion using the Open M with SQL automatic application generation facilities.
It is also desirable for programmers with little or no programming experience
in M.

 n Default structure automatically creates index maps for
 • Each field you define as a lookup field (lookup fields are used for look-

ing up database rows in Form Generator forms)
 • Each field you define as a unique field
 • Each field you specify as an Index Field

The Data Dictionary automatically creates a default physical structure for your
base table, unless you specify otherwise.

When to Use Customized Physical Structure

If you are converting an existing M database to an Open M with SQL relational
database, you must do your own mapping. This allows you to link your relational
database structure (base tables) to your existing M globals, a mapping which only
you can specify. Once you have done this, you can use all Open M with SQL
application generaton facilities to build a complete database application for your
existing M database.

Some M programmers prefer to do customized mapping for every base table they
create. They feel this enables them to exercise more precise control over the
internal processing of the application and to better optimize the application code.
It can be a tedious process and it requires a thorough understanding of a complex
environment, but if done properly, customized mapping can improve the process-
ing efficiency of your database application.

Caution Once you choose to do customized mapping for a base table, you can never go
back to the default physical structure. This means you must always update the
physical structure to reflect any changes you make to logical structure.
1-14 Open M with SQL Data Dictionary Guide

The Data Dictionary Provides Many Benefits
The Data Dictionary Provides Many Benefits

The Data Dictionary provides all the following benefits:

 n Ability to create a relational database without designing the underlying phys-
ical structure

 n Ability to create a database structure that you can use as the foundation for
building an entire relational database application, using the Open M with
SQL application generator tools

 n Access to SQL
 n Enhanced developer productivity
 n Enhanced application performance via:

 • Query Optimizer, which uses sophisticated algorithms to convert SQL
queries into highly efficient M code

 • Index maps, which enable the Query Optimizer to quickly locate particu-
lar rows in a base table

 • Continued use of existing M databases
 • Automatic data validation and automatic updates to other base tables via

triggers, enforcing referential integrity constraints

Some of these benefits are discussed further in the following sections.

Developer Productivity

Whenever you use an SQL query to retrieve, insert, update, or delete rows in a
base table, the Query Optimizer automatically generates all of the procedural
code needed to perform the operation. The automatic generation of highly effi-
cient M code routines can replace coding efforts sometimes taking months or
years to complete manually. This code generation frees application developers to
spend their time on other tasks, greatly increasing developer productivity.
Open M with SQL Data Dictionary Guide 1-15

Chapter 1—Introduction to the Data Dictionary
Existing Applications

If you have an existing M database, the Data Dictionary lets you use customized
mapping to link the relational database structure (base tables) you define in the
Data Dictionary to one or more of your existing M globals. Any M database
structure can be represented in the Data Dictionary. You can also use the Data
Dictionary to enhance an existing global structure; for example, you can add
index maps, which facilitates data retrieval. Thus, the Data Dictionary enables
you to protect your current investment while enhancing your existing applica-
tions.

Referential Integrity

A database contains data which is logically related. It is important to make sure
that applications can maintain the logical relationships between data elements
during data entry and update. For example, an application should not allow a new
employee to be assigned to a department that does not exist in the Departments
table. Such requirements are known as referential integrity.

By defining your data in the Data Dictionary you can easily implement the data
control functions necessary to most applications. The Data Dictionary provides a
combination of automatic and user-defined features for preserving referential
integrity in your database applications.

For example, you can:

 n Define triggers that respond to the insert, update, and deletion of rows in a
given table by automatically inserting, updating, or deleting rows in other
tables. See Chapter 11, Base Table Triggers .

 n Define base table validation code that prohibits filing of rows that violate a
specified set of constraints among fields. Chapter 10, Data Conversion and
Validation .

 n Define field validation code that prohibits filing of values that do not satisfy
a specifies set of conditions. See Chapter 10, Data Conversion and Valida-
tion .

You may implement additional referential integrity rules when designing forms
using the Form Generator. For more information on defining form-level applica-
tion integrity code, see the Open M/SQL User Interface Programming Guide.
1-16 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

2
The Open M with SQL Relational
Database
Open M with SQL is based on an advanced relational model, which defines the
database as a group of tables. InterSystems has extended the relational model to
allow the definition of designative and characteristic relationships between
tables. In Open M with SQL, any related group of tables that resides within an M
data partition is considered a database. The M data partition is usually referred to
as a directory or UCI, depending on your M system. An Open M with SQL data-
base corresponds to the schema in the relational model.

Open M with SQL considers any related group of tables that resides within an M
data partition to be a database. The M data partition is usually referred to as a
directory or UCI, depending on your M system.

This chapter discusses relational concepts and their implementation in Open M
with SQL.

Specifically, it covers the following topics:

 n Relational Database Is a Collection of Tables page 2-2
 n Open M with SQL Supports Two Types of Tables page 2-3
 n Open M with SQL Tables Follow First Normal Form page 2-6
 n Open M with SQL Implements Schemas as M Directories page 2-8
 n Accessing Data in an Open M with SQL Relational Database page 2-9
 n InterSystems’ Extensions to the Relational Model page 2-16
onary Guide 2-1

Chapter 2—The Open M with SQL Relational Database
Relational Database Is a Collection of Tables

A relational database is characterized by:

 n A database structure that consists of a collection of tables (also called “rela-
tions” or “files”).

 n The presence of a query language that permits the manipulation of these
tables in a mathematically complete manner.

The table is the basic unit of data storage in the relational model. A table is a col-
lection of rows (also called “tuples” or “records”) and columns (also called
“fields” or “attributes”). Each column in a table contains a particular type of data,
such as integer, date, or text. (Columns may also contain null values.) Each row
in a table corresponds to a real world entity and contains exactly one value for
each column in the table.

Example Below is a sample relational table called “Employees”. Each row of this table
refers to one entity—in this case, an employee. Each row contains a value in each
column, all referring to the same employee.

Table 2-1: A Sample Relational Table

EmpName EmpNum HireDate Status Salary

Grainger,Lisa 445-67-7891 06/06/90 Part-Time 28,000.00

Corson,Bob 210-92-8518 12/08/86 Active 15,000.00

Doe,Suzanne 333-44-7800 01/05/87 Active 38,000.00

Fast,Felix 334-45-5678 06/23/89 Active 44,000.00

Finley,Jack 356-62-1221 09/09/85 Part-Time 77,500.00

Gable,Bill 567-89-0123 08/02/92 Active 44,000.00
2-2 Open M with SQL Data Dictionary Guide

Open M with SQL Supports Two Types of Tables
Open M with SQL Supports Two Types of Tables

Open M with SQL supports two types of tables:

 n Base tables
 n Virtual tables

A base table is an autonomous, named table. Unlike virtual tables, base tables
exist physically in the sense that they are mapped directly to physical storage
structures. We say that base tables are “named” because the table is explicitly
given a name via an appropriate definition statement, unlike, for example, the
result of a query, which is not explicitly named and exists only ephemerally.

A virtual table is a named table derived from one or more base tables. Virtual
tables are not directly represented in physical storage. Rather, they are abstract
collections of base tables.

Examples of virtual tables include the output from SELECT-statement queries
and views. Views are windows through which data from multiple base tables can
be “viewed”. Open M with SQL allows views to serve as data sources for
M/PACT reports, SQL queries, and other views.

No two rows of a base table are identical. In virtual tables, two or more rows may
be identical.

Row ID/Primary Key

The primary key or Row ID is a field or combination of fields that serve as the
unique identifier to each row in a base table. At any given time, no two rows of
the base table may contain the same primary key value. For example, the primary
key of an “Employees” table might be the unique employee number; as each
employee is identified by a unique employee number, each employee row in the
table is identified by the value of the employee number field.

Since two rows of a base table cannot be identical while two rows of a virtual
table can, only base tables have primary keys. Virtual tables (results of queries,
for example) do not have primary keys.

In Open M with SQL, the Row ID field is the primary key. The Row ID is a sin-
gle field of the table that uniquely identifies the row. Open M with SQL automat-
ically creates a field of data type Row ID for every table, whether you use default
or customized physical structure. To learn more about the default-generated Row
ID field, see Chapter 16, Default Physical Structure .

When you use customized physical structure, you usually need to edit the Row
ID field. You can either define a single field, which contains sequential integer
values or a compound field based on one or more existing fields in your base
table. You must be certain that, taken together, these fields uniquely define a row.
Open M with SQL Data Dictionary Guide 2-3

Chapter 2—The Open M with SQL Relational Database
For example, you might define the Row ID of the Employees table to be the com-
bination of the fields EmpName and EmpNum. To learn more about defining the
Row ID field when using customized physical structure, refer to “Step 3: Edit
Row ID Field(s)” on page 17-10 in Chapter 17, Relational Definition of an M
Database .

Base Tables Contain Data Stored on Disk

The base table is the fundamental unit of data storage in the Open M with SQL
relational database. You define base tables in the Data Dictionary. Base tables
contain the database fields which hold the data for your application. Base tables
are mapped directly to your M global database. The data stored in a base table is
permanent, because it is stored on disk.

Virtual Tables Exist in Temporary Memory

Virtual tables are transient tables which exist only temporarily and have no per-
manent physical storage.

Virtual tables are derived from SQL queries. They represent a subset of data from
a particular base table or from a combination of several base tables. Unlike base
tables, virtual tables may contain duplicate rows.

Open M with SQL supports two types of virtual tables:

 • Query output
 • Views

An SQL Query Produces a Virtual Table

The output returned by an SQL SELECT-statement query constitutes a virtual
table. In Open M with SQL, you may generate SELECT-statement queries in any
of the following three ways:

 n Via the Query Definition template
 n Via the Interactive Query Editor
 n By embedding the query within M macro source code

Example Suppose you want to produce a seniority report using the Employees table. The
report should include only the fields EmpName and HireDate, sorted in descend-
ing order by HireDate. To do this, you would issue the following SQL statement:

SELECT EmpName, HireDate
FROM Employees
ORDER BY HireDate DESC

For more information about creating queries using embedded SQL, the Query
Editor, or the Query Generator, see the Open M/SQL Developer Guide.
2-4 Open M with SQL Data Dictionary Guide

Open M with SQL Supports Two Types of Tables
A View Produces a Virtual Table

Views are conceptual windows through which data from one or many base tables
can be “viewed”. Open M with SQL allows views to serve as data sources for
M/PACT reports, SQL queries, and other views.

Typically, you define views in the Data Dictionary.

Note You can also use the SQL DDL keyword CREATE VIEW to define views.

Open M with SQL supports three types of views:

 n A view based on a base table. These views can include fields from many base
tables, as long as they have either a characteristic relationship or a designa-
tive relationship with the starting base table.

 n A view based on another view.
 n A view based on a query.

For more information about defining and using views. see Chapter 14, Views .

Benefits of Views

Views provide the following benefits:

 n You gain access to a cross-section of fields from multiple base tables with a
simple SQL statement.

 n Since M/PACT can access only one base table per report, a view makes it
possible to display fields from multiple base tables in a single M/PACT
report.

 n As a form of data security, you can include only some fields from a base table
in a view and give users access to the view rather than to the underlying base
table.

 n Views simplify the conceptual relationships between base tables so that
fields which may actually reside in many different tables can be viewed logi-
cally as belonging to the same row in one “super table”. Users often find this
to be a much easier way to get information out of a database.
Open M with SQL Data Dictionary Guide 2-5

Chapter 2—The Open M with SQL Relational Database
Open M with SQL Tables Follow First Normal Form

Tables in Open M with SQL follow what is called the First Normal Form; that
is, each column of a single row contains exactly one value, which may be null if
the field is empty.

In some non-relational database systems, a column for a single row might contain
several values. For example, the “Child” field in a “People” table might contain
the names of three children; a single child field might also have three grandchil-
dren.

However, in a relational system, each parent/child/grandchild relationship is rep-
resented by a separate row. For instance, each child of a given parent will occupy
a unique row in the table despite the commonality of their parent fields. Like-
wise, each grandchild of that parent will also occupy its own unique row. This
means that if a parent has three children who in turn have three children apiece,
the relational model uses nine separate rows to describe the entire genealogy.

Alternatively, you may use separate tables called characteristic tables (see below)
to designate relationships between parents, children, and grandchildren. It is your
responsibility to define how you want Open M with SQL to handle parent/child
relationships.

Example In a non-relational database that does not follow the First Normal Form, suppose
you have a table called “Family”. A “Parents” field contains the name of both
parents, and a “Children” field contains the names of all children of those par-
ents, as shown below:

Table 2-2: Sample Non-Relational Table Not Using First Normal Form

Parents Children

John Doe
Mary Doe

Joseph
Jane
Derek
2-6 Open M with SQL Data Dictionary Guide

Open M with SQL Tables Follow First Normal Form
Using a relational model that does follow the First Normal Form, you define sep-
arate fields for “Mother” and “Father”. Furthermore, each child of a given parent
occupies a unique row in the table despite the commonality of their parent fields.
Therefore, if parents have three children, the relational model uses three separate
rows to describe the genealogy, as shown below:

As you can see, this causes data redundancy, wasting disk space.

To avoid this data redundancy, Open M with SQL implements two special links,
or implicit joins, between base tables:

 n Designative References
 n Characteristic Relationships

Instead of repeating data in multiple rows in the same table, you define two sepa-
rate tables. A row in one table points to a row in another table.

When implemented using a characteristic relationship, the Family table becomes
two separate tables — Parents and Children, as shown below:

Table 2-3: Sample Relational Table Using First Normal Form

MotherName FatherName Phone City Child

Mary John 222-3333 Andover Joseph

Mary John 222-3333 Andover Jane

Mary John 222-3333 Andover Derek

Table 2-4: Parents Table

Row ID Mother Father Phone City

1 Mary John 222-3333 Andover

2 Jane Robert 333-4444 Dracut

Table 2-5: Children Table

Parent Row ID Child Row ID Name

1 1 Joseph

1 2 Jane

1 3 Derek

2 4 Jennifer
Open M with SQL Data Dictionary Guide 2-7

Chapter 2—The Open M with SQL Relational Database
Each row in the “Parents” table points to zero, one, or many rows in the “Chil-
dren” table. Each row in the “Children” table points back to one row in the “Par-
ents” table.

For more information on implicit joins, see the section of this chapter entitled
“InterSystems’ Extensions to the Relational Model” on page 2-16.

To learn how to define designative references and characteristic relationships, see
Chapter 5, Defining a Base Table .

Open M with SQL Implements Schemas as M Directories

In the relational model, a schema is a conceptual repository for a group of rela-
tions. No relation within the schema can have the same name as another.

In Open M with SQL, the unit equivalent to the schema is an M database. In
Open M with SQL, an M database can be spread over one or more directories.
Each directory contains one component—OPENM.DAT file—of the entire M
database. An OPENM.DAT file is usually referred to by the name of the operat-
ing system directory in which it resides. All tables defined in the same M direc-
tory must have unique names.

The system manager's directory contains a database directory table. The database
directory table contains the database name, directory, and directory set if net-
worked.

Open M with SQL Database Structure for Non-ISM Implementations of M

When Open M with SQL is layered on top of a non-ISM implementation of M,
the database concept is implemented differently.

For example, under DSM, Open M with SQL considers all tables within a unique
UCI and volume set to be a common database.

Other M systems employ various other schemes for storing the list of databases.
For more information, see the documentation provided with your M system.
2-8 Open M with SQL Data Dictionary Guide

Accessing Data in an Open M with SQL Relational Database
Accessing Data in an Open M with SQL Relational
Database

Once you have defined tables in the Open M with SQL Relational Data Dictio-
nary, you can access data from those tables by any of the following means:

 n SQL queries — you may embed queries in M macro source code, or you may
define them via the Open M with SQL Query Definition template or the
Interactive SQL Query Editor

 n M global references (in conjunction with or independent of SQL)
 n Data entry, inquiry, and update forms designed using the Form Generator
 n Reports defined and formatted using M/PACT

This section provides a brief overview of relational operations in SQL, the ANSI-
Standard Query Language. SQL enables the retrieval of data from the relational
database for the generation of queries and reports.

Refer to an SQL text for a full understanding of this language. The Open M/SQL
Developer Guide, Chapter 9, “Open M/SQL Implementation of SQL”, describes
InterSystems’ extensions to standard SQL.

Using SQL to Query the Database

Open M with SQL lets you query the database using standard SQL SELECT
statement queries. Queries access data in tables and views. The output from a
query forms a virtual table and leaves the targeted table(s) unchanged.

You can reference multiple tables in a single query.

SQL enables you to use the following relational operations when querying a data-
base:

 n Combining tables (or, more accurately, viewing tables as if they had been
combined into one larger table)

 n Selecting particular columns from a single table or a combined table
 n Specifying particular rows in a single table or a combined table

Relational algebra provides the conceptual foundation for these relational opera-
tions. Understanding how the relational algebra works will help you take full
advantage of the capabilities of SQL.

Conceptually, the relational algebra operates on one or more tables to produce a
new (virtual) table. For example, a join combines two tables into a third. Or, a
select operation extracts selected rows from one table to produce another table. A
virtual output table is the result of the relational operation.
Open M with SQL Data Dictionary Guide 2-9

Chapter 2—The Open M with SQL Relational Database
The list of fundamental relational operators includes:

 n Cartesian Product — creates a cross-product of multiple tables, i.e., views
the tables as if they had been combined into one larger table

 n Project — selects particular columns from a single table or a combined table
 n Restrict — selects particular rows from a single table or a combined table
 n Join — selects some fields from some rows of multiple tables based on some

relationship between the fields of the different tables

Table.Name Syntax

When referencing fields in an SQL query you may optionally precede the field
name with the name of the base table to which it belongs, using the following
syntax:

Table.Field

For example, a SELECT clause might read as follows:

SELECT Employees.EmpName, Depts.DeptName

If you do not use prefixes when creating field names that reflect the name of the
base table in which they reside, it is generally a good idea to use this syntax for
clarity.

If a query references multiple tables and those tables contain fields with identical
field names, you must use the Table.Name syntax.

Cartesian Product

The Cartesian Product of two tables is the cross-product of all possible combi-
nations of rows from the two tables, such that each row of the first table is com-
bined (concatenated) with each row of the second table.

In SQL, the Cartesian Product operation occurs when two or more tables are
explicitly or implicitly (within a view) named in the FROM clause, all fields in
those tables are named in the SELECT clause, and no WHERE clause is present
to specify relationships among the tables.

Example In the example below, the tables “Employees” and “Departments” are combined
to form a virtual table, which is their Cartesian Product, by issuing the following
SQL statement:

SELECT *
FROM Employees,Departments

The asterisk in the SQL SELECT statement is used to denote “all fields in the
specified tables”.
2-10 Open M with SQL Data Dictionary Guide

Accessing Data in an Open M with SQL Relational Database
The “Employees” table is shown below:

The “Departments” table is shown below:

The table below represents the Cartesian Product of the “Employees” table and
the “Departments” table:

Note that this output may not be ordered by the “Employees.EmpName” field.
The ordering is subject to the specifications in the ORDER BY clause of the SQL
query, and

Table 2-6: Employees Table

EmpName EmpNum DeptNum

Bravo, Vicki 445-67-7800 1000

Doe, Suzanne 253-44-7898 3000

Corson, Bob 210-92-6518 2000

Table 2-7: Departments Table

DeptNum DeptName NumEmp DeptMgr

1000 Sales 50 Bravo, Vicki

2000 Administration 101 Corson, Bob

3000 Development 200 Doe, Suzanne

Table 2-8: Output Table After Cartesian Product Operation

E.EmpName E.EmpNum
E.Dept-
Num

D.Dept-
Num D. DeptName

D.Num-
Emp D.DeptMgr

Bravo, Vicki 445-67-7800 1000 1000 Sales 50 Bravo,Vicki

Bravo, Vicki 445-67-7800 1000 2000 Administration 101 Corson, Bob

Bravo, Vicki 445-67-7800 1000 3000 Development 200 Doe, Suzanne

Corson, Bob 210-92-6518 2000 1000 Sales 50 Bravo,Vicki

Corson, Bob 210-92-6518 2000 2000 Administration 101 Corson, Bob

Corson, Bob 210-92-6518 2000 3000 Development 200 Doe, Suzanne

Doe, Suzanne 253-44-7898 3000 1000 Sales 50 Bravo,Vicki

Doe, Suzanne 253-44-7898 3000 2000 Administration 101 Corson, Bob

Doe, Suzanne 253-44-7898 3000 3000 Development 200 Doe, Suzanne
Open M with SQL Data Dictionary Guide 2-11

Chapter 2—The Open M with SQL Relational Database
Project

The project operation extracts a subset of fields from an existing table. The result
is a new table (a virtual table) with the same number of rows but fewer fields.

You can perform a Project operation on a single table or on a combination of
tables.

Example In the example below, the fields “EmpName” and “DeptName” are selected from
the Cartesian Product of the tables “Employees” and “Departments”.

SELECT Employees.EmpName,Departments.DeptName
FROM Employees,Departments

The SELECT clause specifies the fields to be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause.

This Project operation yields the following table:

Whether you perform a query on one or many tables, the conceptual result is
always a new table that is derived from existing tables in the database.

Table 2-9: Output Table After Cartesian Product Operation

EmpName DeptName

Bravo, Vicki Sales

Bravo, Vicki Administration

Bravo, Vicki Development

Corson, Bob Sales

Corson, Bob Administration

Corson, Bob Development

Doe, Suzanne Sales

Doe, Suzanne Administration

Doe, Suzanne Development
2-12 Open M with SQL Data Dictionary Guide

Accessing Data in an Open M with SQL Relational Database
Restrict

The Restrict operation selects a designated set of rows from one or more tables.
In the SQL query language, restriction is expressed through the WHERE clause,
which uses the comparison operations, such as >, <, and =, for example:

WHERE City=”Boston”

or

WHERE Age>20

You can perform a Restrict operation on a single table or on a combination of
tables.

Example In the example below, all fields are selected from the Cartesian Product of the
tables “Employees” and “Departments”, but the output table is restricted to only
those rows for which the “NumEmp” field has a value greater than 100:

SELECT *
FROM Employees,Departments
WHERE Employees.NumEmp > 100

The SELECT clause uses the asterisk (*) to select all fields for inclusion in the
table. The Cartesian Product is derived from the tables named in the FROM
clause. The WHERE clause designates the condition for the restriction operation.

This Restrict operation yields the following table:

Note that restriction occurs through the WHERE statement, not through the
SELECT statement. The SELECT statement is used for projection, as discussed
above.

Table 2-10: Output Table After Restrict Operation

E.EmpName E.EmpNum
E.Dept-
Num

D.Dept-
Num D.DeptName

D.Num-
Emp D.DeptMgr

Bravo, Vicki 445-67-7800 1000 1000 Administration 101 Corson, Bob

Bravo, Vicki 445-67-7800 1000 3000 Development 200 Doe, Suzanne

Corson, Bob 210-92-6518 2000 1000 Administration 101 Corson, Bob

Corson, Bob 210-92-6518 2000 3000 Development 200 Doe, Suzanne

Doe, Suzanne 253-44-7898 3000 1000 Administration 101 Corson, Bob

Doe, Suzanne 253-44-7898 3000 3000 Development 200 Doe, Suzanne
Open M with SQL Data Dictionary Guide 2-13

Chapter 2—The Open M with SQL Relational Database
Joins

Joins provide the means of linking data in one table with data in another table and
are frequently used in defining reports and queries.

A join is an operation that combines two tables to produce a third, subject to a
restrictive condition. Every row of the new table must satisfy the restrictive con-
dition.

Usually, when the two tables (A and B) are combined to form a third table (C),
some condition is specified in the WHERE clause. This condition determines
how a row from B is chosen to combine with a row from A. Often, this condition
is equality, such that the value of a particular field from table A equals the value
from a particular field from table B. Combining tables in this way is called an
equijoin. Equijoins are often referred to as inner joins.

Although joins are often thought of as fundamental operators, they represent a
combination of Cartesian Product plus Restriction.

Example For an example of an inner join, consider the following two tables, a “Suppliers”
table and a “Parts” table:

Table 2-11: Suppliers Table

SNum SName SCity

S1 Smith Paris

S2 Jones London

S3 Blake Boston

S4 Whitney Boston

S5 Roberts Paris

Table 2-12: Parts Table

PNum PName PCity

P1 Nut Paris

P2 Screw Houston

P3 Cog New York

P4 Wheel Boston

P5 Switch Boston
2-14 Open M with SQL Data Dictionary Guide

Accessing Data in an Open M with SQL Relational Database
Suppose you wish to query the database for the names of every supplier, part, and
city, where the supplier and part are located in the same city. To do this, you
would use the following SQL query:

SELECT SName,PName,SCity
FROM Suppliers,Parts
WHERE Suppliers.SCity=Parts.PCity

The SELECT clause specifies the fields to be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause of the
above SQL statement, which combines the tables “Suppliers” and “Parts”. The
WHERE clause in the above statement (Suppliers.SCity=Parts.PCity) specifies
the inner join condition.

The Cartesian Product of the “Suppliers” table and “Parts” table is shown below.
The rows that satisfy the inner join condition are shaded.

Table 2-13: Output Table After Cartesian Product Operation

SNum SName SCity PNum PName PCity

S1 Smith Paris P1 Nut Paris

S1 Smith Paris P2 Screw Houston

S1 Smith Paris P3 Cog New York

S1 Smith Paris P4 Wheel Boston

S1 Smith Paris P5 Switch Boston

S2 Jones London P1 Nut Paris

S2 Jones London P2 Screw Houston

S2 Jones London P3 Cog New York

S2 Jones London P4 Wheel Boston

S2 Jones London P5 Switch Boston

S3 Blake Boston P1 Nut Paris

S3 Blake Boston P2 Screw Houston

S3 Blake Boston P3 Cog New York

S3 Blake Boston P4 Wheel Boston

S3 Blake Boston P5 Switch Boston

S4 Whitney Boston P1 Nut Paris

S4 Whitney Boston P2 Screw Houston

S4 Whitney Boston P3 Cog New York

S4 Whitney Boston P4 Wheel Boston
Open M with SQL Data Dictionary Guide 2-15

Chapter 2—The Open M with SQL Relational Database
This join operation yields the following output table:

When the join is based on an exact match between fields from the two tables, it is
a simple join. Rows in the both tables where no match is found do not appear in
the output table. There are no rows in the output table for the cities, “London”,
“New York”, or “Houston”.

InterSystems’ Extensions to the Relational Model

InterSystems has extended SQL and the relational model to include two addi-
tional types of joins: one-way outer joins and implicit joins.

One-Way Outer Joins

With standard “inner” joins, when rows of one table are linked with rows of a
second table, a row in the first table that finds no corresponding row in the sec-
ond table is excluded from the output table.

With one-way outer joins, all rows from the first table are included in the output
table even if there is no match in the second table. The first table pulls relevant

S4 Whitney Boston P5 Switch Boston

S5 Roberts Paris P1 Nut Paris

S5 Roberts Paris P2 Screw Houston

S5 Roberts Paris P3 Cog New York

S5 Roberts Paris P4 Wheel Boston

S5 Roberts Paris P5 Switch Boston

Table 2-14: Output After Join Operation

SName SCity PName

Smith Paris Nut

Blake Boston Wheel

Blake Boston Switch

Whitney Boston Wheel

Whitney Boston Switch

Roberts Paris Nut

Table 2-13: Output Table After Cartesian Product Operation (Continued)

SNum SName SCity PNum PName PCity
2-16 Open M with SQL Data Dictionary Guide

InterSystems’ Extensions to the Relational Model
information out of the second table but never sacrifices its own rows for lack of a
match in the second table.

When specifying a one-way outer join, the order in which you name the tables in
the FROM clause is very important. The first table you specify is the source table
for the join.

You specify an outer join by using the symbol =* in place of = in the WHERE
clause of the SQL query.

Example In the example below, the Suppliers table is specified as the source table for a
one-way outer join operation (=*) with the Parts table, where the SCity field
matches the PCity field.

SELECT SName,PName,SCity
FROM Suppliers,Parts
WHERE Suppliers.SCity=*Parts.PCity

The SELECT clause specifies the fields to be included in the projected table. The
Cartesian Product is derived from the tables named in the FROM clause of the
above SQL statement, which combines the Suppliers and Parts tables. The
WHERE clause in the above statement (Suppliers.SCity=*Parts.PCity) specifies
the one-way outer join condition.

This query returns all rows from the Suppliers source table as well as any rows
from the Parts table where the SCity field matches the PCity field.

This join operation yields the following output table:

Table 2-15: Output After Join Operation

SName SCity PName

Smith Paris Nut

Jones London

Blake Boston Wheel

Blake Boston Switch

Whitney Boston Wheel

Whitney Boston Switch

Roberts Paris Nut
Open M with SQL Data Dictionary Guide 2-17

Chapter 2—The Open M with SQL Relational Database
Implicit Joins

One of the most powerful features of the relational model is its ability to handle
unanticipated ad hoc queries in a graceful and straightforward manner. However,
for many implementations this capability is costly: the power to join tables in
complex ways often means sacrificing the ease of executing joins for the more
common connections between tables.

InterSystems has solved this problem by implementing the implicit join. Implicit
joins are pre-defined joins between tables which you specify in the Data Dictio-
nary. They allow you to define queries without specifying the WHERE condition
that is used to join tables.

Open M with SQL supports two types of implicit joins, designative references
and characteristic relationships.

Designative references and characteristic relationships are useful for:

 n Pre-defining commonly used joins
 n Improving data access efficiency
 n Formally specifying integrity constraints

Note You may only define designative and characteristic relationships among tables
that reside within a single database.

Designative References

A designative reference is a many-to-one link between tables in which one field
of the designating table contains the Row IDs of all rows in the designated table.
A designative reference is said to be a non-dependent link because rows in the
referenced table exist independently of rows in the designating table. In relational
database terminology, the designating table has a “foreign key” on the referenced
table. In M terminology, the designating table has a “pointer” to the referenced
table. In Open M with SQL, a field that designates another table is called a desig-
native reference field.

In the example below, the Customer field of the Invoice table serves as the Desig-
native Reference field to rows in the Customer designated table:

Table 2-16: Invoice Table

InvNum InvTotal Customer

1234 100.00 C1

5555 20,000.00 C3

3333 5,000.00 C4
2-18 Open M with SQL Data Dictionary Guide

InterSystems’ Extensions to the Relational Model
The Designative Reference field, when it is not empty, contains a value that iden-
tifies one and only one row of the referenced table. Every entry in the Customer
field of the Invoice table that is not empty must have exactly one corresponding
entry in the Customer table. However, not all of the Number field values in the
Customer table need appear in the Customer field of the Invoice table. In this
way, a designative reference satisfies the relational definition of a one-way outer
join.

Furthermore, when the “Invoice” table is linked by designative reference to the
Customer table, the following is true:

 n There may be invoices with no “Customer” value, but
 n If a “Customer” value appears, there must also be a “Number” value in the

“Customer” table with the same value, and
 n There may be customers with no invoices

Designative references contribute to data storage efficiency by helping to elimi-
nate unnecessary redundancy. Since you can access the information through a
designative reference to the Customer table, it is not necessary to store the cus-
tomer names and addresses in the Invoice table. Accordingly, updates need be
made in only one table, rather than in two or more tables.

A table may have several fields that designate the same or different tables. Simi-
larly, a table may be designated by any number of tables. For example, the
Invoice table may contain another designative reference field to the Accounts
table. And the Accounts table might have a designative reference to the Customer
table.

Characteristic Relationships

A characteristic relationship is a link between tables in which rows in one table
(the “child table”) are existence-dependent on (cannot exist without) rows in
another table (the “parent table”), such that parent rows have a one-to-many rela-

Table 2-17: Customer Table

Number Name Address

C1 Acme Hardware 10 Main Street
Boston, MA

C2 Waterfront Motors 210 Willow Street
Brighton, MA

C3 Global Furniture 1010 5th Street
New York, NY

C4 Hill Pharmaceuticals 958Jordan Ave.
Pittsburgh, PA
Open M with SQL Data Dictionary Guide 2-19

Chapter 2—The Open M with SQL Relational Database
tionship with child rows. A child table always designates its parent table. For this
reason, a characteristic relationship can be thought of as a kind of designative ref-
erence. However, a characteristic relationship is more restrictive than a designa-
tive reference since the join condition specifies that all rows of the child table
must designate the same parent table row. In this way, a characteristic relation-
ship satisfies the relational definition of an inner join.

Extending our previous example, the Line_Items table, shown below, is a child
table of the Invoice table (its parent). The existence of the Line_Items table is
entirely dependent on its parent Invoice table. If an invoice is deleted from the
parent table, its line items become “orphaned”, and must also be deleted, or trans-
ferred to a “foster parent”. Within the Data Dictionary definition of a table, you
may set a trigger that will function to automatically delete all child rows when its
parent is deleted.

Each row of the Invoice table can have multiple line items, illustrating the
one-to-many relationship:

An Invoice table row might also have no line items.

Though characteristic relationships may be perceived as hierarchical, they com-
ply with the tenets of the relational model; just as other tables, child tables can be
addressed through SQL without explicit reference to the parent table.

A parent table may have several child tables. For example, a Patient table may
have Visits, Medical_Problems, and Lab_Tests as child tables. However, a child
table may have only one parent. (The Visits table, for example, may be a child
only of the Patient table.) A child table can never be “orphaned”, i.e., exist with-
out a parent table.

Table 2-18: Invoice Table

InvNum InvTotal Customer

2222 10,000.00 C3

5555 20,000.00 C2

1234 100.00 C1

Table 2-19: Line_Items Table

InvNum Item UnitCost Quantity Amount

2222 Chair 200.00 10 2,000.00

2222 Desk 300.00 10 3,000.00

2222 Rug 250.00 4 1,000.00

2222 Bookshelf 200.00 30 6,000.00
2-20 Open M with SQL Data Dictionary Guide

InterSystems’ Extensions to the Relational Model
Implicit Join Syntax

Implicit joins simplify the process of querying the database. By defining charac-
teristic relationships and designative references in the Data Dictionary, you may
take advantage of Open M with SQL’s implicit join syntax to facilitate the defini-
tion of queries.

Arrow syntax, a dash followed by a greater-than symbol (->), is an InterSys-
tems’ SQL extension used to indicate an implicit join between tables. This syntax
causes an additional outer join condition to be added implicitly to the WHERE
clause and the joined table to be added implicitly to the FROM clause of an SQL
query. See “Extended Arrow Syntax” on page 7-7 in Chapter 7, Implicit Joins .

In Open M with SQL, you may use arrow syntax in the following three cases:

1. To signify Designative References between tables

2. To signify Child-to-Parent References between tables

3. To signify Parent-to-Child References between tables

Implicit Join Syntax in a Designative Reference

If the field A.b designates table B, and x is a field in table B, the reference:

A.b->x

points to the value of x in the row of table B corresponding to A.b. It is inter-
preted as a reference to B.x with B added implicitly to the FROM clause and an
additional outer join condition added implicitly to the WHERE clause.

For example, the following query retrieves the patient's name and patient's doc-
tor's name for every patient who lives in Boston:

SELECT Patient.Pname, Patient.Doctor->Dname
FROM Patient
WHERE Patient.City = “Boston”

Assuming that Patient.Doctor is a designative reference to the Doctor table, the
above query is equivalent to:

SELECT Patient.Pname,Doctor.Dname
FROM Patient,Doctor
WHERE Patient.City = “Boston”

AND Patient.Doctor = *Doctor.Doctor
Open M with SQL Data Dictionary Guide 2-21

Chapter 2—The Open M with SQL Relational Database
Implicit Join Syntax in a Child-to-Parent Reference

If P is the parent of C and x is a field in P, the implicit join syntax:

C.P->x

for a given row points to the value of x in that row's parent row. It is interpreted
as a reference to P.x with P added implicitly to the FROM clause and an addi-
tional outer join condition added implicitly to the WHERE clause.

For example, given a parent table Customer with a child table Invoice, the fol-
lowing query:

SELECT Invoice.Customer->Name
FROM Invoice
WHERE Invoice.Number = 51140

is equivalent to:

SELECT Customer.Name
FROM Invoice,Customer
WHERE Invoice.Number = 51140

AND Invoice.Customer = Customer.Customer

Implicit Join Syntax in a Parent-to-Child Reference

If P is the parent of C and x is a field in C, the implicit join reference:

P.C->x

for a given P row points to the value of x in a child row of that row. It is inter-
preted as a reference to C.x with C added implicitly to the FROM clause and an
additional outer join condition added to the WHERE clause.

For example, given parent Customer with child Invoice, the following query for
all invoices for all customers named Smith:

SELECT Customer.Invoice->Number
FROM Customer
WHERE Customer.Name = “Smith”

is equivalent to:

SELECT Invoice.Number
FROM Customer,Invoice
WHERE Customer.Name = “Smith”

AND Customer.Customer = Invoice.Customer
2-22 Open M with SQL Data Dictionary Guide

InterSystems’ Extensions to the Relational Model
Integrity Constraints

Implicit join definitions include built-in integrity constraints. For instance, the
existence-dependent relationship between the Line_Items table and the “nvoice
table may be regarded as an integrity constraint: no line item can exist without a
corresponding invoice.

The Open M with SQL relational Data Dictionary can be used to define other
integrity constraints, such as:

 n Field validation code to enforce integrity constraints at the field processing
level, such as affect field values, required fields, and field formats.

 n Triggers to enforce table integrity constraints, such as complex interactions
between fields, or the prohibition of DELETEs from the table.

Multi-Line Fields

Open M with SQL extends the relational database model by permitting the cre-
ation of multi-line fields. Such fields are useful for storing information about a
single entity where that information spans several lines. A typical multi-line field
might be used for an address or a block of comment text.

Open M with SQL treats the data in multi-line fields as a single entity, in accor-
dance with First Normal Form principle of the relational model.

InterSystems’ SQL supports the use of multi-line fields in input operations
(INSERT and UPDATE statements) and output operations using INTO lists by
creating an array and matching each line of the multi-line field to a node in the
array. InterSystems’ SQL also supports the naming of multi-line fields in the
SELECT statement of SQL SELECT queries. It does not, however, allow the use
of multi-line fields to perform comparisons or row ordering in an SQL SELECT
query.

You can access pieces of multi-line field data using the M language, but this use
of multi-line fields is not recommended, because it does not adhere to first nor-
mal form.
Open M with SQL Data Dictionary Guide 2-23

Chapter 2—The Open M with SQL Relational Database
2-24 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

3
Using the Data Dictionary Interface
The interface to the Open M Developer environment, of which the Data Dictio-
nary is a component, is itself an Open M with SQL application consisting of
menus and forms.

This chapter provides a quick introduction to the Open M with SQL application
development environment. It shows how to access the Data Dictionary and create
a base table definition and also teaches you the basics of how to use menus and
forms.

Specifically, this chapter covers the following topics:

 n Accessing the Data Dictionary page 3-2
 n Understanding the Data Dictionary Interface page 3-5
 n Navigating in Forms page 3-9
 n Using On-Line Help page 3-11
 n Saving a Base Table Definition and Exiting the Form page 3-13
onary Guide 3-1

Chapter 3—Using the Data Dictionary Interface
Accessing the Data Dictionary

The Data Dictionary is the component of the Open M Developer environment in
which you define the underlying structure of your database.

Procedure To access the Data Dictionary:

1. Change to a directory which contains an M database.

On ISM systems, the M database directory contains a OPENM.DAT file. If
you want to create a new M database and are running on an ISM system, you
can run the MSU utility to do so.

If you are using another version of M, consult your documentation.

2. Enter the Open M Developer environment.

The command you use depends on the M system you are running and your
operating system. For example, if you are running on an ISM for UNIX sys-
tem, you type the following command at the operating system prompt:

$mux

At the M programmer prompt, type the following command to enter Open M
Developer:

> do ^%msql

You see the Terminal Type: prompt, as shown below:

Terminal Type: VT220 =>

At the Terminal Type prompt, enter the terminal type you are currently using,
or press <RETURN> to accept the default.
3-2 Open M with SQL Data Dictionary Guide

Accessing the Data Dictionary
You see the Open M with SQL User Identification window, as shown below:

3. At the User Name field, enter your UserName, and press <RETURN>.

At the Password field, enter your password, and press <RETURN>.

At the Language field, enter the name of the language in which you want
Open M with SQL to run.

Note: You may press the <SEARCH CURRENT TABLE> key to see a
lookup box that lists all languages from which you may choose.

You see the Open M Developer Menu, as shown below:

 ÚÄÄÄ¿
 ³ÚÄÄÄ¿³
 ³³ Open M with SQL User Identification ³³
 ³ÃÂÄÄÄÂ´³
 ³ÃÙ À´³
 ³³ WELCOME TO OPEN M WITH SQL ³³
 ³³ ³³
 ³³ Version F ³³
 ³³ Maintenance Release F.10 ³³
 ³Ã¿ Ú´³
 ³ÀÁÄÄÄÁÙ³
 ³ÚÂÄÄÄÂ¿³
 ³ÃÙ À´³
 ³³ User Name Password ³³
 ³³ ³³
 ³³ ³³
 ³³ Language ³³
 ³³ ³³
 ³Ã¿ Ú´³
 ³ÀÁÄÄÄÁÙ³
 ÀÄÄÄÙ

User Login Press <Help> For Help

Enter a valid Open M Developer username.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M Developer
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 ÚÄOpen M Developer MenuÄ¿
 ³ ³
 ³ Data Dictionary ³
 ³ Forms ³
 ³ Reports ³
 ³ Queries ³
 ³ Menu Generator ³
 ³ Help Options ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ System Management ³
 ³ Privileges ³
 ³ Developer Utilities ³
 ³ User Utilities ³
 ³ Server Management ³
 ³ Relational Gateway ³
 ³ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Directory:
/us/morrow/
 Thursday Mar 27, 1997 Copyright (c) 1993 - InterSystems Corporation

Open M Developer Menu 07:15PM Press <Help> For Help

Press <RETURN> to select the Data Dictionary menu.
Open M with SQL Data Dictionary Guide 3-3

Chapter 3—Using the Data Dictionary Interface
4. From the Open M Developer Menu, select the Data Dictionary option.

To select an option from a menu, move the highlight bar on top of the option
you want to select, and press <RETURN>. There are two ways to move the
highlight bar:

 • Use the <UP ARROW> and <DOWN ARROW> keys
 • Type the initial characters of the option you want

Note: You may type d to select this option—it is a mnemonic accelerator.

You see the Data Dictionary menu, as shown below:

 ------------------------------ OPEN M Developer ------------------------------

 +-----------Data Dictionary-----------+
 | |
 | Base Table Definition |
 | View Definition |
 | Compile a Table |
 | Copy a Base Table Field |
 | Copy a View |
 | Change View's Starting Table |
 | Recreate all Default Structure Maps |
 | Populate Index Maps for a Table |
 | Reports on Data Dictionary |
 | |
 +-------------------------------------+

 Directory: /us/morrow/
 Tuesday Mar 27, 1997 Copyright (c) 1993 - InterSystems Corporation

Data Dictionary 09:55AM Press <PF1><PF3> For Help

Press <RETURN> to select Base Table Definition.
3-4 Open M with SQL Data Dictionary Guide

Understanding the Data Dictionary Interface
Understanding the Data Dictionary Interface

The Data Dictionary interface is implemented as an Open M with SQL applica-
tion, consisting of forms and windows.

A form consists of one master window and optionally one or more auxiliary win-
dows. There are two types of forms in Open M with SQL:

 n Single-row forms
 n Multi-row forms

Single-Row Forms

Single-row forms display one row at a time. When you invoke a single-row form,
you first see a row selection window (also called lookup window). At this row
selection window, you can insert a new row or retrieve an existing one. After
completing row selection, you see the form’s master window, which solicits
information for the newly inserted row or lets you edit information on the
retrieved row.

Multi-Row Forms

Multi-row forms display multiple rows simultaneously. Multi-row forms have no
row selection window. When you invoke a multi-row form, you first see the mas-
ter window, which displays all (or a pre-defined subset of) existing rows. You can
insert new rows or edit the information for existing rows.

Accessing the Base Table Definition Window

The Base Table Definition window is an example of a single-row form.

Procedure To access the Base Table Definition window:

1. From the Data Dictionary menu, select the Base Table Definition option.
Open M with SQL Data Dictionary Guide 3-5

Chapter 3—Using the Data Dictionary Interface
You see the Base Table Definition lookup window (the Base Table Definition
form is a single-row form), as shown below:

2. At the Base Table Name field, enter a sequence of characters to serve as the
Base Table name, and press <RETURN>.

To create a new base table, you must enter a name that is distinct from all
existing base table names. For further details on base table naming conven-
tions, see “Defining a Base Table” on page 5-4 in Chapter 5, Defining a Base
Table .

The “Is this a new entry?” prompt appears just below the status line.

3. At the “Is this a new entry?” prompt, press <RETURN> to accept the “Yes”
default and confirm that you are creating a new base table.

You see the Base Table Definition master window, as shown below:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄBase Table DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Base Table Name ³
³ _________________________ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
ÀÄÄÄ
ÄÙ

Base Table Definition Selecting Press <Help> For Help

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| gsm_test_________________ ___________________________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
| |
| < M/WINDOWS Lookups > |
| |
| < Physical Structure > |
| |
| Approximate Number of Rows 250_________ |
| |
+--+
 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options

Base Table Definition Unsaved Data Press <PF1><PF3> For Help
3-6 Open M with SQL Data Dictionary Guide

Understanding the Data Dictionary Interface
 Elements of a Window

An Open M with SQL window, such as the Base Table Definition window, has
the following elements:

 n Data entry area
 n Status line
 n Message line (when one exists)
 n Horizontal options menu (when one exists)

Data Entry Area

An Open M with SQL window consists of as many lines as will fit on your termi-
nal screen. One of those lines is reserved for the status line. Optionally, two more
are reserved for the horizontal options menu and another for the message line.
The remaining lines belong to the data entry area.

The data entry area is the main portion of the screen. It contains fields and their
captions. It may also contain a window title and various other objects such as line
drawing objects.

Required fields, where a value must be present in order to save the base table def-
inition, appear in special typeface, depending on your terminal type. In this
guide, they appear in boldface.

Status Line

The Status Line appears in reverse video between the data entry area and the hor-
izontal options menu. It displays the following information:

 n Name of the current window
 n The appropriate keystrokes on your terminal for accessing the Open M with

SQL Help Menu
 n Current form run-time mode

The table below lists and describes these form run-time modes:
Open M with SQL Data Dictionary Guide 3-7

Chapter 3—Using the Data Dictionary Interface

Horizontal Options Menu

The horizontal options menu, if it exists, displays across the bottom of the screen,
directly beneath the status line. This menu contains various options related to the
current window.

Procedure To access an option on the Horizontal Options Menu:

1. From anywhere in the data entry area of a window, press the <GO TO BOTTOM
MENU> key.

The cursor moves to the Horizontal Options Menu.

Table 3-1: Open M with SQL Form Run-time Modes

Mode Description

Selecting Selecting mode occurs only in single-row forms. Also known as row
selection, this mode is active whenever the user is selecting a row from
the database.

Data Entry In data entry mode, a user can edit or delete field values for existing
rows or insert values for new rows. Any window that allows users to
add, edit, or delete field values is a data entry window.
In data entry mode, no message appears in the center of the status line
until a field has been modified, at which time the message “Unsaved
data” appears.

Unsaved Data The form is in data entry mode and new data has been added/edited but
not saved.

Inquiry Inquiry mode prohibits users from modifying the information displayed
on a window.
In inquiry mode, users may navigate through the fields on a window to
view their values, invoke branching fields and other triggers, back out of
the current window, or proceed to the next window. However, users may
not add, edit, or delete data.

/FILING... This message flashes briefly in the middle of the status line whenever
you save unsaved data.
3-8 Open M with SQL Data Dictionary Guide

Navigating in Forms
2. On the Horizontal Options Menu, you may select and invoke an option using
any one of the following methods:

a. Use the arrow keys to position the cursor on the desired option, and press
<RETURN> to invoke it.

b. Type the first letter of an option (the cursor selects and automatically
invokes the option).

c. Press <CTRL-E> plus the first letter of the desired option.
d. If you are selecting an option from a submenu, you may type

<CTRL-E>xy where x is the first letter of the primary menu option and y is
the first letter of the submenu option.

Message Line

The message line is located just below the status line at the very bottom line of
your display screen. The message line displays the following information:

 n Error message or Short Help message for the current field.

Note: Sometimes, fields are defined to display their Short Help mes-
sages automatically. In this case, you see the Short Help mes-
sage as soon as the cursor lands on the field. If the field is not
defined to display its Short Help message automatically, you see
this message only when you press the <EXPLAIN> key.

 n Some system prompts, such as “Is this a new entry?”.

Navigating in Forms

This section describes how to navigate forms using keyboard actions.

Keyboard Actions

Since Open M with SQL supports many different terminals with different key-
boards, InterSystems has developed its own terminology for keyboard actions.
For instance, the keyboard action <GO TO BOTTOM MENU> moves the cursor
down to the horizontal options menu and highlights the first menu option.

Open M with SQL maps each keyboard action to a particular key or keys for each
terminal type. For example, on the DEC VT220 terminal type, you accomplish
the <GO TO BOTTOM MENU> keyboard action by pressing the <F3> key. This
guide and the software both reference the keyboard action names rather than
actual key names on your terminal keyboard. The key names are listed in Appen-
dix B, Keyboard Actions.
Open M with SQL Data Dictionary Guide 3-9

Chapter 3—Using the Data Dictionary Interface
Learning the Keys Which Perform Actions on Your Keyboard

You may press the <HELP> key to see a list on-line that shows the keypress(es)
assigned to each keyboard action on your terminal keyboard.

You may also reference Appendix B, Keyboard Actions, which contains a table
that shows the key(s) assigned to each keyboard action for every terminal type.
You may want to place a photocopy of the table for your terminal type near your
keyboard.

Frequently Used Keyboard Actions

The following table lists and describes the keyboard actions you need to get
started:

Table 3-2: Frequently Used Keyboard Actions

Keyboard Action Description

<RETURN> Selects an option from a lookup box or menu.
Moves cursor to next field or activates a branching field in a
window.
Mimics <PROCEED> action when pressed when cursor is on
the “<proceed>” prompt at the bottom of a window.

<RIGHT ARROW> Moves cursor one character to the right in a field.
Moves highlight bar to the next option in a menu.

<TAB> Moves cursor to next field or menu option. Does not activate
branching fields.

<GO TO BOTTOM MENU> Moves cursor to the horizontal options menu at the bottom of
the screen (if one exists) and highlights the first menu option.

<PROCEED> Proceeds to the next logical step in a form. If you are on the
form’s master window, it saves unsaved data and exits the
form. You can set a toggle that forces the PROCEED action to
display a save menu before saving data and exiting a form.
For more information on setting the PROCEED toggle, see
the section of this chapter entitled “Saving a Base Table Defi-
nition and Exiting the Form” on page 3-13.

<PREVIOUS> Closes the current window and moves back to the previous
step in a form’s development. If you are on the master window
of a form, PREVIOUS exits the form — if there is unsaved
data, it first displays a Save Menu to give you the option of
saving before you exit. For more information on the Save
Menu, see the section of this chapter entitled “Saving a Base
Table Definition and Exiting the Form” on page 3-13.

<SAVE AND REMAIN> Saves all unsaved data throughout the entire form and leaves
the cursor in the same place where you invoked the key
3-10 Open M with SQL Data Dictionary Guide

Using On-Line Help
To learn more about using Form Generator forms, see the Open M/SQL User
Interface Programming Guide.

Using On-Line Help

The Open M with SQL System Help Menu is a multiple screen on-line help facil-
ity that provides the following information:

 n Lists all Open M with SQL keyboard actions in subgroups of associated
functions and shows the keystroke(s) you press to invoke them on your ter-
minal type. For example, on the Save data and Exit menu you can see the
corresponding keystrokes for all the exit keys— <PROCEED>, <PREVIOUS>,
<GETOUT>, <GETOUTALL>, and <SAVE AND REMAIN>.

 n Lets you customize your run-time environment by activating or deactivating
certain Open M with SQL options, such as:
 • PROCEED Save Menu toggle
 • Language setting
 • Insert/Typeover mode setting
The preferences you define apply only to your local environment. Open M
with SQL retains these settings across sessions. You define these run-time
preferences in the Other Functions menu:

<GETOUT> Exits all the way out of a form, no matter where it is invoked.
In a single-row form, GETOUT loops back to the row selection
window. You can set a toggle that disables this looping behav-
ior so that <GETOUT> exits the form back to the calling loca-
tion. In a multi-row form, GETOUT always backs out to the
calling location. If there is unsaved data, GETOUT first dis-
plays a Save Menu to give you the option of saving before you
exit. For more information on the Save Menu, see the section
of this chapter entitled “Saving a Base Table Definition and
Exiting the Form” on page 3-13.

<GETOUTALL> Exits the entire application and returns to the location where
Open M with SQL was called. For example, if you called Open
M with SQL from the M prompt, GETOUTALL returns you to
the M prompt. Or, if you called Open M with SQL from some
other program, GETOUTALL returns you to that program.

Table 3-2: Frequently Used Keyboard Actions
Open M with SQL Data Dictionary Guide 3-11

Chapter 3—Using the Data Dictionary Interface
Procedure To access and use the Open M with SQL System Help menu:

1. From anywhere in the Open M Developer environment, press the <HELP>
key.

Note: You can see the key(s) to press on your terminal type to invoke
the <HELP> keyboard action on the far right side of the status
line.

You see the Open M with SQL System Help menu, as shown below:

Menu items that are followed by a key or key sequence are keyboard actions.
The key sequence represents the key(s) you press on your terminal to invoke
the action. Alternatively, you can move the highlight bar to the menu item
and press <RETURN> to invoke the corresponding action.

Menu items that are followed by an ellipsis (...) represent submenus that list
more action keys. The actions are organized in functionally similar groups.

Only items shown in bold are active. Other items are not applicable to the
location in the Open M with SQL development environment where you
invoked the Help Menu.

2. Move your cursor to the menu item you want to activate, and press
<RETURN>.

+------------------------Base Table Definition---------------------+
| |
| Base T+-Open M with SQL System Help--------------------+ |
gsm_te		________
	Explain this item <PF2>	
	Search the data base for a record <PF1><PF2>	
	List choices for this item <PF1><L>	
	Go to menu bar <PF1><PF1>	
	Go to bottom menu <PF3>	
	Save data and exit menu ...	
	Keyboard usage menu ...	
	Other functions menu ...	
	Get out of this menu	
+--+		
+--+
 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options

... Unsaved Data Press <PF1><PF3> For Help
3-12 Open M with SQL Data Dictionary Guide

Saving a Base Table Definition and Exiting the Form
For example, when you select the Other Functions... menu item, you see the
Other Function submenu, as shown below:

3. To move back to the previous screen in the Open M with SQL System Help
menu, select the “Get out of this menu” option.

The “Get out of this menu” option emulates the <PREVIOUS> key.

4. To exit the Open M with SQL Help menu completely from any screen, press
the <GETOUT> key.

Saving a Base Table Definition and Exiting the Form

When you create or edit a base table definition, you may use any of the following
keyboard actions to save your unsaved data and exit definition form:

 n PROCEED
 n PREVIOUS
 n GETOUT
 n GETOUTALL

Typically, you should use the PROCEED action to save unsaved data and the
PREVIOUS or GETOUT action to exit the form without saving unsaved data.

However, you can never leave a form that has unsaved data without explicitly
choosing not to save the unsaved data. Saving occurs either automatically, or you
see a menu that allows you to choose to save or not to save, as you prefer.

+------------------------Base Table Definition---------------------+
| |
| Base T+-Other Functions--------------------------------- |
gsm_te		________
	Switch insert/typeover mode	
	Switch save menu show/don't show mode	
	User defined keys <PF1><K>	
	Redraw Screen	
	Character Set	
	Language	
	Colors	
	Get out of this menu	
+--+		
+--+
 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options

... Unsaved Data Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 3-13

Chapter 3—Using the Data Dictionary Interface
Save Menu

Whenever you exit a form via a PREVIOUS, GETOUT, or GETOUTALL action
and the form has unsaved data, Open M with SQL automatically displays the fol-
lowing Save menu before filing:

The first option, “Save”, saves unsaved data before exiting. The second option,
“Do Not Save”, exits the form without saving unsaved data. The third option,
“Return to Form”, returns to the form without saving, effectively canceling the
action.

Note The appearance of this menu is not subject to the Save menu toggle associated
with a PROCEED action.

Save on PROCEED Menu

When a PROCEED action is invoked from the master window of a form and the
form has unsaved data, Open M with SQL may or may not display the Save on
PROCEED menu before filing unsaved data. The appearance of the Save on
PROCEED menu is controlled by an ON/OFF toggle, which is initialized by a
system default and is also accessible to the individual user for local override.

If the PROCEED save toggle is ON, the following Save on PROCEED menu
appears whenever a form is exited via PROCEED and there is unsaved data:

ÚÄThere is UnSaved DataÄ¿
³ ³
³ Save and Continue ³
³ Return Without Saving ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

The first option. “Save and Continue”, saves unsaved data before exiting. The
second option, “Return Without Saving”, returns to the form without saving,
effectively canceling the PROCEED action.

If the PROCEED save toggle is OFF, Open M with SQL does not display the
Save on PROCEED menu when a PROCEED action is executed. In this case, fil-
ing occurs automatically, without the benefit of a “confirm” prompt.

Note PROCEED yields an error message if the user invokes it before completing all
required fields on the form.

+-There are Unsaved Data---+ |
|
| Save |
| Do Not Save |
| Return to Form |
+--------------------------+
3-14 Open M with SQL Data Dictionary Guide

Saving a Base Table Definition and Exiting the Form
Setting the PROCEED Save Toggle

The default setting of the PROCEED Save toggle is established by the system
manager in the System Configuration window.

Whatever the default, you may switch the mode for your own local environment
by selecting the “Switch save menu show/don't show mode” option in the Other
Functions submenu of the Open M with SQL System Help menu. Selecting this
option automatically reverses the previous setting.

Procedure To change the setting of the PROCEED Save toggle:

1. Invoke a form in the Open M with SQL development environment and edit
the data so there is unsaved data in the form.

2. From the master window of the form, press <PROCEED> key.

This tells you the current setting of the PROCEED Save toggle. If you see the
Save on PROCEED menu, the toggle is ON. If you do not see the Save on
PROCEED menu, the toggle is OFF.

3. Press the <HELP> key.

You see the Open M with SQL System Help menu.

4. Move the highlight bar to the Other Functions menu option, and press
<RETURN>.

You see the Other Functions submenu.

5. Move the highlight bar to the “Switch save menu show/don't show mode”
menu option, and press <RETURN>.

This changes the toggle setting.

6. Press the <GETOUT> key to exit the Open M with SQL System Help menu.
Open M with SQL Data Dictionary Guide 3-15

Chapter 3—Using the Data Dictionary Interface
3-16 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

4
Designing a Sample Application
This chapter provides a brief overview of the process for designing a relational
database application and introduces you to the sample application used through-
out this guide. The sample application is a Documentation Tracking system.

Specifically, this chapter covers the following topics:

 n Designing a Relational Database page 4-2
 n Overview of Sample Application page 4-4
 n Base Tables in Documentation Tracking System page 4-5
 n Reports in Documentation Tracking System page 4-15
onary Guide 4-1

Chapter 4—Designing a Sample Application
Designing a Relational Database

The following five steps outline the process for developing a complete relational
database application in Open M with SQL:

1. Map the functional specifications for the application out on paper.

2. Define the data structures in the Data Dictionary, along with integrity con-
straints, table relationships, and triggers.

3. Use the Form Generator to develop data entry and inquiry forms.

4. Use M/PACT to develop reports.

5. Use the Menu Generator to tie the different parts of the application together.

Mapping the Functional Specifications

The first step in developing a relational database application is to organize the
logical structure of the data on paper as a series of tables, just as you might
design a paper filing system. To do this, consider the functional needs of your
application and make a list of all the different pieces of data that you need. The
object of the design is to describe the tables that constitute the database and how
those tables will interact with one another. For example, one application might
have a customer table, an invoice table, an invoice line item table, a parts table,
etc. The customer table might then consist of fields for customer name, address,
phone, current balance, etc.

You should also consider the data you need at the field level. For each field, iden-
tify its characteristics: name, data type, etc. It may be useful to develop a naming
convention for fields if base tables share similar field names. This makes it easy
to identify the base table to which a field belongs when you are working with
views. For example, if you have a base table “Patients”, you might define all of
its fields to use the suffix “_Pat”. Using a suffix rather than a prefix avoids hav-
ing the same pattern at the beginning of all fields, thus allowing lookups to work
with fewer keystrokes.

You may also want to design on paper the forms and reports your application will
use. This can help ensure that you have included all the necessary data and prop-
erly defined the relationships between base tables.
4-2 Open M with SQL Data Dictionary Guide

Designing a Relational Database
Defining the Data Structure in the Data Dictionary

When you complete your design on paper, you are ready to define base tables and
views in the Data Dictionary.

In the Data Dictionary, you will define integrity constraints on your data. Integ-
rity constraints may be very simple; for example, you can specify a range of valid
numbers that can be entered for a field. Other constraints may be more complex;
perhaps you want to specify that an invoice cannot be entered into the invoice
table without a corresponding customer entry in the customer table. Even more
complex constraints may require the addition of complete SQL queries or proce-
dural M code.

You will also define the relationships between base tables. For example, where
rows of an invoice line item table cannot exist without a corresponding row in an
invoice table, the line item table should be defined as a characteristic table of
the invoice table. One field in the invoice table should also be defined to serve as
a designative reference to rows in the customer table. Open M with SQL uses
this information to enforce integrity constraints and produce automatic joins in
queries.

You may also define processing triggers in the Data Dictionary. Triggers are
sequences of actions defined to automatically occur, or be triggered, when cer-
tain other events occur. A trigger definition usually consists of an SQL query or
M code segment that is invoked when rows are created, modified, or deleted. For
example, if a medical record for a given patient is deleted, a trigger may automat-
ically delete all of that patient’s lab test information from various lab files. For
further details see Chapter 11, Base Table Triggers .

See Chapter 1, Introduction to the Data Dictionary and Chapter 2, The Open M
with SQL Relational Database , to learn about design concepts that save disk
space, maintain database integrity and enhance programmer productivity.
Open M with SQL Data Dictionary Guide 4-3

Chapter 4—Designing a Sample Application
Overview of Sample Application

The remainder of this chapter describes the design of the sample application used
throughout Part II: Basics of this guide. The description includes many caveats
that may help you as you design your own relational database applications.

The sample application is the InterSystems Documentation Tracking system. Its
purpose is to track editions of all InterSystems guides as well as orders for guide
covers and edition copies.

This sample application consists of seven base tables, one view, and several
forms and reports. This guide is primarily concerned with the base tables and
view. However, we make occasional reference to the forms and reports for illus-
tration purposes.

The sample base tables contain fields that cover every data type supported by
Open M with SQL. In addition, these tables demonstrate the use of many
advanced features of the Data Dictionary environment, including lookups, trig-
gers, and base table validation code.

Sample Application Uses Default Physical Structure

All the base tables in the Documentation Tracking system use default physical
structure. As a result, the Data Dictionary automatically creates index maps for
all fields defined as lookup fields in these base tables.

If you define a customized physical structure for a base table, the Data Dictionary
does not automatically create index maps on any fields—you must define them
manually.
4-4 Open M with SQL Data Dictionary Guide

Base Tables in Documentation Tracking System
Base Tables in Documentation Tracking System

The table below summarizes the base tables included in the Documentation
Tracking system:

Table 4-1: Base Tables in Documentation Tracking System

Table Name Description

DocStaff Contains names of and information about InterSystems technical writ-
ers.

Guides Contains names of and information about each InterSystems guide.

Editions Child of Guides. Contains version and revision date of each edition of
each Guide, as well as other information, such as new features, main
author, and number of pages.

StaffEditions Child of Editions. Contains names of other technical writers who worked
on an edition and their role.

NumCopies Child of Editions. Contains number of copies of an edition ordered by
year.

CopyOrders Contains information about each order placed for an edition, such as
number of copies, vendor and cost.

CoverOrders Contains information about each order placed for an edition, such as
number of covers, vendor and cost.
Open M with SQL Data Dictionary Guide 4-5

Chapter 4—Designing a Sample Application
Relationships Between Base Tables

The diagram below describes the relationships between the base tables in the
Documentation Tracking system.

Figure 4-1: Base Table Relationships in Documentation Tracking System

Guides CopyOrders

Editions CoverOrders

StaffEditions NumCopies DocStaff

Designative Reference

Characteristic Relationship
4-6 Open M with SQL Data Dictionary Guide

Base Tables in Documentation Tracking System
Base Table Fields

This section summarizes the fields in each base table in the Documentation
Tracking system. The first field in the table is the RowID field.

DocStaff Base Table

The table below lists and describes the fields in the “DocStaff” base table:

Design Notes for DocStaff Base Table

This base table contains information about each technical writer in the InterSys-
tems Documentation department.

The “Phone” field is defined as a text field with no validation code, which allows
for the input of international phone numbers.

Table 4-2: Fields in DocStaff Base Table

Field Data Type Required? Unique?
Lookup
Field?

DocStaff RowID Yes Yes No

Name Name Yes Yes Yes

Phone Text No No No

Street Text
Multi-line

No No No

City Text No No No

State Text
Max. Length — 2

No No No

Country Text No No No

Zip Number
Max. Length — 9
Checks for 5 or 9 digits. If
9, validation code adds a
dash character (-).

No No No

HireDate Date No No No

ServiceLength Number
Decimal places — 2
Computed field (result
always equal to the com-
putation)

No No No
Open M with SQL Data Dictionary Guide 4-7

Chapter 4—Designing a Sample Application
The address information is geared to the United States. It is broken up into sepa-
rate fields, since there is sometimes a need to sort by city, state, or zip code. The
“Street” field is a multi-line field to allow for both a street address and a suite or
apartment number.

The “State” field permits two alphabetic characters, as used in standard postal
abbreviations. A field validation routine checks for a legal value by comparing
input to a list of the standard state abbreviations. Another way to do this is to cre-
ate a separate base table that contains one row for each state abbreviation and
then make the “State” field a designative reference to that table. If you elected to
customize the physical structure for this state table, you could define the postal
abbreviation as the RowID field, which is possible since each postal abbreviation
is unique. This would improve the processing efficiency of your application.

The “ServiceLength” field is a computed field based on the value of another
field, “HireDate”. For more information on defining computed fields, see Chap-
ter 6, Defining Base Table Fields .

Guides Base Table

The table below lists and describes the fields in the “Guides” base table:

Table 4-3: Fields in Guides Base Table

Field Data Type Required? Unique?
Lookup
Field? Computed?

Guides RowID Yes Yes No No

Title Text Yes Yes Yes No

Product Multiple Choice:
 n Open M
 n RDBMS
 n Server
 n M/NET

No No No No

LatestEdi-
tionGuide

Designative
Reference
(to Editions
table)

No No No Yes — by a trig-
ger in Editions
when a new
edition is
inserted

NumEditions Number No No No Yes — by a trig-
ger in Editions

Retired Yes/No
Default is No

Yes No Yes No
4-8 Open M with SQL Data Dictionary Guide

Base Tables in Documentation Tracking System
Design Notes for Guides Base Table

The “Guides” base table contains entries for all InterSystems guides. Since there
are multiple editions of each guide, we create a child table of the “Guides” table
called “Editions”. For each guide in the “Guides” parent table, there can be many
editions in the “Editions” child table, each of which represents one edition of the
corresponding parent guide.

The “Guides” table contains a Designative Reference field called “LatestEdition-
Guide”, which points to the “Editions” child table. This field is defined to have
an Output-Only protection level because its value is computed automatically via
a base table trigger of type Routine located in the “Editions” table. When a new
row is inserted in the “Editions” table, a post-filing INSERT trigger updates the
“LatestEditionGuide” field in the “Guides” table, if necessary. For more informa-
tion about defining such a trigger, see Chapter 11, Base Table Triggers , where
one of the examples describes this trigger and the M routine it calls.

The “Guides” table also contains a field called “NumEditions”. Like “LatestEdi-
tionGuide”, this field is defined to have an Output -Only protection level and is
computed by post-filing INSERT and DELETE triggers in the “Editions” table.
When a new edition is inserted, a trigger increments this field by 1. If an existing
edition is retired, a trigger decrements this field by 1.

Note also that the field “Retired” is a required Yes/No field with a default value
of “No”. For more information about Yes/No fields, see “Defining a Yes/No
Field” on page 6-27 in Chapter 6, Defining Base Table Fields .

The fields “DateRequired” and “WhoRetired” are both conditionally-required
fields. For more information about conditionally-required fields, see “Defining a
Required Field” on page 6-49 in Chapter 6, Defining Base Table Fields .

DateRetired Date Maybe
If {Retired }=Y

No No No

WhoRetired Name Maybe
If {Retired }=Y

No No No

Table 4-3: Fields in Guides Base Table (Continued)

Field Data Type Required? Unique?
Lookup
Field? Computed?
Open M with SQL Data Dictionary Guide 4-9

Chapter 4—Designing a Sample Application
Editions Base Table

The table below lists and describes the fields in the “Editions” base table:

Design Notes for Editions Base Table

Editions of InterSystems documentation are currently identified by the version of
the product for which they were produced and the date the edition was printed.
This information appears on the title page of each guide. The version of a guide is
stored in the “Version” field, and the print date is stored in the “RevisionDate”
field.

Table 4-4: Fields in Editions Base Table

Field Data Type Required? Unique?
Lookup
Field?

Editions RowID
(This field is computed based
on the Guides and childsub
fields.)

Yes Yes No

Guides Parent Reference — RowID
of corresponding row in par-
ent table.

Yes No No

childsub RowID of corresponding row
in parent table.

Yes No No

Version Text Yes No Yes

RevisionDate Date Yes No No

NumPages Number No No No

Price Number No No No

MainAuthor Designative Reference
(to DocStaff table)

Yes No Yes

AuthorRole Text
Multi-line

No No No

Summary Features added in this edi-
tion

No No No

Retired_Ed Yes/No
Default is No

Yes No No

DateRetired_ Ed Date Maybe
If {Retired}= Y

No No

WhoRetired_Ed Name Maybe
If {Retired}= Y

No No
4-10 Open M with SQL Data Dictionary Guide

Base Tables in Documentation Tracking System
Although a title might still be active, a particular edition of that title may be
retired. Thus, we include the three retired fields in the “Editions” base table with
a special “_Ed” suffix to distinguish these fields from their analogues in the
“Guides” base table.

StaffEditions Base Table

The table below lists and describes the fields in the “StaffEditions” base table:

Design Notes for StaffEditions Base Table

Since we cannot know how many writers might be assigned to work on a particu-
lar edition of a guide, it makes more sense to store these additional writers in a
child table rather than provide a limited number of fields.

Table 4-5: Fields in StaffEditions Base Table

Field Data Type Required? Unique?
Lookup
Field?

StaffEd RowID
This is a computed field based on
the Editions and childsub fields.

Yes Yes No

Editions Parent Reference — RowID of cor-
responding row in parent table.
(This is one of the fields on which
the RowID is based).

Yes No No

childsub RowID of row in this table.
(This is one of the fields on which
the RowID is based).

Yes No No

NameEdstaff Designative Reference
(to DocStaff table)

Yes No No

Role Text
Multi-line

No No No
Open M with SQL Data Dictionary Guide 4-11

Chapter 4—Designing a Sample Application
NumCopies Base Table

The table below lists and describes the fields in the “NumCopies” base table:

Design Notes for NumCopies Base Table

The “NumCopies” is a child table of “Editions”. This table tracks the number of
copies printed for each edition of each InterSystems guide per fiscal year.

When a row is inserted in the “CopyOrders” table, a base table post-filing SQL
trigger updates the “NumCopies” field in the “NumCopies” table for the current
year.

Table 4-6: Fields in NumCopies Base Table

Field Data Type Required? Unique?
Lookup
Field?

NumCopy_Ed RowID
This is a computed field based
on the Editions and childsub
fields.

Yes Yes No

Editions Parent Reference — RowID of
corresponding row in parent
table.
(This is one of the fields on
which the RowID is based).

Yes No No

childsub RowID of row in this table.
(This is one of the fields on
which the RowID is based).

Yes No No

Year Number Yes No No

NumCopies Number No No No
4-12 Open M with SQL Data Dictionary Guide

Base Tables in Documentation Tracking System
CopyOrders Base Table

The table below lists and describes the fields in the “CopyOrders” base table:

Design Notes for CopyOrders Base Table

The “CopyOrders” base table tracks the print orders for each edition of each
InterSystems guide.

Note that the “CopyOrders” table has a base table post-filing INSERT trigger that
updates the “NumCopies” field in the “NumCopies” table.

Table 4-7: Fields in CopyOrders Base table

Field Data Type Required? Unique?
Lookup
Field?

CopyOrders RowID
This is a computed field based on
the Editions and childsub fields.

Yes Yes No

Editions Parent Reference — RowID of cor-
responding row in parent table.
(This is one of the fields on which
the RowID is based).

Yes No No

childsub RowID of row in this table.
(This is one of the fields on which
the RowID is based).

Yes No No

EditionCopy Designative Reference
(to Editions table)

Yes No No

Vendor Text Yes No Yes

NumCopies Number Yes No No

OrderDate Date Yes No No

ETA Date No No No

ArrivalDate Date No No No

Cost Number No No No

PONum Text No No Yes
Open M with SQL Data Dictionary Guide 4-13

Chapter 4—Designing a Sample Application
CoverOrders Base Table

The table below lists and describes the fields in the “CoverOrders” base table:

Design Notes for CoverOrders Base Table

The “CoverOrders” base table tracks the print orders for book covers associated
with each edition of each InterSystems guide.

Table 4-8: Fields in CoverOrders Base Table

Field Data Type Required? Unique?
Lookup
Field?

CoverOrders RowID Yes Yes No

EditionCover Designative Reference
(to Editions table)

Yes No Yes

Master? Yes/No Yes No Yes

Vendor Text Yes No Yes

OrderDate Date Yes No No

ETA Date No No No

ArrivalDate Date No No No

NumCovers Number Yes No No

Cost Number No No No
4-14 Open M with SQL Data Dictionary Guide

Reports in Documentation Tracking System
Reports in Documentation Tracking System

The Documentation Tracking system includes the following reports:

 n Summary information about each edition of each guide
 n Summary of all guides for which a particular staff member was the main

author
 n Orders of guides and guide covers on a per edition basis
Open M with SQL Data Dictionary Guide 4-15

PART

II
Basic Operations
Chapter 5

Defining a Base Table

Chapter 6

Defining Base Table Fields

Chapter 7

Implicit Joins

Chapter 8

Base Table Lookups

Chapter 9

Index Maps

Chapter 10

Data Conversion and Validation

Chapter 11

Base Table Triggers

Chapter 12

Base Table Help and Error
Messages

Chapter 13

Field Help and Error Messages

Chapter 14

Views

Chapter 15

Data Dictionary Reports

Open M with SQL Data Dicti
CHAPTER

5
Defining a Base Table
This chapter describes how to create, define, edit, and delete a base table in the
Data Dictionary.

Specifically, it covers the following topics:

 n Base Table Definition Overview page 5-2
 n Defining a Base Table page 5-4
 n Defining a Child Table page 5-11
 n Generating Default Physical Structure page 5-15
 n Compiling a Base Table page 5-17
 n Compiling Related Objects page 5-20
 n Editing a Base Table Definition page 5-21
 n Deleting a Base Table Definition page 5-23
onary Guide 5-1

Chapter 5—Defining a Base Table
Base Table Definition Overview

This chapter presents a checklist for defining a base table and provides detailed
information about how to perform several steps in the checklist.

We recommend that you use the information in this chapter as follows:

1. Make copies of the Base Table Definition Checklist. Use this list to check off
the steps as you define each base table in your application.

2. For each step in the checklist, use the associated chapter reference to find
more information.

In the designated chapter for each step you will find both conceptual infor-
mation and a step-by-step procedure for completing the step. Read the con-
ceptual information first and then follow the procedure to complete the step.

The procedures for many of the steps use examples from the Documentation
Tracking sample application described in Chapter 4, Designing a Sample
Application .

Base Table Definition Checklist

The checklist below lists the top-level steps for defining a base table.

Table 5-1: Base Table Definition Checklist

Required? Action Where to Find More Information

r 1 Yes Create a base table. “Defining a Base Table” on page 5-
4.

r 2 Yes Specify default or customized physical
structure.

“Generating Default Physical Struc-
ture” on page 5-15.
Chapter 16, Default Physical Struc-
ture
“If You Started Using Customized
Physical Structure” on page 18-6 in
Chapter 18, Creating a Customized
Map Definition .

r 3 Recommend Define characteristic relationships. “Defining a Child Table” on page 5-
11.
Chapter 7, Implicit Joins .

r 4 Yes Define base table fields. Chapter 6, Defining Base Table
Fields .

r 5 Recommend Define form row selection lookups. Chapter 8, Base Table Lookups .
5-2 Open M with SQL Data Dictionary Guide

Base Table Definition Overview
Note If you plan to perform customized mapping for the base tables you create (rather
than use the default physical structure), read Chapter 17, Relational Definition of
an M Database to understand the order in which you should perform the steps in
this checklist.

r 6 Optional Perform mapping. Chapter 16, Default Physical Struc-
ture .
Chapter 18, Creating a Customized
Map Definition .

r 7 Recommend Define indexes. Chapter 9, Index Maps (for tables
using default physical structure).
Chapter 18, Creating a Customized
Map Definition (for tables using cus-
tomized physical structure)

r 8 Required
(default sup-
plied)

Specify the approximate number of
rows the table will contain.

“Defining a Base Table” on page 5-
4.

r 9 Optional Define validation constraints to be met
before a row of base table can be
saved.

Chapter 10, Data Conversion and
Validation .

r 10 Optional Define base table triggers. Chapter 11, Base Table Triggers .

r 11 Optional Define base table routine name prefix. “Base Table Routine Names” on
page 5-17.

r 12 Yes Save the base table definition. Chapter 5: Creating a Base Table.

r 13 Yes (if speci-
fied in step 2)

Generate default physical structure “Generating Default Physical Struc-
ture” on page 5-15.

r 14 Yes Compile the table. “Compiling a Base Table” on page 5-
17.

r 15 Optional Compile base table’s related objects “Compiling Related Objects” on
page 5-20.

Table 5-1: Base Table Definition Checklist (Continued)
Open M with SQL Data Dictionary Guide 5-3

Chapter 5—Defining a Base Table
Defining a Base Table

Step 1 in the Base Table Definition Checklist is to create (define) a new base
table.

You may create as many base tables in your database as you wish.

Procedure To create a base table definition:

1. From the Data Dictionary menu, select the Base Table Definition option.

You see the Base Table Definition window, as shown below:

2. At the Base Table Name field, enter a unique base table name, then press
<RETURN>.

A base table name may range from 1 to 40 characters in length. It may con-
tain alphanumeric characters (letters and numbers) and the “_” (underscore)
character. It may not contain blank spaces or other punctuation characters. A
base table name must begin with a letter. Do not use a SQL reserved word as
a base table name; SQL reserved words are listed in Appendix C, SQL
Reserved Words.

To create a new base table, you must enter a unique name, distinct from all
existing base table names in the current database. The base table name is dis-
played exactly as you typed it; however, the test of whether it is unique is
performed on its internal representation. Internally, base table names are
case-insensitive. Therefore, for example, “ACCOUNTS” and “Accounts” are
considered to be the same name. The underscore character is removed from
the internal representation. Therefore, “Unitspending”, “Unit_spending” and
“Units_pending” would all be considered to be the same name.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name |
| _________________________ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--+

Base Table Definition Selecting Press <PF1><PF3> For Help
5-4 Open M with SQL Data Dictionary Guide

Defining a Base Table
Use care in selecting base table names. The purpose of the base table should
be clearly indicated by the base table name and the base table description.
The relationship between the base table and other base tables should be
clearly indicated by the base table name and the base table description. You
can later change the name of a base table, but its initial name continues to be
used as the Row ID name and as an element in the Master Map. For this rea-
son, any change to a base table name should be commented. See “Developer
Comments” on page 12-11 in Chapter 12, Base Table Help and Error Mes-
sages .

You can use the initial characters of the base table name to select a Series of
Base Tables report, as described “Series of Base Tables Report” on page 15-7
in Chapter 15, Data Dictionary Reports . For this reason, you may want to
specify the same initial letter(s) for the names of related base tables.

If a base table with the name you specified already exists, a popup box
appears with the name and description of that base table.

3. The “Is this a new entry?” prompt appears just below the status line. At this
prompt, press <RETURN> to accept the “Yes” default and confirm that you are
creating a new base table. Specifying “No” and pressing <RETURN> returns
you to the Base Table Name field.

If the base table name is invalid, a message appears at this point.

4. You see the Base Table Definition main window, as shown below:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ Titles of InterSystems Guides______ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
| |
| < M/WINDOWS Lookups > |
| |
| < Physical Structure > |
| |
| Approximate Number of Rows 250_________ |
| |
+--+

Base Table Definition Unsaved Data Press <PF1><PF3> For Help

 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options
Open M with SQL Data Dictionary Guide 5-5

Chapter 5—Defining a Base Table
The table below lists and describes the fields located on the Base Table Defi-
nition window. Press the <RETURN> key after entering a value for each
field:

Table 5-2: Fields on Base Table Definition window

Field Name Description

Base Table Name This is a required field, which you entered on the previous screen.
You can change this base table name at any time to another
unique name; you do not have to recompile the base table. If you
change the name of an existing base table, Open M with SQL
automatically updates all references to the base table to reflect the
new name. However, values taken from the base table name,
such as the name of the Row ID field and the TableName portion
of the master map (new format) do not change, but retain the ini-
tial name of the base table; this has no effect on base table func-
tionality. It is recommended that you comment all changes to the
base table name (see “Developer Comments” on page 12-11 in
Chapter 12, Base Table Help and Error Messages). If you change
the base table name, you may need to edit queries to refer to this
new name.

Description This is an optional field. Enter a brief description of the base table.
The description may be up to 35 characters in length. You may
use any characters, including blank spaces and punctuation sym-
bols. This description appears with the base table name in listings
of existing base tables, and as the column header (unless overrid-
den) for M/PACT reports. To record more detailed comments for
the base table, see “Developer Comments” on page 12-11 in
Chapter 12, Base Table Help and Error Messages .
5-6 Open M with SQL Data Dictionary Guide

Defining a Base Table
Use Default Physi-
cal Structure?

This is a required field. Specify Yes or No to indicate whether or
not you want the Data Dictionary to create a default physical struc-
ture for your base table.The physical structure of a base table is
the mapping of its fields to an underlying M global structure.
If you answer Yes, The Data Dictionary will create a default physi-
cal structure for your base table. Yes is the default response. If
you are creating a new database, and especially if you don't have
much experience with M, you should use the default physical
structure. For more information about the default physical struc-
ture, see Chapter 16, Default Physical Structure .
If you answer No, the Data Dictionary will not create a default
physical structure, and you must custom-define the underlying
physical structure for your base table. If you are creating this table
to provide a relational view of an existing M database, you must
define a customized physical structure. To learn how to define a
customized physical structure, see Chapter 18, Creating a Cus-
tomized Map Definition .

Warning: If you answer No to the Default Physical
Structure? field and then save the base table,
you can never reenable the default physical
structure. From that point on for the life of the
base table you will be responsible for map-
ping any modification you make to the logical
structure.

<Fields> Press <RETURN> to access the Field Definition window, where you
may define fields for your base table. You may define fields at this
point, or later after creating and saving the base table. Creating a
table automatically defines one field within that table, known as
the Row ID field. You may later modify the default definition of this
field.
For more information on creating and defining base table fields,
see Chapter 6, Defining Base Table Fields .

<M/WINDOWS
Lookups>

Optionally, press <RETURN> to access the Lookup Specification
window where you may define default row selection behavior to be
used by all forms that are associated with the current base table.
For more information on defining row selection behavior, see
Chapter 8, Base Table Lookups .

Table 5-2: Fields on Base Table Definition window (Continued)

Field Name Description
Open M with SQL Data Dictionary Guide 5-7

Chapter 5—Defining a Base Table
5. When you finish defining your base table, press the <PROCEED> key to save
your definition and exit the Base Table Definition window.

Horizontal Options Menu

Located at the bottom of the Base Table Definition window is the Base Table
Definition horizontal options menu. These options provide additional functional-
ity to the base table definition environment.

To access the Base Table Definition horizontal options menu, press the <GO TO
BOTTOM MENU> key from within the Base Table Definition main window.

To select an option from the Base Table Definition horizontal options menu, use
the <RIGHT ARROW> and <LEFT ARROW> keys to position the select bar on a
desired option, then press <RETURN>. Alternatively, you can select an option by
typing the initial letter of the desired option.

<Physical Structure> Optionally, press <RETURN> to access the Default Physical Struc-
ture window where you may do any of the following:
 n Change the default global name
 n Examine the default physical structure

For more information about the default physical structure, see
Chapter 16, Default Physical Structure .

 n Define a customized physical structure, including index maps
For more information about defining a customized physical
structure, see Chapter 18, Creating a Customized Map Defini-
tion .

Approximate Num-
ber of Rows

This is a required field for which a default is provided. If you delete
the default value, you must replace it with another numeric value.
Enter an approximation of the number of rows you expect this
table to contain. The Query Optimizer uses this value to decide
how to most efficiently access the rows in the table when process-
ing a query or report. The default is 250.
The figure you enter here need not be precise—you can use a
“ballpark figure” such as 20, 200, or 200000. Enter the number
without commas or other punctuation.
For a child table, enter the total number of rows in the table, calcu-
lated as: {# of parent rows} x {# of child rows for each parent row}.
If the number of rows in a table changes significantly (for example,
due to expansion of the database), update this value to represent
the current number of rows.

Table 5-2: Fields on Base Table Definition window (Continued)

Field Name Description
5-8 Open M with SQL Data Dictionary Guide

Defining a Base Table
The table below lists and describes the eight options on the Base Table Definition
horizontal options menu:

Table 5-3: Base Table Definition Horizontal Options Menu

Option Meaning

Implicit Joins Select this option to access a Joins window, where you may define
new characteristic relationships (child tables) for the current base
table or view all existing characteristic relationships and designa-
tive references defined for the current base table.
For more information about defining characteristic relationships
among tables, see “Defining a Child Table” on page 5-11, and
Chapter 7, Implicit Joins .
For more information about defining designative references to
other tables, see “Defining a Designative Reference Field” on page
6-14 in Chapter 6, Defining Base Table Fields .

Validation Code Select this option to access the Base Table Validation Code win-
dow, where you may supply validation code to be tested before an
INSERT, UPDATE, or DELETE operation is performed on the base
table.
For more information about defining base table validation code,
see “Base Table Validation Code” on page 10-15 in Chapter 10,
Data Conversion and Validation .

BaseTable Triggers Select this option to access the Base Table Triggers window,
where you may define Pre-Filing and/or Post-Filing triggers to be
associated with an INSERT, UPDATE, or DELETE operation on
the base table.
For more information about defining base table triggers, see Chap-
ter 11, Base Table Triggers .

Compile Table Select this option to compile the current base table. See “Compil-
ing a Base Table” on page 5-17.

Comp Rel Objects Select this option to use the Compile Related Objects utility, which
creates a compilation configuration that includes the current base
table and all objects related to the current base table. You can
modify the configuration list and execute it to sequentially compile
all objects on the list.
For more information about using the Compile Related Objects util-
ity, see “Compiling Related Objects” on page 5-20.

Copy Field Select this option to access the Field Copy utility, which lets you
copy definitions of base table fields within a base table or between
base tables in the Data Dictionary.
For information about using the Field Copy utility, see “Copying a
Field Definition” on page 6-57 in Chapter 6, Defining Base Table
Fields .
Open M with SQL Data Dictionary Guide 5-9

Chapter 5—Defining a Base Table
Advanced Options Select this option to access the Base Table Advanced Options win-
dow, where you may do all of the following:
 n Determine who is the owner of the base table (read-only).
 n Specify a routine name to be used for compiling the current

base table (see “Base Table Routine Names” on page 5-17).
 n Associate help topic definitions with the base table (see “Help

Text” on page 12-5 in Chapter 12, Base Table Help and Error
Messages .

 n Define customized messages for row insert and delete (see
“Row Insert and Delete Messages” on page 12-7 in Chapter
12, Base Table Help and Error Messages .

 n Specify an Override Lock Reference. This field allows you to
specify a locking reference expression other than the full global
reference of the master map. See “Examining a Default Master
Map” on page 16-12 in Chapter 16, Default Physical Structure .
This feature is used for locking/unlocking rows both in forms
and in SQL queries.

 n Enable Field Length Check
 n Table ID# (irn) displays the internal reference number of the

current base table. This is a read-only field. The irn is used in
the old format Master Map (see “New and Old Master Map
Structures” on page 16-12 in Chapter 16, Default Physical
Structure .

Comments Select this option to record developer’s notes and comments on
the base table. See “Developer Comments” on page 12-11 in
Chapter 12, Base Table Help and Error Messages .

Table 5-3: Base Table Definition Horizontal Options Menu (Continued)

Option Meaning
5-10 Open M with SQL Data Dictionary Guide

Defining a Child Table
Defining a Child Table

A characteristic relationship is a link between base tables in which rows in one
table (a “child table”) are existence-dependent on (cannot exist without) rows in
another table (a “parent table”), such that parent rows have a one-to-many rela-
tionship with child rows. A row in the parent table can point to many rows in the
child table, but each row in the child table points to only one row in the parent
table.

When you define a characteristic relationship, you are creating a child table.

For a complete discussion of characteristic relationships, see Chapter 7, Implicit
Joins .

Creating a Child Table from the Parent Table

You create a child table by defining it in the base table definition of its parent.
When you do this, the Data Dictionary automatically generates a skeletal default
structure for the child table, including its Row ID field, and inserts an entry into
the list of existing base tables. For more information about the default structure
of a child table, see “Row ID Definition in Child Tables” on page 16-5 in Chapter
16, Default Physical Structure .

You may complete the definition of your child table by selecting it from the list
of existing base tables and then editing the definition to meet your requirements.

Warning: Once you have created a child table, it must always remain a child table. If you
decide this table should really be an independent table, you must recreate the
table from scratch.

Procedure To define a child table

1. Open the Base Table Definition window of the base table for which you want
to define a child table. That is, open what will be the parent table.

2. Press the <GO TO BOTTOM MENU> key to access the Base Table Definition
horizontal options menu.

3. From the Base Table Definition horizontal options menu, select the Implicit
Joins option.

You see the Characteristic/Designative Joins window, as shown below:
Open M with SQL Data Dictionary Guide 5-11

Chapter 5—Defining a Base Table
Here we are only concerned with the Characteristic Joins portion of this win-
dow.

4. At the Child Tables multi-line field, enter the name of the child table you
want to create, and press the <PROCEED> key.

The child table name follows all of the naming conventions of a base table
name, as described earlier in this chapter.

You may create as many child tables for a particular parent as you wish, but
you must create them one at a time. Completing the definition of a child table
returns you to the above screen where you may define the next child table for
this parent table.

After you specify a child table name, press <RETURN>.

5. At the “Is this a new entry?” prompt, press <RETURN> to accept the “Yes”
default and confirm that you are creating a new child table.

You see the Child Table Definition popup window, as shown below:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ ___________________________________ |
|+---+
	------------------------- Characteristic Joins --------------------------
	Parent Table Child Tables (1/0)
	__
	__
	__
	__
	-------------------------- Designative Joins ----------------------------
+	References Tables (0/0) From Field Description
 +---+

...Characteristic/Designative JoinsUnsaved Data Press <PF1><PF3> For Help
5-12 Open M with SQL Data Dictionary Guide

Defining a Child Table
6. At the Base Table Name field, press <RETURN> to accept the child table
name you entered in the Child Tables field above.

You may change the name if you wish.

7. At the Description field, you may enter an optional description of the child
table.

8. At the Use Default Structure? field, answer Yes or No to indicate whether or
not you want the Data Dictionary to create a default physical structure for the
child table.

Answer Yes to indicate that you want to use the default physical structure for
your base table. Answer No to indicate that you want to custom-define the
underlying physical structure for your base table. Yes is the default response.

9. At the File Name field, press <RETURN> to accept the default automatically
generated global file name, or specify another global file name. The default
is either ^mdata (the default global), or ^*parent (which causes the data for
the child table to be mapped as a subtree of the parent table’s global struc-
ture). If you do not want the default, you can specify any global file name,
new or existing. See “Child Table Default Master Map” on page 16-20 in
Chapter 16, Default Physical Structure .

Note: To set the default global file name for the system, go to the Open
M Developer and select the System Management menu option.
From the System Management menu, select the System Config-
uration option. From the System Configuration menu, select
SQL/Table Options. On this screen, set the “Use Hierarchical

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ ___________________________________ |
|+---+
	------------------------- Characteristic Joins --------------------------
	Parent Table Child Tables (1/0)
	Editions________________________________
	__
	__
	__
	+------------------Child Table Definition-------------------+

+	References Table
	Use Default Structure? Yes_
	File name ^*parent___________________________
+---+	
 +---+

...Base Table Definition Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 5-13

Chapter 5—Defining a Base Table
Default Global Structure” option. Specify YES to set ^*parent as
the default. Specify NO to set ^mdata as the default.

10. Press the <PROCEED> key to save your child table definition and exit the
Child Table Definition popup window.

The Data Dictionary now creates the child table. If you answered Yes at the
Use Default Structure? field, the Data Dictionary generates a skeletal default
physical structure for the child table.

Later, you may complete the definition of your child table by selecting it
from the list of existing base tables and then editing the definition to meet
your requirements.

You return to the Characteristic/Designative Joins window.

To create another child table for this parent table, return to step 4 and repeat
the procedure.

11. To exit the Joins window and return to the Base Table Definition main win-
dow, press the <PREVIOUS> key.

Defining a Designative Reference to Child Table

You may create designative reference fields that point from child-to-parent or
from parent-to-child. However, you must create the child table before you can do
this. To create a designative reference, both tables must already exist. A designa-
tive reference cannot hold a pointer to a table that may exist at some future time.
When you create a child table, the Data Dictionary inserts an entry for the child
table into the list of base tables defined in the current database. This allows you
to use the child table in a designative reference. For further details, see “Defining
a Designative Reference Field” on page 6-14 in Chapter 6, Defining Base Table
Fields .
5-14 Open M with SQL Data Dictionary Guide

Generating Default Physical Structure
Generating Default Physical Structure

Before you can compile your base table or examine the default mapping struc-
ture, Open M with SQL must generate the default physical structure for your
table. This structure defines the global, and the global subscripts to which each
field in your table is mapped. As part of base table definition, Open M with SQL:

 n Creates the master map
 • Generates the Row ID field
 • Links each field to a global node

 n Creates index maps for unique fields and fields used as lookup fields.
 n Creates a skeleton default structure for child tables.
 n Stores the base table definition in the current M directory.

The operations are performed if you defined the base table with default physical
structure. If you do not use default physical structure, you must explicitly define
these items. See “If You Started Using Customized Physical Structure” on page
18-6 in Chapter 18, Creating a Customized Map Definition .

Edit the Default Global Name

Open M with SQL uses the default global ^mdata for all base tables that it maps.
Each base table is given a separate node of that global. Child tables may take the
default global ^*parent, which defines the child table’s global as a subtree within
its parent table’s global.

For each base table, you can change the name of the global to which Open M
with SQL maps the fields of that table. For further details, see “Changing the
Global Name in a Default Physical Structure” on page 16-25 in Chapter 16,
Default Physical Structure .

The global nodes are not created when the default physical structure is generated.
They are created when you enter data into fields mapped to the node using Form
Generator forms or SQL statements. Do not edit the Global Name once data has
been entered, or existing data will be inaccessible.

Open M with SQL Generates Structure Automatically

If the default structure is not already defined for this table, Open M with SQL
generates or recreates it automatically when:

 n You select the <Physical Structure> branching field at the Base Table Defini-
tion master window, followed by the <Examine Structure> branching field.
Open M with SQL Data Dictionary Guide 5-15

Chapter 5—Defining a Base Table
Open M with SQL will present the Create Default Structure window asking if
you want Open M with SQL to create the default physical structure when:

 n You compile the base table
 n You exit the Base Table Definition window

Physical Structure Updates Automatically

Once the default physical structure is generated, it is automatically updated any-
time the base table definition is edited and filed. You will see the following mes-
sage on the message line:

Re-Calculating # Blocks in Each Map...

In addition, there may be messages about index maps and child tables. For fur-
ther details about automatically generated physical structure, refer to “Examining
a Default Master Map” on page 16-12 and “Examining a Default Index Map” on
page 16-22 in Chapter 16, Default Physical Structure .

Row ID Field Created

When Open M with SQL generates the default physical structure, it creates a
field with the data type Row ID. The name of the Row ID field is the initial name
of the base table. Changing the base table name does not change the Row ID field
name.

You cannot edit the definition of the Row ID field when you use default physical
structure. However, you can examine its definition. See “Examining the Row ID
Field Definition” on page 16-3 in Chapter 16, Default Physical Structure .

Procedure To generate the default physical structure:

1. Move your cursor to the last field on the Base Table Definition master win-
dow. Press <RETURN> to display the <Proceed> prompt.

2. Press <RETURN> at the <Proceed> prompt.

This displays a window containing the text: “Do you want to create the
default structure for this table?”.

3. Press <RETURN> to accept the default response "Yes". Press <RETURN>
again at the <Proceed> prompt.

Messages such as the following display sequentially on the message line:

 Creating default structure for Docstaff...
Re-Calculating # Blocks in Each Map...
Creating map: Index Doc_Name 7

Default structure created.
5-16 Open M with SQL Data Dictionary Guide

Compiling a Base Table
The Data Dictionary then displays the Base Table Definition row selection
window, prompting you to define or select another base table.

Compiling a Base Table

Every base table must be compiled before a Form Generator form, or an SQL
INSERT, UPDATE or DELETE statement that refers to it can be compiled suc-
cessfully.

Compilation Produces Routines

Base table compilation produces executable routines that perform functions you
defined along with the base table and its fields, including:

 n The Update Query: a compiled SQL query for retrieving the old values for a
row, used during an UPDATE to tell which values have changed.

 n M code for validation checking and internal/external conversion.
 n Uniqueness Query(ies): one or more compiled SQL queries for each base

table field specified as unique in the Data Dictionary, used to determine
whether another row exists with the same value.

 n Compiled SQL queries for default Form Generator lookups, if defined, for
rows of the base table.

 n A compiled SQL statement for each SQL-type base table trigger item.
 n Code for M triggers, if defined.
 n Filing code, if defined, for INSERT, UPDATE, and DELETE operations.

Base Table Routine Names

When you compile a base table, Open M with SQL creates one or more routines
to contain the information defined in the table. For each table, a routine name
prefix is used to produce the names of all of its associated compiled routines.
The Data Dictionary provides a default prefix, which you can change.

To form a routine name, a single character is appended to the routine name pre-
fix. The compiler uses the digits 1-9, followed by upper and then lower case
alphabetic characters.

If you wish routine names to start with a prefix other than the default, mt#, then
you must change the routine name prefix. You can change the routine name pre-
fix by editing the base table’s Advanced Options (see “Horizontal Options
Menu” on page 5-8).
Open M with SQL Data Dictionary Guide 5-17

Chapter 5—Defining a Base Table
Don't Duplicate Existing Routine Names

Be sure no conflicting routine names exist, taking into account that each routine
will have a digit or letter appended to it.

For example, if you define a prefix "rd", make sure there are no routines named
"rd1", "rd2",... "rdZ",... "rdz".

Old Routines Automatically Deleted

When you recompile a base table, Open M with SQL deletes the old routines
before beginning to compile. If the compilation is unsuccessful, there will be no
base table routines for any forms or SQL INSERT, UPDATE or DELETE state-
ments to use, so running them produces an error.

Edit the Routine Name before Recompiling

If you change the routine name prefix of a base table after it has already been
compiled, and later recompile it, old routines whose names begin with the old
prefix are not deleted automatically. You can delete them using the utility
%urdel, as shown in the procedure below. Alternatively, you can go to the Macro
Routine Utilities menu and select the Routine Delete option.

Example Given a base table with the default routine name prefix "mt5", the base table
compiler appends consecutive single characters to form routine names for the
base table:

mt51
 .
mt59
mt5A
 .
mt5Z
mt5a
 .
mt5z

Routine Size

Machine requirements limit the maximum size of a single routine. If a base table
requires more code than fits in one routine, Open M with SQL creates multiple
routines for the base table. For compatibility across implementations, the maxi-
mum size of a single routine is 8KB.
5-18 Open M with SQL Data Dictionary Guide

Compiling a Base Table
Number of Routines

The number of routines generated during compilation depends upon the com-
plexity of your base table. The more fields, lookups, indexes and triggers, the
more routines. The number can vary from one to dozens.

Procedure To compile a base table right after defining it:

1. Enter the Base Table Definition master window.

2. Press <Go to Bottom Menu>.

3. Select the Compile Table option.

If old routines for this base table exist, they will be automatically deleted,
unless you have just changed the prefix.

4. If you specified default physical structure when defining the base table, and
Open M with SQL has not yet generated the default physical structure, the
Data Dictionary displays a popup window that asks “Do you want to create
the default structure for this table?”. Answer “Yes”. If you answer “No” at
this prompt, or specified non-default physical structure, the Data Dictionary
returns the message “Table name has no master map, cannot compile.”

5. Accept the default answer "No" at the prompt "Compile table in back-
ground”.

InterSystems recommends that you answer “No” so you can watch the com-
pilation. This way, you know the compilation completed successfully or you
see messages if errors occur. In addition, this method of compilation works
on all versions of M. If you answer “No”, Open M with SQL displays the
routines as it creates them during compilation.

If you answer “Yes”, the base table will compile transparently, so you can
continue working on another Open M with SQL object. However, you will
not know when compilation is complete, and you may not discover errors
that occurred until you leave M.

Note: You cannot compile in the background when using Open M with SQL for
DTM or DSM.

6. If you changed the routine prefix, you may want to delete old routines that
have the old prefix by using the %urdel utility:

>DO ^%urdel
Routine(s): oldpfx*.*.*
Routine(s):<RETURN>
Open M with SQL Data Dictionary Guide 5-19

Chapter 5—Defining a Base Table
Compiling Related Objects

The Base Table Definition window horizontal options menu has an option for
Compile Related Objects. Executing this utility creates a compilation configura-
tion (using the Object Compilation Driver utility) for all objects related to the
current base table. These related objects include the following:

 n The current base table.
 n The parent of the current base table
 n Queries that are defined via the Query Definition template and which name

the current base table in the FROM clause
 n Queries that are defined via the Query Definition template and which name a

view in the FROM clause that includes the current base table
 n Forms that use the current base table as their data source
 n Reports that use the current base table as their data source
 n Reports based on views that include the current base table in their join speci-

fications

When you select the Compile Related Objects option, the following series of
events occurs:

1. The utility finds all objects related to the current base table and inserts them
into a temporary Object Compile Driver compilation configuration.

2. You can view and edit the compilation configuration just as you would if it
were entered directly through the Object Compilation Driver utility. Editing
the configuration lets you add objects to and delete objects from the list, sup-
press the compilation of objects, and view and/or edit the definition of any
related object included in the list.

3. After you edit the configuration, press the <Proceed> key once to see a com-
pile confirmation prompt. Answer Yes at the confirmation prompt, and press
the <Proceed> key a second time to start the compile.

4. The utility compiles all objects in the configuration and then displays the
results on the screen.

5. Before exiting, the utility prompts you with the option to permanently save
the compilation configuration. To save the configuration, you must give it a
name. If you save the configuration, you can later reaccess it using the Object
Compile Driver utility.
5-20 Open M with SQL Data Dictionary Guide

Editing a Base Table Definition
Editing a Base Table Definition

Users with %ALTER privileges for a specific base table can edit its definition at
any time. The owner of the base table automatically has %ALTER privileges.
Along with the Open M with SQL System Manager, the owner can give other
users %ALTER privileges to any owned base tables, using the Open M Devel-
oper main menu Privileges option.

You can modify the definition of a base table even if the globals to which it is
mapped already contain data. This includes changing the name of the base table
and adding and deleting fields.

Do Not Change Global Name Once Data Entered

Do not edit the value of your global name once data has been entered into base
table fields.

You Cannot Change Status of a Child Table

Once you have created a child table from a parent table, you cannot change its
status as a child table of a particular parent table.

If you decide the child table should not be a child table, but rather should be an
independent table with a designative relationship to the parent table, then you:

 n Delete the child table and rebuild it
 n Remove the child table row from the Implicit Joins screen at the parent table

Pre-Delete Trigger Updated if Parent Reference Edited

If you edit the name of the parent reference field in a child table, which Open M
with SQL creates automatically when you define a child table, Open M with SQL
updates the default pre-filing delete trigger in the parent table, if it exists, to
match the edited field name.

Procedure To edit a base table definition:

1. Enter the Data Dictionary.

2. Select the Base Table Definition option from the Data Dictionary menu.

This displays the Base Table row selection window.

3. Enter part of the name of the base table you wish to edit and press <Search
Current Table>, or simply press <Search Current Table> at the blank field, to
see a lookup box containing the names of all or matching currently defined
base tables.

If you enter the complete name, go to Step 4.
Open M with SQL Data Dictionary Guide 5-21

Chapter 5—Defining a Base Table
If you press <Search Current Table>, you see the Base Table Definition win-
dow lookup box. It contains the names and descriptions of the base tables
whose names were selected from the lookup. The first name in the table is
highlighted. Either use the arrow keys to move the highlight bar to the name
of the base table you want to edit, or type the initial characters of the table
name, which moves the highlight bar to the name specified.

4. Press <RETURN> to select the highlighted base table.

This displays the Base Table Definition master window. You can now edit the
definition and add and delete fields.

5. Edit the base table definition.

You can change the name of the base table by simply typing another base
table name. However, this change does not change the name of the RowID or
the first element of the Master Map, which retain the initial base table name.
While this does not present a technical problem (uniqueness is automatically
handled by the Data Dictionary), it can make examining these elements con-
fusing, and should always be documented. See “Developer Comments” on
page 12-11 in Chapter 12, Base Table Help and Error Messages .

You can add, edit, and delete fields even after data has been added to the
database. See “Editing and Deleting a Field Definition” on page 6-59 in
Chapter 6, Defining Base Table Fields .

You cannot change the name of the global which holds data once live data
has been entered into the table.

6. Save the table.

+---+
| Base Table Name Description |
+---+
| child |
| Docstaff Information on documentation staf |
| Guides List of all revisions to guides |
| Owner |
| parent |
+---+
| |
| |
| |
| |
| |
+--+

Base Table Definition Selecting Press <PF1><PF3> For Help
5-22 Open M with SQL Data Dictionary Guide

Deleting a Base Table Definition
You will see a reminder such as the following on the message line:

You must recompile the Guides table.

7. Recompile the base table.

See the section “Compiling a Base Table” on page 5-17.

8. Edit forms, reports, queries and views affected by the changes in this table.

For instance, if you delete a field, remove it from any report, query or view
definitions that refer to it.

9. Recompile forms and reports based on this base table.

See the appropriate guide to learn how to edit and compile these objects:

 • For forms, see the Open M/SQL Form Generator Guide.
 • For reports, see the Open M/SQL M/PACT Guide.

Deleting a Base Table Definition
Procedure To delete a base table definition:

1. Enter the Data Dictionary.

2. Select the Base Table Definition option from the Data Dictionary Menu.

3. Select the base table you wish to delete at the Base Table Definition row
selection window. (See Step 3 in “Editing a Base Table Definition” on page
5-21). Press <RETURN> to display the Base Table Definition window.

4. Press the <DELETE ROW> key.

5. At the "Do you want to delete this row?" prompt on the message line, type
“Yes”, then press <RETURN>.

You see the message "<DELETED>" on the message line.

Restrictions on Deleting a Base Table Definition

Access Privileges Required

Users with the %ALTER privilege for a specific base table can delete its defini-
tion at any time. The owner of the base table automatically has %ALTER privi-
leges. Along with the Open M with SQL System Manager, the owner can give
other users %ALTER privileges to any owned base tables, using the Open M
Developer main menu Privileges option.
Open M with SQL Data Dictionary Guide 5-23

Chapter 5—Defining a Base Table
Referenced Tables Cannot Be Deleted

You cannot delete a table that has a designative reference pointing to it.

 n A parent table cannot be deleted unless you first delete all of its associated
child tables.

 n A designated table cannot be deleted unless you first delete (or change the
data type of) the associated designative reference field in the designating
table.

Attempting to delete a parent table with existing child tables displays the mes-
sage: “Must delete dependents first:” followed by a list of the dependent child
tables.

Associated Global Data is Not Deleted

If you delete a base table and the M global(s) represented by this base table con-
tain data, you can no longer access this data via SQL, the Form Generator or
M/PACT.

Caution: Deleting a base table definition does not delete the M global
node(s) to which its fields are mapped or the data in those
nodes.

To delete the M global data the base table represents, you must write an applica-
tion to accomplish that task. Or, you may wish to write an SQL statement to
delete the actual rows from the table. This can only be done before you delete the
definition of the table.

Do Not Delete a Table Used in Views, Forms or Reports

Before deleting a base table, be certain it is not needed in an existing view, form
or report. There will be unpredictable results if you do so.
5-24 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

6
Defining Base Table Fields
This chapter describes how to define the fields within a base table. Before defin-
ing base table fields, you must have created the base table and defined its physi-
cal structure, as described in Chapter 5, Defining a Base Table .

The topics covered in this chapter include:

 n Field Definition Overview page 6-2
 n Field Definition Checklist page 6-3
 n Steps 1-13 for Creating a New Field Definition

 • Steps 1 & 2: Specify a Field Name and Description page 6-4
 • Step 3: Specify the Data Type page 6-9
 • Step 4: Specify Maximum Length of Data page 6-33
 • Step 5: Specify If Values Must be Unique page 6-34
 • Step 6: Specify the Number of Distinct Values page 6-35
 • Step 7: Specify If the Field is Multi-Line page 6-37
 • Step 8: Define Computed Field Calculations page 6-42
 • Step 9: Define User Update Features page 6-46
 • Step 10: Define Data Conversion and Validation Code page 6-52
 • Step 11: Define Error and Help Messages page 6-52
 • Step 12: Define Additional Options page 6-52
 • Step 13: Save the Field Definition page 6-56

 n Copying a Field Definition page 6-57
 n Editing and Deleting a Field Definition page 6-59
onary Guide 6-1

Chapter 6—Defining Base Table Fields
Field Definition Overview

Once you have created a new base table and chosen whether to use default or
customized physical structure as described in Chapter 5, Defining a Base Table ,
you are ready to define the database fields (also known as columns or attributes)
in the table.

The maximum number of fields per base table depends on the internal representa-
tion of those fields. Numeric fields that use a conversion code (such as date
fields) occupy more space internally than, for example, text fields. A maximum
of 150 fields per base table is usually prudent. Increasing the size of the routine
buffers on the system used for compiling and running the base table may permit a
larger number of fields.

Caution: If you create a large number of fields in a base table, compilation may be slow
and you may get <STORE> errors due to your partition size being too small.

You can define many kinds of attributes for each field. Most take defaults. Only a
few of these attributes must be defined to create a working field definition.

Most parts of field definition affect data entry via SQL INSERT, UPDATE and
DELETE commands, Form Generator forms, and M/PACT reports. However,
some parts of the definition affect only forms (for example, Word Processing
Capabilities for multi-line fields), or reports (for example, a Report Column
Title).

This chapter contains a checklist and detailed steps that make it as easy as possi-
ble to define the fields in your base tables. To make most efficient use of this
chapter:

1. Make copies of the Field Definition Checklist. Use this list to check off each
step as you define each field in your base table.

2. For each step in the checklist, read the conceptual information and then fol-
low the procedure to complete the step.

Every step in the checklist appears later in this chapter. For some steps, this chap-
ter gives full details: conceptual information, examples, and a step-by-step proce-
dure. Other steps refer you to other chapters in this Guide.
6-2 Open M with SQL Data Dictionary Guide

Field Definition Checklist
Field Definition Checklist

The Field Definition Checklist specifies all the required (Yes) and optional (Opt)
steps in the field definition procedure. Optional steps that are highly recom-
mended are designated (Rec).

Field Definition Checklist
Step Required? Action

p 1. Yes Create a new field, assigning it a unique field name.

p 2. Rec Specify a text description of the field.

p 3. Yes Define the data type.

p 4. Opt Define maximum length. (All data types provide a default max-
imum length; changing this default is recommended for some
data types, discouraged for other data types.)

p 5. Rec Define whether field is unique, meaning that no duplicate val-
ues may be input for this field.

p 6. Rec Specify number of distinct values.

p 7. Opt Define whether field is multi-line.

p 8. Opt Define whether field is computed.

p 9. Opt Select the Update Features option to define field protection
level, whether a field value is required before the data for a row
in this base table can be filed, and the default field value Open
M with SQL uses when inserting a new row.

p 10. Opt Select the Conversion/Validation Code option to specify your
own customized conversion and field validation algorithms, or
edit those Open M with SQL automatically creates.

p 11. Opt Select the Error/Help Messages option to define your own help
and error messages, including translations of these messages
into other languages.

p 12. Opt Select the Additional Options option to specify the default col-
umn title to use in M/PACT reports.

p 13. Yes Save the field definition.
Open M with SQL Data Dictionary Guide 6-3

Chapter 6—Defining Base Table Fields
Steps 1 & 2: Specify a Field Name and Description

To create a new field, you need to give it a name and describe it.

Procedure To create a new field in a base table

1. Display the Base Table Definition main window for the base table.

2. Move the cursor to <Fields> and press <RETURN>.

Note: If this is a new table and the PROCEED SAVE Menu toggle is
on, you will see the PROCEED SAVE Menu, with the highlight
bar on the first option, SAVE. Press <RETURN> to save the
current definition of this table. For information on the PROCEED
SAVE Menu and toggle, see Chapter 3, Using the Data
Dictionary Interface .

You will see the Field Definition row selection window. This is the row
selection window for the Field Definition main window:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| ____________________________ ___ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--+

...Field Definition Selecting Press <PF1><PF3> For Help
6-4 Open M with SQL Data Dictionary Guide

Steps 1 & 2: Specify a Field Name and Description
The table below describes the fields on the Field Definition row selection
window.

3. Enter the name of the field and press <RETURN>.

Your cursor moves to the Description field.

4. Optionally, enter a description of the field and press <RETURN>.

5. You see the prompt "Is this a new entry?" on the status line. Press
<RETURN> to accept the default value "Yes".

Table 6-1: Field Definition Row Selection Window Fields

Field
Name Description Possible Values

Field
Name

Required. Name must be unique
within a specific base table,
although a name can be reused in
another base table. It is recom-
mended that you make the field
name unique across base tables
by indicating in the field name the
base table to which the field
belongs. For example, “acct_date”
for a date field in the Accounts
table. If you later create a view
from base tables which contain
duplicate field names, you would
be forced to rename all but one of
the identically-named fields.

Same naming conventions as base
tables: Can contain up to 40 alphanu-
meric and/or underscore characters.
Cannot contain blank spaces or other
punctuation characters. A name must
begin with a letter. A name cannot be
an SQL reserved word (listed in
Appendix C, SQL Reserved Words).
 A name must be unique in its internal
representation. Names are case-
insensitive, and underscore charac-
ters are ignored when testing for
uniqueness. Therefore, the Data Dic-
tionary considers “ACCT_DATE”,
“acct_date”, and “Acctdate” to be the
same field name.

Description Optional. If left blank, defaults to
field name.
This value is the default value
used as a field caption or column
header when you place this field
on a form in the Form Generator
or on a report in M/PACT.
This value is overridden by any
value you enter in the Report Col-
umn Title field when you choose
the horizontal menu option Addi-
tional Options (see “Define Col-
umn Titles for Reports” on page 6-
54). You can override this value in
turn for a specific form in the Form
Generator or a specific report in
M/PACT.

Can contain up to 45 characters of any
type, including blank spaces and
punctuation characters.
Open M with SQL Data Dictionary Guide 6-5

Chapter 6—Defining Base Table Fields
You see the Field Definition main window, with the cursor at Field Name. If
you did not enter a description, the Data Dictionary copies the field name as a
default description.

The Field Definition main window for the Title field of the Guides base table
is shown below.

Note the six horizontal menu options, and the message "Unsaved Data" on the
status line at the bottom of this window.

Table 6-2 describes the fields and horizontal menu options on the Field Defini-
tion master window.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Title_______________________ Title of Guide_______________________________ |
| |
| Data Type _________________________ |
| |
| Maximum Length ___ Unique Field? ____ |
| |
| Number of Distinct Values ________________ |
| |
| Multi-Line Field? No__ < Multi-Line Options > |
| |
| Computed Field? No__ |
+--+

...Field Definition Unsaved Data Press <PF1><PF3> For Help

 Update Conversion/ Error/Help Indexing Copy Additional
 Features Validation Code Messages Options Field Options

Table 6-2: Field Definition Master Window Fields and Horizontal Menu Options

Field Name Type Description Default

Field Name Text You can edit the values you entered at the
Field Definition row selection window.

None

Description Field
Name
6-6 Open M with SQL Data Dictionary Guide

Steps 1 & 2: Specify a Field Name and Description
Data Type Choose one:
 Date
 Designative Ref
 Multiple Choice
 Name
 Number
 Row ID
 Text
 Time
 Yes/No

Required. See “Step 3: Specify the Data
Type” on page 6-9.
Open M with SQL automatically defines a
Row ID field under both default and custom-
ized physical structure. However, you can
only modify this Row ID field definition when
you are using customized physical struc-
ture.“Examining the Row ID Field Definition”
on page 16-3 in Chapter 16, Default Physi-
cal Structure .

None

Maximum
Length

Number, ranging
from 1 to M string
maximum length
on your system.

Required. Serves as default for column
widths in reports and queries and the data
entry and display area in forms. You can
override this value in the Form Generator
and M/PACT. See “Step 4: Specify Maxi-
mum Length of Data” on page 6-33.

Based
on data
type.

Unique
Field?

Yes/No Yes means no two rows in the table may
have the same value in this field. Provides
automatic check for fields which should be
unique, such as social security number.
See“Step 5: Specify If Values Must be
Unique” on page 6-34.

No

Number of
Distinct Val-
ues

Text:
number or
NUMROWS

Approximate number of different values the
field is expected to contain. Setting a realis-
tic value here will help Open M with SQL
applications using this field to run more effi-
ciently. See “Step 6: Specify the Number of
Distinct Values” on page 6-35.

None

Multi-Line
Field?

Yes/No Yes means the field can support unlimited
length text fields. See “Step 7: Specify If the
Field is Multi-Line” on page 6-37.

No

<Multi-Line
Options>

Action Field If you specified “Yes” as the Multi-Line Field
option, this action field is activated. Moving
the cursor to this field and pressing
<RETURN> displays the Multi-Line Field
Options popup window.

inactive

Computed
Field?

Yes/No See “Step 8: Define Computed Field Calcu-
lations” on page 6-42.

No

Update
Features

Select this option to define:
 n Field protection
 n Whether a field is required
 n Default value of a field
See “Step 9: Define User Update Features” on page 6-46.

Conver-
sion/ Valida-
tion Code

Select this option to define field conversion and validation. See Chapter 10,
Data Conversion and Validation .

Table 6-2: Field Definition Master Window Fields and Horizontal Menu Options
Open M with SQL Data Dictionary Guide 6-7

Chapter 6—Defining Base Table Fields
If you are importing a field, rather than defining it, refer to the table correspond-
ing to the above in “Base Table Field Definitions” on page 20-7 in Chapter 20,
Importing Data Definitions .

Error/Help
Messages

Select this option to define help and error messages, and their translations
in other languages. See Chapter 13, Field Help and Error Messages .

Indexing
Options

Select this option to define an M expression that will be used by the Query
Optimizer to select the optimal traversal path when the field is specified in
an SQL query.

Copy Field Select this option to copy the definition of this field to create a
new field with the same definition, either in this base table or in
another existing base table. See “Copying a Field Definition” on
page 6-57.

Additional
Options

See “Step 12: Define Additional Options” on page 6-52.
One of these options permits you to define data column headers
for M/PACT reports. See “Define Column Titles for Reports” on
page 6-54.

Table 6-2: Field Definition Master Window Fields and Horizontal Menu Options
6-8 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
Step 3: Specify the Data Type

You can define the type of data that will be stored in a field in a base table. The
data might be a date, text, name, number, multiple choice value, etc.

Open M with SQL data types save you a great deal of work. Open M with SQL
only allows data of the type you select to be entered into the field. Open M with
SQL automatically generates the following aspects of field definition, based on
data type:

 n Conversion code, which you can modify.
 n Maximum length, which you can modify.
 n Internal validation code, which you can augment by entering additional vali-

dation code.

In addition, all data types except Yes/No have a pop-up auxiliary window where
you can define additional attributes of that field type, such as a range of legal val-
ues or a format for a Date data type.

The table "Data Type Defaults" lists the available data types and their attributes.

Table 6-3: Data Type Defaults

Data Type Valid Internal Values

Default
Max
Length

Number of
Values

Conversion
Code*

Date A 5 digit $HOROLOG
value*

8-12,
based on
format

Variable Yes

Designative
Reference

A Row ID for the
 designated table

25 NUMROWS in
designated table

External-to-
Internal

Multiple
Choice

User-defined Longest
choice

Num of choices,
up to 1023

Yes, if internal
values defined

Name Lastname, Firstname
[Middle]
 or
Lastname Jr.,
 Firstname Middle*

25 Variable No

Number A canonic number
(+%val=%val)*

16 Variable Yes

Row ID N/A 16 NUMROWS No

Text User-defined 30 Variable No

Time 5 digit $HOROLOG
value*

7 Variable Yes
Open M with SQL Data Dictionary Guide 6-9

Chapter 6—Defining Base Table Fields
Exercise Care When Mapping to an Existing M Database

If you are mapping a base table to an existing global structure, you must take
great care when you assign a data type to a field. As the preceding table indicates,
most of the Open M with SQL data types require specific internal storage for-
mats. For example, a Date data type is always stored in a global as a 5 digit
$HOROLOG value. If an existing global value does not meet the format require-
ments listed, you must define the field linked to that global value as a Text data
type. You then provide any needed conversion and/or validation code needed to
complete the definition of that field.

Common Data Type Errors

Some common errors in data type assignment include the following:

 n Assigning a Date data type to a field which is stored in an alphanumeric for-
mat, such as 02JAN1999. Date fields imported from other database systems
should not be assigned the Date data type.

 n Assigning a Time data type to a field which is stored in a clock-time format,
such as 0830 or 8:30A. Time fields imported from other database systems
should not be assigned the Time data type.

 n Assigning a Designative Reference data type to a field which is not stored as
the Row ID value of the designated table, but as some other field or combina-
tion of fields in the designated table. For example, if you wish to designate a
Doctors table, and the Doctors table Row ID is a numeric value, a field which
is the doctor's name or license number would not be a valid Designative Ref-
erence. See “Examining the Row ID Field Definition” on page 16-3 in Chap-
ter 16, Default Physical Structure .

Procedure To define a field’s data type:

1. Move the cursor to the Data Type field.

2. Enter part or all of the data type name and press <List Choices>, or simply
press <List Choices> at the blank field to see the data types available.

Data Type is a multiple choice field, so you will see a popup window display-
ing the list of available data types. The first type, "Date", is highlighted.

3. Move the highlight bar to the data type you want and press <RETURN>.

Yes/No Y or N* 4 2 Yes
* See Chapter 10, Data Conversion and Validation , for details.

Table 6-3: Data Type Defaults
6-10 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
For all data types except Yes/No, an auxiliary window appears at which you
define attributes specific to the data type. See the appropriate subsequent sec-
tion in this chapter for the data type you are defining to learn how to com-
plete the definition in the auxiliary window.

After you complete the auxiliary window definition, if any, the cursor moves
to the Maximum Length field. Go to Step 4.

Defining a Date Field

You can define fields for calendar date values (month, day, and year) using the
date data type. There is a separate Time data type for time of day.

Procedure To define a Date field:

1. Select "Date" in the Data Type field in the Field Definition master window.

The Date Data Type window appears:

The table below describes the fields on the Date auxiliary window.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Date_Retired________________ Date Guide Retired___________________________ |
| |
| +-------------------------Date - Data Type--------------------------+ |
	Date Format: 1_ Display: 10/18/66	
	First Date: __________________ Display Full Year: No__	
	Last Date: __________________ Override Display Delimiter: _	
	Formats: 1 - 10/18/90 5 - Oct 18, 1990	
	2 - 18 Oct 90 6 - October 18, 1990	
+---| 3 - 18.10.90 7 - 90.10.18 |------+
 | 4 - 18/10/90 |
 Up+---+onal

...Date Data Type Unsaved Data Press <PF1><PF3> For Help

Table 6-4: Date Data Type Fields

Field Name Description Possible Values

Date Format Determines how
date will display.
Default maximum
length is set based
on format.

1-7. Default is set as a System
Configuration value.
See bottom of Date Data Type win-
dow for examples of the available
formats.
Open M with SQL Data Dictionary Guide 6-11

Chapter 6—Defining Base Table Fields
2. Specify in the Date Format field the number of the date format desired. The
default date format is set as a System Configuration value. To select a differ-
ent format, press <Erase Field> to clear the Date Format field, then enter the
number of the display format desired. An example of each date format is
shown in the Formats portion of the Date Data Type popup window. The date
format currently specified is shown in the Display portion of this window.
This format governs how dates are displayed on forms and M/PACT reports,
not how date data is stored within the database.

3. Optionally, enter dates in the First Date field and the Last Date field which
specify the earliest and latest date that can be entered in this field. You can
enter these date values using any date format; Open M with SQL automati-
cally converts them into the correct date format. The defaults are the
$HOROLOG limits: the years 1840 and 2114. You may also specify values
for these fields by using the variable “T” (or “t”). T specifies today’s date; T-
1 specifies yesterday’s date, T+1 specifies tomorrow’s date, and so forth. You

Display Shows an example
of the currently
selected date for-
mat.

The Display is modified by the
Date Format value, the Display
Full Year value, and the Override
Display Delimiter value.

First Date Earliest date which
can be entered in
this field.

Valid date.
Optional, default is none (there are
limits on the date imposed by the
M storage format).

Last Date Latest date which
can be entered in
the field.

Display Full
Year?

Should the year be
shown as two digits
or as a full four dig-
its? All formats can
display the year as a
four-digit value; for-
mats 5 and 6 always
display the year as a
four-digit value.

Yes/No
Optional. Default is set as a Sys-
tem Configuration value.

Override Dis-
play Delimiter

Specify a character
to be used as the
delimiter when dis-
playing the date. All
date formats have a
default delimiter,
usually the back-
slash character or
the blank space
character.

Any single character.
Optional, default is none

Table 6-4: Date Data Type Fields
6-12 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
can specify any date for the First Date and Last Date, with the restriction that
the First Date value must be earlier in time than the Last Date value. Chang-
ing the date format, full year, or display delimiter fields automatically
changes the formatting of these fields.

4. Optionally, specify with the Display Full Year field whether the year should
be displayed as two digits (for example, 97) or four digits (for example,
1997). The default is set as a System Configuration value. If Full Year=No,
years are displayed as two digits for all formats except formats 5 and 6,
which ignore the value of this field and always display the year as four digits.
Changing this field automatically changes the values of the Display field, the
First Date and Last Date fields, and the Maximum Length field. Changing
this field does not effect the internal representation of date fields in the data-
base.

5. Optionally, specify with the Override Display Delimiter field whether the
delimiters separating day, month, and year should be displayed as shown in
the Formats, or should be another character. You can specify any single char-
acter as a delimiter character. The default is to use the standard delimiter
character for that date format. Changing this field automatically changes the
values of the Display field, and the First Date and Last Date fields. It does
not effect the Maximum Length field value.

The maximum length of a date field is automatically set by Open M with SQL,
depending on the date format you selected. Do not make the length of a date field
smaller than this default value.

Note: Date data imported from other database systems (for example,
FileMan) cannot be stored in a Date data type field. See “Step
12: Define Additional Options” on page 6-52 for further details.

Internal Storage Format and Validation

Date values are stored in M internal date format, using a variable named
$HOROLOG. The $HOROLOG variable consists of two 5-digit pieces, date and
time, separated by a comma. The date portion is a count of days from December
31, 1840. Because of this, you may need to use a bit of sleight-of-hand to repre-
sent old historical dates, or dates in the remote future. Open M with SQL auto-
matically generates validation code to verify this internal format. You cannot edit
this validation code. However, you can provide additional validation code to aug-
ment this code.

User Entry Formats

Users can enter a date in any of the supported formats into a field of this type,
unless the maximum length you specify is less than that needed by a particular
format.
Open M with SQL Data Dictionary Guide 6-13

Chapter 6—Defining Base Table Fields
In addition, users can enter the variable T (or t) to represent the current system
date. You can use T alone, or in an expression such as t-#, where # is a count of
days. For example, t-1 is yesterday's date, and t+1 is tomorrow’s date.

Conversion Code

Open M with SQL automatically generates both external-to-internal and internal-
to-external code for a Date field. You can edit this code.

External-to-internal conversion code converts the date you enter into a $H num-
ber.

Internal-to-external conversion code converts the $HOROLOG value into the
external date format you selected for the field.

If you are linking an existing M application to M with SQL through the data dic-
tionary, the date data type should only be used for fields stored internally as the
first comma piece of $HOROLOG. If your application includes dates stored in
another format, define them as text fields and use the conversion code facility,
where necessary, to convert to external display values.

Defining a Designative Reference Field

Designative references are an Open M with SQL extension. They provide an
implicit outer join between two tables. You create a designative reference with a
field of data type Designative Reference. The designative reference field contains
the Row IDs of rows in the designated table, which you specify. See Chapter 7,
Implicit Joins , to learn more about designative references.

Internal Storage Value Must be Row ID of Designated Table

As mentioned earlier, if you are mapping to an existing M database you need to
be certain to map a field of type Designative Reference to a global node which
contains the Row ID of the designated table.

Designative References into Child Table

If your base table is a parent table and you want to create a designative reference
field into one of its child tables, you must first create the child table by defining a
characteristic relationship to it before creating the designative reference field that
refers to the child table. This is because the designated table you name when you
define a designative reference field must exist. See “Defining a Child Table” on
page 5-11 in Chapter 5, Defining a Base Table , to learn how to define a charac-
teristic relationship.
6-14 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
Procedure To define a Designative Reference field:

1. Select "Designative Reference" in the Data Type field in the Field Definition
master window.

The Designative Reference data type auxiliary window appears. The com-
pleted window for the Latest_Edition designative reference field in the
Guides table is shown below:

The table below describes the field on the Designative Reference auxiliary
window.

2. At the Referenced Table prompt, enter the name of the Base Table which
contains the field you are referencing.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Latest_Edition______________ Des Ref to Editions Table____________________ |
| |
| Data Type Designative Reference____ |
| |
| Maximum ue Field? ____ |
| +-----------Designative Reference Data Type------------+ |
Numbe		
	Referenced Table Editions___________________________	
Multi		
+--+		
Computed		
+--+
 Update Conversion/ Error/Help Indexing Copy Additional

...Designative Reference Data TypeUnsaved Data Press <PF1><PF3> For Help

Table 6-5: Designative Reference Data Type Fields

Field Name Description Possible Values

Referenced
Table

Name of the designated base table
that contains the field you want to ref-
erence from this table.

Name of an exist-
ing base table.
Open M with SQL Data Dictionary Guide 6-15

Chapter 6—Defining Base Table Fields
Defining a Multiple Choice Field

The multiple choice data type lets you supply a list of values for a field that will
be displayed when a user presses <LIST CHOICES> when the cursor is on that
field in a Form Generator form. Only the values you specify will be accepted for
field assignment.

External and Internal Values

You can optionally define an internal value that is different from the display, or
external, value. The internal value is the value stored in the database. If your
external values are long, in order to provide clarity for application users, it often
makes sense to define internal values which are shorter. Also, if you are mapping
to an existing M database, some fields contain coded information which would
make no sense to the user. In this case, you would develop meaningful external
values for these fields.

NULL Internal Values

Starting with Version E, you can specify a NULL internal value. A choice with
internal value NULL should be represented on the choice list as follows:

<external_value>||

If you do not explicitly define a default value for a multiple choice field and the
user does not make a selection, that field will contain a NULL value. If the field
has a NULL internal value choice, the external representation of the NULL
choice will be displayed on a form or report once you insert a new row into the
base table (via a form or via SQL).

Note: If you have existing database or form-only Multiple Choice fields with a NULL
internal value, you must run the “Convert Multiple Choice Fields" conversion task
in the D-to-E conversion program of the Conversion Manager in order to update
their definitions.

Example You may want to store a shorter version of choices internally to save disk space:

ONE||1
TWO||2
NONE||
6-16 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
Procedure To define a Multiple Choice field:

1. Select "Multiple Choice" in the Data Type field in the Field Definition master
window.

The Multiple Choice data type auxiliary window appears. The completed
window for the Product field in the Guides table is shown below:

The table below describes the fields on the Multiple Choice auxiliary win-
dow.

2. Enter Yes at the "Do You want Internal and External Values?" prompt if you
will provide internal as well as external values for the choices. Otherwise,
press <TAB>.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Product_____________________ InterSystem Products_________________________ |
| |
+------------------------Multiple Choice DataType------------------------------+
| |
| |
| Do You want Internal and External Values? Yes_ If 'Yes' - Enter the |
| Choices in the Form: 'External Value||Internal Value'. |
| |
| Multiple Choices (2/1) |
| Open M/SQL M||M__ |
| Open M/SQL RDBMS||R__ |
| ___ |
| ___ |
+--+

...Multiple Choice Press <PF1><PF3> For Help

Table 6-6: Multiple Choice Data Type Fields

Field Name Description

Do you want Internal
and External Values?

Answer Yes if you want a different value to be stored in
the database than the user will see and select in the
multiple choice popup window.

Multiple Choices Multi-line field. List one choice per line. You can list up to
1023 possible choices. A choice can be any alphanu-
meric string, up to 75 characters in length. The default
maximum length of a multiple choice field is the length
of the longest choice you supply. Do not make the
length of a multiple choice field smaller than this value. If
you are using both external and internal values, use the
format:
External Value||Internal Value
Open M with SQL Data Dictionary Guide 6-17

Chapter 6—Defining Base Table Fields
3. At the Multiple Choice multi-line field, enter one choice per line, pressing
<RETURN> after each choice. If you are entering both an internal and an
external value for each choice, specify the values in the format:
 external||internal.

The length of the longest (external name) choice you specify resets the
default Maximum Length option. The number of choices you specify resets
the Number of Distinct Values option for the field.

4. Press <PROCEED> when you are done entering choices.

Defining a Name Field

The name data type can be used for names that are stored in a particular internal
format.

Internal Storage Value

The internal storage format for values in fields defined as Name data type can be
one of the following:

Last Jr., First Middle

Last, First

Last, First Middle

Use the Name data type only when name values in your existing M database
include both the first and last name, separated by a comma. The middle name or
initial and title "Jr." are optional. If your application includes names stored in
another format, (including something like title or rank, for instance), then define
those fields as text fields and use the conversion code facility, where necessary, to
convert to external display values.

Procedure To define a Name field:

1. Select "Name" in the Data Type field in the Field Definition master window.
6-18 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
The Name Data Type auxiliary window appears, with the cursor at the only
field, "What Function..."

The table below describes the field on the Name data type window.

2. Press <RETURN> to accept the default collating function, EXACT. Or press
<List Choices> to select one of the six types of collating available. Move the
highlight bar to the collating function you want to use with this field, and
press <RETURN>.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Name________________________ Name of Staff Person_________________________ |
| |
| Data Type Name_____________________ |
| |
| Maximum ue Field? ____ |
| +--+ |
	What Function of the Field should be Used	
	for Collating (ORDER BY, >) and Lookups Exact__	s >
+--+		
+--+
 Update Conversion/ Error/Help Indexing Copy Additional

...Function on Field in QueryUnsaved Data Press <PF1><PF3> For Help

Table 6-7: Name Data Type Window Fields

Field Name Description
Default
Value Possible Values

What Function... Affects the data
lookups retrieve

EXACT ALPHAUP
EXACT
Minus
Plus
Space
UPPER
See “Collation Sequence Affects
Name and Text Data Types” on
page 6-28.
Open M with SQL Data Dictionary Guide 6-19

Chapter 6—Defining Base Table Fields
Defining a Number Field

Number data type parameters control how number values are displayed on forms,
reports, and queries, and how number values can be inserted using forms or SQL.

Internal Storage Value

The value in a field defined as the Number data type must be in canonic form.
Canonic means a purely numeric value, as opposed to a string value. This means
it must follow this requirement:

+%val=%val

Canonic numbers do not contain leading or trailing zeros. The Plus operator
removes leading zeros, and trailing zeros that follow the decimal point. If the
decimal point is followed by only zeros, eliminate the decimal point as well to
make the number canonic. For example, the numbers 0123 and 1.0 are not
canonic, since +0123 = 123 and +1.0 = 1.

Canonic numbers cannot contain any non-numeric characters, except the decimal
point (when followed by a non-zero decimal fraction), the plus sign, and the
minus sign. Commas may not be included in a canonic number. For example, the
value 012ABC is not canonic, because +012ABC = 123. See “Plus” on page 6-
30.

Validation and Conversion Code

Internal-to-external and external-to-internal conversion code is generated auto-
matically for number data types. The actual code is dependent on the external
number format you select for the field, as described in Step 6 of “To define a
Number field:” on page 6-20.

See Chapter 10, Data Conversion and Validation , for more information.

Procedure To define a Number field:

1. Enter Nu or select Number from the popup window in the Data Type field in
the Field Definition master window.
6-20 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
The Number data type auxiliary window appears. The cursor is on the Num-
ber Minimum field. The completed window for the Zip field from the Doc-
staff table is shown below:

The table below describes the fields on the Number data type window.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Docstaff_________________ Documentation Staff Info___________ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Zip_________________________ Postal Zip Code______________________________ |
| |
| Data Type Number___________________ |
| +--------------------------Number Data Type---------------------------+ |
	Number Format: 1: 1234567.89__	
	Decimal Places: __	
	1: 1234567.89 Leading Punctuation: _	
	2: 1234567,89 Show Minus Format: -x_	
	3: 1,234,567.89 Used in Arithmetic Calc? Yes_	
	4: 1.234.567,89	
+---| 5: 1 234 567.89 Number Minimum: ________________ |----+
 | 6: 1'234'567,89 Number Maximum: ________________ |
 Up+---+al

...Number Data Type Unsaved Data Press <PF1><PF3> For Help

Table 6-8: Number Data Type Window Fields

Field Name Description

Number
Format

Formats 1-6 (See Number Data Type window for an example of each for-
mat).
The default number format used at your site is set as a System Configura-
tion value. You may select any of the 6 available number formats for a par-
ticular field. This feature allows you to customize number formats for
specific applications.
You can change the format of a number data type field in both the Form
Generator and M/PACT.

Decimal
Places

Display: Exact number of decimal digits that should be displayed to the
right of the decimal point.

 0 no decimal places displayed.
 blank number of decimal places stored internally will be displayed, up

to column width format.
 1-11 number of decimal places displayed, up to column width.

M/PACT allows you to override this value.
Data Entry:Number of decimals the user may enter.
 0 no decimals are allowed.
 blank no checking for decimals is done.
 1-11 number of decimal places.
Open M with SQL Data Dictionary Guide 6-21

Chapter 6—Defining Base Table Fields
2. At the Decimal Places field, enter the number of decimal places the user is
allowed to enter and press <RETURN>.

3. At the Leading Punctuation field, enter the character you want to precede
numbers when they are displayed.

4. At the Show Minus field, enter -x, x- or (x) to indicate how to display nega-
tive numbers.

5. At the Used in Arithmetic Calculations? field, press <RETURN> to accept
the default value Yes if the field is used in calculations or enter N if the num-
ber is not used in calculations.

6. At the Number Format field, press <RETURN> to accept the default format,
or press <Erase Field Line> and enter the number of the format you want.

7. At the Number Minimum field, enter the smallest number the user is allowed
to enter on a form and press <RETURN>.

8. At the Number Maximum field, enter the largest number the user is allowed
to enter on a form and press <RETURN>.

9. Press <RETURN> at the <proceed> prompt.

Leading
Punctuation

Character to appear to left of field's first digit, such as $.

Show Minus
Format

Defines display format of negative numbers.
 -x minus sign precedes value, as in -999
 x- Minus sign follows value, as in 999-
 (x) Negative value in parenthesis, as in (999)

Used in
Arithmetic
Calculation?

Choose Yes (default) for fields which may be used for calculations, such
as salary or cost.
Choose No for fields like Social Security Number or Account Number.

Number
Minimum

Lowest number that can be entered.

Number
Maximum

Highest number that can be entered.

Table 6-8: Number Data Type Window Fields
6-22 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
Defining a Row ID Field

When you create a base table, the Data Dictionary automatically creates a Row
ID field for the table, sets its field name as the base table name and its field defi-
nition options as shown on the following screen. Row ID field definition is com-
pletely automatic.

You cannot modify any of these field definition values; however, you can define
additional Row ID data type options by moving the cursor to the Data Type field
and pressing <RETURN>. These options are further described in “Examining the
Row ID Field Definition” on page 16-3 in Chapter 16, Default Physical Structure
, and in “Step 3: Edit Row ID Field(s)” on page 17-10 in Chapter 17, Relational
Definition of an M Database .

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Accounts_________________ Client accounts master table_______ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Accounts____________________ Accounts Row ID______________________________ |
| |
| Data Type Row ID___________________ |
| |
| Maximum Length 16_ Unique Field? Yes_ |
| |
| Number of Distinct Values NUMROWS_________ |
| |
| Multi-Line Field? ____ < Multi-Line Options > |
| |
| Computed Field? No__ |
+--+

...Field Definition Inquiry Mode Press <PF1><PF3> For Help

 Update Conversion/ Error/Help Indexing Copy Additional
 Features Validation Code Messages Options Field Options
Open M with SQL Data Dictionary Guide 6-23

Chapter 6—Defining Base Table Fields
Defining a Text Field

The text data type can be used for any ASCII text string.

Procedure To define a Text field:

1. Select "Text" in the Data Type field in the Field Definition master window.

The Text data type auxiliary window appears. The user has pressed <List
Choices> so you see the function lookup box:

The table below describes the fields on the Text data type window.

2. Press <RETURN> to accept the default collating function, EXACT. Or press
<List Choices> to see the six types of collating available. Move the highlight

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Title_______________________ Title of Guide_______________________________ |
| |
| Data Type Text_____________________ |
| |
| Maximum ue Field? ____ |
| +--+ |
	What Function of the Field should be Used	
	for Collating (ORDER BY, >) and Lookups Exact__	s >
+--+		
+--+
 Update Conversion/ Error/Help Indexing Copy Additional

...Function on Field in QueryUnsaved Data Press <PF1><PF3> For Help

Table 6-9: Text Data Type Window Fields

Field Name Description
Default
Value Possible Values

What Func-
tion...

Affects the
data lookups
retrieve

EXACT ALPHAUP
EXACT
Minus
Plus
Space
UPPER
See “Collation Sequence Affects Name and
Text Data Types” on page 6-28.
6-24 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
bar to the collating function you want to use with this field, then press
<RETURN>. See “Collation Sequence Affects Name and Text Data Types”
on page 6-28.

Defining a Time Field

The time data type is for time of day values. Internal-to-external conversion code
is generated automatically.

Internal Storage Value

The value enter in Time data type fields are store as the second piece of the M
$HOROLOG function, which is the number of seconds since midnight.

User Entry Formats

Users can enter a time in any of the supported formats into a field of this type,
unless the maximum length you specify is less than that needed by a particular
format.

In addition, users can enter the variable N or n to represent the current system
time. You can use N alone or in an expression, such as N-#, where # stands for
the number of seconds. For example: N-1 means the current time minus 1 sec-
ond.

Note: Time data imported from other database systems (for example,
FileMan) cannot be stored in a Time data type field. See “Step
12: Define Additional Options” on page 6-52 for further details.

Validation and Conversion Code

Validation code is created from the values you enter in the First Time and Last
Time fields. If you need to base permissible values on relative times (such as dis-
allowing any times prior to the actual calendar time), leave these fields blank and
add appropriate field validation code.

Internal-to-external and external-to-internal conversion code is generated auto-
matically for Time data types. The actual code is dependent on the external time
format you select for the field, as described in Step 2 of the “To define a Time
field:” on page 6-25.

Procedure To define a Time field:

1. Select "Time" in the Data Type field in the Field Definition master window.
Open M with SQL Data Dictionary Guide 6-25

Chapter 6—Defining Base Table Fields
The Time data type auxiliary window appears:

The table below describes the fields on the Time data type window.

2. Specify in the Time Format field the number of the time format desired. The
default is time format 1. To select a different format, press <Erase Field> to
clear the Time Format field, then enter the number of the display format
desired. An example of each time format is shown in the Formats portion of
the Time Data Type popup window. The time format currently specified is
shown at the top of this window. This format governs how times are dis-
played on forms and M/PACT reports, not how time data is stored within the
database.

3. Optionally, enter times in the First Time field and the Last Time field which
specify the earliest and latest time that can be entered in this field. You can
enter these time values using any time format; Open M with SQL automati-
cally converts them into the time format you specified. Open M with SQL
assumes that a time value is AM, unless you specify otherwise. Midnight is
represented as 00:00:00 (not 24:00:00). You may also specify values for
these fields by using the variable “N”. N specifies the current time (N=Now);
N-1 specifies one second ago, N+1 specifies one second from now, and so
forth. You can specify any time for the First Time and Last Time, with the
restriction that the First Time value must be earlier than the Last Time value.

 +------------------Time Data Type------------------+
 | |
 | Time Format 1. 04:59PM___ |
 | |
 | First Time __________ Last Time __________ |
 | |
 | Formats: |
 | 1 - 04:59PM 3 - 04:59:59PM |
 | 2 - 16:59 4 - 16:59:59 |
 +--+

Table 6-10: Time Data Type Window Fields

Field Name Description
Default
Value Possible Values

Time Format Display format of
data in field. Deter-
mines maximum
length.

1 1-4
See window.

First Time Earliest time that
can be entered.

None Any valid time for-
mat, or n to repre-
sent current time
at data entry.Last Time Latest time that can

be entered.
None
6-26 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
Changing the time format automatically changes the formatting of these
fields.

4. Press <RETURN> at the <proceed> prompt.

5. The default maximum length value is set by Open M with SQL, based on the
time format you selected. Do not decrease the maximum length below this
value.

Defining a Yes/No Field

When you create a Yes/No field, no auxiliary window appears.

Internal Storage Value

Whether the user enters Yes, No, Y, or N, the internal value stored is Y for a Yes
value and N for a No value. If no value is entered, there is a null value.

Null Internal Values

Sometimes you need to allow for null values, as when certain information may be
unknown at the time of initial data entry. In these cases, your application must
take the existence of null values in these fields into account, by considering three
values in the field: Y, N and NULL.

No Null Internal Values

Some applications do not need to provide for null values. To make the existence
of null values impossible in order to simplify application code, make the Yes/No
field required and include a default value for ease of use.

Example In the Guides table, we always want to know whether a title is retired or active.
Therefore, we do not allow NULL values. The Update Features window for this
Open M with SQL Data Dictionary Guide 6-27

Chapter 6—Defining Base Table Fields
field is shown below, where we define it as required and give it a default value of
No. See “Step 9: Define User Update Features” on page 6-46:

Collation Sequence Affects Name and Text Data Types

Collation sequence is an ordering syntax defined on data types which are charac-
ter strings, such as Name and Text.

There are six available collating sequence functions in Open M with SQL:
EXACT, ALPHAUP, Minus, Plus, Space, and UPPER.

Numbers Come First

In all six collation sequences, pure numbers come first in numeric order, fol-
lowed by all other strings. A number that is not canonic (e.g., 02 or 1.30) collates
as a string rather than a number, unless you are using the Plus collating sequence.

EXACT

When you define a field of type Name or Text in the Data Dictionary, EXACT is
the default collation sequence.

EXACT is an M collation sequence that orders pure numeric values (values for
which x=+x) in numeric order first, followed by all other characters in string
order. The M collation sequence for strings is the same as the ANSI-Standard
ASCII collation sequence--except on IBM mainframes, where it is the EBCDIC
collation sequence. In ASCII collation sequence, digits are collated before upper-
case alphabetic characters and uppercase alphabetic characters are collated

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Retired_____________________ Is Title Retired?____________________________ |
|+-------------------------------Update Features-------------------------------+
	Field Protection Add/Edit____ Column Number 3 Field ID # 45
	Required Field? No________ If it is 'Maybe' Required -
	the M Expression to Determine if it is Required is:
	IF __
	M Expression for Default (External) Value
	__
++---+

...Update Features Unsaved Data Press <PF1><PF3> For Help

 Conversion/ Error/Help
 Validation Code Messages
6-28 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
before lowercase alphabetic characters. Punctuation characters occur at several
places in the sequence.

Example The following example shows several strings listed in default (EXACT) collation
sequence. Note that the apostrophe character collates before 'A'.

ALPHAUP

If the ALPHAUP collation sequence is used, the strings to be compared are first
converted to ALPHAUP format and then compared according to EXACT colla-
tion sequence criteria. ALPHAUP format removes all punctuation (non-alphanu-
meric) characters except commas and question marks and translates all
alphabetic characters into uppercase.

Example This example shows the same strings listed in ALPHAUP collation sequence.
They are converted as shown in the "Compared As" column before being used in
an operation.

Minus

This collating sequence reverses the collating order for numeric values. The
index map sequence is -{field}.

String

A'Ha

ARNOLD

Adams

a'Choo

aaronson

String Compared As

aaronson AARONSON

a'Choo ACHOO

Adams ADAMS

A'Ha AHA

ARNOLD ARNOLD
Open M with SQL Data Dictionary Guide 6-29

Chapter 6—Defining Base Table Fields
Plus

This collating sequence deletes non-canonic characters from numbers. These
include:

 n Leading zeros (for example, 0777)
 n Trailing zeros (for example, 777.10)
 n Decimal points, when the decimal fraction=0 (for example, 777.00)
 n Commas (for example 7,777)
 n Other non-numeric characters (except +, -, and .) (for example, $20.98)

This causes numeric values that were input with these characters to be collated as
numbers, rather than as character strings. If the Plus collating sequence is not
used, non-canonic numbers are collated as strings.

The index map sequence is +{field}.

Space

This collating sequence forces all values to collate as character strings. The index
map sequence is “ “_{field}.

UPPER

If UPPER collation sequence is used, the strings to be compared are first con-
verted to UPPER format and then compared according to EXACT collation
sequence criteria. UPPER format translates alphabetic characters into uppercase
but leaves punctuation characters intact.

Example Here are the same strings listed in UPPER collation sequence.

String Compared As

a'Choo A'CHOO

A'Ha A'HA

aaronson AARONSON

Adams ADAMS

ARNOLD ARNOLD
6-30 Open M with SQL Data Dictionary Guide

Step 3: Specify the Data Type
Effects of Collation Sequence

Collation sequence affects the following operations:

 n The order produced by an SQL ORDER BY clause
 n The behavior of the comparison operations

> greater than
< less than
= equal to
>= greater than or equal to
<= less than or equal to
not> not greater than
not< not less than

 n The behavior of form lookups

Collation Sequence and ORDER BY

ORDER BY applied to an expression that is a field with a data type of Text or
Name uses the collation sequence defined for that field in the Data Dictionary.

ORDER BY applied to any other expression uses the EXACT collation
sequence.

Example If the EmpName field has the collation sequence ALPHAUP, this example orders
the returned rows first by "DateEnd-DateStart" in EXACT collation order, and
within that by "EmpName" in ALPHAUP order:

SELECT DateEnd-DateStart,EmpName ...
ORDER BY 1,2

Collation Sequence and Comparisons

In general, comparisons of character string values are done using EXACT colla-
tion sequence.

If either side of a collation operator is a field with a data type of Text or Name,
the comparison uses the collation sequence defined for the field in the Data Dic-
tionary. For example, if the EmpName field is defined as ALPHAUP, the com-
parison:

EmpName > "jo"

tests EmpName in ALPHAUP format to determine whether it is greater than (fol-
lows in collation sequence) the string "JO". In effect, an "alphaup function" is
Open M with SQL Data Dictionary Guide 6-31

Chapter 6—Defining Base Table Fields
implicitly applied to both sides to convert each to ALPHAUP format. Then, the
(EXACT) comparison is performed.

If both sides of a comparison are fields of Text or Name data type, precedence
order is used to choose the collation sequence of the comparison. The precedence
order is:

1. ALPHAUP (highest)
2. UPPER
3. EXACT (lowest)

The collation sequence with the higher precedence is chosen.

Collation Sequence and Form Lookups

Lookups affect how users can retrieve rows from a base table from a Form Gen-
erator form. See “Case Transformation” on page 8-16 in Chapter 8, Base Table
Lookups , for information on how collation sequence affects lookups.
6-32 Open M with SQL Data Dictionary Guide

Step 4: Specify Maximum Length of Data
Step 4: Specify Maximum Length of Data

Maximum length specifies the longest value (in number of characters) that can be
stored in this field. Open M with SQL specifies a default value for the Maximum
Length, based on the data type you selected. Do not edit this default value for
data types Date, Time, Multiple Choice, or Yes/No.

Procedure To edit the default maximum length:

1. Move your cursor to the Maximum Length field on the Field Definition mas-
ter window.

2. Press <Erase Field>, then enter the correct value for your application. The
maximum value permitted is 999. Maximum length specifies the length of a
single line of a multi-line field (see “Step 7: Specify If the Field is Multi-
Line” on page 6-37 for further details).
Open M with SQL Data Dictionary Guide 6-33

Chapter 6—Defining Base Table Fields
 Step 5: Specify If Values Must be Unique

If a field should have a different value for each row in the database, define that
field as unique. For example, in a table of Employees an employee ID number
field would be a unique value; an employee name field, though unlikely to have
many duplicates, is not by definition unique, and therefore should not be defined
as unique.

Open M with SQL ensures that a value defined as unique does not already exist
in another row. If a user enters a value which already exists, they see an error
message and must re-enter a unique value.

When Open M with SQL defines the Row ID field for a table, which it does
whether you are using default or customized physical structure, it defines that
field as unique.

Index Maps for Unique Fields

If you use default physical structure, Open M with SQL automatically creates an
index map for unique fields. If you use customized physical structure, InterSys-
tems urges you to define an index map for each unique field (other than the Row
ID field), as described in “Unique Fields” on page 9-4 in Chapter 9, Index Maps .

Procedure To define a unique field:

1. Move your cursor to the Unique Field? prompt on the Field Definition master
window.

2. Enter Yes if you know that each row should have a different value for this
field.

If you are using customized physical structure and the data type of this field
is Row ID, you must answer Yes unless the Row ID is a combination of field
values.

Example In the Guides table, we defined the Title field as unique to ensure no duplicate
entries.
6-34 Open M with SQL Data Dictionary Guide

Step 6: Specify the Number of Distinct Values
Step 6: Specify the Number of Distinct Values

The Number of Distinct Values field asks for the approximate number of differ-
ent values the field is expected to have in the database. For example, a Yes/No
field has 2 distinct values if it is required; otherwise, it has 3 distinct values, since
it can also be NULL.

The Open M with SQL Query Optimizer uses the number you enter in this field
to select a retrieval strategy. The number need not be precise; "ballpark figures"
(like 20, 2000, or 200000) are acceptable. Enter the number without commas or
other punctuation.

The value in this field can be one of two possibilities:

 n A number
 n The reserved word NUMROWS

Enter a Number

For some fields, the Number of Distinct Values is a constant that is independent
of the size of the database. For a multiple choice field, M with SQL adjusts this
field to the number of choices you specified. For other fields, you should specify
a value, if possible, to reduce processing overhead. For example, a whole per-
centage field would only have 100 possible values. A days remaining in year
field would have 366 (including zero) possible values.

Enter NUMROWS

For some fields, the Number of Distinct Values is a function of the number of
rows in the base table. Whenever you define a field as unique, the Number of
Distinct Values is always equal to the number of rows in the base table. Non-
unique fields, such as Phone in the Docstaff table, may not be unique; however,
the number of distinct values is apt to be close to the number of rows in the table
since duplications, while possible, are unlikely.

You use the notation NUMROWS to refer to the number of rows in the base
table. The value of NUMROWS is equal to the number you supplied as the
Approximate Number of Rows in the base table definition. (See Table 5-2: Fields
on Base Table Definition window, on page 5-6 in Chapter 5, Defining a Base
Table .)

You can also use the syntax:

NUMROWS/any number greater than 1
Open M with SQL Data Dictionary Guide 6-35

Chapter 6—Defining Base Table Fields
as in:

NUMROWS/2 or NUMROWS/50 or NUMROWS/1000

Use Rows in Designated Table for Designative Reference Fields

If you are specifying the Number of Distinct Values for a designative reference,
enter the number of rows in the designated table.

Example The Guides table includes the Designative Reference field, Latest_Edition_Gui.
For Number of Distinct Values, we use the number of rows we estimate will be in
its designated table, Editions.

Procedure To specify the number of distinct values:

1. Move your cursor to the Number of Distinct Values field on the Field Defini-
tion master window.

2. Enter the number that estimates the number of different values that might
appear in this field, or enter the word NUMROWS if the field is unique or
there is apt to be a different value for each row.

If you did not define your field to be unique, your cursor will move to the
"Multi-Line Field?" field; see “Step 7: Specify If the Field is Multi-Line” on
page 6-37. If your field is unique, your cursor will move to the "Computed
Field?" field, since multi-line fields cannot be defined as unique; see “Step 8:
Define Computed Field Calculations” on page 6-42.
6-36 Open M with SQL Data Dictionary Guide

Step 7: Specify If the Field is Multi-Line
Step 7: Specify If the Field is Multi-Line

A multi-line field is a database field which spans more than one line. It provides
maximum flexibility to the developer, allowing users to:

 n Enter text of unlimited length

For example, the Author_Role field in the Editions table allows paragraph
style description of the tasks performed by the main author of an edition.

 n Enter a list of related items which are always managed as a unit, one item per
line.

For example, the Summary field in the Edition table may contain many new
features covered in the Edition.

The maximum length of a multi-line field refers to the maximum length of one
line.

The maximum number of lines in a multi-line field is limited to the maximum
number of array nodes allowed in your version of M.

Displaying Multi-Line Fields on Forms and Reports

The Form Generator and M/PACT allow you to choose how many lines of a
multi-line field to display, with the range being from 2 to 22 lines. If there are
more lines of data than lines displayed, users can scroll through the remaining
lines. A display indicator tells you what line the cursor is on and the total number
of lines in the field.

Multi-Line Fields May be Computed Fields

Open M with SQL supports multi-line computed fields. This is especially useful
if you have an existing application which uses a form of multi-line storage differ-
ent from the two types described in "Two Storage Modes" below. See the discus-
sion in “Step 8: Define Computed Field Calculations” on page 6-42.

Two Storage Modes

Multi-line fields can be stored in one of two ways:

 n One Line Per Node
 n All in One Node

When you use default physical structure, Open M with SQL automatically uses
One Per Node storage mode. You cannot alter this.
Open M with SQL Data Dictionary Guide 6-37

Chapter 6—Defining Base Table Fields
When you use customized physical structure, Open M with SQL displays an aux-
iliary window where you can select one of the two storage modes.

Note: If your existing M database does not use either storage type, you can define its
storage structure at the Map Definition form, at the <M Retrieval Code> window
reached from the Map Data Specifications window.

One Per Node Storage Mode

This is the mode used under default physical structure. In One Per Node storage
mode, each line of a multi-line field is stored in a separate node. The first sub-
script level down is given an integer value, starting with one for the first multi-
line field in a table. The value of this node is the number of lines in the field.
Each line is stored one subscript level down; the value of the subscript is an inte-
ger, starting with 1 for each new multi-line field. The maximum length of a line
is the maximum M string length allowed in your version of M.

Example The Author_Role and Summary multi-line fields in the Editions base table is
stored using One Per Node storage mode, since the table is created with default
physical structure. This is how the corresponding global looks:

^Editions(1,1,1,0)=2;Author_Role field storage
^Editions(1,1,1,1)=Editing
^Editions(1,1,1,2)=Chapters 1,2,3,6,7,8,11,12
^Editions(1,1,2,0)=4 ;Summary field storage
^Editions(1,1,2,1)=Customized Mapping
^Editions(1,1,2,2)=Hypertext Help
^Editions(1,1,2,3)=Import File Specifications
^Editions(1,1,2,4)=Data Dictionary Reports

See Chapter 16, Default Physical Structure , to see the corresponding definition
of these fields at the Map Data Specifications screen.

All in One Node Storage Mode

If you are using customized physical structure, you can choose All in One Node
storage mode. This mode stores a list of items as pieces of a node value, each
item separated by a delimiter. A disadvantage of this mode is that the length of
the entire field is limited by the maximum global reference length and the maxi-
mum M string length allowed in your version of M.

Example Here is how the Author_Role and Summary multi-line fields would be stored in a
global if you were using customized mapping and chose All in One Node storage
mode:

^Editions(1,1,1)=Editing^Chapters 1,2,3,6,7,8,11,12
^Editions(1,1,2)=Customized Mapping^Hypertext Help^Import File

 Specifications^Data Dictionary Reports
6-38 Open M with SQL Data Dictionary Guide

Step 7: Specify If the Field is Multi-Line
See Chapter 18, Creating a Customized Map Definition , to see how to define
Map Data Specifications for a multi-line field using One Per Node storage mode.

Referencing Multi-Line Fields

You can reference multi-line fields when you insert M code as part of your cus-
tomizing of base tables and forms. You use the same syntax, whether you are
using One Per Node or All In One Node storage mode.

The syntax to reference the counter of the number of lines is:

{fieldname()}

Open M with SQL manages this counter automatically. It stores the counter in the
first multi-line global node for One Per Node storage; it manages it internally in
memory for All in One Node storage.

The syntax to reference an instance of the multi-line field is:

{fieldname(expression)}

Example If you manage updating the multi-line field {Author_Role} in M code, you
would write the following code to add a new line to the field:

SET n={Author_Role()}+1 Determine number of next line
SET {Author_Role(n)}="Chap 5" Insert value in the node of that number

Automatic Repacking

Open M with SQL automatically repacks the multi-line field after computation,
eliminating all null instances, and then resets the counter to the revised actual
number of instances. Therefore, if you issue a command to set an instance, and
the value it receives is null, that instance will be removed from the multi-line
field.

Set Field to Null

You can set either all lines or one line of a multi-line field to be null. If you want
to nullify the entire field, issue the command:

KILL {fieldname()}

You can also nullify the entire field by using the IF conditions in the Computed
Field auxiliary window.

Procedure To define a multi-line field:

1. Enter Yes in the Multi-Line Field? field on the Field Definition master win-
dow. This displays the Multi-Line Field Options window:
Open M with SQL Data Dictionary Guide 6-39

Chapter 6—Defining Base Table Fields
The table below describes the fields in the Multi-Line Field Options window.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
| |
+----------------------------F+------------Multi-Line Field Options------------+
Field Name	Do you want Word Processing Capabilities
Street______________________	When editing this Multi-Line Field?
	No__
Data Type Text_______	
	Hard Return Indicator: ~
Maximum Length 30_	
	Display (Current Line/Total Line) Indicator?
Number of Distinct Va	Yes_
Multi-Line Field? Yes	Maximum number of lines to allow ____
Computed Field? No__	Storage Type Storage Delimiter
+-----------------------------| One per Node____ ________ |
 +--+
 Update Conversion/ Error/Help Indexing Copy Additional

...Multi-Line Field OptionsUnsaved Data Press <PF1><PF3> For Help

Table 6-11: Multi-Line Field Auxiliary Window Fields

Field Name Description

Word Process-
ing Capabilities

Yes or No. Default is No.
“Yes” enables automatic line-wrapping, enhanced
field navigation, and the ability to perform string
searches. For further details on word processing
capabilities, see the Open M/SQL User Interface Pro-
gramming Guide.
 “No” halts typing at the end of each line; a
<RETURN> is required to go to the next line.

Hard Return Indi-
cator

Single character that indicates a forced line
return/start of new line.

Display Indicator Yes or No. Default is Yes.
“Yes” displays a line counter that indicates the current
line number/total number of lines. For example, 2/3
indicates the current line is the second of three lines.
“No” suppresses the display of the line counter on
forms at runtime.
6-40 Open M with SQL Data Dictionary Guide

Step 7: Specify If the Field is Multi-Line
2. At the Storage Type prompt, press <List Choices> to see the possible values
or enter the first letter of the type you want and press <RETURN>.

If you select All in One Node, your cursor will go to the Storage Delimiter
field; see Step 3. Otherwise, go to Step 4.

3. Enter the Storage Delimiter.

4. Press <PROCEED>.

The cursor now goes to the Computed Field? field.

Maximum Num-
ber of Lines to
Allow

Specify the maximum number of lines to allow for
storage in this multi-line field. This maximum number
of lines applies even if this field is defined as a word-
processing (line wrapping) multi-line field. At the form
definition level you can override this value to
decrease the maximum number of lines allowed; you
cannot increase this number at the form definition
level. If you specify no value, an unlimited number of
lines are allowed.
Open M with SQL rejects SQL INSERT and UPDATE
statements if they contain a multi-line field with a line
count that exceeds this value. This value only limits
data input, it does not limit the maximum number of
lines to display.

Storage Type This option is only modifiable for customized physical
structure. For default physical structure, One Per
Node is always used. One Per Node is the default for
customized physical structure.
If you are using the field to store unlimited-length text,
select All in One Node.
However, if you are choosing to store a list of related
items, such as an address, you may select either
type.

Storage Delimiter This field is required if you select the storage type, All
in One Node. Enter:
 n Actual delimiter character in quotes, as in "/" or
 n Ascii value, using the M $CHAR function as in

$C(18).
If you enter "^", a list of colors would be stored in a
node as:

red^blue^green^purple

Table 6-11: Multi-Line Field Auxiliary Window Fields
Open M with SQL Data Dictionary Guide 6-41

Chapter 6—Defining Base Table Fields
Step 8: Define Computed Field Calculations

Computed field values are calculated by M expressions that can reference other
fields in the same base table. The computation can reference a maximum of
approximately 35 other fields.

Computed field calculations can also include M $ variables such as $H
(date/time) and $ZD. A computed field value can be simply a calculation that is
performed when the value is needed (at M/PACT report, query, or form run time),
or the values of a computed field can be stored in the database and used in the
map definition. You can specify that computed field values in the current row
should be recalculated every time a value changes for any field that is used in the
computation.

M code for computing the field's value is specified within the Computed Field
definition. The field data type determines which values are allowed for the field,
with the same restrictions that apply for a field of that data type.

Benefits and Limitations of Computed Fields

Computed fields are useful if you wish to have a default value based on another
field, or if you wish to assign a default value at times other than upon the inser-
tion of a new row in the table.

A computed field may be multi-line. Use the multi-line syntax described in “Step
7: Specify If the Field is Multi-Line” on page 6-37.

A computed field definition may not be copied. See “Copying a Field Definition”
on page 6-57.

Two Types of Computed Fields

There are two types of computed field, those which are:

 n Always equal to the result of the computation
 n Not always equal to the result of the computation

Always Equal to Computation

Values for a field of this type are not stored in the database.

If you select this type in the Computed Field auxiliary window, follow these
guidelines:

 n Set field protection to Output Only.
 n If you are using customized mapping, do not map this field to a global.
6-42 Open M with SQL Data Dictionary Guide

Step 8: Define Computed Field Calculations
If you select this field as a lookup display field, no value will appear during row
selection.

Computed fields of this type are validated based on the final result of the compu-
tation

Example In the Docstaff table, the field Length_of_Service is computed based on the value
of the Date_Of_Hire field. We designate it as Always Equal to the Computation
as there is no need to store this value in the database.

Not Always Equal to Computation

Values for this type of computed field are stored in the database.

If you select this type, the following applies:

 n It does not have to be output only.
 n If you are using customized physical structure, you must include it on the

Master Map so it can be stored. Open M with SQL will do this automatically
if you are using default physical structure.

 n It will be computed as follows:
 • When inserting a row
 • If its old value is null
 • If certain fields you specify on the Computed Field auxiliary window are

updated
 n It will not be computed under the following circumstances:

 • If it is to be overridden by an explicit value
 • When updating a row, if it has a previous value, and none of the fields

used to trigger the computation is updated
 • During a lookup, if you selected it as a field to be displayed

Example In the following figure, the Total field of the Line Item table is computed, based
on the Quantity and Unit Cost fields:

Item Name Quantity Unit Cost Total
-------------------------- -------- --------- --------

Chair 2 $150.00 $300.00
Bed 1 $600.00 $600.00
Table 2 $100.00 $200.00
Couch 1 $1000.00 $1000.00
Dining Table Chair 4 $125.00 $500.00
Lamp 6 $50.00 $300.00
Rug 4 $200.00 $800.00
Bookcase 4 $80.00 $320.00
Open M with SQL Data Dictionary Guide 6-43

Chapter 6—Defining Base Table Fields
Any change to the value of either the Unit Cost or Quantity field changes the
Total. However, since this is financial data, you want to be sure there is a record
of it on disk, so you define it as Not Always Equal to the Computation.

Procedure To define a computed field:

1. Enter “Y” at Computed Field? at the Field Definition master window.

You will see the Computed Field auxiliary window:

The table below describes the fields on the computed field window.

2. At "Code to compute the result", enter the M code used to assign a value to
the field.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ List of all revisions to guides____ |
+--------------------------------Computed Field--------------------------------+
| |
| Code to compute the result: (1/1) |
| (Explicitly set {*} to the computed field value.) |
| SET {Employee_Date}=Date_of_Hire/365.25_____________________________________ |
| __ |
| |
| Exception: The computation produces a NULL result |
| if any of the following is true: |
| (1/0) |
| IF Date_of_Hire=" "__ |
| IF __ |
| IF __ |
| |
| Is the value always equal to the computation? Yes_ |
+--+

...Computed Field Unsaved Data Press <PF1><PF3> For Help

 Update Conversion/ Error/Help Indexing Copy Additional
 Features Validation Code Messages Options Field Options

Table 6-12: Computed Field Auxiliary Window Fields

Field Name Description

Code to compute
the result:

Enter any valid M expression, including embedded SQL (##sql or
&sql). Refer to the computed field itself with {*}. You can refer to
other fields, in the same base table only, by using the field name
surrounded by curly braces, as in {fieldname}. You can refer to a
line in a multi-line field by using the form {fieldname(line#)}. You
can refer to a maximum of approximately 35 fields.

Exception: The
computation pro-
duces a NULL
result

Is the value always
equal to the com-
putation?

Yes: field not stored
No: field stored and recomputed if:
 n You insert a new row
 n Its old value is null
 n Its old value is not null, and any of a list of fields you specify is

updated (even if updated to the same value)
6-44 Open M with SQL Data Dictionary Guide

Step 8: Define Computed Field Calculations
3. At the "Exception:... If" fields, enter an M expression for each test which
determines if the field should have a NULL value.

4. At the "Is the value always equal to the computation?" field, enter Yes or No.

If you enter No, you will see a pop-up auxiliary window at which you name
the fields in this base table which, if updated, will cause this field to be com-
puted:

5. Add the names of the fields in this base table which, if updated, will cause
this field to be recomputed.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____+--+
+-----------| |
	This field is computed:
Code to co	
(Explic	1. For a new row
SET {}=Dat	OR
__________	2. If its old value is null
	OR
Exceptio	3. If its old value is not null, and any
	of the following fields is updated:
	__
I	(1/0) __
I	__
I	
	Exception: An explicitly specified value overrides
Is the val	the computation.
+-----------+--+

...Computed Field (Not Always)Unsaved Data Press <PF1><PF3> For Help

 Update Conversion/ Error/Help Indexing Copy Additional
 Features Validation Code Messages Options Field Options
Open M with SQL Data Dictionary Guide 6-45

Chapter 6—Defining Base Table Fields
Step 9: Define User Update Features

Select the Update Features horizontal menu option if you want to:

 n Increase the protection level above the default Add/Edit
 n Make a field required
 n Provide a default value for a field

Procedure To enter the Update Features option:

1. At the Field Definition master window, press <GO TO BOTTOM MENU>.

The highlight is on Update Features, which is the first horizontal menu
option.

2. Press <RETURN>.

You will see the Update Features auxiliary window:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____

+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Title_______________________ Title of Guide_______________________________ |
|+-------------------------------Update Features-------------------------------+
	Field Protection Add/Edit____ Column Number 3 Field ID # 48
	Required Field? No________ If it is 'Maybe' Required -
	the M Expression to Determine if it is Required is:
	IF __
	M Expression for Default (External) Value
	__
++---+

...Update Features Unsaved Data Press <PF1><PF3> For Help

 Conversion/ Error/Help
 Validation Code Messages
6-46 Open M with SQL Data Dictionary Guide

Step 9: Define User Update Features
Table 6-13 describes the fields on the Update Features window.

Table 6-13: Update Features Auxiliary Window

Field Name Description

Field Protection Defines level of user access to this field:
 AE Add/Edit
 A Add
 O Output only

Column Number Open M with SQL generates the value in this field. It
is an output only field; you cannot edit it.
The Row ID is always column 1. In a child table, the
Parent reference field is always column 0.
Column number is used in the following ways:
 n Determines the order in which fields are dis-

played when you issue an SQL SELECT state-
ment. Field with subscript 0 listed first, and so on.

 n The subscript to refer to this field when you use
internal variables, such as %data and %edit, in
SQL code.

Field ID # Open M with SQL generates the value in this field. It
is an output only field; you cannot edit it.

Required Field? Y Yes
N No
M Maybe

If Maybe
Required...

Required if “Maybe” is chosen for the Required
Field? field.

M Expression for
Default (External)
Value

M code to define the default value to be displayed on
a form or report that includes this field.
Open M with SQL Data Dictionary Guide 6-47

Chapter 6—Defining Base Table Fields
Defining Field Protection

You control the amount of access users have to field values when they are dis-
played on a Form Generator form. You specify one of the 3 levels of field protec-
tion which are described below from least protection to maximum protection:

 n Add/Edit Users may enter data into this field and later modify the data.
This is the default.

 n Add Users may enter data into this field once, but may not modify it.
 n Output Values for this field are displayed on the window, but may not be

modified. This protection level is appropriate for computed fields
and other fields which will be displayed but not changed. On
forms, the cursor will not go to fields with Output Only protec-
tion. An example of an output only field is the Column Number
field on the Update Features window.

You Can Specify Stricter Protection in Form Generator

In the Form Generator, you can override this value, but only to a level of protec-
tion that is stricter. For instance, if you give a field Add protection in the Data
Dictionary, you can only give it Output protection in the Form Generator. You
can't decrease its protection by allowing Add/Edit access.

Example In the Guides table, we defined a field Latest_Edition_Gui as a designative refer-
ence to the Editions table. The value for this field is the row in the Editions table
which is the most recent edition of the guide. This value is updated automatically
via base table triggers, if necessary, when editions are inserted into the Editions
table. Therefore, we must give this field Add/Edit protection.

We want to display the latest edition of each guide -- version and revision date --
in our display and reporting. Designative Reference fields cannot be displayed
directly. However, if you use Form Generator forms, you create designative dis-
play fields from them. In the Form Generator, we create the Guides form, where
we define two designative display fields based on Latest_Edition_Gui. One is the
value of the Version field in Editions, the other is the value of the Revision_Date
field. We give these designative display fields a protection level of output, since
their value is determined by base table triggers.
6-48 Open M with SQL Data Dictionary Guide

Step 9: Define User Update Features
Procedure To define field protection:

1. Enter the Field Definition master window.

2. Press <Go to Bottom Menu>.

3. Select Update Features.

Your cursor will be at the Field Protection prompt.

4. Press <RETURN> to select the default Add/Edit protection. Or press <Erase
Field Line> and the first letter of the level of protection you desire (A or O).

Defining a Required Field

If you define a field as required, you cannot save a row of data entered in this
base table until a valid value has been entered into the required field. On forms,
the caption for a required field is displayed in reverse video, a color, or with
underlining, depending on terminal type.

The Row ID is automatically defined as a required field.

It is recommended that you define as required those fields that users of the data-
base will retrieve using an index map. See“Make Indexed Fields Required to
Avoid Null Values” on page 9-3 in Chapter 9, Index Maps .

Required Only Upon Condition

You can specify that a field is required only if a certain condition is true. If you
do this, you provide M code that specifies the condition.

Example In the Guides table, two fields — Date_Retired and Who_Retired — are only
meaningful if the Guide has been retired. Therefore, we make those fields condi-
tionally required, depending on the value of the field Retired. The completed
Update Features window for the field Date_Retired is shown below:
Open M with SQL Data Dictionary Guide 6-49

Chapter 6—Defining Base Table Fields
Procedure To define a required field:

1. Enter the Field Definition master window.

2. Press <Go to Bottom Menu>.

3. Select Update Features.

4. Move the cursor to the Required Field? option.

5. Answer “Y” for Yes, “N” for No or “M” for Maybe.

If you answer Maybe, you need to supply M code to define the condition
when this field is required in Step 6.

6. Enter the M code that specifies the condition when this field is required.

Defining Default Field Values

The default value is the value that will be assigned automatically when inserting
a new row. It will be saved with the row when the row is filed. It can be edited by
the user if the field has Add/Edit protection.

The default value is used only for inserts, and only when an explicit value has not
been assigned to the field. Default values are applied regardless of how the row is
inserted: via a Form Generator form, an embedded SQL routine, or an SQL
query.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____

+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Date_Retired________________ Date Guide is Retired________________________ |
|+-------------------------------Update Features-------------------------------+
	Field Protection Add/Edit____ Column Number 3 Field ID # 49
	Required Field? Maybe_____ If it is 'Maybe' Required -
	the M Expression to Determine if it is Required is:
	IF {Retired}="Y"___
	M Expression for Default (External) Value
	__
++---+

...Update Features Unsaved Data Press <PF1><PF3> For Help

 Conversion/ Error/Help
 Validation Code Messages
6-50 Open M with SQL Data Dictionary Guide

Step 9: Define User Update Features
Default Value for Row IDs on Forms

If you are using default physical structure, the M expression for default external
value is defined as starting with number 1, then incrementing each Row ID value
by 1. See “Open M with SQL Inserts Value in Row ID Field” on page 16-4 in
Chapter 16, Default Physical Structure .

If you are using customized physical structure, and you define your Row ID to be
one or more fields which contain actual values entered by users, you must ensure
that the Row ID fields are not null before the rows are used on a Form Generator
form.

One way to ensure that non-null values are set for these fields it to define default
M expressions for them. Even when you expect the user to enter the value for the
Row ID or a field it is based on, define a non-null default value as a dummy
value, which the user can edit.

Restrictions on Default Values

The following restrictions apply to field default values:

 n They cannot contain references to other fields, using {fieldname} syntax.
 n They are not applied in an UPDATE situation, even if the field has a null

value.

These limitations can be overcome by using the computed field feature in lieu of
a default value. See “Step 8: Define Computed Field Calculations” on page 6-42.

Procedure To define the default field value:

1. Enter the Field Definition master window.

2. Press <Go to Bottom Menu>.

3. Select the Update Features option.

4. Move the cursor to the field M Expression for Default (External) Value.

5. Enter an M expression that specifies the default value.

Examples of Default Values

Example Default Current Date: To cause the current date to be displayed in a date field as
the default value, enter the following M code at the Update Features window:

$ZDATE($H)
Open M with SQL Data Dictionary Guide 6-51

Chapter 6—Defining Base Table Fields
Example Default for Yes/No Fields: In the Guides table, we do not want to allow NULL
values in the Yes/No field, Retired. Therefore, in addition to making the field
required, we provide a default value of No:

Step 10: Define Data Conversion and Validation Code

This is an optional step.

Select the Conversion/Validation Code option from the Field Definition win-
dow’s horizontal option menu. See Chapter 10, Data Conversion and Validation .

Step 11: Define Error and Help Messages

This is an optional step.

Select the Error/Help Messages option from the Field Definition window’s hori-
zontal option menu. See Chapter 13, Field Help and Error Messages .

Step 12: Define Additional Options

This is an optional step.

Select the Conversion/Validation Code option from the Field Definition win-
dow’s horizontal option menu. From the Field Definition master window, press

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____

+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Retired_____________________ Is Guide Retired?____________________________ |
|+-------------------------------Update Features-------------------------------+
	Field Protection Add/Edit____ Column Number 3 Field ID # 50
	Required Field? Yes_______ If it is 'Maybe' Required -
	the M Expression to Determine if it is Required is:
	IF __
	M Expression for Default (External) Value
	“No”__
++---+

...Update Features Unsaved Data Press <PF1><PF3> For Help

 Conversion/ Error/Help
 Validation Code Messages
6-52 Open M with SQL Data Dictionary Guide

Step 9: Define User Update Features
<Go to Bottom Menu>. Select Additional Options from the horizontal options
menu. Pressing Additional Options displays the following window:

The following table lists and describes the options located in the Additional
Options window:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____
 +--------------------Additional Options---------------------+
+------------------| |
	NOTE: Fields on an Index will Always be included
Field Name	in lookup lists
Retired__________	
	Do not include in lookup lists? ____
Data Type	Don't use Template Information? ____
Maximum Le	Report Column Title (0/1)
	Retired?________________________________
Number of	__
Multi-Line	------------ Server Specific Options ------------
Computed F	This field is a Date datatype in ________________________
+------------------+---+

...Additional Options Unsaved Data Press <PF1><PF3> For Help

 Update Conversion/ Error/Help Indexing Copy Additional
 Features Validation Code Messages Options Field Options

Table 6-14: Field Definition Additional Options

Do not include in lookup lists? Specify Yes or No. No is the default.
This option lets you exclude the current field from
all lookup lists. Yes excludes this field from
lookup lists. No allows this field to be included in
lookup lists. See Chapter 8, Base Table Lookups .

Don’t use Template Information? Specify Yes or No. No is the default.
This option lets you select whether or not to use
the system-wide templates for field data types.
For example, your System Manager may have
established a template for all fields of data type
Date so that, by default, they always display in
format 3 with 4-digit years. Yes does not use
these system-wide data type default templates.
No uses the system’s data type default templates.
Open M with SQL Data Dictionary Guide 6-53

Chapter 6—Defining Base Table Fields
Define Column Titles for Reports

You can define a title to be printed when a field is displayed as a data column in
an M/PACT report. If you don't provide this title, M/PACT will use the value in
the Description field.

You can override this value in M/PACT on a report-by-report basis. See the Open
M/SQL M/PACT Guide.

Procedure To define a column title for this field in M/PACT reports:

1. Press <Go to Bottom Menu> at the Field Definition master window.

2. Move the highlight bar to the Additional Options option, and press
<RETURN>.

Report Column Title See “Define Column Titles for Reports” on page
6-54.

This field is a Date data type in This option applies only to applications that have
been imported into the Open M with SQL Data
Dictionary from non-Open M with SQL database
systems, such as FileMan, MIIS, or other M sys-
tems. These applications use formats for dates
and times that Open M with SQL cannot under-
stand. Therefore, during import, Open M with
SQL converts such fields to Text fields and stores
the date/time data as text strings
This option lets you associate foreign database
fields with the name of an appropriate native for-
mat. Press <List Choices> to chose from a list of
the following date/time formats:
 n FileMan Date Format
 n FileMan Date/Time Format
 n M Time Stamp Format
 n MIIS Date Format
 n MIIS Date/Time Format
When you are using the Open M with SQL Rela-
tional Server, and a client application requests
data from a field for which you have identified a
foreign database native format, the Relational
Server provides this information to the client.
See Table 19-1: FileMan Preferences Options, on
page 19-4 and Table 19-3: FileMan Data Types,
on page 19-6 in Chapter 19, The FileMan Inter-
face .

Table 6-14: Field Definition Additional Options
6-54 Open M with SQL Data Dictionary Guide

Step 9: Define User Update Features
You see the Additional Options window. The screen below shows a com-
pleted window for the field Retired in the Guides table:

3. Enter as the Report Column Title the heading you want to appear on
M/PACT reports for this field, then press <RETURN>. A report column title
can consist of multiple lines, each line has a maximum of 45 characters.

For space considerations on reports, we provide a title shorter than the text
we used in the Description field. If you do not define a report column title,
M/PACT uses the Field Description (see “Steps 1 & 2: Specify a Field Name
and Description” on page 6-4).

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____
 +--------------------Additional Options---------------------+
+------------------| |
	NOTE: Fields on an Index will Always be included
Field Name	in lookup lists
Retired__________	
	Do not include in lookup lists? ____
Data Type	Don't use Template Information? ____
Maximum Le	Report Column Title (0/1)
	Retired?________________________________
Number of	__
Multi-Line	------------ Server Specific Options ------------
Computed F	This field is a Date datatype in ________________________
+------------------+---+

...Additional Options Unsaved Data Press <PF1><PF3> For Help

 Update Conversion/ Error/Help Indexing Copy Additional
 Features Validation Code Messages Options Field Options
Open M with SQL Data Dictionary Guide 6-55

Chapter 6—Defining Base Table Fields
Step 13: Save the Field Definition

Once you have completed defining the fields in your base table, you need to save
your definitions. As long as you don't reboot your computer or abnormally exit
out of the Data Dictionary, your definitions will always be saved, or you will see
a menu giving you a choice about saving your definition.

Procedure To save your field definition:

1. Press <PROCEED>.

Depending on the state of the PROCEED Save menu toggle, your field defi-
nition will be saved automatically or you see the PROCEED Save menu. See
Chapter 3, Using the Data Dictionary Interface , for information on the
PROCEED Save menu.

You return to the Field Definition row selection window.

2. To exit Field Definition, press <PREVIOUS>.
6-56 Open M with SQL Data Dictionary Guide

Copying a Field Definition
Copying a Field Definition

Rather than creating a field definition, you can copy the definition of an already
defined field. You can:

 n Copy the current field within the same base table
 n Copy the current field to another existing base table
 n Copy a field into the current base table from the same base table
 n copy a field into the current base table from another base table

To copy a field definition, press <Go to Bottom Menu> from either the Field Def-
inition main window or the Base Table Definition main window, and select Copy
Field from the horizontal options menu. You can also perform a field copy from
the Data Dictionary main menu by selecting the Copy a Base Table Field menu
option.

Selecting Copy Field displays the following window:

Both base tables must be existing. You can press the <List Choices> key to see a
list of existing base tables, or existing field names to copy from. Field Copy does
not permit you to overwrite an existing field. Instead, it displays a message
“There’s already a field in table: x with that name”

 +-----------------Field Copy-------------------+
 | |
 | Base Table to copy field from |
 | Accounts________________________________ |
 | |
 | Field to copy |
 | Client_Name_____________________________ |
 | |
 | Base Table to copy field to |
 | __ |
 | |
 | New field name |
 | __ |
 | |
 | New field description |
 | __ |
 | |
 +--+

Field Copy Press <PF1><PF3> For Help

Enter the name of the Base table to copy the field to.
Open M with SQL Data Dictionary Guide 6-57

Chapter 6—Defining Base Table Fields
The following limitations apply to field copy operations:

 n You cannot copy Row ID or Parent Reference fields.
 n You cannot copy computed fields.
 n When copying fields across base tables, you cannot copy fields that reference

other fields (using curly brace syntax: {field}) in the following locations:
 • External->Internal conversion code
 • Internal->External conversion code
 • Validation code
 • Additional Validation code
 • Default M expression

For further details on defining conversion and validation code, see Chapter 10,
Data Conversion and Validation .
6-58 Open M with SQL Data Dictionary Guide

Editing and Deleting a Field Definition
Editing and Deleting a Field Definition

If you have %ALTER privileges to a base table, you can change any part of its
field definitions or delete field definitions, even after data has been entered into a
base table.

Deleting a Field Definition

Be certain a field is not used in any views, reports or forms before you delete it.
Once you delete a field, you cannot use SQL to reference data in that field.

Field is Deleted from Lookup

If you delete a field you specified in the Lookup Specification window, the field
name at that window will be replaced with the message <<DELETED>>. If the
field was used to lookup on, the lookup will no longer work. If the field was only
a lookup display field, the lookup will still work.

Index Maps Deleted

If there is an index map for a deleted field, Open M with SQL deletes that index
map.

Associated Global Data is Not Deleted

When you delete a field, the global that contains its data remains intact. You can
still access it via M global reference. If you no longer need that data, you must
write an application to delete the data.

Alternatively, you can write an SQL statement to delete the data values prior to
deleting the field.

Procedure To edit or delete a field definition:

1. Enter the Data Dictionary.

2. Select the Base Table Definition option from the Data Dictionary menu.

3. Select the base table whose fields you wish to edit.

You see the Base Table Definition master window.

4. Move the cursor to <Fields> and press <RETURN>.

5. At the Field Definition row selection window, press <List Choices>.
Open M with SQL Data Dictionary Guide 6-59

Chapter 6—Defining Base Table Fields
The lookup box will display field name, description, and column number for
each field in the base table:

6. Select the field you wish to edit or delete.

7. Edit the definition or press <Delete Row> to delete the field definition.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides____

+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| ____________________________ ___ |
+--+
| Date_Retired Date Title Retired 3 |
| Guides Guides Row ID 1 |
| Num_Editions Number of Editions of Guide 4 |
| Product InterSystem Products 2 |
| Retired Is Title Retired? 5 |
| Title Name of Guide 6 |
| Who_retired Person Who Retired Title 7 |
+--+
| |
+--+

...Field Definition Selecting Press <PF1><PF3> For Help
6-60 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

7
Implicit Joins
In many relational databases, the programmer must frequently join base tables
with complex WHERE conditions in an SQL query. However, Open M with SQL
provides two methods you can use to pre-define frequently occurring joins
between base tables during base table definition: designative reference and char-
acteristic relationship. These implicit joins simplify the writing of SQL queries
for these tables and make data retrieval more efficient.

This chapter covers the following topics:

 n Use Designative Reference to Join Independent Tables page 7-2
 n Use Characteristic Relationship to Join Dependent Tables page 7-5
 n Benefits of Implicit Joins page 7-7
onary Guide 7-1

Chapter 7—Implicit Joins
Use Designative Reference to Join Independent Tables

A designative reference is a join between tables in which one field in a row from
the designating table contains the Row ID of a row in the designated table, thus
providing access to all fields in the designated table.

Defining a Designative Reference Field

You define this field, giving it a data type of Designative Reference, when you
define your base table. See “Defining a Designative Reference Field” on page 6-
14 in Chapter 6, Defining Base Table Fields .

Tables Joined by Designative Reference are Independent

Unlike a characteristic (parent/child) relationship, a designative reference is a
non-dependent link. Rows in the designated table exist independently of rows in
the designating table. In other words, deleting a row from the designating table
does not affect the row to which it points in the designated table.

Many-to-One Relationship

Rows in the designating table have a many-to-one relationship with rows in the
designated table. This means that many rows in the designating table may point
to the same row in the designated table.

Relational Foreign Key Implemented as a Pointer to Row ID

In relational database terminology, the designating table has a "foreign key" to
the designated table. In M terminology, the designating table has a "pointer" to a
Row ID of the designated table. In Open M with SQL, the value of a designative
reference field in each row of the designating table is a Row ID of a row from the
designated table.

Example of Designative Relationship Structure

In our sample application, the Staff_Ed table contains the field Name, which is a
designative reference to the Docstaff table. This field allows the user to gain
access to all fields in the Docstaff table when working with Staff_Ed in a form or
SQL statement.
7-2 Open M with SQL Data Dictionary Guide

Use Designative Reference to Join Independent Tables
The table below shows the value of some rows of data from the Staff_Ed table.
The Name field in the Staff_Ed table contains the Row ID of rows in the Docstaff
table. Note the following:

 n Two rows in Staff_Ed point to the same row in Docstaff, indicating the
many-to-one nature of designative reference.

 n The Staff_Ed table shows only a small subset of rows in that table.

Designative Reference is a One Way Outer Join

In Chapter 2, The Open M with SQL Relational Database , we discussed one-way
outer joins. A designative reference is a type of one way outer join since it meets
the following conditions:

 n The designative reference field may be empty; that is, it may not match a
Row ID in the designated table.

 n If the designative reference field has a value, it must be a valid Row ID from
the designated table.

 n Rows in the designated table may have no references in the designating table.

Table 7-1: Staff_Ed

Name Role

1 Chapters 2 and 4, peer review

1 Chapters 10 and 20

2 Chapter 1

4 Chapters 3,6,9,12

Table 7-2: Docstaff

Docstaff
(Row ID) Name Phone Street City State Zip Specialty

1 Kessler,
Judy

111-2222 1 Elm St Boston MA 11111 UNIX, PC,
Server

2 Ormiston,
Land

222-3333 2 Main St Boston MA 11111 RDBMS

3 Page, Gail 333-4444 3 Oak St Revere MA 11211 M, VAX,
M/NET

4 Russom,
Phil

444-5555 4 Pine St Boston MA 11111 DataTree
Open M with SQL Data Dictionary Guide 7-3

Chapter 7—Implicit Joins
Multiple Designative Reference Fields

A table may have several designative reference fields, including one that desig-
nates itself.

Example of Designative Reference to Designating Table

Suppose you have a PATIENTS base table. You want to know if a relative of a
patient is also a patient. You include a field which is a designative reference to
the PATIENTS table, which may contain the Row ID of another row (patient)
who is related to the current patient.

Designative Reference to a Child Table

In some cases, you may want to have a designative reference field to a row in a
child table.

Example In the Guides table, the designative reference field Latest_Edition_Gui points to
the row in the child table, Editions, which contains the most recent edition for a
guide.

Designative References from Multiple Tables

A base table may be designated by any number of tables. For example, both the
Editions and Staff_Ed tables in our sample application have a designative refer-
ence field to the Docstaff table.
7-4 Open M with SQL Data Dictionary Guide

Use Characteristic Relationship to Join Dependent Tables
Use Characteristic Relationship to Join Dependent
Tables

A characteristic relationship is a link between base tables in which rows in one
table (the child table) cannot exist independently of their corresponding row in
the parent table. Therefore, if a row in a parent table is deleted, rows in the child
table that are linked to that row are affected. In addition, Open M with SQL
ensures that a child table can never be 'orphaned', i.e., exist without a parent
table. If you attempt to delete a parent table that has children, you receive the
message:

Must delete dependents first: childtable1, childtable2,,
childtablen

Automatically Created Trigger Deletes Child Rows

Open M with SQL provides a trigger that automatically deletes child rows if a
parent row is deleted. You can, however, delete or edit that trigger. See Chapter
11, Base Table Triggers , for more information.

One-to-many Parent to Child Relationship

Parent rows have a one-to-many relationship with child rows. Each row in the
parent table may point to zero, one or more than one row in the child table.

Many rows in the child table may be linked to the same row in the parent table.
For this reason, a characteristic relationship, going from the child table to the par-
ent table, can be thought of as a kind of designative reference.

Characteristic Relationship is an Inner Join

In a designative reference, rows in the designated table may contain no value in
the designative reference field. Even though a characteristic relationship is a type
of designative reference, going from child to parent, it is more restrictive since
the join condition specifies that all rows of the child table MUST designate a par-
ent table row. In this way, a characteristic relationship satisfies the relational def-
inition of an inner join, which we discussed in Chapter 2, The Open M with SQL
Relational Database .

Multi-Generation Parent-Child Relationships

Characteristic relationships are not limited to single parent/child relationships. A
parent table may itself be a child of another table. Although a child table may
only have one parent table, a parent table may have several child tables. For
example, in our sample application, the Editions table has 2 child tables:
Edition_Staff and Copy_Orders.
Open M with SQL Data Dictionary Guide 7-5

Chapter 7—Implicit Joins
Child Tables Can Be Referenced Without Parent Table

Though characteristic relationships are hierarchical, child tables can be accessed
using SQL without reference to the parent table, complying with the relational
model.

Example of Characteristic Relationship

Using our sample application, the Editions table, shown in part below, is a child
table of the Guides table (its parent), also shown in part. The existence of the Edi-
tions table is entirely dependent on its parent Guides table. If a row (a guide title)
is deleted from the Guides table, its corresponding rows (editions) in the Editions
table become “orphaned” and will be deleted via the automatic Open M with
SQL trigger.

Note: Remember, you can edit this trigger to cause other actions to
occur, such as transferring to an archive file.

Each row of the Guides table can have multiple editions, illustrating the one-to-
many nature of a characteristic relationship. A Guides row might also have no
rows in the Editions table, such as when a new title is agreed upon but before the
first edition is published.

Table 7-3: Guides

Guides
Row ID Title Latest Edition Retired

1 ISM for UNIX System Manager’s Guide No

2 DT Windows Yes

3 Open M with SQL Data Dictionary Guide No

Table 7-4: Editions

Editions Row ID
Guides
Parent Ref childsub Version

Revision_Dat
e

Guides||childsub 1 1 4.3

1 2 4.4

1 3 5.1

3 1 B
7-6 Open M with SQL Data Dictionary Guide

Benefits of Implicit Joins
Benefits of Implicit Joins

Designative references and characteristic relationships provide the following
benefits:

 n Pre-define commonly used joins, allowing you to use Open M with SQL's
simplified extended arrow syntax

 n Formally specify integrity constraints
 n Improve data access efficiency

Extended Arrow Syntax

When you define implicit joins, Open M with SQL provides a simplified form of
SQL called extended arrow syntax to reference fields in the joined tables. You
can use extended arrow syntax to write simplified SQL queries to represent:

 n Designative References
 n Child to Parent References in Characteristic Relationships
 n Parent to Child References in Characteristic Relationships

In extended arrow syntax, you use a dash followed by a greater-than symbol (->
) to indicate a field in a joined table.

Extended arrow syntax causes an additional outer join condition to be added
implicitly to the WHERE clause and the joined table to be added implicitly to the
FROM clause of an SQL query.

Note: You cannot use double-arrow syntax (->>) to specify view joins.
Syntax such as the following example is not permitted:

People->>Invoice->PrimaryDoc
Instead, use the following syntax for the same statement:

People.Invoice->PrimaryDoc

You can learn more about extended arrow syntax in the Open M/SQL Developer
Guide.

Example of Extended Arrow Syntax for a Designative Reference

In our sample application, suppose you want to generate a list of the latest edi-
tions of each of the InterSystems Guides. Remember that the Guides table
includes the field Title and the field Latest_Edition, which is a designative refer-
ence field to the table Editions and thus contains a Row ID from a row in the Edi-
tions table. In Editions, the name of the Row ID field is Editions. (All Row ID
fields are named after their table in Open M with SQL.) Editions also contains
the fields Version and Revision_Date.
Open M with SQL Data Dictionary Guide 7-7

Chapter 7—Implicit Joins
If you do not have extended arrow syntax available, you need to write the follow-
ing SQL query:

SELECT Guides.Title, Editions.Version, Editions.Revision_Date
FROM Guides, Editions
WHERE Guides.Latest_Version=*Editions.Editions

Using Open M with SQL's extended arrow syntax, you can write the following
simplified query:

SELECT Title,Latest_Edition->Version,Latest_Edition->

Revision_Date

FROM Guides

Referential Integrity Constraints

Implicit join definitions include built-in integrity constraints. For instance, the
existence-dependent relationship between the Edition_Staff table and the Edi-
tions table may be regarded as an integrity constraint: no edition staff can exist
without a corresponding edition.

Efficient Data Access

Built-in pointers speed data retrieval.
7-8 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

8
Base Table Lookups
If your application uses Form Generator single-row forms for data entry or dis-
play, you need to define lookups for form users. Lookups are used by single-row
forms to allow users to select a row from the base table which is the data source
for the form. You can define lookups at the base table level or at the form level.

This chapter describes the different types of lookups and how to define them.
Specifically, it covers the following topics:

 n What is a Lookup? page 8-1
 n Where to Define Lookups page 8-3
 n Lookup Specifications page 8-3
 n Types of Lookup Queries page 8-5
 n Defining Base Table Lookups page 8-7
 n Defining Lookups for a Child Table page 8-13
 n Matching page 8-14
 n Customizing a Lookup Query page 8-18

What is a Lookup?

In an Open M with SQL application, users typically populate base tables using
forms created with the Open M with SQL Form Generator. A database form is
always associated with one base table and allows users to add, edit, and delete
information from that base table. Forms can be multi-row or single-row. Multi-
row forms work with multiple rows of data simultaneously. Single-row forms
work with one row of data at a time. The first step in using a single-row form is to
select a row. Single-row forms use lookups to select rows.

When a user runs a single-row form, the first window to appear is the row selec-
tion window, which contains a group of lookup fields. These lookup fields are
the mechanism through which a user can identify and retrieve a row from the
onary Guide 8-1

Chapter 8—Base Table Lookups
database. The user enters data into the lookup fields, then initiates a lookup
query by pressing <Search Current Table> to match the input with existing data-
base rows. The lookup query returns one of the following:

 n No match: Open M with SQL asks the user if this is a new entry.
 n One match: You can choose between the following two modes of behavior:

 • Open M with SQL displays a lookup box containing the one match
 • Open M with SQL retrieves the matching row directly into the form

 n Many matches: Open M with SQL displays a lookup box containing a list
of all matches.

You control which fields appear on the row selection window. You also control
the pieces of information displayed in the lookup box to identify matched rows.
This is the process of defining lookups.

Example This example illustrates the row selection process for a single-row form.

The window pictured below is the row selection window of the single-row form
"Edition Orders". This is the first window to appear whenever the "Edition
Orders" form is called. The row selection window contains two lookup fields,
"Title" and "Version".

A user enters the letter "D" in the Title field and presses the <Search Current
Table> key to initiate the lookup query. Open M with SQL uses the lookup query
based on the Title field alone, finds the rows where "Title" begins with the letter
"D" and displays these matches in a lookup box. The fields displayed in the
lookup box include the Title of the Edition, the version of the product it docu-
ments, the revision date of the document and the date the order was placed.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄEdition
CopiesÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Title D______________________________ ³
³
ÚÄÄÄ¿
³ ³ Developer Guide C May 3, 1990 June 19, 1993 ³
³ ³ Developer Guide E March 8, 1993 July 20, 1993 ³
³
ÀÄÄÄÙ
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
³ ³
ÀÄÄÄ
ÄÄÄÄÙ
8-2 Open M with SQL Data Dictionary Guide

Where to Define Lookups
Where to Define Lookups

You can define lookups at two levels:

1. Base Table

You may define lookups associated with a base table in the Data Dictionary,
where they serve as the default lookups for all forms associated with that
base table.

2. Form

You can also define lookups for any single-row form in the Form Generator,
where they override any default lookups defined for the associated base
table. If you do not define default lookups for a base table, you must define
lookups for every single-row form associated with that base table.

You only need to define lookups if you plan to use forms.

Lookups and Index Maps

There is an advantage to defining lookups at the base table level. When base
tables employ default physical structure, Open M with SQL automatically gener-
ates an index map for each lookup field. If you have a large database, the speed
and efficiency of lookup performance may significantly improve if the lookup
fields are indexed.

If you define override lookup specifications at the form level, you should make
sure that all lookup fields are indexed in the originating base table.

If you define your own maps, you should make sure to define indexes for all
lookup fields.

Lookup Specifications

To define lookups, you must provide certain basic information known as lookup
specifications. Lookup specifications consist of two elements, lookup fields and
lookup display fields.

Lookup Fields

Lookup fields are the fields that appear on the row selection window of a single-
row form. Lookup queries use these fields to select rows from the database by
matching user input to actual database values.

If you specify no lookup fields in a lookup query, you create an unqualified
lookup query. This allows users to see a complete list of all rows in the database
Open M with SQL Data Dictionary Guide 8-3

Chapter 8—Base Table Lookups
by simply pressing the <Search Current Table> key from an empty row selection
window.

If you specify more than one field per lookup query, the user must supply input
for each of the lookup fields before Open M with SQL can execute the lookup
query.

A single lookup query should contain no more than 6 lookup fields and 6 lookup
display fields. From this number you should subtract one field for each level of
dependency of the table. For example, 5 lookup fields maximum for a child table,
4 lookup fields maximum for a grandchild table, etc.

Lookup Display Fields

Lookup display fields are the fields whose values are displayed in the lookup box
for each row returned by the lookup query. These fields do not impact row selec-
tion. Their purpose is simply to aid the user in accurately identifying the row to
select.

You may want to display the same fields as those used to look up on. Or, you may
want to display different fields altogether. The choice is yours, except that you
may not select multi-line fields as lookup display fields.

You should limit the number of lookup display fields, so that the field column
titles and values don't overextend the width of the screen, thus causing the row
lookup display to be randomly truncated. A maximum of 6 lookup display fields
is suggested, because a lookup box can accommodate a maximum of 6 lookup
display fields.
8-4 Open M with SQL Data Dictionary Guide

Types of Lookup Queries
Types of Lookup Queries

From the lookup specifications defined by the programmer, Open M with SQL
generates lookup queries. A lookup query is the vehicle for searching the data-
base and matching user input to actual values. You may provide lookup specifica-
tions for one, two, or many lookup queries for a single base table.

When a user enters information into the lookup fields on a row selection window
and presses the <Search Current Table> key, Open M with SQL invokes the
appropriate lookup query. The lookup query searches the database for rows
which match the lookup information and returns a list of those rows in a lookup
box.

You can define three different types of lookup queries: unqualified lookup que-
ries, single field lookup queries, and compound lookup queries.

Unqualified Lookup Query

An unqualified lookup query has no lookup fields. If defined, the unqualified
lookup query is invoked when a user presses the <Search Current Table> key
from a blank row selection window (no lookup information is provided). The
unqualified lookup query returns a lookup box that lists all rows in the associated
base table. This constitutes an unrestricted, global lookup. An unqualified lookup
can be quite useful for small tables but impractical for very large ones.

If you do not define an unqualified lookup query, the user will not be able to per-
form a global lookup on the associated base table.

Observe These Restrictions When Defining An Unqualified Lookup Query

1. You can define only one unqualified lookup query per base table.

2. An unqualified lookup query cannot exist by itself as the only lookup query
defined for a base table. It must be accompanied by at least one additional
lookup query that contains at least one lookup field.

Single Field Lookup Query

A single field lookup query has one lookup field. When a user enters information
into the specified lookup field in the row selection window and presses the
<Search Current Table> key, Open M with SQL invokes the single field lookup
query for that field. The display fields defined for the lookup query appear in a
lookup box that lists all rows in the associated base table whose actual values
match the lookup information.

You can define many single field lookup queries.
Open M with SQL Data Dictionary Guide 8-5

Chapter 8—Base Table Lookups
Compound Lookup Query

A compound lookup query has two or more lookup fields. Compound lookup
queries simultaneously match lookup information in multiple lookup fields to
those same fields in base table rows.

When a user enters information into each of the specified lookup fields in the row
selection window and presses the <Search Current Table> key, Open M with
SQL invokes the compound lookup query. The display fields defined for the
compound query appear in a lookup box that lists all rows in the associated base
table whose actual values match the lookup information.

You can define multiple variations of compound lookup queries per base table.

Enabling Lookup Queries

You can define all three types of lookup queries within the lookup specifications
for any given base table, or even multiple variations of the single field and com-
pound lookup queries. To enable a lookup query type, you must define the requi-
site lookup specifications. To invoke a lookup query, the user must specify
lookup information in the appropriate fashion. Table 8-1 lists the three lookup
query types and shows what the programmer must do to set them up and what the
user must do to initiate them.

Precedence Given to Most Restrictive Queries

When multiple lookup queries exist simultaneously for a single base table, Open
M with SQL tests the list of lookup queries in order of most restrictive to least
restrictive, and invokes the first lookup query to test positive, regardless of
whether or not it yields a successful database match.

The restrictiveness of a lookup query is determined by how many lookup fields it
has — the more lookup fields it has, the more restrictive the query. For instance,

Table 8-1: Lookup Query Types

Lookup Query
Type To Define To Invoke

Unqualified No lookup fields are
specified.

The user enters no lookup information,
then presses the <Search Current
Table> key.

Single Field Exactly one lookup field
is specified.

The user enters lookup information into
that particular field only, then presses
the <Search Current Table> key.

Compound Two or more lookup fields
are specified.

The user enters data into each lookup
field, then presses the <Search Current
Table> key.
8-6 Open M with SQL Data Dictionary Guide

Defining Base Table Lookups
if you have three lookup queries with 0, 1, and 2 lookup fields respectively, the 2-
field lookup query (compound) is the most restrictive and thus will be tested first,
followed by the 1-field query (single field), and finally the 0-field query (unqual-
ified). Likewise, when multiple compound lookup queries exist, Open M with
SQL always tests the most restrictive of them first.

Example The example below illustrates the principles behind lookup query precedence.

If you define three different lookup queries with the following lookup fields:

Open M with SQL tests first for Lookup Query #3. If the user enters information
into all three lookup fields, Open M with SQL always invokes Lookup Query #3.

If the user leaves one of the lookup fields blank, Open M with SQL first tests
Lookup Query #3, but cannot invoke it. It then tests the two-field lookup queries
in the order in which they were defined, and invokes the first one whose condi-
tions are met by the user input.

Defining Base Table Lookups

This section describes how to define base table lookups for a base table that is not
a child table. A slightly different procedure is followed to define base table look-
ups for a child table, as described in “Defining Lookups for a Child Table” on
page 8-13.

Lookups defined at the base table level are the default lookups for every single-
row form associated with that base table.

Base table lookups are optional; it is not required that you define them. However,
if you do not define them, you must define lookups in each Form Generator sin-
gle-row form which is based on the base table.

To validate base table lookups, you must place all lookup fields on the master
window of each associated form.

Procedure To define lookups for a base table:

1. Enter the Base Table Definition master window.

Lookup Query #1 Lookup Query #2 Lookup Query #3

Lookup Fields: Lookup Fields: Lookup Fields:

Name Name Name

Organization State Organization

State
Open M with SQL Data Dictionary Guide 8-7

Chapter 8—Base Table Lookups
2. From the Base Table Definition master window, press <RETURN> on the
<M/WINDOWS Lookups> branching field.

You see the Row Selection Lookup Specifications window, as shown below:

The Row Selection Lookup Specifications window is designed as a multi-
row form. Each row has several lines to specify the Lookup Field(s) and two
branching fields: <...> (to define display fields), and <Options>. Each row
represents one lookup query. You can define as many lookup queries as you
wish.

Table 8-2 lists and describes the fields located on the Row Selection Lookup
Specifications window:

 +--------------------Row Selection Lookup Specifications---------------------+
 | Query |
 | Lookup Field Display Fields Options |
 | ____________________________ <..> |
 | ____________________________ <Options> |
 | |
 | |
 | ____________________________ <..> |
 | ____________________________ <Options> |
 | |
 | |
 | ____________________________ <..> |
 | ____________________________ <Options> |
 | |
 | |
 | ____________________________ <..> |
 | ____________________________ <Options> |
 | |
 | |
 | |
 | |
 +--+

Row Selection Lookup Specifi Press <PF1><PF3> For Help

Table 8-2: Fields on Row Selection Lookup Specifications Window

Field Name Description

Lookup Field This field provides several lines where you list the fields
used in the lookup query to search the database. List one
field per line. These fields appear on the row selection win-
dow of single-row forms. You can specify any displayable
single-line base table field, including the Row ID (if it is
defined to be displayable). Multi-line fields and Designative
Reference fields are not allowed. You should observe an
upper limit of six lookup fields (fewer for child tables).
8-8 Open M with SQL Data Dictionary Guide

Defining Base Table Lookups
3. In the Row Selection Lookup Specifications window, enter lookup fields in
the Lookup Fields column.

You may press the <List Choices> key to see a popup window that lists all
fields defined for the base table.

To define an unqualified lookup query, leave the Lookup Fields column
empty.

4. Optionally, press <RETURN> on the Display Fields <...> branching field to
see the Display Fields Definition window, as shown below:

Enter lookup display fields in the Display Field column. This must be the
name of an existing field in the base table.You may press the <List Choices>

<...>
(Display Fields)

Press <RETURN> on this branching field to invoke the Dis-
play Field Definition window for the row that appears in the
lookup box. There you can specify one or more display
fields, the header associated with each field, and the dis-
play length of the header. You can specify any displayable
single-line base table field, including the Row ID (if it is
defined to be displayable). Multi-line fields and Designative
Reference fields are not allowed. Lookup display fields can
reiterate lookup fields. You should observe an upper limit of
six lookup display fields.

<Options> Press <RETURN> on this branching field to invoke the
Query Options window, where you can modify certain
attributes of the generated lookup query at the SQL level.
See “Customizing a Lookup Query” on page 8-18.

Table 8-2: Fields on Row Selection Lookup Specifications Window

 +--------------------Row Selection Lookup Specifications---------------------+
 | +--+|
Lookup Field	Display Field Display	
>> Date_Retired_________	Length	
_____________________	Date_Retired______________________ (8)	
	Header: Dates_________________ (5) 15	
_____________________	__________________________________ ()	
_____________________	Header: ______________________ (0) __	
	__________________________________ ()	
_____________________	Header: ______________________ () __	

	__________________________________ ()	
	Header: ______________________ () __	

_____________________+--+		
+--------------------------Row Selection Display Demo--------------------------+		

	Dates..........	

+--+

Display Fields Press <PF1><PF3> For Help

Saved...
Open M with SQL Data Dictionary Guide 8-9

Chapter 8—Base Table Lookups
key to see a lookup box that lists all fields defined for the base table. You
must enter at least one field.

The maximum length defined for that field is shown to the right of the field
name; in the above example, it is an 8-character date field.

You may also define a header text for this display field. A header text may be
up to 75 characters long (see below), and contain any characters. The length
of the header text is shown to the right of the header text; in the above exam-
ple “dates” is 5 characters long.

You may specify a Display Length for each header text. If the length you
specify is larger than the header text length, it pads the text with blank
spaces; if you length you specify is smaller than the header text length, it
truncates the text. In the above example, the header’s display length is 15
characters long. As shown in the Row Selection Display Demo window at
the bottom of the previous screen, the header text is padded with blank
spaces to the length specified in the Display Length field. If you specify more
than one header, these headers and their spacing are shown in the Row Selec-
tion Display Demo window.

You cannot specify a total header display length of more than 75 characters.
If you specify more than one header, the system does not permit you to
define header display lengths that total more than 75 characters. When total-
ing header display lengths, remember to include the 2 blank spaces that M
with SQL automatically inserts to separate these headers.

5. You may continue to define lookup specifications for as many lookup queries
as you wish.

6. When you are finished defining lookup specifications, press <PROCEED> to
save your definitions and exit the Row Selection Lookup Specifications win-
dow back to the Base Table Definition master window.

Designative Display Fields in Lookup Specifications

Lookup fields and lookup display fields can be any displayable single-line fields
defined for the base table, including the Row ID (if it is defined to be display-
able). Multi-line fields and Designative Reference fields are not allowed. Desig-
native display fields, since they are displayable, are allowed.

A designative display field is a form-only field created from a Designative Refer-
ence field that retrieves information from a specified column in the designated
table.

You can spontaneously create designative display fields in the Row Selection
Lookup Specifications window of a base table definition for the purpose of
including them in your lookup specifications. This applies both to Lookup Fields
and to their Display Fields.
8-10 Open M with SQL Data Dictionary Guide

Defining Base Table Lookups
Open M with SQL makes any designative display fields created in this fashion
available to all forms associated with the base table.

For more information about designative display fields, see the Open M/SQL
Form Generator Guide.

Procedure
:

To create designative display fields in a base table lookup specification:

1. From the Base Table Definition master window, press <RETURN> on the
<M/WINDOWS Lookups> branching field to access the Row Selection
Lookup Specifications window.

2. In the Lookup Fields (or Display Fields) column, enter the name of a Desig-
native Reference field currently defined in the base table.

3. Append the extended arrow syntax (->) to the name of this Designative Ref-
erence field.

For information about extended arrow syntax, see Chapter 7, Implicit Joins .

4. Press <RETURN>.

You see a lookup box that lists all possible designative display fields that can
be created from the specified Designative Reference field. This is the list of
all fields defined for the designated table:

5. Use the <Up Arrow> and <Down Arrow> keys to move the highlight bar to
the appropriate designative display field in the lookup box, and press
<RETURN> to select it.

In this way, you may define as many designative display fields as you wish in
your lookup specifications.

 +--------------------Row Selection Lookup Specifications---------------------+
 | Query |
 | Lookup Field Display Fields Options |
 | ____________________________ <..> |
 | ____________________________ <Options> |
 | |
 | |
 | ____________________________ <..> |
 | ____________________________ <Options> |
 | |
+---more+
| Main_Author Des Ref to Author Table |
| Main_Author->Date_Retired Date Title Retired |
| Main_Author->Guides Guides Row ID |
| Main_Author->Num_Editions Number of Editions of Guide |
| Main_Author->Product InterSystem Products |
| Main_Author->Retired Is Title Retired? |
| Main_Author->Title Name of Guide |
| Main_Author->Who_retired Person Who Retired Title |
+---+
 | |
 +--+

Row Selection Lookup Specifi Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 8-11

Chapter 8—Base Table Lookups
Remember that all lookup fields in a lookup query must be present on the master
window of a form to make the lookup query valid. This means that any designa-
tive display fields defined as lookup fields (not lookup display fields) must be
present on the master window of all associated forms to make the lookup query
valid.

Example The following window shows the lookup specifications for three lookup queries
defined within the Copy_Orders base table for the "Copy Orders" form (the Dis-
play Field entries for all three lookup queries are the same):

Lookup Query 1 - unqualified lookup query

Open M with SQL invokes this query when the user presses the <Search Current
Table> key from a blank row selection window. It returns all rows in the associ-
ated base table. As deifined here in the Display Field box, the lookup box will
display the "Title", "Version", "Revision_Date", and "Order_Date" fields.

Lookup Query 2 - single field lookup query

The field "Title" is the only lookup field defined. Open M with SQL invokes this
query when the user types lookup information into the "Title" field on the row
selection window and presses the <Search Current Table> key. The lookup box
will display the "Title", "Version", "Revision_Date", and "Order_Date" fields for
all base table rows whose "Title" field matches the user input.

Lookup Query 3 - compound lookup query

Open M with SQL invokes this query when a user types lookup information into
both the "Title" and "Version" fields on the row selection window and presses the
<Search Current Table> key. The lookup box will display the "Title", "Version",

 +--------------------Row Selection Lookup Specifications---------------------+
 | +--+|
Lookup Field	Display Field Display	
>> _____________________	Length	
_____________________	Title_____________________________ ()	
	Header: ______________________ (0) __	
Title________________	Version___________________________ ()	
_____________________	Header: ______________________ () __	
	Revision_Date_____________________ ()	
Title________________	Header: ______________________ () __	
Version______________		
	Order_Date________________________ ()	
	Header: ______________________ () __	

_____________________+--+		
+--------------------------Row Selection Display Demo--------------------------+

 NO ROW SELECTION HEADER DEFINED

+--+

Display Fields Press <PF1><PF3> For Help

Saved...
8-12 Open M with SQL Data Dictionary Guide

Defining Lookups for a Child Table
"Revision_Date", and "Order_Date" fields for all base table rows whose "Title"
and "Version" fields match the user input.

Defining Lookups for a Child Table

A child table is a base table that is existence-dependent upon another base table,
its parent. The term characteristic relationship denotes the relationship of a
child to its parent. In a characteristic relationship, all rows in a child table are
existence-dependent on a single row in the parent table. For example, in the char-
acteristic relationship between the parent table "Guides" and child table "Edi-
tions", every row in the Editions table must correspond to one and only one row
in the Guides table, and a row in the Guides table may have many (or no) corre-
sponding rows in the Editions table.

Two Types of Lookups

You can perform a lookup on rows in a child table either with reference to its par-
ent or without reference to its parent. For example, you can look up on editions
for a specific Guide (referenced parent), or you can look up on editions for all
guides (unreferenced parent). When the parent reference is "known", the lookup
is restrictive. When the parent reference is "not known", the lookup is unrestric-
tive.

Open M with SQL lets you define default Data Dictionary lookups for a child
table in any of the following three ways:

 n One set of lookups where parent is known

You may only create a form for this child table that is called from a single-
row form based on the parent table, so the parent Row ID is known.

 n One set of lookups where parent is not known

You may create a stand-alone form for the child table.

 n Two sets of lookups: one with parent known, one with parent unknown

Defining two sets of lookups, one where the parent is "known" and another
where the parent is "not known", allows you to create both types of forms for
the child table.

Procedure To define lookups for a child table:

1. Enter the Base Table Definition master window of a child table.

2. From the Base Table Definition master window, press <RETURN> on the
<M/WINDOWS Lookups> branching field.
Open M with SQL Data Dictionary Guide 8-13

Chapter 8—Base Table Lookups
You see the Lookups for Characteristic Tables window, as shown below:

The Lookups for Characteristic Tables window lets you define lookup speci-
fications for either case of parent reference availability ("known" or "not
known").

3. Select the <Lookups - parent is known> or the <Lookups - parent is not
known> action field.

In either case, you see the Row Selection Lookup Specifications window, as
shown on page 8-8.

Continue to define lookup specifications as described in steps 3-6 of the pro-
cedure for defining base table lookups.

Matching

When a user presses the <Search Current Table> key to initiate a database search
and Open M with SQL invokes the appropriate lookup query, matching is the
action performed to retrieve rows from the database. The lookup query compares
information entered by the user into lookup fields to actual database values.
When values in one or more base table rows correspond to the user input, match-
ing is successful. If twelve database rows correspond, there are twelve matching
entries or "matches". When no database rows correspond to the lookup informa-
tion, matching is unsuccessful.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Editions_________________ ___________________________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
| |
| < M/WINDOWS Lookups > |
| +-Lookups For Characteristic Tables-+ |
< Physical St		
Approximate N	< Lookups - parent is known >	
+-------------------------| |----+
 | < Lookups - parent is not known > |
 | |
 +-----------------------------------+
 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments

...Lookups for Characteristic Tables Press <PF1><PF3> For Help
8-14 Open M with SQL Data Dictionary Guide

Matching
The following conditions must be met for matching to be successful for a partic-
ular lookup query:

 n All lookup fields specified in the lookup query must be present on the master
window of the form.

 n The user must enter lookup information into all lookup fields specified in the
lookup query.

 n The lookup information entered by the user must match at least one actual
database row.

Open M with SQL provides a number of functions to make single row selection
more robust. These functions transform user input and/or actual database values
in order to minimize or eliminate superficial differences between them.

 n Field Matching functions allow partial entry of lookup fields and eliminate
unwanted case sensitivity.

 n Field Conversion Code converts external representations into internal val-
ues, particularly for Time, Date, and Number fields where one value may
have many different external representations.

Field matching applies only to qualified lookup queries, i.e. lookup queries that
have lookup fields. The default matching features of each lookup field in a quali-
fied lookup query are determined by the field's Data Type, as defined in the Base
Table Definition master window.

Field Matching Functions

Partial or Exact Matching

Lookup fields with Data Type Name, Text, and Multiple Choice automatically
support partial matching. Partial matching means that the lookup information
entered by the user need only match a "starts with" portion of the field's actual
value. Any sequence of characters entered as lookup information is sufficient to
qualify a partial match. With partial matching, the input "Smith,J" would match
the actual values "Smith,John", "Smith,John C", and "Smith,Jennifer". Or, the
input "Thomas" would match the actual values "Thomas,Gary" and "Thomas-
son,Anne". Partial matching is implemented by means of the %STARTSWITH
comparison operator, described in “Lookup Queries Use InterSystems' SQL
Extensions” on page 8-21.

The opposite of partial matching is exact matching. Exact matching means that
the lookup information entered by the user must exactly replicate the field's
actual database value. Exact matching always identifies one unique row, or fails.
For example, suppose a lookup query with a lookup field of Data Type Name. If
the user enters "Smith, John" and the closest actual database value is "Smith,
John C", an exact match would fail. You can enable exact matching for fields of
Data Type Name, Text, and Multiple Choice by removing the %STARTSWITH
Open M with SQL Data Dictionary Guide 8-15

Chapter 8—Base Table Lookups
comparison operator in the default-generated SQL lookup query. See the section
of this chapter entitled “Lookup Queries Use InterSystems' SQL Extensions” on
page 8-21 for more information on how to do this.

Case Transformation

Open M with SQL also supports case transformation functions for database
fields of Data Type Name and Text. See “Collation Sequence Affects Name and
Text Data Types” on page 6-28 in Chapter 6, Defining Base Table Fields .

When you define a field with a data type of Name or Text, you see the following
window:

This window lets you specify the case transformation function to be used in the
execution of lookup matching and collating sequence. There are three case trans-
formation functions from which you may choose (the Plus, Minus, and Space
options modify the collation sequence of numbers, not letters):

 n EXACT no transformation of the actual values (default).
 n UPPER converts lowercase letters to UPPERCASE.
 n ALPHAUP strips all spaces and punctuation, then runs UPPER.

All these case transformation functions collate pure numbers first in numeric
order, followed by all other strings. Non-canonic numbers (e.g., 02 or 1.30) col-
late as strings rather than numbers. You can use the Plus function to make many
non-canonic number strings canonic.

If a field of Data Type Name using the ALPHAUP case transformation function
has the actual database value "O'Reilly, Susan Jean", it permits successful match-
ing on any of the following lookup information entries:

oreilly,susanjean

OREILLY,Susan-Jean

O'REILLY,SUSAN_JEAN

When converted, all four name values produce the same value:

OREILLY,SUSANJEAN

ÚÄÄ¿
 ³ ³
 ³ What Function of the Field should be Used ³
 ³ for Collating (ORDER BY, >) and Lookups Exact____ ³
 ³ ³

ÀÄÄÙ
8-16 Open M with SQL Data Dictionary Guide

Matching
If this field were defined as a Text field, the converted value would be:

OREILLYSUSANJEAN

Using ALPHAUP or UPPER case transformation, you can maximize the scope
of matches yielded by a lookup query. EXACT case conversion results in an
unforgiving comparison test, in which an errant space or incorrect capitalization
can disqualify an otherwise exact match.

The ALPHAUP function is often the best choice for Name and Text fields that
are used in lookups. ALPHAUP strips punctuation and converts all letters to
uppercase. Thus, lookups on Name and Text fields are insensitive to case and
punctuation; the user can type all or part of an entry into a lookup field in upper
or lower case, with or without punctuation, and Open M with SQL will find the
matching rows.

Note: Open M with SQL properly handles non-English characters; thus, for example, "ü"
(Umlaut in German) is not stripped as punctuation by ALPHAUP.

Case Transformation and Ordering

When the case transformation function acts on a field that is named in the
ORDER BY clause, it can affect the ordering sequence for rows retrieved into the
lookup box. For more information, see the section of this chapter entitled
“Lookup Queries Use InterSystems' SQL Extensions” on page 8-21.

Field Conversion Code

Whereas field matching functions act on the external representation of a field,
field conversion code affects the internally stored value of a field.

Open M with SQL automatically generates conversion code for fields of Data
Type Date, Time, and Number. You do not need any case conversion to perform
lookups on these fields because Open M with SQL stores dates, times, and num-
bers in a unique internal format, where same values are always identical regard-
less of the external format.

For example, a Date field with an external value of "3-10-91" or "3/10/91" is con-
verted to 54886, an internal representation of this date. This internal storage
value is used in matching. Therefore, the SQL lookup query generated to look up
values by a date need not contain any case conversion functions.

Unlike field matching functions, which are reflected in the SQL lookup queries
generated to perform row selection, conversion code is written in M code. You
can edit this conversion code for a database field within its Field Definition win-
dow, as described in Chapter 10, Data Conversion and Validation .

Note: Fields of Data Type Multiple Choice are a special case, where
automatic generation of conversion code is optional. If you spec-
Open M with SQL Data Dictionary Guide 8-17

Chapter 8—Base Table Lookups
ify both external and internal values, Open M with SQL default-
generates the appropriate conversion code. If you do not specify
internal values, no conversion code is generated.

Summary of Case Transformation and Field Conversion Code

The following table summarizes the default case transformation functions and the
behavior of field conversion code for all Data Dictionary Data Types. The Index
Value column describes the value stored in the default Index Map Open M with
SQL creates for all fields defined as Lookup Fields.

Customizing a Lookup Query

For each set of lookup specifications defined by the programmer, Open M with
SQL generates a default SQL lookup query. You can optionally modify certain
attributes of the generated SQL code to create an override SQL lookup query.
This allows you to exercise precise control over lookup behavior.

Table 8-3: Field Conversion Code and Case Transformation Functions

Data Type

Default
Case
Function

Field
Convert
Code

External
Value

Internal
Value Index Value

Date N/A Automatic 3/10/91 54886 54886

Designative
Reference

N/A N/A 45004 45004 45004

Multiple Choice N/A Optional RED R R

Name EXACT Custom Paleo,John Paleo,John Paleo,John

UPPER Paleo,John Paleo,John PALEO,JOHN

ALPHAUP Paleo,John Paleo,John PALEOJOHN

Number N/A Automatic 34.300 34.3 34.3

Row ID N/A N/A 12 12 12

Text EXACT Custom Paleo,John Paleo,John Paleo,John

UPPER Paleo,John Paleo,John PALEO,JOHN

ALPHAUP Paleo,John Paleo,John PALEOJOHN

Time N/A Automatic 3:09PM 54557 54557

Yes/No N/A Automatic Yes Y Y
8-18 Open M with SQL Data Dictionary Guide

Customizing a Lookup Query
To customize a lookup query, you can modify the WHERE and/or ORDER BY
clauses of the SQL-generated query. This enables you to alter its behavior in the
following ways:

 n Change a partial match lookup query to an exact match, or vice-versa (by
changing the comparison operator).

 n Change the case transformation function.
 n Make a lookup query more restrictive by excluding rows that do not meet

some set of criteria.
 n Modify the order of rows displayed in the lookup box.

You Can Toggle Between Default and Override Versions

Open M with SQL can maintain two versions of the SQL-generated lookup
query, the default version and an override version. You can toggle between the
two versions by way of the Use Default Query field in the Lookup Query Defini-
tion window.

The version last selected before saving and exiting the Lookup Query Definition
window is the de facto version.

Suppress Lookup Box

You can also modify a lookup query to suppress the appearance of the lookup
box when the query returns one unique match. When the lookup box is sup-
pressed, Open M with SQL invokes the form directly with the unique match.

When presented, the lookup box forces the user to perform the additional step of
pressing <RETURN> to confirm the selection, but it also gives the user the
option of refusing the match if it was not intended.

By default, every lookup query presents the lookup box.

Procedure To customize the default SQL-generated lookup query:

1. Enter the Row Selection Lookup Specifications window.

2. Define lookup specifications for at least one lookup query.

3. Press <RETURN> on the < Options > branching field located to the right of
the lookup specifications for a particular lookup query.
Open M with SQL Data Dictionary Guide 8-19

Chapter 8—Base Table Lookups
You see the Query Options window, as shown below:

Table 8-4 lists and describes the fields located on the Query Options window:

 +--------------------Row Selection Lookup Specifications---------------------+
 | +------------------------Query Options-------------------------+|
Lookup Fi		
>> Name_____	Suppress lookup window for unique match? ____	
_________	Use Default Query? Yes_ Support Searched Lookups? ____	
	-----------------------Default Query-------------------------	

_________	DISTINCT or DISTINCT BY (...): ____________________________	
	SELECT people,Name,City,State	

_________	FROM People	
	WHERE / GROUP BY / HAVING / ORDER BY:	
_________	WHERE (Name %STARTSWITH ::Name) ___________________________	
_________	ORDER BY Name___	

	< Searched ORDER BY: >	
	< Lookup Box Override Specs > < Additional Info >	
 +------------+--++

Query Options Press <PF1><PF3> For Help

Table 8-4: Fields on Query Options window

Field Name Description

Suppress lookup
window for unique
match?

This is a Yes/No field. It tells Open M with SQL whether or not to
present a lookup box when the lookup query yields exactly one
unique match. Answer Yes to suppress the appearance of the
lookup box, causing the query to directly invoke the form. Answer
No to present the lookup box. No is the default response.

Use Default Query? This is a Yes/No field. It lets you toggle between the default ver-
sion and override version of the lookup query, as displayed in the
bottom half of this window. Changing this value changes the text
of the divider in the middle of this window. Answer Yes if you want
to use the default lookup query. Answer No if you want to edit a
copy of the default lookup query and create an override lookup
query. Yes is the default response.

Support Searched
Lookups?

This is a Yes/No field. Answer Yes to allow lookup on the first
field displayed in the lookup list. Additional characters typed will
narrow selection. Yes is the default response.

DISTINCT or DIS-
TINCT BY (...)

The field allows you to restrict the override lookup query to allow
DISTINCT values only. If you enter a DISTINCT or DISTINCT BY
clause, Open M with SQL enters this clause after the SELECT
keyword and before the first SELECT list item of the query.

<Searched ORDER
BY: >

A read-only field. Only activated if you specified Support
Searched Lookups=YES, it displays the search order variable.
For example, %UPPER().
8-20 Open M with SQL Data Dictionary Guide

Customizing a Lookup Query
4. Answer Yes or No (as preferred) to the Suppress Lookup Box question, and
press <RETURN>.

5. Answer No to the Use Default Query? prompt, and press <RETURN>.

This replaces the default lookup query with an override lookup query and
changes the title from "Default" to "Override". You can now access the SQL
code inside the lookup query. Your cursor begins on the WHERE clause.

Note: You can later recall the default lookup query by simply changing
the value in the Use Default Query field to Yes.

6. Modify the WHERE and/or ORDER BY clauses of the override lookup
query to your desired specifications.

You must use valid SQL syntax. See below for hints on editing the SQL
code.

7. When you have finished editing the override lookup query, press <PRO-
CEED> to save your edits and exit the Lookup Query Definition window
back to the Row Selection Lookup Specifications window.

8. Press <PROCEED> again to exit the Row Selection Lookup Specifications
window back to the Base Table Definition window.

Lookup Queries Use InterSystems' SQL Extensions

In order to customize an SQL-generated lookup query, you need to understand
the SQL conventions used to build these queries. These conventions include sev-
eral InterSystems' SQL extensions, which are described below. For more infor-
mation on InterSystems' SQL extensions, refer to the Open M/SQL Developer
Guide.

%STARTSWITH

The keyword %STARTSWITH is the agent of partial matching. An InterSystems'
SQL extension, %STARTSWITH is a comparison operator that tests whether one

<Lookup Box Over-
ride Specs>

This action field displays a window that permits you to define the
the coordinates of a lookup box: the top left ‘x’ coordinate, the top
left ‘y’ coordinate, and the lookup box height. If there is not
enough space for the coordinates you specify, Open M with SQL
determines the best fit.

<Additional Info> This action field displays a window showing the date and time of
the most recent edits to this query.

Table 8-4: Fields on Query Options window
Open M with SQL Data Dictionary Guide 8-21

Chapter 8—Base Table Lookups
character string is a prefix of another. The syntax of this comparison is as fol-
lows:

WHERE expr1 %STARTSWITH expr2

where "expr" is any valid SQL expression.

For example, a query containing the clause:

WHERE City %STARTSWITH ‘S’

returns all rows whose "City" field starts with the character "S".

Fields of Data Type Name are treated differently by %STARTSWITH. If the field
"Name" has a Data Type of Name, a query containing the clause:

WHERE Name %STARTSWITH ‘SM,J’

returns all rows for which $PIECE(Name,",",1) starts with "SM" and
$PIECE(Name,",",2) starts with "J", for example:

Name = "SMITH,JANE"
Name = "SMOOT,JERRY"

but not:

Name = "SMITH,HERMAN"

%STARTSWITH is the default-enabled comparison operator for fields of Data
Type Name, Text, and Multiple Choice. This means partial matching is always
the default lookup query behavior for fields of these types.

To disable partial matching, replace %STARTSWITH with another SQL compar-
ison operator ("=" for exact matching).

Case Transformation Functions

The Open M with SQL case transformation functions (ALPHAUP, UPPER, and
EXACT) are implemented in SQL as %ALPHAUP, %UPPER, and %EXACT.
Open M with SQL default-generates these keywords into lookup queries with
lookup fields of Data Type Name and Text. This determines the case transforma-
tion syntax for user input. You may change the case transformation syntax for
any lookup field by changing the SQL case transformation keyword. EXACT is
the default transformation syntax, and thus does not need to be explicitly speci-
fied. For further details refer to the Open M/SQL Developer Guide.

The transformation function used by a field affects the results of an ORDER BY
clause involving that field. It also affects comparisons on that field using any of
the following comparison operators:
8-22 Open M with SQL Data Dictionary Guide

Customizing a Lookup Query
>
<
=
>=
<=
NOT>
NOT<
%STARTSWITH

User Input Variables

The SQL-generated lookup query uses special variables to store lookup informa-
tion entered by the user into a lookup field on a row selection window. These
variables can be represented in either of two equivalent ways:

 n By placing two colons in front of the lookup field. For example, if the lookup
field is "Name", the corresponding user input variable would be "::Name".

 n By enclosing the lookup field name in curly braces and placing a single colon
in front of it. For example, if the lookup field is "Name", the corresponding
input variable would be :{Name}

SQL uses the following syntax to represent the comparison of lookup informa-
tion entered by a user with the actual database values of a lookup field:

WHERE field_name comparison_op input_variable

For example:

WHERE Name %STARTSWITH ::Name

or

WHERE Name = :{Name}

Example Override Lookup Query

If you enter the following set of lookup specifications for the "Docstaff" base
table:

Lookup
Fields

Display
Fields

Name Name

City City

State
Open M with SQL Data Dictionary Guide 8-23

Chapter 8—Base Table Lookups
Open M with SQL default-generates the following SQL lookup query:

SELECT Docstaff,Name,City,State
FROM Docstaff
WHERE (%ALPHAUP(Name) %STARTSWITH %ALPHAUP(::Name))
AND (City %STARTSWITH ::City)
ORDER BY Name

This lookup query retrieves rows from the "Docstaff" base table by performing a
compound match of the field "Name" against the lookup information variable
"::Name" and the field "City" against the lookup information variable "::City".
In both cases, the match uses partial matching logic (%STARTSWITH compari-
son operator). For the field "Name", it performs ALPHAUP case transformation.
For all captured rows, the lookup query displays the fields "Name", "City", and
"State". It also retrieves the "Docstaff" RowID field. This field is filtered out
from the display, but Open M with SQL uses it internally to select a row from the
database.

You may customize the default lookup query by editing its WHERE and ORDER
BY clauses. For example, to accomplish the following:

1. Restrict the lookup to people living in the state of Massachusetts.

Add a sub-clause to the end of the WHERE clause (using the AND conjunc-
tion) that specifies the "State" field must be equal to "Massachusetts".

2. Display the rows in the lookup box sorted first by "City" and then by
"Name".

Add the field "City" to the ORDER BY clause, and place it before the field
"Name".

The customized lookup query appears as follows:

SELECT Docstaff,Name,City,State
FROM Docstaff
WHERE (%ALPHAUP(Name) %STARTSWITH %ALPHAUP(::Name))

AND (City %STARTSWITH ::City)
AND (State="Massachusetts")
8-24 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dicti
CHAPTER

9
Index Maps
Every base table has a master map. You can create additional maps for a base
table, called Index Maps. This chapter explains the various uses of Index Maps
and how to define them. It includes the following topics:

 n Index Maps Speed Row Selection page 9-2
 n Structure of Index Maps page 9-3
 n Which Fields Should You Index? page 9-4
 n Default Structure Index Maps page 9-5
 n Customized Structure Index Maps page 9-7
 n Populating an Index Map page 9-8
onary Guide 9-1

Chapter 9—Index Maps
Index Maps Speed Row Selection

In a database management system, users generally search for data based on the
values of only a few of the fields in the table. The global structure defined in a
table's Master Map includes all of the fields in the table; it is usually large and
contains much data. Therefore, using a Master Map to search for a particular
value of a particular field can involve much reading from disk.

In the Data Dictionary, you can create Index Maps for fields frequently used to
retrieve data. Index Maps contain much less information than the Master Map,
just the value of the indexed field (or fields) and the corresponding Row ID for
that row.

Advantages of Indexing

You can use Index Maps to access rows quickly when you have the value of one
or more indexed fields, but do not have the Row ID value for the row containing
those fields. In a very large database, the increase in efficiency that results from
careful indexing can be significant. In small databases, however, the impact of
indexing on speed and efficiency is minimal.

Disadvantages of Indexing

Although indexing can speed access to data, it also results in two penalties:

 n It requires additional disk storage, since Open M with SQL creates additional
global nodes. See Chapter 16, Default Physical Structure , for information
on this structure.

 n It takes additional time to update when data is added or edited.

For these reasons, you should index only those fields that serve as useful aids in
data retrieval and row identification in your application.
9-2 Open M with SQL Data Dictionary Guide

Structure of Index Maps
Structure of Index Maps

Index Maps define the location of some fields in a base table to another part of
the global used by the Master Map, or to a different global.

Index Field and Row ID Values are Subscripts

Generally, Index Maps contain the values of the indexed fields and the Row ID as
subscripts; the value of each node is usually NULL. This is always true for Index
Maps that Open M with SQL creates under default physical structure. See
“Examining a Default Index Map” on page 16-22 in Chapter 16, Default Physical
Structure , to learn about the global structure of a default Index Map.

Index Maps are Small

Since Index Maps are generally much smaller than Master Maps, there is usually
much less I/O involved in locating the row that contains the value of the index
field you are trying to match. Global nodes are stored in collating sequence by
subscript. It takes fewer disk reads to locate the block which contains the desired
node. Once Open M with SQL finds the matching row in the Index Map, it uses
the Row ID value there to locate the corresponding row in the Master Map. You
now have access to all data in that row.

Rows with Null Value In Index Field Not Included

If a particular row has no data for even one field in an Index Map, Open M with
SQL does not insert a corresponding row into that Index Map. This has implica-
tions for your application that you should consider.

Example Suppose we want to generate a report containing information about all InterSys-
tems technical writers in order by City in order to come up with car pool possibil-
ities. We use the following query:

SELECT *
FROM Docstaff
ORDER BY City

We defined an index on City but did not make City a required field. If any row
does not contain a value for City, that writer will not be included in the report,
since Open M with SQL will use the City Index Map to locate rows in the Master
Map, and a null index entry cannot exist.

Make Indexed Fields Required to Avoid Null Values

To avoid having an Index Map which does not contain a reference to all the rows
in the Master Map, you need to ensure that indexed fields will always contain a
value. The best way to do this is to make indexed fields required fields. See
Open M with SQL Data Dictionary Guide 9-3

Chapter 9—Index Maps
“Defining a Required Field” on page 6-49 in Chapter 6, Defining Base Table
Fields .

Which Fields Should You Index?

Since Index Maps are useful primarily for fields that Open M with SQL searches
through to access a particular row of data, it is useful to have an Index Maps for
the following types of fields:

 n Unique fields
 n Fields used to retrieve rows:

 • Lookup fields used for row selection in Form Generator forms
 • Fields used to create frequently used M/PACT reports
 • Fields used in frequently performed queries

 n Fields you sort by

Unique Fields

When you enter a new row which includes a value for a unique field, Open M
with SQL looks through all values for that unique field to make sure the new
value does not already exist. Since Open M with SQL does this search every
time you enter or edit a row that contains a unique field, it is a good idea to have
a separate Index Map for each unique field, with the exception of the Row ID
field. Unique fields are further described in “Step 5: Specify If Values Must be
Unique” on page 6-34 in Chapter 6, Defining Base Table Fields .

Fields Used to Retrieve Rows

It is useful to create an Index Map for all fields defined as form lookups, since
Open M with SQL searches through the values of these fields, comparing them to
the value a user enters on a form, to perform row selection. For further details on
lookup fields, refer to the Open M/SQL Form Generator Guide.

Similarly, it is useful to define Index Maps for fields used to retrieve rows in
M/PACT reports. See the Open M/SQL M/PACT Guide.

Example Suppose in Form Generator you create a form for the Docstaff table that includes
all of its fields. We define Name to be a lookup field. Therefore, only
Doc_Name appears on the Docstaff form row selection window.

To update data about a particular staff person, the user enters the staff person's
name at the Docstaff form row selection window. Open M with SQL uses the
lookup query it created for that field. The lookup query uses the Data Dictio-
nary’s index map for the Name field. The index map contains the Name field and
its corresponding Row ID. Open M with SQL then uses this Row ID to locate the
9-4 Open M with SQL Data Dictionary Guide

Structure of Index Maps
row in the Master Map, and then displays the information on the Docstaff form's
master window.

Fields You Sort By

When you sort by a particular field to create an M/PACT report, or within a rela-
tional application, Open M with SQL retrieves the data in that field repeatedly
from all the rows in the base table. Therefore, fields you sort by are candidates
for Index Maps.

Default Structure Index Maps

When you use default physical structure for a base table, Open M with SQL auto-
matically creates Index Maps for these fields:

 n Unique fields
 n Lookup fields

In addition, you can specify that Open M with SQL create Index Maps for addi-
tional fields. Specifying default physical structure is described in “Generating
Default Physical Structure” on page 5-15 in Chapter 5, Defining a Base Table .

Defining Additional Fields to Index

You can create Index Maps for fields other than those which are unique or lookup
fields.

Procedure To define additional fields to index:

1. Go to the Base Table Definition master window for the base table for which
you want to define additional indexes.

2. Press <RETURN> at the <Physical Structure> branching field

3. This displays the Default Physical Structure window. Press <TAB> to move
the cursor to the <Fields to Index> branching field, then press <RETURN>.
Open M with SQL Data Dictionary Guide 9-5

Chapter 9—Index Maps
You see the Fields to Index On window, which is a multi-row form:

Each group of data entry lines displayed in the window is for one Index Map.
Enter the field names you want to include in an Index Map, one field name per
line. These data entry lines scroll as you add fields to the list. When you list fields
in separate groups, separate index maps are generated.
You can index any field in the base table except multi-line fields and the Row ID.
You can, however, index constituent fields of a multi-field Row ID. The Row ID
is automatically included in every Index Map; you do not need to include it in the
idex map definition.
The first field specified for an index map is used to generate the index map name.
Therefore, no two index maps for the same base table may have the same field as
the first listed field. For example, there could be two index maps, one for City
and Employee_Name, the other for Years_of_Service and Employee_Name.
However, there could not be two separate index maps, one for Employee_Name
and City, the other for Employee_Name and Years_of_Service.

4. Press <RETURN> when you are done.

5. Press <RETURN> to move the cursor to the next group of lines to create
another Index Map, or press <PROCEED> to complete index map definition.

6. You again see the Default Physical Structure window. This time, press
<TAB> to move the cursor to the <Examine Structure> branching field, then
press <RETURN>. This generates the Index Map(s) you have defined,
assigning each index map a unique name, consisting of the word “Index”, the
name of the first field specified for the index map, and an assigned number.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Docstaff_________________ Information on documentation staff_ |
| |
+-------------------------Default Physical Structure--------------------------+
+--+|
Index Fields	
City__	
__	
__	
__	
__	
__	+

+---+

...Fields to Index On Press <PF1><PF3> For Help
9-6 Open M with SQL Data Dictionary Guide

Customized Structure Index Maps
Customized Structure Index Maps

Index Maps perform the same function whether you are using default or custom-
ized physical structure. However, if you are using customized physical structure,
Open M with SQL will not generate Index Maps automatically.

If you are using customized physical structure to create a new M database, Inter-
Systems recommends that you first use default physical structure when you cre-
ate your base table fields and lookups, so Open M with SQL generates Index
Maps for your unique and lookup fields. You can later switch to customized
physical structure and edit the Index Map definitions that Open M with SQL cre-
ated to match the database structure you have designed.

If you are using customized physical structure to map to an existing M database,
you need to define your index maps to match the structure of existing indexes.

See Chapter 17, Relational Definition of an M Database and Chapter 18, Creat-
ing a Customized Map Definition , to learn how to create Index Maps using cus-
tomized physical structure.
Open M with SQL Data Dictionary Guide 9-7

Chapter 9—Index Maps
Populating an Index Map

Normally, you would define all index maps when designing a base table, before
that table contains any data. However, it is possible to create index maps at any
time, and to populate these maps with the existing data in the base table.

The Data Dictionary main menu allows you to fully populate new or modifed
index maps for a base table that already has defined data From this menu select
the Populate Index Maps for a Table option, as shown below:

When you select the Populate Index Maps for a Table option, the Data Dictionary
displays a Base Table Selection window. Specify the name of the desired base
table, and press <RETURN>. This populates all indexes defined for this base
table and recompiles the base table, displaying status and run-time error mes-
sages as appropriate. You see DONE appear in the message display window as
each step in the process completes. The messages in the following example are
typical of the successful populating of an index map:

Populating all indexes for Base Table: Patient
Compiling Base Table... DONE
Creating routine to populate indexes... DONE
Compiling Routine ms2j... DONE
Running routine ms2j...
All tuples’ indexes updated successfully.
Deleting routine ms2j... DONE
Press <RETURN>...

 ------------------------------ OPEN M Developer ------------------------------

 +-----------Data Dictionary-----------+
 | |
 | Base Table Definition |
 | View Definition |
 | Compile a Table |
 | Copy a Base Table Field |
 | Copy a View |
 | Change View's Starting Table |
 | Recreate all Default Structure Maps |
 | Populate Index Maps for a Table |
 | Reports on Data Dictionary |
 | |
 +-------------------------------------+

 Directory: /us/susang/
 Thursday Feb 27, 1997 Copyright (c) 1993 - InterSystems Corporation

Data Dictionary 11:04AM Press <PF1><PF3> For Help

Press <RETURN> to (Re)Populate all index maps for a Base Table
9-8 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dictio
CHAPTER

10
Data Conversion and Validation
Data conversion is the process used by Open M with SQL to convert field values
from external input format to internal storage format and from internal storage
format to external display format.

Data validation is the process used by Open M with SQL to test data values to
make sure they meet certain conditions before accepting them.

This chapter describes both data conversion and validation. Specifically, it cov-
ers the following topics:

 n Overview of Data Conversion and Validation page 10-2
 n Field Conversion Code page 10-4
 n Field Validation Code page 10-7
 n Variables for Field Conversion and Validation Code page 10-9
 n Order of Field Conversion and Validation Events page 10-10
 n Base Table Validation Code page 10-15
nary Guide 10-1

Chapter 10—Data Conversion and Validation
Overview of Data Conversion and Validation

You can manually insert customized conversion and validation code for any field
at the field level. You can also insert validation code at the base table level.

If defined at the base table level, the conversion and/or validation code acts as a
default for all forms associated with that table.

If defined at the form level, the conversion and/or validation code overrides the
default base table code for that particular form only.

Data Conversion

Conversion code applies to the field definition level only. It converts the data
value of a field from an external input value to an internal storage format and
from an internal storage format to an external display format.

Data Validation

The Data Dictionary lets you insert M code to perform data validation at two lev-
els:

 n Row level
 n Field level

At the row level, validation code sets conditions that must be met to validate a
database operation (insert, update, or delete) on an entire row. This is called base
table validation code.

At the field level, validation code sets conditions that must be met to validate
data values for a particular field.

Fields Can Have Internal and External Values

A field's internal value is the value stored in the database. Open M with SQL
treats the internal value as the actual value of the field. The internal value is used
in SQL conditions and calculations. It is also the value tested by field validation
code.

A field's external value has two formats:

 n External Input Value - value entered by the user in a form or SQL statement.
 n External Display Value - value displayed by Open M with SQL in the output

of a form, report, or query.

It often makes sense to use internal storage values that differ from external val-
ues. Internal values can strip away formatting punctuation and store data in a
10-2 Open M with SQL Data Dictionary Guide

Overview of Data Conversion and Validation
simple abbreviated fashion. This conserves database storage space. It also
allows you to input and/or display data values in different formats. For example,
Open M with SQL stores dates internally as $HOROLOG strings but represents
them externally in a variety of formatting patterns.

Automatically Generated Conversion and Validation Code

For most data types, Open M with SQL automatically generates conversion and
validation code to perform basic conversion and validation functions.

The following table shows the types of code (External-to-Internal, Internal-to-
External, and Validation) Open M with SQL automatically generates for each
data type:

For the data types Date, Time, and Number, the conversion and validation code
that Open M with SQL generates depends on what range, format, and display
selections you make in the Data Type window. For more information, see Chap-
ter 6, Defining Base Table Fields .

You can add to, modify, or delete automatically generated conversion code
(External-to-Internal and Internal-to-External). You can add to automatically
generated validation code, but cannot modify or delete the automatically-sup-
plied code.

Table 10-1: Automatically Generated Code by Data Type

Data Type
Ext-Int
Conversion

Int-Ext
Conversion Validation

Date 4 4 4
Designative
Reference 4

Multiple
Choice 4 optional

Name 4
Number 4 optional 4
Row ID 4 4
Text

Time 4 4 4
Yes/No 4 4 4
Open M with SQL Data Dictionary Guide 10-3

Chapter 10—Data Conversion and Validation
Field Conversion Code

For some data types, such as date and time fields, Open M with SQL automati-
cally generates conversion code. This code is completely modifiable. You may
enhance and customize it, or you may delete it.

For data types where Open M with SQL does not automatically generate any
conversion code, you may define such code manually.

There are two types of conversion code: external-to-internal, and internal-to-
external. The external value of a field is the value entered by the user in a form or
SQL statement. External-to-internal conversion code acts on the external input
value to convert it to an internal storage value. Internal-to-external conversion
code then acts on the internal storage value to convert it to an external display
value that appears in the output of forms, reports, and queries.

External-to-Internal Conversion Code

Open M with SQL lets you insert M code to convert the external input value
(user input) of a field into an internal storage format. This External-to-Internal
Conversion Code is often used to conserve database storage space and to make
input easier for users.

For each data type, Open M with SQL automatically generates External-to-Inter-
nal conversion code that does the following:

Table 10-2: Automatically Generated External-to-Internal Conversion Code

Data Type External-to-Internal Conversion Code

Date Makes sure the user enters the external input value in one of the
seven possible date formats. If not, it displays an error message.
Converts the value to $HOROLOG date format for internal storage.

Designative
Reference

This is a non-displayable field. Users cannot enter data directly into it.
It mimics the Row ID field of the designated table.
The code makes sure the value is a pure number (i.e., contains no
non-numeric characters). If not, it displays an error message.

Multiple
Choice

Converts the user-selected value to the specified internal value. If
internal values are not defined, it simply stores the selected value.

Name None

Number Makes sure the external input value entered by the user is either:
1. A pure number (i.e., contains no non-numeric characters), or
2. A number entered in the number format selected in the Number
Data Type window.
If not, it displays an error message.
Strips away all punctuation.
10-4 Open M with SQL Data Dictionary Guide

Field Conversion Code
Open M with SQL places the external input value into the special variable, %val.
External-to-Internal Conversion Code consists of M statements that convert the
value of %val into the internal storage value.

Optionally, it can also perform validation tests on the external input value, as
described in “Field Validation Code” on page 10-7.

You cannot reference base table field names in External-to-Internal Conversion
Code.

Example The following External-to-Internal Conversion Code converts a date from exter-
nal to internal ($H) format:

SET %DS=%val DO INT^%DATE SET %val=%DN

The entry point INT^%DATE takes its input from the variable %DS and takes its
output from the variable %DN.

Internal-to-External Conversion Code

Open M with SQL lets you insert M code to convert internal storage values into
modified external display values. This is called Internal-to-External Conversion
Code.

Row ID This is a non-displayable field, and users cannot enter data into it
(unless you use customized mapping). Its value is derived from an
internal counter.
The code makes sure the value is a pure number (i.e., contains no
non-numeric characters). If not, it displays an error message.

Text None

Time Makes sure the users enters the external input value in one of the
four possible time formats. If not, it displays an error message
Converts the value to $HOROLOG time format for internal storage.

Yes/No Converts the user-selected value to Y or N for internal storage.

Table 10-2: Automatically Generated External-to-Internal Conversion Code

Data Type External-to-Internal Conversion Code
Open M with SQL Data Dictionary Guide 10-5

Chapter 10—Data Conversion and Validation
For each data type, Open M with SQL automatically generates Internal-to-Exter-
nal conversion code that does the following:

Internal-to-External Conversion Code consists of M statements that modify the
value of the Open M with SQL variable %val. Internal-to-External Conversion
Code finds the internal value in %val and then sets %val to the external display
value.

In addition to not being able to reference field names in Internal-to-External Con-
version Code, the variables %ok and %msg have no effect.

Example The following Internal-to-External Conversion Code converts a date from inter-
nal to external format:

SET %val=$ZDATE(%val)

Table 10-3: Automatically Generated Internal-to-External Conversion Code

Data Type Internal-to-External Conversion Code

Date Converts the internal $HOROLOG date value to the display format
selected in the Date Data Type auxiliary window.

Designative
Reference

None

Multiple
Choice

Converts the internal storage value to the external display value. If
internal values are not defined, this code is not present.

Name None

Number Converts the internal storage value to the external display format
selected in the Number Data Type auxiliary window, including deci-
mal places, leading character punctuation, and negative number dis-
play style.

Row ID None

Text None

Time Converts the internal $HOROLOG time value to the display format
selected in the Time Data Type auxiliary window.

Yes/No Converts the internal value to an external display value of "Yes" or
"No".
10-6 Open M with SQL Data Dictionary Guide

Field Validation Code
Field Validation Code

Field validation code establishes validation standards for the value of a field so as
to prohibit inappropriate entries. Open M with SQL invokes validation code on
the converted internal value of a field after the external-to-internal conversion is
complete and before the internal-to-external conversion is invoked.

Open M with SQL automatically generates field validation code for most data
types. You cannot modify or delete automatically generated validation code. It is
a permanent attribute of the data type you have selected. However, you can
define Additional Validation Code to enhance the automatically generated valida-
tion code.

For each data type, Open M with SQL automatically generates Validation code
that does the following:

Table 10-4: Automatically Generated Validation Code

Data Type Validation Code

Date Makes sure the converted internal value is a number. If not, it dis-
plays an error message.
Makes sure the converted internal value falls within the range speci-
fied in the Date Data Type auxiliary window. If not, it displays an error
message.

Designative
Reference

None

Multiple
Choice

None

Name Makes sure the user entered value starts with a letter and has the for-
mat:
 O'Last,First Middle Jr.
If not, it displays an error message.

Number Makes sure the converted internal value is a pure number (i.e., con-
tains no alphabetic characters). If not, it displays an error message.
Makes sure the converted internal value falls within the range speci-
fied in the Number Data Type auxiliary window. If not, it displays an
error message.
Makes sure the converted internal number does not have more than
the specified number of decimal places. If not, it displays an error
message.

Row ID None

Text None
Open M with SQL Data Dictionary Guide 10-7

Chapter 10—Data Conversion and Validation
Additional Validation Code

Additional Validation Code allows you to refine the scope of allowable entries
for a particular field beyond that defined in the automatically generated valida-
tion code. Additional Validation Code consists of M statements that test the
value of %val and accept or reject an entry based on the results of those tests.

At validation time, %val holds the internal value of a field. You can use Addi-
tional Validation Code to reject an invalid value for %val by setting the variable
%ok to zero. You can also display an error message by setting the variable %msg
to a text error message.

Example For example, if you have a Date field and you want to prevent users from enter-
ing any future dates, you could insert the following Additional Validation Code:

IF %val>$H SET %ok=0,%msg="No future dates please."

This code specifies that any date later than the current date (the value of $H) fails
the validation test. When this occurs, the message "No future dates please" will
display on the screen.

Validation Checking on External Values

Validation code acts on the internal value of a field. If you want to perform vali-
dation checking on the original external value, i.e., the format in which the user
entered the value, you must include pre-conversion validation code inside the
External-to-Internal Conversion Code.

You may write validation tests into the External-to-Internal Conversion Code
using the same syntax as described for Additional Validation Code. The only dif-
ference is the order in which it is processed.

You cannot write validation tests into the Internal-to-External Conversion Code.

Time Makes sure the converted internal value is a number. If not, it dis-
plays an error message.
Makes sure the converted internal value falls within the range speci-
fied in the Time Data Type auxiliary window. If not, it displays an error
message.

Yes/No Makes sure the converted internal value is equal to "Y" or "N". If not,
it displays an error message.

Table 10-4: Automatically Generated Validation Code

Data Type Validation Code
10-8 Open M with SQL Data Dictionary Guide

Variables for Field Conversion and Validation Code
Variables for Field Conversion and Validation Code

Open M with SQL supports several variables used for field-level conversion and
validation code:

You cannot reference field names in field conversion or validation code.

You also cannot reference the following Open M with SQL variables in field con-
version or validation code:

 n %old
 n %oldext
 n %new
 n %newext

Table 10-5: Open M with SQL Conversion and Validation Variables

Variable Function

%val Stores the current value of a field.

%ok Flag that can be set to 0 to disallow the filing of an invalid field value.

%msg Error message text for screen display when rejecting an invalid field value.

%data(col) Stores the data value of the field of the current row with the column number
equal to the value of col, whether saved or unsaved.

%edit(col) Stores the disk value of the field of the current row with the column number
equal to the value of col, when that field has been edited but not saved.
Once %data is saved, %edit is null.

%linenum Used only for multi-line fields (Text data type). Specifies the line number
within the field of the line on which the cursor is currently located. Multi-line
fields are described in “Step 7: Specify If the Field is Multi-Line” on page 6-
37 in Chapter 6, Defining Base Table Fields
Open M with SQL Data Dictionary Guide 10-9

Chapter 10—Data Conversion and Validation
Order of Field Conversion and Validation Events

When a user enters data into a field, Open M with SQL may convert the data
value to an internal storage value and may perform validation checks on the data
value. The following is the sequence of events for field conversion and valida-
tion:

1. User enters a value into a field.

2. Open M with SQL invokes External-to-Internal Conversion Code.

This code may first perform validation checks on the external value and issue
an error message if the data value is invalid. This validation code may be sys-
tem-supplied or user-written. This code then converts the external data value
to the internal storage value. This conversion code may be system-supplied
or user-written.

3. Open M with SQL invokes Validation Code.

This validation code is supplied by the Data Dictionary and cannot be user
modified. It performs validation checks on the internal value. These valida-
tion checks are specific the to data type. The user may see an error message
to indicate that s/he has attempted an invalid entry.

4. Open M with SQL invokes Additional Validation code.

This validation code is supplied by the user to perform further validation
checks on the internal storage value. The user may see an error message to
indicate that s/he has attempted an invalid entry.

5. Open M with SQL stores the valid value in internal storage format.

6. The user retrieves the stored value.

7. Open M with SQL invokes External-to-Internal Conversion Code and then
displays the converted value in the proper external format. This conversion
code may be system-supplied or user-written.
10-10 Open M with SQL Data Dictionary Guide

Modifying Field Conversion and Validation Code
Modifying Field Conversion and Validation Code
The following is an example of Automatically Generated Conversion/Validation
Code. When you select Date as the Data Type for a field, you see the Date Data
Type popup window, as shown below:

 The Date Data Type window requests that you select one of seven formats for
external representation of dates. Format #1 is the default format. In this exam-
ple, we have selected Format #6 (October 18, 1990).

The Date Data Type window also lets you enter the top and bottom limits for a
range of acceptable dates. This is an optional feature. In this example, we have
entered a bottom limit of 1/1/90.

Open M with SQL automatically generates conversion and validation code to
accommodate the date format and range that you specified for the field.

You can view and edit the automatically generated conversion and validation
code by selecting the Conversion/Validation Code option from the horizontal

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Docstaff_________________ Information on documentation staff_ |
| |
+----------------------------Field Definition----------------------------------+
| |
| Field Name Description |
| Date_of_hire________________ Date Writer was Hired________________________ |
| |
| +-------------------------Date - Data Type--------------------------+ |
	Date Format: 6_ Display: October 18, 1966	
	First Date: January 01, 1990__ Display Full Year: No__	
	Last Date: __________________ Override Display Delimiter: _	
	Formats: 1 - 10/18/90 5 - Oct 18, 1990	
	2 - 18 Oct 90 6 - October 18, 1990	
+---| 3 - 18.10.90 7 - 90.10.18 |------+
 | 4 - 18/10/90 |
 Up+---+onal

...Date Data Type Unsaved Data Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 10-11

Chapter 10—Data Conversion and Validation
options menu. This invokes the Conversion/Validation Code window, as shown
below:

 n You can alter Automatically Generated Conversion Code

Where automatically generated conversion code already exists, you may enhance
or delete that code. If no code exists, you may create it. This conversion code is
shown on the Internal to External M Code and External to Internal M Code lines
in Conversion/Validation Code window.

 n You cannot alter Automatically Generated Validation Code

Where automatically generated validation code exists, you cannot modify or
delete it. It is a permanent attribute of the data type you have selected. This vali-
dation code is shown on the M Code to Validate Internal Values lines in Conver-
sion/Validation Code window.

 n You can define Additional Validation Code to enhance automatic validation
checking.

This validation code is shown on the Additional M Validation Code lines in Con-
version/Validation Code window.

Procedure To view and/or customize field conversion and validation code:

1. Enter the Field Definition window for the field whose conversion/validation
code you want to view and/or enhance.

2. From the Field Definition window, press the <Go to Bottom Menu> key to
access the Field Definition horizontal options menu.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Docstaff_________________ Information on documentation staff_ |
+--------------------------Conversion/Validation Code--------------------------+
| The Field's Value is stored in the Variable '%val'. |
| The M code below should convert '%val' and store the result in '%val' |
| e.g. SET %val=$$ABC^ROUTINE(%val) |
| |
| Internal to External M Code (1/2) |
| s %val=+$g(%val) s:%val<1 %val="" q:%val=""_________________________________ |
| ##vendor(daten6)__ |
| External to Internal M Code (0/1) |
| s %val=$$dateint^%razdt(%val,6,"") s:%val<0 %ok=0___________________________ |
| __ |
| M Code to Validate Internal Value (0/2) |
| i %val'=+%val s %ok=0,%msg=$$setmsg^%razset("DTDatIn")______________________ |
| s:%val<54422 %ok=0 ___ |
| Additional M Validation Code (0/0) (If Invalid - SET %ok=0) |
| __ |
| __ |
+--+

...Conversion Code Unsaved Data Press <PF1><PF3> For Help
10-12 Open M with SQL Data Dictionary Guide

Modifying Field Conversion and Validation Code
3. From the Field Definition horizontal options menu, select the Conver-
sion/Validation Code option.

You see the Conversion/Validation Code window, as shown below:

4. Move the cursor to the Internal-to-External Code field, and insert the appro-
priate code.

Note: Internal-to-External Conversion Code consists of valid M state-
ments that convert %val from an internal storage value to an
external display format.

5. Move the cursor to the External-to-Internal Code field, and insert the appro-
priate code.

Note: External-to-Internal Conversion Code consists of valid M state-
ments that convert %val to an internal storage format.

6. Move the cursor to the Additional Validation Code field, and insert the
appropriate code.

Note: Additional Validation Code consists of valid M statements that
test the internal format of %val to make sure it meets certain
conditions. To reject an invalid entry, set %ok=0 and set %msg
to a text error message.

7. When you have finished inserting your field conversion/validation code,
press <PROCEED> to save your definitions and exit the Conversion/Valida-
tion Code window.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Docstaff_________________ Information on documentation staff_ |
+--------------------------Conversion/Validation Code--------------------------+
| The Field's Value is stored in the Variable '%val'. |
| The M code below should convert '%val' and store the result in '%val' |
| e.g. SET %val=$$ABC^ROUTINE(%val) |
| |
| Internal to External M Code (1/0) |
| __ |
| __ |
| External to Internal M Code (0/) |
| __ |
| __ |
| M Code to Validate Internal Value (0/) |
| __ |
| __ |
| Additional M Validation Code (0/0) (If Invalid - SET %ok=0) |
| __ |
| __ |
+--+

...Conversion Code Unsaved Data Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 10-13

Chapter 10—Data Conversion and Validation
Example Suppose you want to create a telephone number field.

You are willing to accept user input in any format so long as it contains ten num-
bers and no alphabetic characters. This means formats such as the following are
all appropriate:

(617) 621-0600
617-621-0600
6176210600

If it does not meet these criteria, you want to disallow the entry and send an error
message to the user.

For internal storage, you want to strip all punctuation and convert the data value
to pure numeric format.

For external display, you want to convert the value to the following format:

(617) 621-0600

To do this, you need to define a field of Data Type Text with a maximum length
of 14. And, you need to manually insert the following conversion and validation
code:

External-to-Internal Conversion Code

The following code strips the original external value (user input) of all punctua-
tion:

SET %val=$TRANSLATE(%val," ()-","")

Validation Code

The following code checks the punctuation-stripped internal value to make sure
that it contains exactly ten numbers and nothing else. if it does not, the code dis-
allows the entry and prints the error message "Invalid Phone Number" to the
screen.

IF %val'?10N SET %ok=0, %msg="Invalid Phone Number"

Internal-to-External Conversion Code

The following code converts the punctuation-stripped internal value to an exter-
nal format with parentheses around the area code, a space before the telephone
prefix, and a hyphen between the prefix and the rest of the number:

SET %val="("$E(%val,1,3)_") "_$E(%val,4,6)_"-
"_$E(%val,7,10)
10-14 Open M with SQL Data Dictionary Guide

Base Table Validation Code
Base Table Validation Code

At the base table definition level, you can insert M code to specify conditions that
must be met before an insert, update, or delete operation can be performed on a
row of data. Usually, this condition defines a constraint among field values in a
row.

For example, if you keep a table for department budget planning in which each
field represents a different budgeted item, you can use Base Table Validation
Code to specify that a row not be filed if the sum of the values of those fields
exceeds the value of the field for Total Amount Budgeted. Optionally, you can
specify a message that should be displayed if such a violation occurs.

Procedure To define base table validation code:

1. Enter the Base Table Definition window.

2. From the Base Table Definition window, press the <Go to Bottom Menu>
key to access the Base Table Definition horizontal options menu.

3. From the Base Table Definition horizontal options menu, select the Valida-
tion Code option.

You will see the Base Table Validation window:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Docstaff_________________ Information on documentation staff_ |
| |
| Use Default Physical Structure? Yes_ |
|+--------------------------Base Table Validation------------------------------+
	Enter lines of M code to execute before performing each operation.
	To abort the operation - SET %ok=0
	To display an error message - SET %msg="Your Message"
	Insert Validation M Lines (1/0)
	__
	__
+	Update Validation M Lines (0/)
__	
__	
Delete Validation M Lines (0/)	
__	
__	
 +---+

...Base Table Validation Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 10-15

Chapter 10—Data Conversion and Validation
The following table lists and describes the fields located on the Base Table Vali-
dation window:

4. Enter M code in the appropriate field(s) to place conditions on database oper-
ations.

5. When you have finished inserting your base table validation code, press
<PROCEED> to save your definitions and exit the Base Table Validation
Code window.

Defining Base Table Validation Code

Unlike field-level conversion and validation code, Base Table Validation Code
lets you reference field names enclosed in curly braces such as {fieldname}. You
cannot refer to multi-line fields using the curly brace syntax.

To disallow filing of a row if the specified condition is not met, set the variable
%ok equal to zero, as in:

IF {a}+{b}'={ab_total} SET %ok=0

To send an error message to the user, set the variable %msg to the text of the error
message, as in:

IF %ok=0 SET %msg="Invalid Data"

The error message displays whenever a violation occurs.

Example This example shows how to define base table validation code to prevent insert of
a row into the database when the sum of the fields "Salaries", "Supplies", and
"Miscellaneous" exceeds the value of the field "Total Budgeted Amount".

When a violation of this condition occurs, the message "Total of budgeted items
exceeds budgeted amount" will display.

Table 10-6: Fields on Base Table Validation window

Field Name Description

Insert Validation M
Lines

Here you may enter M code to specify conditions that must be met
before a new row can be inserted into the database.

Update Validation M
Lines

Here you may enter M code to specify conditions that must be met
before an existing database row can be updated.

Delete Validation M
Lines

Here you may enter M code to specify conditions that must be met
before a database row can be deleted.
10-16 Open M with SQL Data Dictionary Guide

Base Table Validation Code
Field names referenced in the validation code are enclosed in curly braces.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Budget___________________ Department Budgets_________________ |
| |
| Use Default Physical Structure? Yes_ |
|+--------------------------Base Table Validation------------------------------+
	Enter lines of M code to execute before performing each operation.
	To abort the operation - SET %ok=0
	To display an error message - SET %msg="Your Message"
	Insert Validation M Lines (2/1)
	i {Salaries}+{Supplies}+{Miscellaneous}>{TotalBudget} s %ok=0_____________
	i %ok=0 s %msg="Total of budgeted items exceeds budgeted amount."_________
+	Update Validation M Lines (0/0)
__	
__	
Delete Validation M Lines (0/0)	
__	
__	
 +---+

...Base Table Validation Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 10-17

Chapter 10—Data Conversion and Validation
10-18 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dictio
CHAPTER

11
Base Table Triggers
Open M with SQL provides a simple and powerful mechanism for programming
the automatic execution of database operations in an application. This mecha-
nism is the ability to define triggers. Triggers are sequences of actions which you
may define to automatically take place at various points during the execution of
your Open M with SQL application.

You can associate triggers with base tables or with forms. This chapter begins
with a general overview of all Open M with SQL triggers, then describes in detail
how to define and use base table triggers. Specifically, it covers the following
topics:

 n Overview of Open M with SQL Triggers page 11-2
 n Overview of Base Table Triggers page 11-4
 n Base Table Trigger Code page 11-7
 n Examples of Base Table Triggers page 11-15
nary Guide 11-1

Chapter 11—Base Table Triggers
Overview of Open M with SQL Triggers

Generally speaking, there are two kinds of triggers in Open M with SQL, base
table triggers and form triggers.

Base table triggers are sequences of database actions initiated by an INSERT,
UPDATE, or DELETE action performed on a base table. These triggers help
enforce integrity constraints and other data dependencies. Base table triggers per-
form operations tailored to the needs of the database manager. For example, a
Pre-Filing DELETE trigger may use SQL statements to insert the information
into an archive file, or a Post-Filing INSERT trigger in a patient database may
conditionally send a report to the head of the cardiology department if a patient is
admitted with severe chest pains.

Form triggers extend the conventional notion of triggers to forms, windows, and
fields. They execute at different stages of your application and help define its
control structure by linking together the various capabilities of an application and
establishing a logical flow of events. Form triggers perform operations tailored to
the needs of the application end-user.

You Can Associate Triggers with Different Kinds of Objects

Open M with SQL lets you define triggers associated with any of the following
objects:

 n Base Table
 n Form
 n Window
 n Field (on a form)

Triggers invoked from forms, windows, or fields are collectively referred to as
form triggers because they are tied to forms or form objects.

Triggers invoked from base tables are referred to as base table triggers.
11-2 Open M with SQL Data Dictionary Guide

Overview of Open M with SQL Triggers
The following table shows what types of triggers you can define for each trigger-
capable Open M with SQL object:

The remainder of this chapter addresses base table triggers. For more information
on form triggers, see the Open M/SQL Form Generator Guide.

Table 11-1: Types of Triggers

Object Trigger Types

Base Table Pre-Filing INSERT
Pre-Filing UPDATE
Pre-Filing DELETE
Post-Filing INSERT
Post-Filing UPDATE
Post-Filing DELETE

Form Pre-Form
Post-Retrieval
Post-Form

Window Pre-Window
Post-Window

Field Pre-Field
Post-Field
Open M with SQL Data Dictionary Guide 11-3

Chapter 11—Base Table Triggers
Overview of Base Table Triggers

Base table triggers are useful primarily for operations that preserve the integrity
of the database. They specify that some database modification or other process-
ing should occur in response to an INSERT, UPDATE, or DELETE operation
performed on the database.

You should be careful not to confuse base table triggers with base table validation
code. It is not the job of base table triggers to determine whether an INSERT,
UPDATE, or DELETE operation should or should not be performed -- that is the
job of base table validation code. Base table triggers define:

 n Additional actions to be performed in concert with the INSERT, UPDATE,
or DELETE operation.

 n If you use customized mapping, how to file fields for which Open M with
SQL does not generate filing code due to how you mapped their location. See
Chapter 18, Creating a Customized Map Definition , to learn the circum-
stances under which Open M with SQL does not generate filing code for a
field.

You can program base table triggers to execute either before filing occurs or after
filing occurs.

Base table triggers can execute SQL code, M code, or an M routine.

Pre-Filing Triggers

Pre-Filing triggers are invoked after the user presses the save key to indicate that
a row will be saved but before the row is actually filed to the database.

The following table lists the three types of Pre-Filing triggers and describes when
each is invoked and what the status of the database is at the time of invocation:

Pre-Filing triggers are useful when you want to update a field in the current base
table in concert with an INSERT, UPDATE, or DELETE operation. In this case,

Table 11-2: Pre-Filing Base Table Triggers

Trigger Type When Invoked
Status of
Database

INSERT When a new row
is inserted

Row not yet
inserted

UPDATE When an existing
row is edited

Row not yet
updated

DELETE When an existing
row is deleted

Row not yet
deleted
11-4 Open M with SQL Data Dictionary Guide

Overview of Base Table Triggers
you must define a Pre-Filing trigger to make sure the update produced by the
trigger is filed along with the rest of the table. Once Open M with SQL has filed
the current table, it will not file it again to preserve updates produced by a Post-
Filing trigger.

Open M with SQL does not permit you to update a field by SETting it in a trig-
ger. If you wish to update a field with a Pre-filing trigger, you can perform this
operation as follows:

 %edit(2)=%data(2),%data(2)=value

In this example, the 2 identifies the field (in this case, the second column of the
row), and value is the new data value for the field.

Post-Filing Triggers

Post-Filing triggers are invoked immediately after a row has been filed to the
database.

The following table lists the three types of Post-Filing triggers and describes
when each is invoked and what the status of the database is at the time of invoca-
tion:

Post-Filing triggers are useful when you want to update fields in other tables in
concert with an INSERT, UPDATE, or DELETE operation on the current table.
Post-Filing triggers allow you to make sure that the filing actually transacts
before initiating the update. Open M with SQL still files updates made to other
tables even after the current table has already been filed.

SQL Code Triggers

You can define base table triggers to invoke SQL code. SQL code triggers are
useful when you want to perform an operation on the database, such as an
INSERT, UPDATE, or DELETE.

Table 11-3: Post-Filing Base Table Triggers

Trigger Type When Invoked
Status of
Database

INSERT When a new row
is inserted

Row already
inserted

UPDATE When an existing
row is edited

Row already
updated

DELETE When an existing
row is deleted

Row already
deleted
Open M with SQL Data Dictionary Guide 11-5

Chapter 11—Base Table Triggers
Examples of SQL triggers include the following:

 n If you have a Designative Reference field from the Employees base table into
the Departments base table, you might maintain a field in the Departments
base table to keep the number of employees in the department. You can
define a trigger that automatically increments or decrements the number of
employees counter in the Department base table every time an employee
leaves or joins the organization, or changes departments.

 n You may have an Employees/Departments schema in which a Designative
Reference field Department_Manager in the Departments base table desig-
nates a row in the Employee base table. You may want to define a trigger that
performs an update in both tables if an employee who is also a department
manager leaves the organization.

M Code Triggers

You can define base table triggers to invoke M code. M code triggers are useful
when you want to enhance the information flow in your application by manipu-
lating numbers, performing calculations, or sending messages.

The most common use of an M code trigger is to send a message to a user or
group of users when a particular database action is performed.

M Routine Triggers

You can also define base table triggers to invoke an M routine. This lets you
make changes to the routine rather than changing the directly inserted code,
which forces you to recompile the base table.
11-6 Open M with SQL Data Dictionary Guide

Base Table Trigger Code
Base Table Trigger Code

When creating an application, you may decide that a base table trigger is the best
way to enforce a particular integrity constraint.

You can define as many base table triggers as you want. In addition, Open M
with SQL defines one base table trigger automatically. This automatically-
defined trigger deletes child rows when a parent row is deleted. For more infor-
mation about this trigger, see the section of this chapter entitled, “Automatic
Trigger Deletes Child Table Rows” on page 11-14.

You can check that all triggers that you defined are valid by running the Object
Integrity Checker Utility, described in the Open M/SQL Developer Guide.

Trigger Items

A trigger may consist of one trigger item or a sequence of multiple trigger items.
When a trigger is invoked, the list of trigger items executes sequentially from top
to bottom in the order defined. Optionally, you can make the execution of each
trigger item conditional upon an M expression, in which case the trigger items
are evaluated in sequence but execute only when the specified condition(s) are
satisfied.

Trigger Action Types

Base table triggers can invoke any of the following actions:

 n SQL code
 n M code
 n Routine

Conditional Execution of Triggers

You can optionally make the execution of any trigger item conditional upon the
truth of an M expression.

If you define a condition in the IF (M Expression) field on the Trigger Definition
window and that condition evaluates to true, the corresponding trigger item will
execute. If the condition evaluates to false, the corresponding trigger item will
not execute.

You may define an unconditional trigger item by leaving the IF (M Expression)
field blank. In this case, the trigger item always executes.

Open M with SQL supports a series of percent variables which may prove useful
in constructing M expression conditions for trigger execution. For more informa-
Open M with SQL Data Dictionary Guide 11-7

Chapter 11—Base Table Triggers
tion on these percent variables, see the section of this chapter entitled “%-Vari-
ables in Base Table Triggers” on page 11-8.

Execution of Multiple Trigger Items

For a given trigger, the list of trigger items executes sequentially from top to bot-
tom. Conditions established via the IF (M Expression) field are evaluated sepa-
rately for each trigger item defined. However, you may define the execution of a
trigger item to be conditional upon the outcome of a previously defined condi-
tional trigger item.

You May Reference Field Values in Base Table Triggers

To reference a field in base table triggers, enclose the field name in curly braces.
For INSERT and UPDATE triggers, the field enclosed in curly braces refers to
the new field value. For DELETE triggers, the field enclosed in curly braces
refers to the old value.

%-Variables in Base Table Triggers

Open M with SQL uses the %-variables %data and %edit to hold new and exist-
ing values for fields that are being edited. You may find it useful to reference
these %-variables in base table triggers.

The %data array stores the data values for fields in the current row of the current
table. When a field value is edited, the old value is stored in the %edit array and
the new value is stored in the %data array. When the row is filed, the value of
%data overwrites the current value, and %edit is nullified.

InterSystems discourages the direct use of the %data and %edit arrays in SQL
triggers due to the possibility of their being NEWed within the SQL trigger. Use a
previous trigger item to copy the values from %data and %edit into local vari-
ables.

Column Number Identifies Field

The array subscript for %data and %edit is the column number for the field
whose value you want to access. To determine a field's column number, look in
the Update Features window of the field's definition.

Example If the field Title has a column number of 5, you can reference its current value as
follows:

%data(5)

or you can reference its old value as follows:

%edit(5)
11-8 Open M with SQL Data Dictionary Guide

Base Table Trigger Code
Values of %data and %edit Depend on Trigger Type

The %data and %edit arrays hold different values depending on the type of trig-
ger you are defining. The following tables illustrates the pattern for these values:

%data and %edit always have the same value for both Pre-Filing and Post-Filing
triggers.

Table 11-4: Values Held By %data and %edit for Different Trigger Types

Trigger Type %data %edit

INSERT new value undefined

UPDATE new value old value

DELETE undefined old value
Open M with SQL Data Dictionary Guide 11-9

Chapter 11—Base Table Triggers
Defining a Base Table Trigger
Procedure To define a base table trigger:

1. Enter the Base Table Definition window.

The Base Table Definition window is shown below:

2. Press the <Go To Bottom Menu> key to access the Base Table Definition
horizontal options menu.

3. On the Base Table Definition horizontal options menu, select the BaseTable
Triggers option.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Budget___________________ Department Budgets_________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
| |
| < M/WINDOWS Lookups > |
| |
| < Physical Structure > |
| |
| Approximate Number of Rows 250_________ |
| |
+--+

Base Table Definition Unsaved Data Press <PF1><PF3> For Help

Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options
11-10 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
The Base Table Triggers window appears, as shown below:

4. In the Base Table Triggers window, use the cursor keys to navigate and press
<RETURN> to select the appropriate trigger type option.

The Trigger Definition window appears, as shown below:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Budget___________________ Department Budgets_________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
| +----------------Base Table Triggers-----------------+ |
	--- Pre Filing --- --- Post Filing ---	
	< INSERT > < INSERT >	
	< UPDATE > < UPDATE >	
+-----------| |-+
 | < DELETE > < DELETE > |
 | |
 +--+

...Base Table Triggers Unsaved Data Press <PF1><PF3> For Help

Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Budget___________________ Department Budgets_________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
+--+

 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments

...Trigger Definition Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 11-11

Chapter 11—Base Table Triggers
The following table lists and defines the fields located on the Trigger Defini-
tion window:

Table 11-5: Trigger Definition Window

Field Name Description

Action Type This is a required field. You may select
any of three possible values
 n M Code
 n SQL
 n Routine
Press the <List Choices> key to see a
lookup box that lists these choices.

Form/Window/Field/
Query/Routine

This field becomes required when you
select Routine as the Action Type. In
all other cases, it is skipped. When
required, you must enter a valid rou-
tine name. Use the following syntax:
^routine
or
tag^routine

(M Expressions) Here you can optionally specify an IF
condition in the form of an M expres-
sion. The associated trigger action
executes only if the condition is true. If
no condition is specified, the trigger
always executes.
11-12 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
5. In the multi-row Trigger Definition window, enter an Action Type for your
first trigger item and press <RETURN>.

a. If you select M Code action type, the M Code Lines popup window
appears, as shown below:

Here, you may type the M code that you want the trigger to execute.
Press <PROCEED> when you are done.

b. If you select the action type SQL, the SQL Lines popup window appears,
as shown below:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Budget___________________ Department Budgets_________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| M Code_________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
|+--------------------------------M Code Lines--------------------------------+|
+| M Code Lines (1/0) |+
 | __ |
 | __ |
 +--+

...M Code Lines Unsaved Data Press <PF1><PF3> For Help

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Budget___________________ Department Budgets_________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| SQL____________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
|+---------------------------------SQL Lines----------------------------------+|
+| SQL Lines (1/0) |+
 | __ |
 | __ |
 +--+

...SQL Lines Unsaved Data Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 11-13

Chapter 11—Base Table Triggers
Here, you may type the SQL code that you want the trigger to execute.
Press <PROCEED> when you are done.

c. If you select action type Routine, you can enter the name of a routine that
you want the trigger to invoke. Enter the routine name in the Form/Win-
dow/Field/Query/Routine field and press <RETURN>.

Note: In the IF (M Expression) field, you may optionally enter M code
that sets a condition which must prove true in order for the trig-
ger item to execute. Press <RETURN> when you are done.

6. You may enter as many trigger items as you like. When you are done, press
<PROCEED> to save your definitions and exit back to the Base Table Trig-
ger window.

7. You may define more triggers by selecting another choice, or you may press
<PROCEED> to exit back to the Base Table Definition window.

Automatic Trigger Deletes Child Table Rows

If you have a characteristic relationship between base tables such as an
Invoice/Line Items relationship, Open M with SQL automatically generates a
Pre-Filing DELETE trigger in the parent table that deletes dependent line items
in the child table every time the parent invoice is deleted. If you delete the parent
table, this trigger automatically deletes the child table.

This is an ordinary trigger in every sense. It is visible as a trigger item in the Pre-
Filing DELETE Trigger Definition window of the parent table. You can modify
it, or even delete it.

Open M with SQL defines the automatic delete trigger to be Pre-Filing as a pre-
caution to make sure that it can delete the children before it deletes the parent.

If you edit the name of the parent reference field in a child table, Open M with
SQL automatically updates the Pre-Filing DELETE trigger in the parent table to
match the edited field name.
11-14 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
Example Shown below is the automatic delete trigger generated for a characteristic rela-
tionship between the Guides parent table and the Editions child table:

Examples of Base Table Triggers
Example of Routine Action Type Trigger

This is an example of a routine action type. It shows how we automatically
update the value of Latest_Edition_Gui in the Guides table. Remember, this is an
output only field, which is a designative reference to the Editions table. We cre-
ated Post-Filing INSERT and UPDATE triggers in the Editions table which check
to see if an edition being inserted is the latest edition. If it is, it places the Row ID
value of the edition in the Latest_Edition_Gui for the row in Guides which is the
Parent Reference for the row being inserted in Editions.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ Titles of Intersystem Guides_______ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| SQL____________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
|+---------------------------------SQL Lines----------------------------------+|
+| SQL Lines (1/1) |+
 | DELETE FROM Editions WHERE Guides=:%data(1)_______________________________ |
 | __ |
 +--+

...SQL Lines Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 11-15

Chapter 11—Base Table Triggers
The trigger calls an M routine, LatestEd, with two arguments: the values of the
fields Editions (the Row ID, which is {Parent Reference||childsub}) and
Revision_Date:

The LatestEd routine is shown below. It finds the row of the Guides Parent Refer-
ence and then compares the Revision_Date pointed to by the current value in
Latest_Edition_Gui with the Revision_Date sent as an argument. If the
Revision_Date sent as an argument is more recent, then it replaces the value in
Latest_Edition_Gui with the Row ID of the row in Editions being inserted.

Example of SQL Action Type Trigger

This is an example of a SQL action type. In this example, we will use the
Employees base table and the Departments base table. The Employees base table
contains a field Department, which is a designative reference field into the
Departments base table. The Departments base table contains the field

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Editions_________________ Editions of Guides_________________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| M Code_________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
|+--------------------------------M Code Lines--------------------------------+|
+| M Code Lines (1/1) |+
 | d ^LatestEd({Editions},{Revision_Date})___________________________________ |
 | __ |
 +--+

...M Code Lines Unsaved Data Press <PF1><PF3> For Help

LatestEd(Newed,Newdate) ;Trigger in Editions for Latest_Edition_Gui in Guides
 ;
 SET guidesid=$P(Newed,"||")
 &sql(SELECT Latest_Edition_Gui->Revision_Date INTO :curdate FROM Guides WHERE G
uides.Guides=:guidesid)
 ;
 IF SQLCODE'=0 W !,"Error: SQLCODE=",SQLCODE Q
 ;
 IF curdate<Newdate Do Update
 ;
exit Q
 ;
Update &sql(UPDATE Guides(Latest_Edition_Gui) VALUES (:Newed) WHERE Guides.Guide
11-16 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
NumOfEmp, which is a counter for the number of employees assigned to each
department.

This example shows the definition of three triggers for the base table Employees:
a Pre-Filing INSERT trigger, a Pre-Filing UPDATE trigger, and a Pre-Filing
DELETE trigger. These triggers are used to automatically increment or decre-
ment the value of the NumOfEmp field in the Department base table whenever a
new employee joins the department, an employee leaves the department, or an
employee changes departments.

Add a New Employee

When a new employee row is added to the Employees base table, we want to
increment the NumOfEmp field in the Departments base table by 1. To do this,
we create a Pre-Filing INSERT trigger of Action Type SQL, as shown below:

The WHERE clause identifies which row in the Departments base table should
be incremented, namely the Departments row whose Row ID is equal to the value
of %data(6), which contains the value of the Department Designative Reference
field (Column Number 6) in the new employee row.

Employee Changes Departments

When an employee moves from one department in the company to another, we
want to decrement the NumOfEmp field in the department the employee has left
and increment NumOfEmp in the department the employee has joined.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Employees________________ Employee Information_______________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| SQL____________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
|+---------------------------------SQL Lines----------------------------------+|
+| SQL Lines (2/2) |+
 | UPDATE Departments SET NumOfEmp=NumOfEmp+1________________________________ |
 | WHERE Departments=:%data(6)___ |
 +--+

...SQL Lines Unsaved Data Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 11-17

Chapter 11—Base Table Triggers
To do this, we create a Pre-Filing UPDATE trigger with two trigger items, one to
increment the counter, another to decrement the counter. Both trigger items use
Action Type SQL, and both trigger items are conditional.

The first trigger item increments the NumOfEmp field in the row of the Depart-
ments table for the employee's new department. The row is specified by the M
variable %data(6), which is equivalent to the new value of the Designative Refer-
ence field Department in the Employees table.

The M IF condition, $DATA(%data(6)), provides that the trigger item only exe-
cutes when the M variable %edit(6) has a defined value:

The second trigger item decrements the NumOfEmp field in the row of the
Departments table for the employee's old department. The row is specified by the
M variable %edit(6), which is equivalent to the old value of the Designative Ref-
erence field Department in the Employees table.

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Employees________________ Employee Information_______________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| SQL____________ _____________________ IF $DATA(%edit(6))____________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
|+---------------------------------SQL Lines----------------------------------+|
+| SQL Lines (2/2) |+
 | UPDATE Departments SET NumOfEmp=NumOfEmp+1________________________________ |
 | WHERE Departments=:%data(6)___ |
 +--+

...SQL Lines Unsaved Data Press <PF1><PF3> For Help
11-18 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
The M IF condition, $DATA(%edit(6)), provides that the trigger item only exe-
cutes when the M variable %edit(6) has a defined value:

Employee is Deleted

When an employee leaves the company, we want to decrement the NumOfEmp
field in the Departments base table by 1. To do this, we create a Pre-Filing
DELETE trigger of Action Type SQL. Note that the SQL command used below
is the UPDATE command:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Employees________________ Employee Information_______________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| SQL____________ _____________________ IF $DATA(%edit(6))____________________ |
| SQL____________ _____________________ IF $DATA(%edit(6))____________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
|+---------------------------------SQL Lines----------------------------------+|
+| SQL Lines (2/2) |+
 | UPDATE Departments SET NumOfEmp=NumOfEmp-1________________________________ |
 | WHERE Departments=:%data(6)___ |
 +--+

...SQL Lines Unsaved Data Press <PF1><PF3> For Help

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Employees________________ Employee Information_______________ |
| |
| Use Default Physical Structure? Yes_ |
| |
| < Fields > |
+------------------------------Trigger Definition------------------------------+
| |
| Action Form/Window/Field |
| Type Query/Routine (M Expressions) |
| |
| SQL____________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF __________________________________ |
|+---------------------------------SQL Lines----------------------------------+|
+| SQL Lines (2/2) |+
 | UPDATE Departments SET NumOfEmp=NumOfEmp-1________________________________ |
 | WHERE Departments=:%data(6)___ |
 +--+

...SQL Lines Unsaved Data Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 11-19

Chapter 11—Base Table Triggers
This trigger decrements the NumOfEmp field in the row of the Departments table
for the employee's old department. The row is specified by the M variable
%data(6), which is equivalent to the old value of the Designative Reference field
Department in the Employees table.

Examples of Mixed Action Type Triggers

The following are examples of a mixed action type. For these examples, we will
use a base table Invoice that has a child table Line_Items.

The Invoice base table has the following fields of interest:

The Line_Items child table has the following fields of interest:

The transactions described on the following pages show how the use of base
table triggers can enforce database integrity.

Add a Line Item to an Invoice

When a new line item is added, we want to automatically update the
Total_Invoice_Amount and Last_Transaction_Date fields in the Invoice base

Table 11-6: Invoice Base Table Description

Field Name Data Type
Column
Number

Invoice_Num RowID 1

Total_Invoice_Amount Number 2

Last_Transaction_Date Date 3

Master_Invoice_Num Designative Reference
to another row in the
Invoice table, which is
the master invoice
under which this one is
created.

4

Table 11-7: Line_Items Child Table Description

Field Name Data Type
Column
Number

Line_Item RowID 1

Invoice_Num Parent Reference 0

Line_Number Child Subscript 2

Amount Number 3
11-20 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
table. To do this, we add the following sequence of trigger items to the
Line_Items child table either Pre-Filing INSERT or Post-Filing INSERT.

Trigger Item 1

This trigger item creates an M local variable "total" and gives it the current value
of the Total_Invoice_Amount field in the Invoice base table.

Action Type: SQL
SELECT Total_Invoice_Amount INTO :total FROM Invoice
WHERE Invoice_Num = :%data(0)

Trigger Item 2

This trigger item sets the local variable "total" equal to the sum of the existing
value of "total" and the value of the Amount field in the Line_Items child table. It
also sets the M local variable "today" equal to the current date.

Action Type: M Code
Set total=total+{Amount}; increment invoice total
Set today=$P($H,",",1); get today's date

Trigger Item 3

This trigger item updates two fields in the Invoice base table. It updates the
Total_Invoice_Amount field with the value of the local variable "total". It also
updates the Last_Transaction_Date field with the value of the local variable
"today".

Action Type: SQL
UPDATE Invoice SET Total_Invoice_Amount = :total,
Last_Transaction_Date = :today WHERE Invoice_Num =
:%data(0)

Edit a Line Item Amount

When the Amount field of a line item is edited, we want to automatically adjust
the Total_Invoice_Amount field as well as update the Last_Transaction_Date
field. To do this, we add a Post-Filing UPDATE trigger to the Line_Items child
table.

In order to get the delta amount of the transaction, we need to subtract the old line
item amount from the new line item amount. For the new amount, we can use the
{Amount} designation, but for the old amount, we must reference the value
stored in the %edit array, as follows:

%edit(column_number)
Open M with SQL Data Dictionary Guide 11-21

Chapter 11—Base Table Triggers
Trigger Item 1

This trigger item creates an M local variable "total" and gives it the current value
of the Total_Invoice_Amount field in the Invoice base table.

Action Type: SQL
SELECT Total_Invoice_Amount INTO :total FROM Invoice
WHERE Invoice_Num = :%data(0)

Trigger Item 2

This trigger item sets the local variable "total" equal to the existing value of
"total" plus or minus the net adjustment of the Amount field in the Line_Items
child table. It calculates the net adjustment of the Amount field as the current
value of "Amount" minus the old value of "Amount". It also sets the M local
variable "today" equal to the current date.

Action Type: M Code
SET total=total+{Amount}-%edit(3);increment invoice total
SET today=$P($H,",",1) ; get today's date

Trigger Item 3

This trigger item updates two fields in the Invoice base table. It updates the
Total_Invoice_Amount field with the value of the local variable "total". It also
updates the Last_Transaction_Date field with the value of the local variable
"today".

Action Type: SQL
UPDATE Invoice SET Total_Invoice_Amount = :total,
Last_Transaction_Date = :today WHERE Invoice_Num =
:%data(0)

Delete a Master Invoice

Suppose a master invoice has some subsidiary invoices in a one-to-many rela-
tionship, but the subsidiary invoices are not really child rows. Instead, the subsid-
iary invoices are rows in the same table with a designative reference to the master
invoice, and there is no link going the other way. The objective is to automati-
cally delete all subsidiary invoices when the master invoice is deleted.

To do this, we add a Pre-Filing DELETE trigger to the Invoice table. This is con-
sistent with the way Open M with SQL handles child table deletions, even though
these are technically not child tables.
11-22 Open M with SQL Data Dictionary Guide

Defining a Base Table Trigger
Trigger Item 1

This trigger item deletes all invoices in the Invoice table where the value of the
Master_Invoice_Num Designative Reference field is equal to the RowID of the
invoice to be deleted.

Action Type: SQL
DELETE FROM Invoice WHERE Master_Invoice_Num = :%data(1)
Open M with SQL Data Dictionary Guide 11-23

Chapter 11—Base Table Triggers
11-24 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dictio
CHAPTER

12
Base Table Help and Error
Messages
This chapter describes how to further define a base table in the Data Dictionary.
The essentials of base table definition are described in Chapter 5, Defining a
Base Table .

Specifically, this chapter covers the following topics:

 n Base Table Access Privileges page 12-2
 n Base Table Advanced Options page 12-3
 n Help Text page 12-5
 n Row Insert and Delete Messages page 12-7
 n Developer Comments page 12-11
nary Guide 12-1

Chapter 12—Base Table Help and Error Messages
Base Table Access Privileges

Initially, only the user _SYSTEM and the owner (creator) of a base table have
full privileges for the base table. Users with full privileges have all of the follow-
ing individual privileges:

 n %ALTER Modify and/or delete the base table definition
 n SELECT Use the base table as the data source of a Form Generator

form, M/PACT report or SQL statement
 n INSERT Insert rows into the table
 n UPDATE Update existing rows
 n DELETE Delete rows
 n REFERENCES Define designative reference fields

In the Open M with SQL object security system, a base table is an Open M with
SQL object of type table. You can control what privileges other users have in
relation to the object. Using the GRANT Privileges window, which is accessed
from the Privileges Menu, the _SYSTEM user and the base table's owner can
grant privileges to other users.

See the discussion of object security and the Privileges Menu in the Open M/SQL
Developer Guide for details.
12-2 Open M with SQL Data Dictionary Guide

Base Table Advanced Options
Base Table Advanced Options

You may use the Advanced Options option on the Base Table Definition horizon-
tal options menu to access the Advanced Base Table Options window.

The Advanced Base Table Options window displays the following information
about your base table:

 n Owner (this value is read-only)
 n Internal ID# (this value is read-only)
 n Routine Name (this value is modifiable)

The Advanced Base Table Options window also lets you define the following
additional components for your base table:

 n A list of help topics
 n Customized messages (in several international languages) for row insert and

row delete
 n A locking reference to be used instead of the full global reference of the mas-

ter map

Procedure To access and use the Advanced Base Table Options window:

1. From the Base Table Definition main window, press the <GO TO BOTTOM
MENU> key to access the Base Table Definition horizontal options menu.

2. From the Base Table Definition horizontal options menu, select the
Advanced Options option.
Open M with SQL Data Dictionary Guide 12-3

Chapter 12—Base Table Help and Error Messages
You see the Advanced Base Table Options window, as shown below:

The following table lists and describes the fields located on the Advanced
Base Table Options window:

+------------------------Base Table Definition---------------------+
| |
| Base Table Name Description |
| Guides___________________ ___________________________________ |
| |
| Use Default Physical Structure? Yes_ |
| +-----------------Advanced Base Table Options------------------+
	BaseTable Owner: _SYSTEM
	Routine Name: mt15__________________________
	< Help Topics > < Messages > < Notes >
	Override Lock Reference: ______________________________
+------| |
 | Enable Field Length Check? ____ Table ID# (irn) 15 |
 | |
 +--+

...Advanced Options Unsaved Data Press <PF1><PF3> For Help

 Implicit Validation BaseTable Compile Comp Rel Copy Advanced Comments
 Joins Code Triggers Table Objects Field Options

Table 12-1: Fields on Advanced Base Table Options window

Field Description

Base Table Owner This field displays the UserName of the user who created (and
therefore owns) the query. You cannot edit this field.

Routine Name This field displays the prefix for all routine names generated for the
base table when it is compiled.
The Data Dicitionary assigns a default prefix (such as “mt14” in the
above example). You may optionally override the default prefix by
replacing it with a string of 1 to 7 alphanumeric characters (first
character must be alphabetic) to serve as the override prefix.
All routines generated for the base table consist of this prefix fol-
lowed by a single character (1-9, then A-Z, then a-z), which is
appended by the compiler.
Specifying your own routine prefix may help you to remember it
when attempting to reference the base table directly in M code.

Table ID# (irn) This field displays the internal identification number of the current
base table. It is an output-only field.

<Help Topics> Press <RETURN> to access the Help Topics window where you may
define a list of help topics to be attached to the current base table.
When creating forms for this base table you can use these help
topics to provide context-sensitive help. You may press the <LIST
CHOICES> key to see a lookup box that lists all help topics defined
in the current database.
For more information about help topics, see the Open M/SQL User
Interface Programming Guide.
12-4 Open M with SQL Data Dictionary Guide

Help Text
3. When you complete your work in the Advanced Base Table Options window,
press the <PROCEED> key to save your definitions and exit.

Help Text

Open M with SQL gives you the ability to define help text for a base table.

Procedure To define customized help text at the base table level:

1. From the Base Table Definition main window, press the <GO TO BOTTOM
MENU> key to access the Base Table Definition horizintal options menu.

<Messages> Press <RETURN> to access the Messages for Form Generator win-
dow where you may define customized messages for row insert
and row delete to be used by all forms associated with the current
base table.
For more information about customizing row insert and delete
messages, see the section below entitled “Row Insert and Delete
Messages” on page 12-7

<Notes> This field is no longer operational. Instead, use the Comments hor-
izontal menu option from the Base Table Definition screen, as
decribed later in this chapter.

Override Lock Ref-
erence

This field allows you to specify a locking reference other than the
full global reference of the master map. This feature is used for
locking/unlocking rows both in forms and in SQL queries.
At the Override Lock Reference field, you may specify an expres-
sion to lock and unlock rows, for example:

^temp($j,”has row”)
Note:You may only include fields used in the RowID in this lock

reference. These include the RowID field itself, or fields
that the RowID is based upon. You may not use other
fields in the lock reference because, at the time of locking,
these fields have not yet been retrieved. If you use quoted
values, you must enclose them in double quotes (i.e.,
“value”, not ‘value’).

Warning:If the value of any field in this reference changes after
locking, the unlock will fail.

Enable Field Length
Check?

Yes/No option. If Yes, Open M with SQL performs validation check-
ing on entered field data, checking the data length against the field
length definition. If the entered data exceeds the defined field
length, it returns an SQL code 104 or 105 indicating a validation
error. If No, Open M with SQL does not perform field length valida-
tion checking, and stores field data that exceeds the length defined
for the field.

Table 12-1: Fields on Advanced Base Table Options window (Continued)

Field Description
Open M with SQL Data Dictionary Guide 12-5

Chapter 12—Base Table Help and Error Messages
2. From the Base Table Definition horizontal options menu, select the
Advanced Options option.

You see the Advanced Base Table Options window.

3. From the Advanced Base Table Options window, press <RETURN> on the
<Help Topics> action field.

You see the Help Topics window, as shown below:

4. Specify a help topic you wish to define (up to 30 characters long), and press
<RETURN>. You see the “Do you want to define a new Help Topic?” popup
window. Answer Yes.

You see the Help Topics Definition window, shown below:

5. Type in the help topic title and text. You can supply help text of any length;
type continuously, line wraps and additional blank lines are presented.

 +-----------Help Topics-----------+
 | |
 | Enter a list of help topics to |
 | use on all forms based on this |
 | base table. |
 | |
 | ______________________________ |
 | ______________________________ |
 | ______________________________ |
 | ______________________________ |
 +---------------------------------+

Main Press <PF1><PF3> For Help

 +--------------Help Topic Definition---------------+
 | Generate Index Comments |
 |--|
 | Topic ID: Employees_____________________ |
 | |
 | Title: ____________________________________ |
 | |
 | Text: ____________________________________ |--------+
 | (0/0) ____________________________________ | |
 | ____________________________________ |ics to |
 | ____________________________________ |n this |
 | ____________________________________ | |
 | ____________________________________ | |
 | |______ |
 | < Related Topics > < Index Items > |______ |
 | |______ |
 +--+______ |
 +---------------------------------+

Help Topic Press <PF1><PF3> For Help
12-6 Open M with SQL Data Dictionary Guide

Row Insert and Delete Messages
6. Optionally, tab to the <Related Topics> and/or <Index Items> action fields
and press <RETURN>. You see a popup window on which to type the appro-
priate topics for cross-referencing or indexing. You can specify topic names
of up to 30 characters.

Row Insert and Delete Messages

Open M with SQL gives you the ability to define customized messages for the
insertion and deletion of database rows. These messages appear on screen when
users add or delete rows while running an Open M with SQL form.

Customized row insertion and deletion messages are completely optional. If you
choose not to define customized messages, Open M with SQL will display the
standard messages. The standard messages are:

When a user adds a row to the database:

Is this a new entry?

When a user deletes a row from the database:

Delete this row?

You can override these default messages at the base table level as well as at the
form level. When you define customized row insert and delete messages at the
base table level, your messages become the default messages for all forms associ-
ated with that base table. Any messages defined at the form level override the
messages defined at the base table level.

You can also define national language translations for each message. Each mes-
sage may contain up to 60 characters of text.

Open M with SQL displays the customized insert and delete messages in pop-up
boxes of variable width, based on the longest message (or translation) which you
have defined. Therefore, in some cases, the box may be wider than the text of a
particular message.
Open M with SQL Data Dictionary Guide 12-7

Chapter 12—Base Table Help and Error Messages
Procedure To define customized row insert and delete messages at the base table
level:

1. From the Base Table Definition main window, press the <GO TO BOTTOM
MENU> key to access the Base Table Definition horizintal options menu.

2. From the Base Table Definition horizontal options menu, select the
Advanced Options option.

You see the Advanced Base Table Options window.

3. From the Advanced Base Table Options window, press <RETURN> on the
<Messages> action field.

You see the Messages For Form Generator window, as shown below:

The table below lists and describes the fields located on the Messages For
Form Generator window:

 +-----------------Messages For Form Generator------------------+
 | |
 | Row Insertion Message (English) |
 | Is this a new entry?__ |
 | < Translations > |
 | Row Deletion Message (English) |
 | Delete this row?__ |
 | < Translations > |
 | |
 +--+

Messages Press <PF1><PF3> For Help

Table 12-2: Fields on Messages For Form Generator window

Field Description

Row Insertion
Message

You may enter a message to be displayed when a form asks for con-
firmation to insert a new row. The message may consist of up to 60
characters of text.
If no message is defined at either the base table level or the form
level, Open M with SQL will display the standard message: “Is this a
new entry?”.
12-8 Open M with SQL Data Dictionary Guide

Row Insert and Delete Messages
4. When you finish defining your customized row insert and delete definitions,
press the <PROCEED> key to save your definitions and exit the Messages For
Form Generator window.

Defining Translations for Customized Row Insert and Delete Messages

You may define national language translations for customized row insert and row
delete messages into any or all of the fourteen languages supported by Open M
with SQL.

The main message is always the English version, but it is not necessary to supply
an English version of the message in order to define translations.

Procedure To define language translations for customized row insert and delete
messages:

1. From the Messages For Form Generator window, press <RETURN> on the
<Translations> action field corresponding to the appropriate message.

Row Deletion
Message

You may enter a message to be displayed when the form asks for
confirmation to delete a row. The message may consist of up to 60
characters of text.
If no message is defined at either the base table level or the form
level, Open M with SQL displays the standard message: “Delete this
row?”.

<Translations> Press <RETURN> to specify a translation for the customized row insert
or row delete message. You may specify translations for this mes-
sage into any or all of the fourteen national languages supported by
Open M with SQL.
For more information about defining translations for customized row
insert and delete messages, see the section below entitled “Defining
Translations for Customized Row Insert and Delete Messages” on
page 12-9.

Table 12-2: Fields on Messages For Form Generator window (Continued)

Field Description
Open M with SQL Data Dictionary Guide 12-9

Chapter 12—Base Table Help and Error Messages
This displays the Form Generator Insertion Message Translations (or Dele-
tion Message Translations) window, as shown below:

The translation entry window is a multi-row form that lets you enter transla-
tions for each of the fourteen national languages supported by Open M with
SQL.

As you advance through the form, Open M with SQL fills in the languages in
the left-hand Language column in the following order:

2. Press <RETURN> until you see the language for which you want to provide a
translation, and enter the translation in the Translation field.

Each translation allows up to 60 characters of text.

3. When you finish entering translations, press the <PROCEED> key to save your
definitions and exit the translation entry window.

 +-----------------Messages For Form Generator------------------+
 | |
+----------------Form Generator Insertion Message Translations-----------------+
| |
| Language Translation |
| Portugues (Port Esta \e'\ uma entrada nova?_________________________________ |
| Deutsch (German Ist das ein neuer Eintrag?__________________________________ |
| Español (Spanis \?\Es una entrada nueva?____________________________________ |
| Svenska (Swedis __ |
| Français (Frenc __ |
| Dutch (Netherla Is dit een nieuw record?____________________________________ |
| Italiano (Itali Nuovo: vuoi inserirlo?______________________________________ |
| Norsk (Norwegia __ |
| Dansk (Danish)_ __ |
| Finska (Finnish __ |
+--+

Translations Press <PF1><PF3> For Help

 n Portuguese
 n Deutsch (German)
 n Español (Spanish)
 n Svenska (Swedish)
 n Français (French)
 n Dutch (Netherlands)
 n Italiano (Italian)

 n Norsk (Norwegian)
 n Dansk (Danish)
 n Finska (Finnish)
 n Hanguil (Korean)
 n Thai
 n Catal’ (Catalan)
12-10 Open M with SQL Data Dictionary Guide

Developer Comments
Run-Time Logic for Displaying Customized Messages

When a user is running a form in English language mode, Open M with SQL uses
the following logic to decide which message to display when inserting or delet-
ing a row:

1. If there is a form-level English message, display it.

2. Otherwise, if there is a base table-level English message, display it.

3. Otherwise, display the standard message in English.

When a user is running a form in foreign language mode, Open M with SQL uses
the following logic to decide which message to display when inserting or delet-
ing a row:

1. If there is a form-level translation, display it.

2. Otherwise, if there is a base table-level translation, display it.

3. Otherwise, if there is a form-level English message, display it.

4. Otherwise, if there is a base table-level English message, display it.

5. Otherwise, if there is a translation for the standard message, display it.

6. Otherwise, display the standard message in English.

Developer Comments

The Data Dictionary provides a place for developers to write comments on the
base table. This comments page is stored with the base table in the ^mcomment
global, and is automatically deleted when the base table is deleted. This same
form is used for comments on views.

Note: This feature replaces the “Note” option of the Base Table
Advanced Options window.
Open M with SQL Data Dictionary Guide 12-11

Chapter 12—Base Table Help and Error Messages
To access the base table comments, go to the Comment option on the Base Table
Definition screen and press <RETURN>. This displays the following window:

The Developer Comment Entry window provides space for extensive comments
on changes to the base table. When you tab to a blank comment, the Data Dictio-
nary automatically fills in the date, time, and Open M User Name (login name).
The comment text you type automatically wraps to the next line, so you can type
continuously, without line returns. The comment section shows three lines of text
at a time, but this area scrolls forward to accept comments of greater than three
lines.

Subsequent access to this window shows the previous comments in reverse chro-
nological order, with the most recent comment presented first. To add a new
comment, tab through the existing comments until you reach a blank comment
form. The Data Dictionary will resequence this form to the top of the list the next
time the Developer Comment Entry window is accessed.

Comment Reports

If you select the Reports option on the comments windown, it displays the Com-
ments Reports pull-down menu, as shown below:

+---------------------------Developer Comment Entry----------------------------+
| Object Type: Base Table_ Object ID: Accounts________________________________|
+--+
+--+
Reports
Date Time Open M User Name Developer's Name Developer Key
01/27/97 04:51PM _SYSTEM _________________________ _____________
Comment __
Text __
__
Date Time Open M User Name Developer's Name Developer Key
_________________________ _____________
Comment __
Text __
__
+--+

Developer Comment Entries Press <PF1><PF3> For Help

Enter the name of the Developer writing this Comment.

+--+
| Display Comments (From Oldest to Newest) |
| Display Comments (From Newest to Oldest) |
| Search Developer Comments |
| Developer Comments Master Report |
+--+
12-12 Open M with SQL Data Dictionary Guide

Developer Comments
Display Comments (from Oldest to Newest) displays an output device selec-
tion window. Specify the desired output device, then press <RETURN> at the
<Proceed> prompt to display (or print) all comments for the current table in chro-
nological order.

Display Comments (from Newest to Oldest) displays an output device selec-
tion window. Specify the desired output device, then press <RETURN> at the
<Proceed> prompt to display (or print) all comments for the current table in
reverse chronological order.

Search Developer Comments allows you to search comments by search string
and object type. This searches all comments in the data base. You can limit this
search to just base tables, or just views, or any combination of object types that
you specify in the Object Type To Search field. Press <List Choices> from this
field to pick the desired object types for this search. Search Developer Comments
displays an output device selection window. Specify the desired output device,
then press <RETURN> at the <Proceed> prompt to display (or print) all com-
ments in the database that meet the search criteria you specified.

Developer Comments Master Report displays the Developer Comments Mas-
ter Report Selection Criteria window, as shown below:

This option searches all comments in the database for comments that match these
search criteria. Specify the desired output device, then press <RETURN> at the
<Proceed> prompt to display (or print) all comments in the database that meet
the search criteria you specified.

 +-------Developer Comments Master Report Selection Criteria--------+
 | |
 | |
 | Developer Name Contains: ______________________________ |
 | AND Developer Key Contains: ____________________ |
 | |
 | |
 | Date Greater Than or Equal To: ________ |
 | AND Date Less Than or Equal To: ________ |
 | |
 | |
 +--+

Developer Comment Master Rep Press <PF1><PF3> For Help

Enter any kind of text here.
Open M with SQL Data Dictionary Guide 12-13

Chapter 12—Base Table Help and Error Messages
12-14 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dictio
CHAPTER

13
Field Help and Error Messages
If you use Form Generator forms for data entry in your application, you can take
advantage of Open M with SQL's context-sensitive help. This chapter describes
how to enter context-sensitive help for each field as part of Data Dictionary field
definition. The topics covered include:

 n Overview of the Field Help Facility page 13-2
 n Defining Long Help and Error Messages page 13-4
 n Defining Override Help page 13-8
nary Guide 13-1

Chapter 13—Field Help and Error Messages
Overview of the Field Help Facility

Open M with SQL allows application developers to create easy-to-use, context-
sensitive on-line help about fields if your application uses Form Generator forms
for data entry.

M with SQL Help Menu

You see this menu when you press <Help>. The keys which activate Help are
shown as the right side of the status line at the bottom of most windows.

Chapter 3, Using the Data Dictionary Interface , provides an introduction to this
menu. Learn more from the Open M/SQL Form Generator Guide.

Three Types of Field Help

You can define three types of messages for each field in your relational database,
which are displayed if you use Form Generator forms for data entry:

 n Error messages (which also act as short help messages)
 n Long help messages
 n Override help messages

Error Messages

There are two locations where you can define the contents of a field error mes-
sage:

 n At the Error Message field on the Error and Help Messages window
 n As the value of %msg if you defined field validation code at the Conversion

and Validation Code window. Open M with SQL displays the value you
defined for %msg if the user enters invalid data.

Open M with SQL displays the message you entered at the Error Message field
if:

 n The value a user enters for a field does not pass field validation and you did
not define a value for %msg.

 n A user presses <Explain> and you did not provide a long or override help
message.

Users Press <Explain> to Display Help

If a user presses <Explain>, they see Help or Override Help, whichever is active.
If you did not enter a Help Message or Override Help, then Open M with SQL
displays the error message you entered.
13-2 Open M with SQL Data Dictionary Guide

Overview of the Field Help Facility
Override Help

Instead of providing a constant Long Help value for each field in your database,
you can define an override help array reference. You put the long help message
you want displayed in an M array, which can be either local or global. Option-
ally, you can enter a routine which is called immediately prior to displaying the
help to load a context-sensitive message into the M array.

Choosing Between Long Help and Override Help

Override help is useful in the following situations:

 n If more than a few of your fields share similar or identical long help mes-
sages, you may prefer to set up one form of the message in a global and then
point to that global in override help.

 n If your application already has help messages stored in a global.
 n If you want to provide context-sensitive help depending, for instance, on the

value a user enters into a field.
Open M with SQL Data Dictionary Guide 13-3

Chapter 13—Field Help and Error Messages
Defining Long Help and Error Messages

You define short and long help and error messages at the same Error and Help
Messages window.

Translations

On the Error and Help Messages window, you provide the English version of
each message. However, for each message, you can also provide a translation in
each of the national languages Open M with SQL supports. The supported
national languages are:

The System Manager defines the national language in which an application pre-
sents messages from the M with SQL System Help Menu.

Procedure To define long help or short help/error message and their translations:

1. Enter the Field Definition master window from the Base Table Definition
master window.

2. Press <Go to Bottom Menu>.

3. Select the Error/Help Messages option.

 n Catalan (Catal’)
 n Danish (Dansk)
 n Dutch
 n Finnish (Finska)
 n French (Français)
 n German (Deutsch)
 n Italian (Italiano)

 n Korean (Hanguil)
 n Norwegian (Norsk)
 n Portuguese
 n Spanish (Español)
 n Swedish (Svenska)
 n Thai
13-4 Open M with SQL Data Dictionary Guide

Defining Long Help and Error Messages
You see the Error and Help Messages window:

The table below describes the fields on this window:

+---------------------------Error and Help Messages----------------------------+
| |
| Override Help? No__ <Edit Override Help> |
| |
| Error Message (English) |
| Enter a number such as 1234.56__ |
| < Error Translations > |
| Short Help Message (English) |
| __ |
| < Short Help Translations > |
| Long Help Message (English) (0/0) |
| __ |
| __ |
| __ |
| __ |
| __ |
| |
| < Long Help Translations > |
+--+

Error and Help Messages Press <PF1><PF3> For Help

Table 13-1: Fields on the Error and Help Messages Window

Field Description

Override Help? Specify Yes or No. A value of No indicates that no Override
Help array reference is defined. A value of Yes indicates
that an Operride help array may be defined, and disables
the Long Help fields of this screen.

<Edit Override Help> Activated if Override Help?=Yes. Press <RETURN> to see
the Override Help window, at which you provide an alter-
nate method for your application to obtain Long Help.
Specify an override help array reference, the display width
of the override help window, and optionally, a user-defined
routine which Open M with SQL will call to load the array
before it retrieves the help message.

Error Message
(English)

Enter an error message of up to 76 characters. Open M
with SQL displays this error message during form data
entry if an input value does not pass field validation, or if
the user presses <Explain> and there is no Short Help for
the field on which the cursor is located.

<Error Translations> Press <RETURN> to see the Field Error Translations win-
dow. There enter translations of your error message in any
or all of the supported international languages. A transla-
tion may be up to 140 characters in length.

Short Help Message
(English)

Enter a Short Help message of up to 76 characters.
Open M with SQL Data Dictionary Guide 13-5

Chapter 13—Field Help and Error Messages
4. Press <TAB> at Override Help to bypass that branching field.

5. Enter the English language version of your error message at Error Message
(English).

6. If your application needs to display error messages in alternate languages,
press <RETURN> at <Error Translations>.

You see the Error Message Translations window:

7. Enter the translated version of your error message for each supported
national language you want your application to provide.

8. Enter the English language version of your Short Help message at Short Help
Message (English).

<Short Help Transla-
tions>

Press <RETURN> to see the Field Short Help Translations
window. There enter translations of your short help mes-
sage in any or all of the supported international languages.
A translation may be up to 140 characters in length.

Long Help Message
(English)

Disabled if Override Help?=Yes. If activated, enter a Long
Help message of any length.

<Long Help Transla-
tions>

Press <RETURN> to see the Field Short Help Translations
window. There enter translations of your short help mes-
sage in any or all of the supported international languages.
A translation may be up to 140 characters in length.

Table 13-1: Fields on the Error and Help Messages Window

Field Description

+---------------------------Error and Help Messages----------------------------+
| |
| Override Help? No__ <Edit Override Help> |
| |
| Error Message (English) |
| Enter a number such as 1234.56__ |
| < Error Translations > |
| Short Help Message (English) |
| __ |
| < Short Help Translations > |
+--------------------------Field Error Translations----------------------------+
| |
| Language Translation |
| Portugues (Portugues Entre com um n\u'\mero, tal como 1234.56____________ |
| Deutsch (German)____ Bitte geben Sie eine Zahl (z.B. 1234.56) ein._______ |
| Español (Spanish)___ Entre un n\u'\mero (por ejemplo 1234.56)____________ |
| Dutch (Netherlands)_ Dit veld bevat een nummer in het formaat 1234.56____ |
| Italiano (Italian)__ Digita un numero come 1234.56_______________________ |
+--+

Field Error Translations Press <PF1><PF3> For Help

Saved...
13-6 Open M with SQL Data Dictionary Guide

Defining Long Help and Error Messages
9. If your application needs to display Short Help messages in an alternate lan-
guage, press <RETURN> at <Short Help Translations>.

10. Enter a Long Help message at the field

11. If your application needs to display Long Help messages in an alternate lan-
guage, press <RETURN> at <Long Help Translations>.

12. Press <PROCEED> to return to the Base Table Definition master window.
Open M with SQL Data Dictionary Guide 13-7

Chapter 13—Field Help and Error Messages
Defining Override Help

As described earlier, you can set up Override Help instead of entering a Long
Help message.

Procedure To define override help:

1. Select the Help/Error Messages horizontal menu option at the Field Defini-
tion master window.

2. Press <RETURN> at <Edit Override Help>.

You see the Override Help window:

The table below describes the fields on this window:

+---------------------------Error and Help Messages----------------------------+
| |
| Override Help? Yes_ <Edit Override Help> |
| |
| Error Message (English) |
| Enter any kind of text here.__ |
| < Error Translations > |
| Short Help Message (English) |
| ______________+---------------------------Override Help----------------------+
Long Help Mess	Help Array Reference
______________	__

______________	M Routine To Load Override Help
______________	__

	Display Width of Override Help Window __
+---------------+--+

Override Help Press <PF1><PF3> For Help

Table 13-2: Fields on Override Help Window

Field Description

Help Array Refer-
ence

Required. Enter the M array reference (local or global) that contains
the text lines. At the level one lower than the reference you enter
here, you must include a "0" node which contains the number of lines
in the message. Then enter sequentially numbered nodes, starting
with 1, which contain the lines of the message. If the array does not
exist at runtime, the user receives an error message.
13-8 Open M with SQL Data Dictionary Guide

Defining Override Help
3. Enter the name of the M array which contains the help text at Help Array
Reference.

4. Optionally, enter the name of the M routine which loads the help text into the
array you named at Help Array Reference.

5. Enter the display width of the override help window.

6. Press <PROCEED> to return to the Field Definition master window.

The override Help Array Reference and M Routine options support the use of
curly brace field names for both database fields and form-only fields.

For example, you could specify a Help Array Reference as follows:

help({department})

Or, you could specify an override help routine reference, as follows:

depthelp^help({department})

In order for this usage to be valid, the referenced curly brace fields must either be
computed fields or must be present on some window of the form where the Over-
ride Help is used.

M Routine to
Load Override
Help

Optional. Enter an entry-point to an M routine you have written which
loads text into the M array you named in the field Help Array Refer-
ence.
You can load all help lines in all Help Arrays referenced for all fields at
some other juncture in your application, in which case you leave this
field blank in all base table field definitions.

Display Width of
Override Help
Window

Specify a display width, in number of characters, between 1 and 99.

Table 13-2: Fields on Override Help Window

Field Description
Open M with SQL Data Dictionary Guide 13-9

Chapter 13—Field Help and Error Messages
13-10 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dictio
CHAPTER

14
Views
Open M with SQL provides a View Definition facility that allows you to create
views by joining fields from one or more tables linked by implicit joins (charac-
teristic relationships and designative references).

This chapter introduces the concept of views, explains how to use them, and
describes how to define them. Specifically, it covers the following topics:

 n What Is a View? page 14-2
 n How to Use Views page 14-3
 n Types of Views page 14-4
 n Creating a View page 14-5
 n Defining a Table-Based View page 14-8
 n Defining a Query-Based View page 14-17
 n View Definition Options Menu page 14-21
 n Editing a View page 14-23
 n Deleting a View page 14-24
 n Changing a View's Starting Table page 14-25
 n Copying a View page 14-28
nary Guide 14-1

Chapter 14—Views
What Is a View?

In a relational database, tables may be base tables or virtual tables.

A base table is an autonomous, named table that is mapped directly to physical
storage structures.

A virtual table is a named table derived from one or more base tables. Virtual
tables are not directly represented in physical storage. Rather, they are abstract
collections of base tables. Examples of virtual tables include query output and
views.

Views are conceptual windows through which data from one or more base tables
can be "viewed". The base tables must be linked via an implicit join: either a des-
ignative reference or a characteristic relationship. Views can serve as data
sources for M/PACT reports, SQL queries, and other views. They cannot be used
as a data source for a form in the Form Generator.
14-2 Open M with SQL Data Dictionary Guide

How to Use Views
How to Use Views

Within the context of your database, views serve two primary purposes:

1. They are conceptual windows through which a wide range of data from mul-
tiple base tables can be simultaneously "viewed". This allows you to pull
data across base table boundaries into a single source.

2. They are a security feature that can allow the database designer to restrict
access to selected fields and their data.

When you define a view, Open M with SQL stores it in the view table, where it is
available for reuse at an time. In this way, views free you from the inconvenience
of having to respecify join conditions repeatedly.

You can use views in the following places:

1. Data source of an M/PACT report

2. FROM clause of an SQL query

3. Starting Table of another view

If a view is the starting view of another view, it is called a sub-view. The primary
purpose of a sub-view is to restrict access to certain fields of the source view. You
cannot define a view based on more than one other view, and you cannot define
further views from a sub-view.
Open M with SQL Data Dictionary Guide 14-3

Chapter 14—Views
Types of Views

You can define two types of views:

 n Table-based Views
 n Query-based Views

Table-based views can be further split into two sub-categories:

 n Views based on base table(s)
 n Views based on another view (sub-views)

All Views Based on SELECT Queries

All views are based on SQL SELECT statement queries.

A table-based view is based on an SQL SELECT statement query that is gener-
ated by Open M with SQL from the join specifications and fields to be included
information you provide.

A query-based view is based on a directly inserted SQL SELECT statement. The
View Definition facility lets you directly insert an SQL SELECT statement query
to create query-based view.
14-4 Open M with SQL Data Dictionary Guide

Creating a View
Creating a View

Open M with SQL provides two ways to create a view:

1. Use the View Definition form.

2. Execute a CREATE VIEW DDL statement in the Interactive Query Editor or
as embedded SQL in M macro source code.

The latter way creates only query-based views and can be used only as SQL
embedded in M macro source code.

Procedure To create a view in the View Definition form:

1. Enter the Data Dictionary

2. Select the View Definition option from the Data Dictionary Menu

You see the View Definition window, as shown below:

3. Enter a name for the view at the View Name prompt, and press <RETURN>.

Note: The view name you enter must not conflict with the name of an
already existing view or base table. The view name must follow
all of the same naming conventions as a base table.

You will see the "Is this a New View?" popup window.

4. Press <RETURN> to accept the default value Yes.

 +---------------------------View Definition----------------------------+
 | |
 | |
 | |
 | View Name: __ |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 +--+

View Definition Selecting Press <PF1><PF3> For Help

Enter the name for this View.
Open M with SQL Data Dictionary Guide 14-5

Chapter 14—Views
You see the View Definition master window, as shown below:

The following table lists and describes the fields located on the View Defini-
tion master window:

 +---------------------------View Definition----------------------------+
 | Advanced Options Copy Query Reports Comments |
 |--|
 | |
 | View Name: Guide_Orders____________________________ |
 | View Description: __ |
 | This View is Based On: Query |
 | |
 | +---+ |
 | | Join Specified Views must have a Starting Table. | |
 | | Leave the Starting Table empty if View is Query Based. | |
 | +---+ |
 | |
 | Starting Table: __ <Edit> |
 | |
 | < Join Specifications > < Query > |
 | |
 +--+

View Definition Press <PF1><PF3> For Help

Enter a 1-40 character description of this View.

Table 14-1: View Definition Master window

Field Name Description

View Name This is a required field.
Because a view is a table, view names follow the
same conventions as base table names. These
include a maximum length of 40 characters, which
can contain letters, numbers and the underscore "_"
character but not other punctuation symbols or blank
spaces. A view name must begin with a letter.
The view name must be unique within the M database
(cannot duplicate another view or base table name)
after converted to uppercase and stripped of punctua-
tion. Also, it must not match any SQL reserved word,
a list of which is printed in Appendix C, SQL Reserved
Words.

View Description This is an optional field.
Enter text that describes the view you are defining.

This View Is
Based On...

This is a read-only field that shows what kind of view
you are defining. It has three possible values: Base
Table, View, and Query.
14-6 Open M with SQL Data Dictionary Guide

Creating a View
Starting Table Enter the name of an existing table on which to base
this view definition. The starting table can be a base
table or another view. If it is a base table, you must
deescribe the paths that link together all the other
tables on this view. If it is a view, you do not specify
any links. Leave this field empty if you want to define
a query-based view.

<Edit> This is an optional field, and is only activated if you
specified a starting table. Press <RETURN> on this
action field to edit the definition of the starting table.

<Join Specifica-
tions>

Press <RETURN> on this action field to invoke the
View Join Specification window where you can desig-
nate the base tables to be included in this view and
how they should be joined.

<Query> Press <RETURN> on this action field to invoke the
Query window, where you can define an SQL
SELECT statement query to serve as the foundation
of your view.

Table 14-1: View Definition Master window

Field Name Description
Open M with SQL Data Dictionary Guide 14-7

Chapter 14—Views
Defining a Table-Based View

A table-based view is a view based either on a base table or another view.

In either case, to define a table-based view you must first enter a value for the
Starting Table field on the View Definition master window. If you define the
starting table to be a base table, you create a base table-based view. If you define
the starting table to be another view, you create a view-based view.

Starting Table Is the Table on Which View is Based

The Starting Table field designates the table on which the view is based. The
starting table can be a base table or another view. Each row of the starting table
corresponds to a row of the view.

Think of the starting table as the place where you stand to look out at your data-
base. The starting table is typically a table with no parent. Usually, it has charac-
teristic relationships with and designative references to other tables.

Designative References

When you are working with base tables linked by designative references, keep in
mind that data paths between designative references cannot be traversed
backwards. As such, you should always name the designating base table as the
starting table. If you name the referenced table as the starting table, you cannot
include fields from the designating table in the view.

Characteristic Relationships

When working with base tables linked by characteristic relationships, you can
name either the parent table or the child table as the starting table. If you name
the parent table as the starting table, the view has a row for every row of the child
table. If you name the child table as the starting table, parent rows that have no
corresponding rows in the child table are not included in the view.

Join Specifications Link Base Tables

You use join specifications on base-table-based views only to designate which
base tables to include in the view.

In order to include any fields from the starting table in the view, you must explic-
itly specify the starting table in the Base Table field of the View Join Specifica-
tions window.

All other base tables named here must be linked to the starting table by either a
characteristic relationship or a designative reference. However, the link does not
have to be direct. In other words, the starting table may be linked by a character-
istic relationship to Base Table B, and, in turn, Base Table B may be linked to
14-8 Open M with SQL Data Dictionary Guide

Defining a Table-Based View
Base Table C by a designative reference. In this case, you can include Base Table
C in the view, provided Base Table B is also included.

Implicit Joins Link Base Tables to the Starting Table

For each base table you add to the view, you must define the join path that links
the specified base table to the starting table. You provide this information in the
Implicit Join field on the View Join Specification window.

An implicit join designates the path by which data should be retrieved from the
linked base tables. The join enables access to data from both the starting and
linked tables.

You do not need to define your own joins. Instead, you may press the <List
Choices> key to call a lookup that lists every possible path the join can take. Join
paths are defined by means of Extended Arrow Syntax.

Implicit Joins Use Extended Arrow Syntax

Extended Arrow Syntax is the mechanism used to syntactically specify links
between base tables. It is based on the standard SQL syntax TableName.Field-
Name, with the addition of the arrow syntax, where each arrow in a given state-
ment represents an implicit join.

In join specifications for a view, arrow syntax is used to make the following
links:

 n Designative references, as in:
Editions->Docstaff
where the "Editions" base table has a designative reference into the "Doc-
staff" base table.

 n Child-to-parent references, as in:
Editions->Guides
where the "Editions" base table is a child of the "Guides" base table.

 n Parent-to-child references, as in:
Guides->Editions
where the "Guides" base table is the parent of the "Editions" base table.

Join specifications for views always represent the first link of a join path with a
period "." and all subsequent links with an arrow "->".

You can see a lookup box of possible Join Specifications after entering a table
name and then pressing <List Choices>.
Open M with SQL Data Dictionary Guide 14-9

Chapter 14—Views
Examples of Join Specifications

Example Our sample application includes the following relationships:

 n Base table "Guides" has a child table "Editions".
 n "Editions" has a field "Main_Author", which is a designative reference into

base table "Docstaff".
 n The View named GuideView has the starting table "Guides".

The Join Specifications screen is shown below. It shows the join specifications
for the first, starting table; we want to select a join path to the second table. We
have two choices, since Editions is both a child table and a designated table of
Guides.

Example Our sample application includes the view Guide_Orders, where we report on
orders by Guide Title, Version and Revision_Date. The starting table is

+---++
| Base Table Name Description ||
+---++
| Editions Table of Latest Editions |+
| Editionsc Editions of Guides ||
+---+|
| Join Desc: ___ |
| Implicit Join: Guides___ <Fields>|
| |
| Base Table: Editions______________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
+--+

View Join Specification Press <PF1><PF3> For Help

Enter the name of a Base Table. Press <CHOICE> for a list of Tables.
14-10 Open M with SQL Data Dictionary Guide

Defining a Table-Based View
Copy_Orders. We use the designative reference field, Edition_Ordered, to get to
the base tables which include some of the fields we need.

Sub-Views Copy Join Specifications Automatically

If you define another view as the starting table of your view, Open M with SQL
automatically copies the join specifications defined for the source view. You can-
not access the join specifications and, thus, do not have the ability to alter or even
view these joins.

The two views are permanently linked. Any modifications you make to the join
specifications of the source view are echoed to the sub-view.

The only aspect of the sub-view that is independent of the source view is the list
of fields to be included. The master list of fields available to the sub-view is the
union list of all fields included in the source view. From this master list, you may
select which fields to include in the sub-view. The choices you make do not have
any effect on the source view.

You Must Designate Fields to Appear in the View

For each base table that you include in a view, you must define which fields you
want to make available.

The Fields on View Definition window lets you designate which fields to
include. It also lets you specify an alternate field name for the view, or change the
field description.

+--+
| View Name: Guide_Orders____________________________ |
+--+
+---------------------------View Join Specification----------------------------+
| |
| Base Table: Copy_Orders___________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: Copy_Orders__ <Fields>|
| |
| Base Table: Guides________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: Copy_Orders.Edition_Ordered->Guides__________________ <Fields>|
| |
| Base Table: Editions______________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: Copy_Orders.Edition_Ordered->Guides->Editions________ <Fields>|
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
+--+

View Join Specification Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 14-11

Chapter 14—Views
Rename Fields on View To Avoid Duplication

When you designate the fields that you want to be included on the view, Open M
with SQL lets you rename those fields to give them view-specific names and
descriptions. These names appear as default column titles in M/PACT reports.

This is an optional feature, unless two or more fields included in the same view
share the same field name, in which case you must rename one of them. This can
happen when you link separate tables because there is no constraint to prevent
different tables from having identical field names.

For example, suppose a field called "Total" appears twice or more in separate
base tables that you are linking in the view. If this occurs, the view facility will
force you to rename all but the first occurrence of the field "Total" that you
choose to include in the view.

Note: The new Field Name that you supply for the view is for the view's
use only. It does not replace the old Field Name in the original
table.

Example The fields available from the Copy_Orders table are shown on the screen below.
This is the first table we list in the Join Specifications for our Guide_Orders
view:

Procedure To define a table-based view:

1. On the View Definition master window, specify an existing table (base table
or view) in the Starting Table field.

+--+
| View Name: Guide_Orders____________________________ |
| Base Table Name: Guides |
+--+
+--------------------------Fields on View Definition---------------------------+
| |
|Table's Field Name Inc? View Field Name Description |
|Guides No__ ________________________ ______________________ <Edit>|
|Product No__ ________________________ ______________________ <Edit>|
|Date_Retired No__ ________________________ ______________________ <Edit>|
|Num_Editions No__ ________________________ ______________________ <Edit>|
|Retired No__ ________________________ ______________________ <Edit>|
|Title No__ ________________________ ______________________ <Edit>|
|Who_retired No__ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
+--+

Fields on View Definition Press <PF1><PF3> For Help

Enter 'Yes' to include this field in the view, else enter 'No'.
14-12 Open M with SQL Data Dictionary Guide

Defining a Table-Based View
You may press the <List Choices> key to see a lookup box that lists all exist-
ing tables defined in your database. Use the cursor keys to navigate and press
<RETURN> to select the appropriate entry from the list.

Note: Selection of a starting table is an irreversible decision. Once you
specify a table, the Starting Table field becomes inaccessible,
preventing you from changing its value. A Data Dictionary utility
called Change a View's Starting Table lets you do this. See the
section later in this chapter entitled “Changing a View's Starting
Table” on page 14-25 for information on how to use this utility.

2. Press <RETURN> on the <Join Specifications> action field in the View Def-
inition master window.

If you are defining a view that is based on another view, you do not see the
View Join Specification window. Open M with SQL automatically copies the
join specifications defined for the source view. Skip ahead to Step 6.

If you are defining a base table-based view, you see the View Join Specifica-
tion window, as shown below:

+--+
| View Name: Guide_Orders____________________________ |
+--+
+---------------------------View Join Specification----------------------------+
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
| Base Table: ______________________________________ <Edit> |
| Join Desc: ___ |
| Implicit Join: ___ <Fields>|
| |
+--+

View Join Specification Press <PF1><PF3> For Help

Enter the name of a Base Table. Press <CHOICE> for a list of Tables.
Open M with SQL Data Dictionary Guide 14-13

Chapter 14—Views
The following table lists and describes the fields located on the View Join Speci-
fication window:

3. Enter the names of the base tables you want to include in the view in the Base
Table field.

The Base Table field does not support an unqualified lookup on all base
tables in the database. It does, however, support lookups on partial informa-
tion. You must know the first few characters of the names of all base tables
that you want to include on your view.

4. Enter the join path that links each base table to the starting table in the
Implicit Join field.

You do not need to define your own join paths in this field. Instead, you may
press the <List Choices> key to automatically fill in the join path. If there is
more than one path the join can take, this calls a lookup box that lists every
possible path.

5. For each base table, press <RETURN> on the action field <Fields>.

Table 14-2: View Join Specification Window

Field Name Description

Base Table This field takes the names of base tables you want to
include in the view. You must include the starting table
as one of the base tables in the view.

<Edit> Press <RETURN> on this action field to edit the defi-
nition of the base table.

Join Description This field is optional.
You may enter a description of how the table can be
used in this view. It is also useful to fully describe the
join path and how it relates to the starting table.

Implicit Join Enter the path that links the starting table to this base
table. This path is actually a series of join conditions
that link designative references and characteristic
relations. You can press <List Choices> to see the
possible paths.

<Fields> Press <RETURN> on this action field to invoke the
Fields on View Definition window where you can des-
ignate the fields that should be included in the view.
14-14 Open M with SQL Data Dictionary Guide

Defining a Table-Based View
You see the Fields on View Definition window. It includes all fields in the base
table, if a table-based view, or the fields selected in the starting view:

The following table lists and describes the fields located on the Fields on
View Definition window:

+--+
| View Name: Guide_Orders____________________________ |
| Base Table Name: Guides |
+--+
+--------------------------Fields on View Definition---------------------------+
| |
|Table's Field Name Inc? View Field Name Description |
|Guides No__ ________________________ ______________________ <Edit>|
|Product No__ ________________________ ______________________ <Edit>|
|Date_Retired No__ ________________________ ______________________ <Edit>|
|Num_Editions No__ ________________________ ______________________ <Edit>|
|Retired No__ ________________________ ______________________ <Edit>|
|Title No__ ________________________ ______________________ <Edit>|
|Who_retired No__ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
| ____ ________________________ ______________________ <Edit>|
+--+

Fields on View Definition Press <PF1><PF3> For Help

Enter 'Yes' to include this field in the view, else enter 'No'.

Table 14-3: Fields on View Definition Window

Field Name Description

Table’s Field
Name

This is an output-only field. It displays the name of
every field in the base table. For sub-views, it displays
the union set of all fields included in the source view.

Inc? Include in View. Type Yes to include this field on the
view and therefore make it accessible to reports and
queries using this view. No is the default.

View Field Name The default for this field is the field name defined in
the base table. You can specify an override field name
for the view. This is necessary when the same Field
Name appears more than once in the view.

Description The default for this field is the field description defined
for the base table. You can specify an override field
description for the view. The override Field Descrip-
tion is used as the default for Report Column Titles in
M/PACT when the view is the report data source.

<Edit> Press <RETURN> on this action field to edit the field
definition. It displays the Field Definition window, as
described in Chapter 6, Defining Base Table Fields .
Open M with SQL Data Dictionary Guide 14-15

Chapter 14—Views
6. Type Yes at the Inc? (Include In View) field for each field that you want to
include in the view.

7. Give each field included in the view a view-specific Field Name and Field
Description.

This is an optional step.

The default Field Name and Field Description is the same as defined for the
base table. You may keep these values, or you may override them.

8. Optionally, edit the original field definition using the <Edit> action field.

9. When you complete the join specifications and fields to be included, press
the <PROCEED> key to save your work and exit the View Definition win-
dow.
14-16 Open M with SQL Data Dictionary Guide

Defining a Query-Based View
Defining a Query-Based View

When you define a query-base view, you explicitly define the query that joins the
base tables in the view.

Observe These Restrictions on Query-Based Views

You must observe the following restrictions on the use of query-based views:

 n The query may not contain aggregates.
 n The query may not contain DISTINCT, or GROUP BY statements.
 n The query may not itself reference another query-based view.
 n Another query that uses the query-based view in its FROM clause cannot ref-

erence any additional items in the FROM clause.
 n The query-based view cannot appear in the FROM clause of a query as report

data source.

Procedure To define a query-based view:

1. On the View Definition master window, skip the Starting Table field.

2. Press <RETURN> on the <Query> action field.

You see the Query window, as shown below:

Note: If you entered a value in the Starting Table field on the View Def-
inition window, you cannot insert a query or edit an existing
query in this window. You will be in read-only mode.

 +---------------------------View Definition----------------------------+
 | Advanced Options Copy Query Reports Comments |
 |--|
 | |
 | View Name: orgpeople_______________________________ |
 | View Description: Organizations and Contact People________ |
 +--------------------------------- Query ----------------------------------+
 | SQL Query Text |
 | SELECT Name,Address,City,State,Phone,OrgName,OrgAddress,OrgCity,______ |
 | OrgState,OrgPhone___ |
 | FROM Org,People___ |
 | __ |
 | __ |
 | __ |
 | __ |
 | __ |
 | __ |
 | __ |
 | __ |
 | __ |
 | __ |
 +--+

Query Press <PF1><PF3> For Help

Enter an SQL SELECT query which defines this View.
Open M with SQL Data Dictionary Guide 14-17

Chapter 14—Views
3. In the Query window, enter an SQL SELECT statement query to define the
view.

4. When you complete your query definition, press the <PROCEED> key to
save your work and exit the View Definition window.

Copy an Existing Query Into the Current View

Open M with SQL provides a special facility that lets you copy an existing query
into the Query window of your view. This includes any existing query defined
using either the Query Generator or Query Editor.

You can only use this facility when the following conditions are true:

1. The view is query-based.

2. No query is yet defined for the view.

Procedure To copy an existing query into the current view:

1. On the View Definition master window, press the <Go To Bottom Menu>
key to access the View Definition horizontal options menu.

2. On the View Definition horizontal options menu, select the “Copy Query”
option.

3. From the displayed list, select "Copy a Query Into This View".

You see the Select a Query window, as shown below:

4. Enter the name (and optionally the description) of the existing query you
want to copy, and press <RETURN>.

You may press the <List Choices> key to see a lookup box that lists all exist-
ing queries. Use the cursor keys to navigate and press <RETURN> to select
the appropriate entry from the list.

5. Press the <PROCEED> key to initiate the copy.

 +----------Select a Query----------+
 | |
 | Query Name: |
 | ______________________________ |
 | |
 | Description: |
 | ______________________________ |
 | |
 +----------------------------------+

Run Query Selecting Press <PF1><PF3> For Help

Enter a Query name here.
14-18 Open M with SQL Data Dictionary Guide

Defining a Query-Based View
The copied query appears in the Query window.

Copy Another View's Query Into the Current View

Open M with SQL provides a special facility that lets you copy the query of
another view into the Query window of the current view.

You can only use this facility when the following conditions are true:

1. The current view is query-based.

2. No query is yet defined for the current view.

The view whose query you are copying does not have to be a query-based view;
it must only have a query defined in its Query window.

Procedure To copy the query of an existing view into the current view:

1. On the View Definition master window, press the <Go To Bottom Menu>
key to access the View Definition horizontal options menu.

2. On the View Definition horizontal options menu, select the "Copy Query"
option.

3. From the displayed list, select "Copy Another View's Query Into This View".

You see the Select a View window, as shown below:

4. Enter the name of the existing view whose query you want to copy, and press
<RETURN>.

You may press the <List Choices> key to see a lookup box that lists all exist-
ing views. Use the cursor keys to navigate and press <RETURN> to select
the appropriate entry from the list.

5. Press the <PROCEED> key to initiate the copy.

The copied query appears in the Query window of the current view.

 +---------------Select a View----------------+
 | |
 | View Name: |
 | __ |
 | |
 | |
 | |
 | |
 +--+

View Selection Selecting Press <PF1><PF3> For Help

Enter the name for this View.
Open M with SQL Data Dictionary Guide 14-19

Chapter 14—Views
You Can Convert a Query-Based View to Table-Based

If you originally define the view as query-based, you may later return to the View
Definition window and enter a value (an existing base table or view) in the Start-
ing Table field to convert the view to table-based. This, however, is irreversible.
Once you have defined it to be table-based, you cannot later convert back to
query-based. In this case, the defunct query remains available read-only in the
Query window. It is also available to be copied into another view.

You Cannot Convert a Table-Based View to Query-Based

Entering a value into the Starting Table field on the View Definition window to
define a view as table-based is an irreversible step. You cannot later convert a
table-based view to query-based.

View-Related DDL Statements for Query-based Views

InterSystems supports the following SQL DDL statements for use with query-
based views:

 n CREATE VIEW <viewname> AS SELECT...
 n ALTER VIEW <viewname> AS SELECT
 n DROP VIEW <viewname>

Open M with SQL supports the use of these SQL statements in two places:

1. In SQL code embedded in M macro source code.

2. In the Interactive Query Editor.

ALTER VIEW has exactly the same syntax as CREATE VIEW. It requires you to
recreate the entire view but lets you retain the same name and internal view num-
ber.

Example Suppose we wanted to provide a partial view of the Guides table, which listed all
titles and whether or not they were retired. Instead of creating this view in the
View Definition form, we could issue the following SQL statement:

CREATE VIEW Guide_History AS
SELECT Guides, Title, Retired, Date_Retired
FROM Guides
14-20 Open M with SQL Data Dictionary Guide

View Definition Options Menu
View Definition Options Menu

The top of the View Definition window lists four horizontal options:

View Definition Advanced Options

This option shows you the owner of the view, the ID number assigned to the
view, and the date and time that the view was last edited. This option displays
the Advanced Options popup window, as shown below:

The owner is the UserName of the user who created the view. The owner can
grant and revoke privileges on the view in the Open M with SQL RDBMS secu-
rity system.

The values shown in the Advanced Options window are read-only. You cannot
modify them.

 +---------------------------View Definition----------------------------+
 | Advanced Options Copy Query Reports Comments |
 |--|

 +---------------------------View Definition----------------------------+
 | Advanced Options Copy Query Reports Comments |
 |--|
 | |
 | View Name: +--------Advanced Options--------+______________ |
 | View Descriptio| |______________ | | |
 | This View is Ba| View Owner: | |
 | | _SYSTEM | |
 | +------------| |-----------+ |
 | | Join Sp| View ID: | Table. | |
 | | Leave the | 1 |ery Based. | |
 | +------------| |-----------+ |
 | | View Last Edited: | |
 | Starting Table:| Date: 01/03/97 |_______ <Edit> |
 | | Time: 12:39PM | |
 | < Join | |ery > |
 | +---------------------< proceed >+ |
 +--+

Advanced Options Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 14-21

Chapter 14—Views
View Definition Reports

This option displays the Reports pull-down menu, as shown below:

If you select the List of Reports Based on this View option, you get the Reports
with This View as a Data Source window. This window lists the reports by name
with their description and a Report ID number. Each listed report has an <Edit>
option which allows you to edit the report by going to the Report Definition win-
dow.

For further details on the other two report options, see “View -- Sorted by Path
Report” on page 15-9 and “View -- Sorted by Fields Report” on page 15-11 in
Chapter 15, Data Dictionary Reports .

View Definition Comments

This option permits you to record developer comments for the current view. For
further details, see “Developer Comments” on page 12-11 in Chapter 12, Base
Table Help and Error Messages .

 +---------------------------View Definition----------------------------+
 | Advanced Options Copy Query Reports Comments |
 |------------------------------+------------------------------------+--|
 | | List of Reports Based on this View | |
 | View Name: Acct| View Definition - Sorted by Path | |
 | View Description: ____| View Definition - Sorted by Fields | |
 | This View is Based On: Base+------------------------------------+ |
 | |
 | +---+ |
 | | Join Specified Views must have a Starting Table. | |
 | | Leave the Starting Table empty if View is Query Based. | |
 | +---+ |
 | |
 | Starting Table: Accounts________________________________ <Edit> |
 | |
 | < Join Specifications > < Query > |
 | |
 +--+

View Definition Reports 04:44PM Press <PF1><PF3> For Help
14-22 Open M with SQL Data Dictionary Guide

Editing a View
Editing a View

Once you have created a view, you may later reenter the View Definition window
for that view and edit it.

Any user with %ALTER privileges for a specific view can edit that view. The
owner of the view automatically has %ALTER privileges. Along with the Open
M with SQL System Manager, the owner can give other users %ALTER privi-
leges to any owned base tables, using the Open M with SQL Privileges menu
option.

When you edit a view, you can edit the following elements of its definition:

 n The view name
 n The view description
 n The query (if it is a query-based view)
 n The join specifications
 n The fields to be included from each of the linked base tables
 n The field name for each of the fields included in the view
 n The field description for each of the fields included in the view

You cannot edit the view's starting table. To change a view's starting table, you
must use a separate utility described the section “Changing a View's Starting
Table” on page 14-25.

Procedure To edit a view:

1. Enter the Data Dictionary.

2. Select the View Definition option from the Data Dictionary menu.

3. At the View Definition row selection window, enter the name of the view you
wish to edit and press <RETURN>, or press the <Search Current Table> key
from a blank View Name field to see a lookup box that lists all existing
views.

Alternatively, you may partially enter the view name and press the <Search
Current Table> key to see a lookup box that lists all views that match the par-
tial information.

4. In the lookup box, use the <Up Arrow> and <Down Arrow> keys to position
the highlight bar on the desired entry, and press <RETURN> to select it.

You see the View Definition master window.

5. Edit the view definition.
Open M with SQL Data Dictionary Guide 14-23

Chapter 14—Views
6. When you have finished editing the view, press the <PROCEED> key to save
the view and exit the View Definition form.

7. Edit any reports or queries affected by the changes made to this view.

8. Recompile all reports based on this view.

See the Open M/SQL M/PACT Guide to learn how to compile reports.

Deleting a View

Any user with the %ALTER privilege for a specific view can delete that view.
The owner of the view automatically has %ALTER privileges. Along with the
Open M with SQL System Manager, the owner can give other users %ALTER
privileges to any owned base tables, using the Open M with SQL Privileges
menu option.

Deleting a View Automatically Deletes Dependent Objects

When you delete a view, Open M with SQL automatically deletes any queries
and reports that reference the view. If the deleted view is the starting table of
another view, Open M with SQL automatically deletes the other view.

Procedure To delete a view:

1. Enter the Data Dictionary.

2. Select the View Definition option from the Data Dictionary Menu.

3. At the View Definition row selection window, enter the name of the view you
wish to delete and press <RETURN>, or press the <Search Current Table>
key from a blank View Name field to see a lookup box that lists all existing
views.

Alternatively, you may partially enter the view name and press the <Search
Current Table> key to see a lookup box that lists all views that match the par-
tial information.

4. In the lookup box, use the <Up Arrow> and <Down Arrow> keys to position
the highlight bar on the desired entry, and press <RETURN> to select it.

You see the View Definition master window.

5. Press the <DELETE ROW> key.

6. Press <RETURN> to accept the Yes default at the "Delete this row?" prompt
on the message line.

You see the message "Deleting..." on the message line.
14-24 Open M with SQL Data Dictionary Guide

Changing a View's Starting Table
Changing a View's Starting Table

When you specify the starting table for a view in the View Definition window,
the Starting Table field immediately becomes inaccessible, thus preventing you
from changing its value.

To change the starting table of an existing view, you must use the Change a
View's Starting Table utility.

This utility performs the following actions:

 n It replaces the old starting table of a view with a new starting table.
 n It automatically inserts an initial reference to the new starting table in the join

specifications for the view.
 n It automatically updates all the old join specifications accordingly.
 n It lets you specify which fields from the new starting table you want to

include in the view.

Restrictions on the Use of This Utility

The Change a View's Starting Table utility acts only on base table-based views. It
does not act on either view-based views or query-based views.

The only base tables eligible to be named as the new starting table are those that
have at least one designative reference field into the current starting table. If you
select a table that does not have a designative reference field into the current
starting table, you will see the following error message:

This table does not designate the starting table of the view.

Procedure To change the starting table of a view:

1. Select the Change View's Starting Table option from the Data Dictionary
menu.

You see the Change Starting Table for a View window, as shown below:
Open M with SQL Data Dictionary Guide 14-25

Chapter 14—Views
2. At the View Name field, enter the name of the view whose starting table you
want to change.

You may press the <List Choices> key to see a lookup box that lists all exist-
ing views. Use the cursor keys to navigate and press <RETURN> to select
the appropriate entry from the list.

3. At the Table Name field, enter the name of the base table that you want to
appoint as the new starting table of this view.

Note: The only valid base tables are those that have a designative ref-
erence into the current starting table.

4. Press <RETURN> on the <Fields> action field to specify the fields from the
new starting table that you want to include in the view.

You see the Fields to Include in View window, as shown below:

+----------------------Change Starting table for a view-----------------------+
| |
| View Name ViewDesc |
| ______________________________ |
| |
| Table Name Description |
| ______________________________ |
| |
| < Fields > |
| |
| Change Starting table of view? ____ |
| |
+---+

Change Starting table for a view Press <PF1><PF3> For Help
14-26 Open M with SQL Data Dictionary Guide

Changing a View's Starting Table
The following tables lists and describes the fields on the Fields to Include in
View Definition window:

5. Press the <PROCEED> key to save your fields to include definitions and exit
back to the Change Starting Table of View window.

+----------------------Change Starting table for a view-----------------------+
| |
| View Name ViewDesc |
| Guide_Orders__________________ |
| |
| Table Name Description |
+--------------------------Fields to include in view---------------------------+
| |
| ---------------- View Data ----------------- |
| Include |
| in |
| Field Name view? field name field description |
| |
| Copy_Orders No__ Copy_Orders_______ Copy_Orders Row ID__________ |
| Edition_Ordered No__ Edition_Ordered___ Edition_Ordered_____________ |
| ____ __________________ ____________________________ |
| ____ __________________ ____________________________ |
| ____ __________________ ____________________________ |
| ____ __________________ ____________________________ |
| ____ __________________ ____________________________ |
| ____ __________________ ____________________________ |
+--+

...Fields to include in view Press <PF1><PF3> For Help

Table 14-4: Fields to Include in View Definition Window

Field Name Data Type Description

Field Name Text This is an output-only field. It displays the name of
every field in the new starting table.

Include In View? Yes/No Type Yes to include this field on the view and there-
fore make it accessible to reports and queries using
this view. Type No to exclude it.
The default scheme is based on the data type of the
field. Designative Reference and Row ID fields default
to No. All other fields default to Yes.

Field Name Text The default for this field is the field name defined in
the base table. You can specify an override field name
for the view. This is necessary when the same Field
Name appears more than once in the view.

Description Text The default for this field is the field description defined
for the base table. You can specify an override field
description for the view. The override Field Descrip-
tion is used as the default for Report Column Titles in
M/PACT when the view is the report data source.
Open M with SQL Data Dictionary Guide 14-27

Chapter 14—Views
6. At the Change Starting Table of View? field, answer Yes and press the <PRO-
CEED> key.

This initiates the change and exits you back to the Data Dictionary menu.

Copying a View

Open M with SQL provides a utility that lets you automatically create a new
view by copying an existing view. This utility produces a copied view that is vir-
tually identical to the source view. You might use this utility if you need a view
which follows the same Join Specifications, but includes additional fields for a
different group of users.

You Must Have Privileges to Copy a View

In order to copy a view, you must have the following privileges:

 n %ALTER privileges on the source view.
 n SELECT privileges on each of the base tables comprising the source view.

Procedure To copy a view:

1. Select the Copy a View option from the Data Dictionary menu.

You see the Copy View window, as shown below:

2. At the Copy From View field, enter the name of an existing view.

You may press the <Search Current Table> key to see a lookup box that lists
all existing views. Use the cursor keys to navigate and press <RETURN> to
select the appropriate entry from the list.

 +----------------Copy View-----------------+
 | |
 | Copy From View |
 | __ |
 | |
 | |
 | |
 | |
 +--+

View Copy Selecting Press <PF1><PF3> For Help

Enter the name for this View.
14-28 Open M with SQL Data Dictionary Guide

Changing a View's Starting Table
When you select the source view, you see the Copy From View master win-
dow, as shown below:

3. At the Copy To View field, enter the name of the new view to be created.

Note: This name must not be in use already.

4. Press <PROCEED> to initiate the copy.

Open M with SQL displays a success message when the copy is complete,
then returns you to the Data Dictionary menu.

 +----------------Copy View-----------------+
 | |
 | Copy From View |
 | Guide_Orders |
 | |
 | Copy To View |
 | __ |
 | |
 +--+

View Copy Press <PF1><PF3> For Help

Enter the name of the View to copy to.
Open M with SQL Data Dictionary Guide 14-29

Chapter 14—Views
14-30 Open M with SQL Data Dictionary Guide

Open M with SQL Data Dictio
CHAPTER

15

Data Dictionary Reports

Open M with SQL supplies a set of formatted Data Dictionary reports. These
reports allow you to display or print out the base table, field, and view definitions
in the Data Dictionary and the globals to which they are mapped.

This chapter begins with an explanation of how to run a Data Dictionary report,
then discusses each of the reports individually. This chapter includes:

 n How To Run a Data Dictionary Report page 15-2
 n List of Base Tables Report page 15-4
 n Base Table (Order by Field Name) Report page 15-5
 n Base Table (Order by Column Number) Report page 15-6
 n Series of Base Tables Report page 15-7
 n List Table Relationships Report page 15-8
 n List of Views Report page 15-9
 n View -- Sorted by Path Report page 15-9
 n View -- Sorted by Fields Report page 15-11
 n Global Documentation Report page 15-13
 n Global Doc -- Map Version Report page 15-15
nary Guide 15-1

Chapter 15—Data Dictionary Reports
How To Run a Data Dictionary Report

The following procedure describes how to run a Data Dictionary report. All the
reports follow this general model, though some have additional requirements
which are described in the section that describes the individual report.

Procedure To run a Data Dictionary report:

1. From the Data Dictionary main menu, select the Reports on Data Dictionary
option.

You see the Reports on Data Dictionary window, as shown below:

2. From the Reports on Data Dictionary menu, select the report you want to run.

You see the Device Selection window, as shown below:

 ------------------------------ OPEN M Developer ------------------------------

 +-----Reports on Data Dictionary------+
 | |
 | List of Base Tables |
 | Base Table (Order By Field Name) |
 | Base Table (Order By Column Number) |
 | Series of Base Tables |
 | List Table Relationships |
 | List of Views |
 | View - Sorted by Path |
 | View - Sorted by Fields |
 | Global Documentation |
 | Global Doc - Map Version |
 | |
 +-------------------------------------+

 Directory: /us/susang/
 Thursday Jan 02, 1997 Copyright (c) 1993 - InterSystems Corporation

Reports on Data Dictionary 02:02PM Press <PF1><PF3> For Help

Press <RETURN> for a list of all base tables in this database.

 +--------Device Selection--------+
 | Device |
 | /dev/ttyp1__________ |
 | |
 | Description |
 | BJB-Jan 2 |
 | |
 | Print Format |
 | ____________________ |
 +--------------------------------+

Device Selection Press <PF1><PF3> For Help

 Exit Without selecting
15-2 Open M with SQL Data Dictionary Guide

How To Run a Data Dictionary Report
The following table lists and describes the fields located on the Device Selec-
tion window:

3. In the Device field, enter the name of the device to which you want to send
this report.

You can send the report to any valid output device to which your current
device is linked.

The default device name is your current device.

To send the report to your screen, press the <PROCEED> key.

To send the report to another device (such as a printer), delete the name of the
default device at the Device prompt, enter the name of the new target device,
adjust the Print Format parameter as appropriate, and press the <PROCEED>
key.

Note: When output to the screen, the report displays one screen at a
time and prompts you to press <RETURN> to scroll ahead to the
next screen.

Table 15-1: Fields on Device Selection Window

Field Description

Device This field always defaults to your current device (the cur-
rent value of %IS). You may change the default to any valid
output device to which your device is linked.

Description This field reflects the description given to the specified
device in the definition table.

Print Format Here you may select any print format defined for the speci-
fied device.
Open M with SQL Data Dictionary Guide 15-3

Chapter 15—Data Dictionary Reports
List of Base Tables Report

The List of Base Tables Report lists the names and descriptions of all base tables
defined in the current directory. The list is ordered alphabetically by the name of
the base table.

Below is a sample List of Base Tables Report:

Base Table Name Description
-- -----------------------------------
Accounts Customer Accounts Master Table
Copy_Orders Documentation print orders
Docstaff Information on documentation staff
Editions Table of Latest Editions
Editionsc Editions of Guides
Employees Employee Information
FavFlavors People's Favorite Flavors
Guides List of all revisions to guides
Invoices Invoices for Accounts
People People in ^FLAVORS global

Press <Return> to Exit
15-4 Open M with SQL Data Dictionary Guide

Base Table (Order by Field Name) Report
Base Table (Order by Field Name) Report

The Base Table (Order by Field Name) Report displays a list of all fields defined
for a selected base table in alphabetical order by field name. It provides basic
information about the selected base table and detailed information about each of
its fields.

When you run this report, you first see the Base Table Selection window, as
shown below:

You must specify the name of the base table for which you want to run the report
in the Base Table Name field.

You may press the <List Choices> key to see a lookup box that lists all base
tables defined in the current directory.

Below is a sample Base Table (Order by Field Name) Report:

 +-------------------Base Table Selection--------------------+
 | |
 | Base Table Name: __ |
 | |
 +---+

Report on Base Table Selecting Press <PF1><PF3> For Help

Enter a unique Base Table name, without spaces or punctuation except "_".

-=

Definition of Base Table: Accounts (accounts base table) Approximately 250 Rows

 Parent Table:
 Child Table(s): Invoices
 Master Map Global Reference: ^ACCT("ACCOUNTS",0,{Accounts})
 Row ID Field Name: Accounts Base on Other Fields? No
 Based on Fields:
 Generated Routine: mt21

-=--
 Max. Col Multi
Field Name Description Data Type Len. Uniq. No. Req. Line
-------------------- --------------------- --------- ---- ---- ---- --- ---
Accounts Accounts Row ID Row ID 16 Yes 1 Yes No
Account_Name Name of Account Text 24 6 No No
Account_num account number Number 10 2 No No
City_Acct City of account Text 24 3 No No
Name_Acct Name of Account Holder Name 32 4 No No
Phone_Acct Phone Number Number 10 5 No No
Press <Return> to continue, <Options> to scroll, <Exit> to Exit
Open M with SQL Data Dictionary Guide 15-5

Chapter 15—Data Dictionary Reports
For each field in the selected base table, it provides the following detailed infor-
mation (reading left to right):

 n Field Name
 n Field Description
 n Data Type
 n Maximum Field Length
 n Is the Field Unique?
 n Column Number
 n Is the Field Required?
 n Is it a Multi-line Field?

Base Table (Order by Column Number) Report

The Base Table (Order by Column Number) Report displays a list of all fields
defined for a selected base table in column number order. It provides basic infor-
mation about the selected base table and detailed information about each of its
fields.

When you run this report, you first see the Base Table Selection window, as
shown below:

You must specify the name of the base table for which you want to run the report
in the Base Table Name field.

You may press the <List Choices> key to see a lookup box that lists all base
tables defined in the current directory.

 +-------------------Base Table Selection--------------------+
 | |
 | Base Table Name: __ |
 | |
 +---+

Report on Base Table Selecting Press <PF1><PF3> For Help

Enter a unique Base Table name, without spaces or punctuation except "_".
15-6 Open M with SQL Data Dictionary Guide

Base Table (Order by Field Name) Report
Below is a sample Base Table (Order by Column Number) Report:

Series of Base Tables Report

The Series of Base Tables Report is identical in content to the Base Table (Order
by Field Name) Report. The Base Table (Order by Field Name) Report displays
information for one base table; the Series of Base Tables Report displays the
same information for a series of base tables whose names begin with a similar
string. For example, all base tables whose names begin with "Employ" could be
displayed using this report.

The Series of Base Tables Report is grouped by base table. It displays basic
information about each base table and provides a list of all fields defined for each
base table with detailed information about each one.

When you run the Series of Base Tables Report, you see the Runtime Conditions
for Report window, as shown below:

-=

Definition of Base Table: Accounts (accounts base table) Approximately 250 Rows

 Parent Table:
 Child Table(s): Invoices
 Master Map Global Reference: ^ACCT("ACCOUNTS",0,{Accounts})
 Row ID Field Name: Accounts Base on Other Fields? No
 Based on Fields:
 Generated Routine: mt21

-=--
 Col Max. Multi
 No. Field Name Description Data Type Len. Uniq. Req. Line
---- -------------------- --------------------- --------- ---- ---- ---- --
 1 Accounts Accounts Row ID Row ID 16 Yes Yes No
 2 Account_num account number Number 10 No No
 3 City_Acct City of account Text 24 No No
 4 Name_Acct Name of Account Holder Name 32 No No
 5 Phone_Acct Phone Number Number 10 No No
 6 Account_Name Name of Account Text 24 No No
Press <Return> to continue, <Options> to scroll, <Exit> to Exit

+--+
| Run Time Conditions |
| For Report: Attributes for Series of Base Tables |
| |
| BaseTabName Starts With ___________________________________ |
| |
| (From view: DataDict with description Base Table Name) |
| |
+--+

Run Time Conditions Press <PF1><PF3> For Help
Open M with SQL Data Dictionary Guide 15-7

Chapter 15—Data Dictionary Reports
In the field entitled BaseTabName Starts With, you specify a string that matches
the starting characters of the name(s) of one or more base tables. Name strings
are case-independent; punctuation characters in name strings are ignored.

To display all base tables defined in the current directory, you may leave this
string field blank.

If the string you specify matches none of the base table names, Open M with
SQL returns you to the Reports on Data Dictionary menu.

List Table Relationships Report

The List Table Relationships Report lists all base tables defined in the current
directory in alphabetical order and lists the designative and characteristic rela-
tionships for each base table.

Specifically, it provides the following information about each base table:

 n Base Table Name
 n Description
 n Designated Table(s)
 n Characteristic Table(s)

Below is a sample List Table Relationships Report:

 Schema Report For /us/glennm/ 03 Jan 97
 04:41PM
 Designated Characteristic
 Base Table Description Table(s) Table(s)
 -------------- -------------------- ---------------------- --------------
 Accounts Accounts base table Invoices
 Copy_Orders Book orders Guides
 Docstaff Information on
 documentation staff
 Editions Table of Latest Guides
 Editions
 (2)

Press <Return> to continue, <Options> to scroll, <Exit> to Exit
15-8 Open M with SQL Data Dictionary Guide

List of Views Report
List of Views Report

The List of Views Report lists the names and descriptions of all views defined in
the current directory. The list is ordered alphabetically by the name of the view.

Below is a sample List of Views Report:

View -- Sorted by Path Report

The View -- Sorted by Path Report shows the join specification path for each
base table included in a selected view and lists all fields included in the view
from each base table. It provides basic information about the selected view and
detailed information about each of its fields. The report is sorted by join specifi-
cation path.

The report provides the following basic information about the selected view:

 n View Name
 n View Description
 n Orientation of View (Base Table or Query)
 n Starting Table

For each base table joined in the view, it provides the following information:

 n Base Table Name
 n Join Specification Path from Starting Table

View Name View Description
-- -----------------------------------
Guide_Orders Documentation Orders
orgpeople Organizations and Contact People

Press <Return> to Exit
Open M with SQL Data Dictionary Guide 15-9

Chapter 15—Data Dictionary Reports
For each field in the selected view, it provides the following information:

 n Field Name in View
 n Field Description in View
 n Field Name in Base Table
 n Field Description in Base Table

When you run this report, you first see the Select a View window, as shown
below:

Here you must specify the name of the view for which you want to run the report.
You may press the <List Choices> key to see a lookup box that lists all views
defined in the current directory.

Below is a sample View -- Sorted by Path Report:

 +---------------Select a View----------------+
 | |
 | View Name: |
 | __ |
 | |
 | |
 | |
 | |
 +--+

View Selection Selecting Press <PF1><PF3> For Help

Enter the name for this View.

==
Definition of View: Guidestaff (For each guide edition, staff who worked)

 View is Based on Base Table Starting Table: Editions
==

__
 Joined Base Table: Editions ()
 Join Specification: Editions
 Field Name in Field Description
Field Name Description Base Table in Base Table
__________________ _______________ __________________ _______________
Main_Author Main author of Main_Author Main author of
 edition edition
Revision_Date Date edition Revision_Date Date edition
 printed printed
Version Product version Version Product version

15-10 Open M with SQL Data Dictionary Guide

View -- Sorted by Fields Report
View -- Sorted by Fields Report

The View -- Sorted by Fields Report lists all fields included in a selected view in
alphabetical order. It provides basic information about the selected view and
detailed information about each of its fields.

The report provides the following basic information about the selected view:

 n View Name
 n View Description
 n Orientation of View (Base Table or Query)
 n Starting Table or View

For each field in the selected view, it provides the following information:

 n Field Name
 n Field Description
 n Base Table Where Located
 n Field Name in Base Table
 n Join Specification Path from Starting Table

When you run this report, you first see the Select a View window, as shown
below:

Here you must specify the name of the view for which you want to run the report.
You may press the <List Choices> key to see a lookup box that lists all views
defined in the current directory.

 +---------------Select a View----------------+
 | |
 | View Name: |
 | __ |
 | |
 | |
 | |
 | |
 +--+

View Selection Selecting Press <PF1><PF3> For Help

Enter the name for this View.
Open M with SQL Data Dictionary Guide 15-11

Chapter 15—Data Dictionary Reports
Below is a sample View -- Sorted by Fields Report:

-=--

 View Definition Information (By Field)
 View Name: Guidestaff
 View Description: Who worked on each edition
 Starting Type: Base Table
 Starting Table/View: Editions

 Printed on 02/18/97 at 12:15

-=--

 Field Name
Field Name Description Base Table in Base Table Path
-------------- ----------------------- ------------ ------------- ----

 Main_Author Main author of edition Editions Main_Author Editions
 Revision_Date Date edition printed Editions Revision_Date Editions
 Title Name of Guide Guides Title Editions.Guides
 Version Product version Editions Version Editions

                     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                                          Page: 1                   

Press <Return> to Exit                                                          
15-12 Open M with SQL Data Dictionary Guide



Global Documentation Report
Global Documentation Report

This reports shows the full row reference for each map that includes a specified 
global and provides the following information about each data field defined in 
the map:

 n Delimiter
 n Piece
 n Field Name
 n Multi-Line?
 n Multi-Line Delimiter

The report sorts according to the actual collation sequence for the global.

When you run the Global Documentation Report, you see the Runtime Condi-
tions for Report window, as shown below:

In the field entitled GlobalName Equal To, you must specify a valid M global.

+------------------------------------------------------------------------------+
|  Run Time Conditions                                                         |
|  For Report: M/PACT Report - Global Documentation Rpt                        |
|                                                                              |
| GlobalName    Equal To                   ___________________________________ |
|                                                                              |
| ( From view:  MapView      with description Global Name                    ) |
|                                                                              |
+------------------------------------------------------------------------------+

Run Time Conditions                                 Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 15-13



Chapter 15—Data Dictionary Reports
Below is a sample Global Documentation Report:

         Global Documentation for: ^Guides
================================================================================
^Guides(1,0,{Guides})       ----------------------------------------                            
                                                                                                                                                   
Multi  Multi-Line
                         Delimiter      Piece      Field Name      Line?  Delimiter
-----------------------  -------------  ---------  ------------    -----  -------

^Guides(1,0,{Guides})                    --------------                                         
                          $c(1)          1          Title              No     
                                         2          Product            No     
                                         3          Num_Editions       No     
                                         4          Latest_Edition_Gui No     
                                         5          Retired            No     
                                         6          Date_Retired       No     
                                         7          Who_Retired        No     
 

^Guides(1,9,{Latest_Edition_Gui},{Guides})  -----------                                         

^Guides(1,"2A",$$ALPHAUP({Title}),{Guides}) ------------------------                            
                           $c(1)           1          Title             
15-14 Open M with SQL Data Dictionary Guide



Global Doc -- Map Version Report
Global Doc -- Map Version Report

This report is very similar to the Global Documentation Report.  It shows the full 
row reference for each map that includes a specified global and provides the fol-
lowing information about each data field defined in the map:

 n Field Name
 n Node
 n Piece
 n Delimiter
 n Multi-Line Field?
 n Maximum Length

As you can see, this report adds data columns for Node and Maximum Length.

When you run the Global Doc -- Map Version Report, you see the Runtime Con-
ditions for Report window, as shown below:

In the field entitled GlobalName Equal To, you must specify a valid M global.

+------------------------------------------------------------------------------+
|  Run Time Conditions                                                         |
|  For Report: M/PACT Report - Global Sorted by Maps                           |
|                                                                              |
| GlobalName    Equal To                   ^Guides____________________________ |
|                                                                              |
| ( From view:  MapView      with description Global Name                    ) |
|                                                                              |
+------------------------------------------------------------------------------+

Run Time Conditions                                 Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 15-15



Chapter 15—Data Dictionary Reports
Below is a sample Global Doc -- Map Version Report:

================================================================================
      Global Documentation for: ^Guides
================================================================================

                                                                                                                                                  
Multi        
                                                                  Line   Maximum
Full Reference               Field Name     Node Piece Delimiter  Field  Length
---------------------------- -------------- ---- ----- --------- ------- -------
 
^Guides(1,"2A",$$ALPHAUP     Title                 1     $c(1)            30
({Title}),{Guides})                                                                           

 
^Guides(1,0,{Guides})        Title                  1     $c(1)           30
                             Product                2     $c(1)     No     6
                             Num_Editions           3     $c(1)     No    16
                             Latest_Edition_Gui     4     $c(1)           16
                             Retired                5     $c(1)     No     4
                             Date_Retired           6     $c(1)     No    12
                             Who_Retired            7     $c(1)     No    25

Press <Return> to continue, <Options> to scroll, <Exit> to Exit                 
15-16 Open M with SQL Data Dictionary Guide



Global Doc -- Map Version Report
Open M with SQL Data Dictionary Guide 15-17



PART

III
Physical Structure
Chapter 16

Default Physical Structure

Chapter 17

Relational Definition of an M 
Database

Chapter 18

Creating a Customized Map 
Definition







Open M with SQL Data Dictio
CHAPTER

16
Default Physical Structure
This chapter describes the default physical structure that Open M with SQL gen-
erates.   Understanding this structure can help prepare you to perform customized 
mapping. This chapter covers the following topics:

 n Overview of Default Physical Structure  page 16-2
 n Examining the Row ID Field Definition  page 16-3
 n Accessing the Master Map and Index Maps  page 16-10
 n Examining a Default Master Map  page 16-12
 n Examining a Default Index Map  page 16-22
 n Changing the Global Name in a Default Physical Structure  page 16-25
 n Changing a Global’s System or Directory  page 16-26
 n Updating Default Physical Structure  page 16-27
nary Guide 16-1



Chapter 16—Default Physical Structure
Overview of Default Physical Structure

When you select default physical structure at the Base Table Definition master 
window, Open M with SQL automatically creates:

 n A Row ID field.
 n A Master Map, which defines the location of the Row ID and all fields you 

defined in the base table in the default global ^mdata, unless you selected 
another global to hold this definition.

 n An Index Map for each field you defined as unique or as a lookup field. Each 
Index Map defines the location of one or more fields and the Row ID in the 
same global that was used for the Master Map.

When a row is inserted either via embedded SQL, a query, or a Form Generator 
form, Open M with SQL uses the global structure defined in the Master Map and 
Index Maps to generate the appropriate SET commands to update the M global 
database.

Examining Default Physical Structure is Optional

When you use default physical structure to define a base table, you do not need to 
examine the physical structure Open M with SQL generates in order to use that 
base table in an application. 

However, in advance of creating a base table using customized physical struc-
ture, it can be useful to examine the global structures Open M with SQL creates 
when you use default physical structure.

You can examine the default physical structure at any time, but you cannot edit it. 
All windows are in Inquiry mode.

There are three parts to examining the default physical structure:

 n Examining the definition of the Row ID field.
 n Examining the Master Map.
 n Examining the Index Maps.

To examine the Row ID field, you examine its Field Definition window, and its 
Row ID Data Type window.

To examine the default global structure, you look at the Map Definition windows 
for each map Open M with SQL created for the base table. These windows are in 
Inquiry mode, meaning you cannot edit any values in them.

Field names in this and subsequent chapters are shown enclosed by curly braces, 
as in {Doc_Name}. This is how you enter field names in customized mapping.
16-2 Open M with SQL Data Dictionary Guide



Overview of Default Physical Structure
Converting from Default to Custom Physical Structure

You can initially define a base table using default physical structure and generate 
the default physical structure. You can then convert the base table to custom 
physical structure and edit the default physical structure. You can perform this 
conversion at any time. However, once you convert a base table, you cannot 
revert from custom physical structure back to default physical structure. See “If 
You Started Using Default Physical Structure” on page 18-7 in Chapter 18, Cre-
ating a Customized Map Definition .

Examining the Row ID Field Definition

In default physical structure, Open M with SQL automatically generates a Row 
ID field definition. When users enter data into this base table, Open M with SQL 
automatically provides a unique value for the Row ID field.

Open M with SQL gives the Row ID field the name of the base table. You cannot 
edit the definition of the Row ID field when using default physical structure.

The Row ID field is always unique. As a result, Open M with SQL puts the value 
NUMROWS in the Number of Distinct Values field. This is because there will be 
a different Row ID value for each row in the base table.

Example The Row ID field definition for the Guides table from the sample Documentation 
Tracking application is shown below. Since Open M with SQL names the Row 
ID field after the table, the field name of the Row ID is {Guides}. Note that the 
Row ID is unique.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Guides___________________    List of all revisions to guides____ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Guides______________________   Guides Row ID________________________________ |
|                                                                              |
|        Data Type Row ID___________________                                   |
|                                                                              |
|        Maximum Length 16_                 Unique Field? Yes_                 |
|                                                                              |
|        Number of Distinct Values NUMROWS_________                            |
|                                                                              |
|        Multi-Line Field? No__             < Multi-Line Options >             |
|                                                                              |
|        Computed Field? No__                                                  |
+------------------------------------------------------------------------------+

...Field Definition         Inquiry Mode            Press <PF1><PF3> For Help 

  Update       Conversion/      Error/Help    Indexing    Copy     Additional 
 Features    Validation Code     Messages     Options     Field     Options   
Open M with SQL Data Dictionary Guide 16-3



Chapter 16—Default Physical Structure
Row ID Definition in Non-Child Tables

For non-child tables, the Row ID is a non-displayable field, which is not based on 
other fields. It is a Number field, although in Data Type it is defined as Row ID.

Example The Row ID data type auxiliary window for {Guides} is shown below. This win-
dow is displayed by moving the cursor to the Data Type field, then pressing the 
<RETURN> key. Because the Guides field is not based on other fields, its value 
alone constitutes the Row ID for the Guides table:

 

Open M with SQL Inserts Value in Row ID Field

When you insert a new row into a non-child table, Open M with SQL generates a 
default Row ID value in the Master Map. This Row ID value is an integer, gener-
ated sequentially starting from 1. Open M with SQL uses an M extrinsic func-
tion, $$NEXT, to find the subscript of the next node.  $$NEXT sets the Row ID 
value counter to 1, if it does not exist. If it does exist, $$NEXT increments it by 
1, and then returns that value. You can see this code in the M Expression for 
Default (External) Value field on the Update Features window, as shown below 
(see “Step 9: Define User Update Features” on page 6-46 in Chapter 6, Defining 
Base Table Fields ):

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Guides___________________    List of all revisions to guides____ |           
 
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Guides______________________   Guides Row ID________________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? No__                                           |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? No__                    Number___________________        |
|                                                                              |
|    Fields   ________________________________________                         |
|    (0/)     ________________________________________                         |
|                                                                              |
|                                                                              |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type         Inquiry Mode            Press <PF1><PF3> For Help 
16-4 Open M with SQL Data Dictionary Guide



Overview of Default Physical Structure
.

Using a sequentially assigned numeric Row ID, generated by $$NEXT, guaran-
tees that that there are no blank Row ID values, and that every Row ID value is a 
unique value.

Row ID Definition in Child Tables

In the child table created in a characteristic relationship, the Row ID field for 
each row must logically represent both the child rows and the row in the parent 
table to which the child rows are joined. To accomplish this, Open M with SQL 
creates three fields:

 n Row ID field
 n Parent Reference
 n childsub

For information on creating a child table, see “Defining a Child Table” on page 
5-11 in Chapter 5, Defining a Base Table .

Row ID Field

The Row ID field in a child table represents a combination of the parent refer-
ence and childsub fields. Thus, it does not represent a subscript that physically 
appears in a global, but rather a logical entity. Its name is the name of the base 
table, it takes only unique values, and the number of distinct values is equal to 
NUMROWS.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Guides___________________    List of all revisions to guides____ |           
 
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Guides______________________   Guides Row ID________________________________ |
|+-------------------------------Update Features-------------------------------+
	Field Protection Output Only_  Column Number 1    Field ID # 37
	Required Field? Yes_______    If it is 'Maybe' Required -
	the M Expression to Determine if it is Required is:
	IF ____________________________________________________________
	M Expression for Default (External) Value
	$$next("^mdata(""GUIDES"")")________________________________________
++-----------------------------------------------------------------------------+

...Update Features           Inquiry Mode           Press <PF1><PF3> For Help 

   Conversion/                              Error/Help 
 Validation Code                             Messages  
Open M with SQL Data Dictionary Guide 16-5



Chapter 16—Default Physical Structure
Parent Reference Field

The parent reference field is a designative reference to the parent table. Open M 
with SQL gives this field the name of the parent table. The Description generated 
for this field consists of the field name, followed by the phrase "Parent Refer-
ence", and the column number 0. 

childsub

The childsub field provides a unique identifier for each row associated with a 
particular row in the parent table. However, it therefore can have the same value 
for different values of the Parent Reference, so this field is not unique. Open M 
with SQL names it {childsub}. 

Open M with SQL Assigns Values

When you insert a new row into a child table, Open M with SQL places the Row 
ID of the corresponding parent table in the parent reference field. It then gener-
ates a number in the childsub field. For each new parent reference, it starts the 
count of {childsub} at 1.

Example of Row ID Field Definition for Child Tables

In our sample application, we created the base table Editions as a child of Guides. 
We elected to have Open M with SQL generate a default physical structure for 
the Editions table. As part of this job, it created the Row ID field, {Editions}, and 
the two fields on which {Editions} is based.   Now that the Editions base table 
exists, we can look at its definition. The Field Definition selection window for 
16-6 Open M with SQL Data Dictionary Guide



Overview of Default Physical Structure
Editions is shown below. The lookup box contains the three fields Open M with 
SQL created.

 n The {Guides} field is a designative reference field to the parent table, 
Guides. Open M with SQL automatically gives it a description which 
includes the name of the parent table and the phrase "Parent Reference". It 
has the column number 0, as do all parent designative reference fields in 
child tables.

 n The Row ID field, {Editions}, has the column number 1, as do all Row ID 
fields. It is based on {Guides} and {childsub}.

 n The {childsub} field has the column number 2, since Open M with SQL 
assigns column numbers in sequential order. 

First, let's look at the definition for the Row ID field, {Editions}. A child table's 
Row ID field has the same definition as a simple Row ID field, as shown earlier 

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Editions_________________    Editions of Guides_________________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| ____________________________   _____________________________________________ |
+------------------------------------------------------------------------------+
| childsub                           Child subscript                        2  |
| Editions                           Editions  Row ID                       1  |
| Guides                             Guides  Parent Reference               0  |
+------------------------------------------------------------------------------+
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
+------------------------------------------------------------------------------+

...Field Definition            Selecting            Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 16-7



Chapter 16—Default Physical Structure
in this chapter. However, the information in its Row ID auxiliary window is dif-
ferent. A child table's Row ID field is based on other fields, as shown below:

Now let’s look at the fields on which {Editions} is based. The next screen shows 
that the {Guides} parent reference field is a designative reference to the Guides 
table.

Finally, let's look at the definition of {childsub}. It is similar to a Row ID field in 
a non-child table, in that it is a Number type field with a maximum length of 16. 
It contains an identifier for each child row related to a particular parent reference. 

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Editions_________________    Editions of Guides_________________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Editions____________________   Editions Row ID______________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? ____                                           |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? Yes_                    _________________________        |
|                                                                              |
|    Fields   Guides__________________________________                         |
|    (0/2)    childsub________________________________                         |
|                                                                              |
|Guides.Guides || Versions.childsub                                            |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type         Inquiry Mode            Press <PF1><PF3> For Help 

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Editions_________________    Editions of Guides_________________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Guides______________________   Guides Parent Reference______________________ |
|                                                                              |
|        Data Type Designative Reference____                                   |
|                                                                              |
|        Maximum Length 16_                 Unique Field? ____                 |
|             +-----------Designative Reference Data Type------------+         |
Numbe		
	Referenced Table Guides_____________________________	
Multi		
+------------------------------------------------------+		
Computed Field? No__		
+------------------------------------------------------------------------------+
  Update       Conversion/      Error/Help    Indexing    Copy     Additional 

...Designative Reference Data TypeInquiry Mode      Press <PF1><PF3> For Help 
16-8 Open M with SQL Data Dictionary Guide



Overview of Default Physical Structure
The main difference is it is not unique since it starts with the value 1 for each new 
parent reference value.

Procedure To examine the Row ID field definition:

1. Press <List Choices> at the Field Definition row selection screen.

A lookup box containing the defined fields in this base table displays.

2. Use the arrow keys to move the cursor to the Row ID field and press 
<RETURN>.

The name of the Row ID field is the table name

You see the Field Definition master window.

3. Use the <Tab> key to move the cursor to the Data Type field and press 
<RETURN>.

You see the Row ID auxiliary window.

4. Press <GETOUT> when you are done examining the Row ID definition to 
return to the Field Definition row selection window.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Editionsc________________    Editions of Guides_________________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| childsub____________________   Child subscript______________________________ |
|                                                                              |
|        Data Type Number___________________                                   |
|                                                                              |
|        Maximum Length 16_                 Unique Field? ____                 |
|                                                                              |
|        Number of Distinct Values ________________                            |
|                                                                              |
|        Multi-Line Field? No__             < Multi-Line Options >             |
|                                                                              |
|        Computed Field? No__                                                  |
+------------------------------------------------------------------------------+

...Field Definition         Inquiry Mode            Press <PF1><PF3> For Help 

  Update       Conversion/      Error/Help    Indexing    Copy     Additional 
 Features    Validation Code     Messages     Options     Field     Options   
Open M with SQL Data Dictionary Guide 16-9



Chapter 16—Default Physical Structure
Accessing the Master Map and Index Maps

To examine the physical structure defined in the Master Map or Index Maps, you 
need to enter the Map Definition form.

Procedure To access the Master Map and Index Maps of your base table:

1. At the Base Table Definition master window, move the cursor to the <Physi-
cal Structure> branching field and press <RETURN>.

You see the Default Physical Structure window, with the cursor at the File 
name field. The File name field shows the name of the global used in the 
default global structure. The default value is ^mdata, as shown below. How-
ever, this is the one field whose value you may, and should, edit. See “Gener-
ating Default Physical Structure” on page 5-15 in Chapter 5, Defining a Base 
Table 

2. Press <TAB> two times to move the cursor to the <Examine Structure> 
branching field, then press <RETURN>.

If Open M with SQL has not yet generated the default physical structure for 
this base table, it does so now. See “Generating Default Physical Structure” 
on page 5-15 in Chapter 5, Defining a Base Table 

Open M with SQL displays the Map Definition selection window.

3. Press <List Choices> to see a lookup box containing the Master Map and all 
Index Maps.

The highlight bar is on the first map, which is the Master Map. The Master 
Map always has the name Data Master Map. If there are Index Maps, they 

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Docstaff_________________    Information on documentation staff_ |           
|                                                                  |           
+-------------------------Default Physical Structure---------------------------+
|                                                                              |
|                                                                              |
|    File name ^mdata_________________________                                 |
|                                                                              |
|                                                                              |
|                      <  Fields to Index  >                                   |
|                                                                              |
|                      < Examine Structure >                                   |
|                                                                              |
+------------------------------------------------------------------------------+
 
 
 
 

...Default Physical Structure                       Press <PF1><PF3> For Help 

 Recreate Structure 
16-10 Open M with SQL Data Dictionary Guide



Accessing the Master Map and Index Maps
are listed next in the order in which Open M with SQL created them. Open M 
with SQL created an Index Map for {Doc_Name}, since we defined it as a 
unique field, as well as a lookup field.

Use the arrow keys to move the highlight bar to the map you want to exam-
ine.

4. Press <RETURN> to select the highlighted map.

You see the Map Definition master window for the map you selected.

Since you are using default physical structure, you see the message "Inquiry 
Mode" in the middle of the status line. This means that while you can see the 
values in all the fields, you cannot edit these values.

+-----------------------------------------------------------------------------+
| Map Name                    Full Reference                                  |
+-----------------------------------------------------------------------------+
| Data Master Map             ^mdata("DOCSTAFF",0,{Docstaff})                 |
| Index Doc_Name 12           ^mdata("DOCSTAFF","2N",$p({Doc_Name},",",1),$p( |
+-----------------------------------------------------------------------------++
	+
+-----------------------------------------------------------------------------+

...Map Definition            Inquiry Mode           Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 16-11



Chapter 16—Default Physical Structure
Examining a Default Master Map

The Master Map defines the global structure that contains the data for this base 
table. 

The path via M to a row of data is called the Full Row Reference. In default phys-
ical structure, it is a global reference. This reference is comprised of two sub-
scripts and then the Row ID field (or the fields that comprise the Row ID field in 
the case of a child table). All other fields in the base table are pieces of the value 
of that global node, or subscript levels below that node.

New and Old Master Map Structures

At Version F.10, the global structure of Master Maps and Index Maps was 
improved to prevent the orphaning of data when importing default structured 
base tables. Because old-format map structures begin with a number, and new-
format map structures begin with a letter (all base table names must begin with a 
letter), there is no conflict between old and new map names.

 n Old (pre-F.10) base tables may continue to be used with their existing map 
structures. Tables with old and new Master Map formats may coexist and be 
associated by designative and characteristic relationships. New-format index 
maps may coexist with an old-format Master Map, and old and new index 
maps may coexist for the same base table.

 n Newly created (F.10 and subsequent) base tables and indexes are automati-
cally assigned the new map structures.

 n Existing old-format master maps can be converted to the new format. For 
conversion procedures, see “Updating Default Physical Structure” on page 
16-27.

Assume you are using the default global, ^mdata, you have defined a base table 
which is not a child table, and field2 is a multi-line field.

Old Master Map Structure

The old (pre-F.10) global structure for all fields except the multi-line field for the 
Master Map is:

^mdata(irn,0,RowID)=field1^field3^...^fieldn

where

irn the internal reference number of the base table. Open M with SQL 
assigns these numbers, starting from 1, in the order in which you create base 
tables in a particular M namespace.

0 is the constant value of the second subscript
16-12 Open M with SQL Data Dictionary Guide



Examining a Default Master Map
RowID is:

 n The value of the Row ID field for parent tables or
 n Comprised of two subscripts

 • the first contains the value of the parent reference
 • the second the value of the childsub field

fieldn is the value of a field you defined in the base table.

New Master Map Structure

The new (F.10 and subsequent) global structure for all fields except the multi-line 
field for the Master Map is:

^mdata(TableName,0,RowID)=field1^field3^...^fieldn

where

TableName is the initial user-specified name of the base table, in its internal rep-
resentation (all uppercase letters, underscores removed). Subsequent changes to 
the table name are not reflected in this master map structure. For example, if you 
create a base table named Accounts, then change its name to Curr_Accts, this ele-
ment of the Master Map will remain “ACCOUNTS”. If you subsequently create 
another base table named Accounts, the Data Dictionary would make this Master 
Map element unique by appending a number, for example, “ACCOUNTS1”.

0 is the constant value of the second subscript.

RowID is:

 n The value of the Row ID field for parent tables or
 n Comprised of two subscripts

 • the first contains the value of the parent reference
 • the second the value of the childsub field

fieldn is the value of a field you defined in the base table.

Multi-line Field Default Structure

A multi-line field is stored in separate nodes below the Full Row Reference, in a 
storage mode called One Per Node. (One Per Node is the only storage mode 
available with default physical structure.) For each row, a counter of the number 
of lines entered in the field in that row is stored one subscript level down, with a 
subscript value of 0. The values of each line are stored at the same level, at sub-
script values going from 1 to the number of lines entered in the field.
Open M with SQL Data Dictionary Guide 16-13



Chapter 16—Default Physical Structure
The global structure of the multi-line field, field2, is:

^mdata(TableName,0,RowID,1,0}=number_of_lines
^mdata(TableName,0,RowID,1,1}=value_of_line1
^mdata(TableName,0,RowID,1,number_of_lines}=value_of_last
_line

In the Docstaff table, we changed the name of the global which will store the data 
from the default value, ^mdata, to the descriptive name, ^Docstaff. 

Old Format: Docstaff was the sixth table we created in this M database, so it has 
an irn of 6. The reference to a row is thus ^Docstaff(6,0,{Docstaff}).

New Format: Docstaff is the initial name assigned to this base table. The refer-
ence to a row is thus ^Docstaff(“DOCSTAFF”,0,{Docstaff}).

SET Commands for Master Map Structure

The first SET command assigns values to all fields stored at the first level. For 
Docstaff, this is all fields except {Street} and {Specialties}, which are multi-line 
fields. Each value at the first level is a piece of that node, separated by the delim-
iter "^". (These examples are in New Format. For Old Format, substitute the 
number 6 (the irn for the base table) for the string “DOCSTAFF”.)

SET ^Docstaff("DOCSTAFF",0,1)="Morrow,Glenn^6173334444^ 
Cambridge^MA^02142"

Open M with SQL then issues SET commands for each multi-line field. It first 
sets the counter to the number of lines entered. It then issues a SET for the value 
of each line. For Docstaff, it issues SET commands for the two multi-line fields, 
{Street} and {Specialties}. Open M with SQL always uses the One Per Node 
storage structure for multi-line fields when you select default physical structure. 
These commands looks like this:

SET ^Docstaff("DOCSTAFF",0,1,1,0)=2
SET ^Docstaff("DOCSTAFF",0,1,1,1)="123 Main Street"
SET ^Docstaff("DOCSTAFF",0,1,1,2)="Apt. 3G"

SET ^Docstaff("DOCSTAFF",0,1,2,0)=2
SET ^Docstaff("DOCSTAFF",0,1,2,1)="FrameMaker"
SET ^Docstaff("DOCSTAFF",0,1,2,2)="Adobe Acrobat"
16-14 Open M with SQL Data Dictionary Guide



Examining a Default Master Map
This is an example of SET commands for the second row in Docstaff:

SET ^Docstaff("DOCSTAFF",0,2)="Morrow,Glenn^ 
6173334444^Cambridge^ MA^02142"

SET ^Docstaff("DOCSTAFF",0,2,1,0)=1
SET ^Docstaff("DOCSTAFF",0,2,1,1)="321 Oak Street"
SET ^Docstaff("DOCSTAFF",0,2,2,0)=3
SET ^Docstaff("DOCSTAFF",0,2,2,1)="WordPerfect"
SET ^Docstaff("DOCSTAFF",0,2,2,2)="html"
SET ^Docstaff("DOCSTAFF",0,2,2,3)="visio"

For further details on the SET command, see “Step 1: Compose SET Command 
to Insert Row” on page 18-5 in Chapter 18, Creating a Customized Map Defini-
tion .

Let's look at how Open M with SQL defines this structure in the Docstaff Master 
Map.

Map Definition Master Window

The Map Definition master window for the Docstaff Master Map is shown below. 
Note that the Global Name is ^Docstaff, not the default ^mdata. Also note that 
because this base table uses default physical structure the window is in Inquiry 
Mode, which means you cannot edit field values.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Data Master Map___________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^Docstaff_____________________                                 |
|                                                                             |+
Field(s) Used to Specify the RowID: (0/1)	
Docstaff.Docstaff	
< Access Path Specifications >	
< Full Row Reference >	
< Map Data Specifications >	
< Row ID Specifications >	
	+
Full Row Reference: (0/1)	
{%row} =  ^Docstaff("DOCSTAFF",0,{Docstaff})	
+-----------------------------------------------------------------------------+

...Map Definition            Inquiry Mode           Press <PF1><PF3> For Help 

 Advanced 
 Options  
Open M with SQL Data Dictionary Guide 16-15



Chapter 16—Default Physical Structure
The table below and on the following pages describes the values in the two data-
base fields on the Map Definition master window: 

Table 16-1: Map Definition Master Window Fields 

Field Description

Map Name The name of the map you selected, as created by Open M with 
SQL. In default structure, the master map is always named Data 
Master Map.

Master Map (Y/N) The value here is Yes, since we are looking at the Master Map.

Global Name This is the name of the global in which the base table definition is 
stored. See “Generating Default Physical Structure” on page 5-15 
in Chapter 5, Defining a Base Table . Notice that we changed the 
global name from the default name, ^mdata, to ^Docstaff.

Field(s) Used to 
Specify the Row ID

In default physical structure, the Row ID is always one field for non-
child tables, and a field based on two other fields for child tables. 
Open M with SQL creates these fields when it generates the default 
physical structure of the base table. Open M with SQL gives the 
Row ID field the name of the base table. The syntax used to 
describe these fields is table.fieldname. In the non-child Docstaff 
table, the Row ID is Docstaff.Docstaff. In the child table Editions, 
the Row ID is the two fields which comprise the Row ID, 
Guides.Guides and Editions.childsub.

<Access Path 
Specifications>

Select this branching field to see the Access Levels Open M with 
SQL defines to reach the Full Row Reference.

<Full Row Refer-
ence>

In customized mapping, you select this field to override the default 
Full Row Reference. In default physical structure, Open M with 
SQL always uses the default.

<Map Data Specifi-
cations>

Select this branching field to see the location of each non-Row ID 
field in the table.

<Row ID Specifica-
tions>

Select this branching field to see how Open M with SQL creates the 
Row ID field, given a Full Row Reference.
16-16 Open M with SQL Data Dictionary Guide



Examining a Default Master Map
Full Row Reference The Full Row Reference, stored in the variable {%row}, defines the 
global reference Open M with SQL uses to refer to one complete 
row in the base table. (In customized structure, it may not be a glo-
bal reference.) 
It consists of the global name and two subscripts plus a subscript 
for each field which comprises the Row ID. In a non-child table, 
there is one Row ID field. In a child table, there are two fields which 
comprise the Row ID. 

Full Row Refer-
ence (continued)

The syntax of the reference is:
 ^globalname({L1},{L2},{RowID field1}[,{RowID field2}]). 
The global name is either the default value ^mdata or the name you 
enter following the procedure described in “Generating Default 
Physical Structure” on page 5-15 in Chapter 5, Defining a Base 
Table . 
{L1} is either (new format) the initial name you specified for this 
base table or (old format) the internal reference number (irn) of the 
table in this M namespace. In the old format, Open M with SQL 
gives the first table you create in a particular M namespace an irn of 
1, the second an irn of 2, and so on. In the above Map Definition 
screen, the irn of the Docstaff table, as shown in the value of %row, 
is 6. This means it is the sixth table we created in this M 
namespace.
{L2} is always 0 for a Master Map.
For a non-child table, the third level is the name of the Row ID field, 
enclosed in curly braces. In the above screen, the third subscript 
for the Docstaff table is {Docstaff}. 
For a child table, the Row ID field is comprised of two other fields. 
These fields appear as the {L3} and {L4} subscripts in the Full Row 
Reference. {L3} is the designative reference to the parent table. 
This field has the name of the parent table. {L4} points to the row in 
the child table and is named {childsub}. In our sample application, 
Editions is a child table of Guides. Its Full Row Reference is:
 %row=({L1},0,{Guides.Guides},{childsub})

Advanced Options In customized mapping, you select this horizontal menu option to 
add override filing code or define an Index Map as conditional.

Table 16-1: Map Definition Master Window Fields 

Field Description
Open M with SQL Data Dictionary Guide 16-17



Chapter 16—Default Physical Structure
Access Path Specifications

In default physical structure, the global name is the starting point for the Access 
Path. Open M with SQL uses it as the value of the first Access Level's Data 
Access Expression. The Access Path Specifications master window for the Doc-
staff Master Map is shown below:

The next window shows the Data Access Expression for Access Level 1.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Data Master Map___________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^Docstaff_____________________                                 |
|                                                                             |+
Field(s) Used to Specify the RowID: (0/1)			
Docstaff.Docstaff			
+-----------------------Access Path Specifications--------------------------+			
	Access  Data Access  Access                                    Special		
	Level   Expression   Type    Value Expression                Access Code		
	L1    <Expression>  ______  "DOCSTAFF"___________________  <Access Code>		
	L2    <Expression>  ______  0____________________________  <Access Code>		
	L3    <Expression>  ______  {Docstaff}___________________  <Access Code>		
	<Expression>  ______  _____________________________  <Access Code>		+
	<Expression>  ______  _____________________________  <Access Code>		
	<Expression>  ______  _____________________________  <Access Code>		
+---------------------------------------------------------------------------+			
+-----------------------------------------------------------------------------+

...Access Path SpecificationsInquiry Mode           Press <PF1><PF3> For Help 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Data Master Map___________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^Docstaff_____________________                                 |
|                                                                             |+
Field(s) Used to Specify the RowID: (0/1)			
Docstaff.Docstaff			
+--------------------------Data Access Expression---------------------------+			
	Implicit Reference at this level:		
	{1D}   =  ^Docstaff		
	Override Reference:		
	You may specify here an override reference  to the above:		+
	{1D}   =  _____________________________________________________________		
+---------------------------------------------------------------------------+			
+-----------------------------------------------------------------------------+

...Data Access ExpressionsInquiry Mode              Press <PF1><PF3> For Help 
16-18 Open M with SQL Data Dictionary Guide



Examining a Default Master Map
Full Row Reference

Open M with SQL creates the Full Row Reference from the Access Path Specifi-
cations. The Full Row Reference is expressed in terms of Access Levels ({L1}, 
{L2}, etc.) at the Full Row Reference window for the Docstaff table, as shown 
below:

The Full Row Reference ({%row} variable) is expressed in terms of fields on the 
Map Definition master window.

Map Data Specifications

The Map Data Specifications master window for Docstaff is shown below.

Note that all fields up to the first multi-line field are pieces of the value of the 
Full Row Reference:

^Docstaff(“DOCSTAFF”,0)=Name^Phone

The first multi-line field is in node 1 below the Full Row Reference: 

^Docstaff(“DOCSTAFF”,0,1)

The remainder of the fields are in node 2 below the Full Row Reference:

^Docstaff(“DOCSTAFF”,0,2)=City^State^Date_of_Hire^Zip^Cou
ntry

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Data Master Map___________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^Docstaff_____________________                                 |
|                                                                             |+
Field(s) Used to Specify the RowID: (0/1)			
Docstaff.Docstaff			
+----------------------------Full Row Reference-----------------------------+			
	Implicit Full Row Reference: (0/1)		
	{%row} = ^Doctaff({L1},{L2},{L3})		
	Override Full Row Reference:		+
	{%row} = ________________________________________________________________		
+---------------------------------------------------------------------------+			
+-----------------------------------------------------------------------------+

...Full Row Reference      Inquiry Mode             Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 16-19



Chapter 16—Default Physical Structure
Note the Length_of_Service field, which is a Computed field of type Always 
Equal to the Computation, is not mapped.

Row ID Specifications

The Row ID Specifications window for Docstaff is shown below. The Row ID is 
one field, and is simply the value of Access Level 3: the field {Docstaff}.

Child Table Default Master Map

At Version F.10, the default structure master map for a child table can be in either 
of two forms. If you specify a File Name of ^mdata, or some other global name, 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Data Master Map___________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^Docstaff_____________________                                 |
|                                                                             |+
Field(s) Used to Specify the RowID: (0/1)			
Docstaff.Docstaff			
+--------------------------Map Data Specifications--------------------------+			
	Field               Node             Piece     Delimiter     Retrieval		
	Boss______________  _______________  1_______  “^”_______    < M Code >		
	Address___________  _______________  2_______  “^”_______    < M Code >		
	Phone_____________  _______________  3_______  “^”_______    < M Code >		
	__________________  _______________  ________  __________    < M Code >		
	__________________  _______________  ________  __________    < M Code >		+
	__________________  _______________  ________  __________    < M Code >		
	__________________  _______________  ________  __________    < M Code >		
+---------------------------------------------------------------------------+			
+-----------------------------------------------------------------------------+

...Map Data SpecificationsInquiry Mode              Press <PF1><PF3> For Help 

+--------------------------------Map Definition-------------------------------+
+-------------------------Access Path Specifications---------------------------+
| Access  Access                                                               |
| Level   Type     Value Expression                                            |
|  L1     ______   "DOCSTAFF"_________________________________________________ |
|  L2     ______   0__________________________________________________________ |
|  L3     ______   {Docstaff}_________________________________________________ |
|         ______   ___________________________________________________________ |
|         ______   ___________________________________________________________ |
|         ______   ___________________________________________________________ |
+------------------------------------------------------------------------------+
+---------------Calculate Row ID Given: Access Levels and Fields---------------+
| Field                                         Expression                     |
| Docstaff                                      {L3}__________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
+------------------------------------------------------------------------------+

...Row ID Calculation      Inquiry Mode             Press <PF1><PF3> For Help 
16-20 Open M with SQL Data Dictionary Guide



Examining a Default Master Map
the child table master map structure is the standard default structure, as described 
above. The following are master map structures for the Patient parent table and 
the Patient_Visit child table:

^mdata(“PATIENT”,0,{Patient})
^mdata(“PATIENTVISIT”,0,{Patient_Visit})

If you specify a file name of ^*parent, then the default master map structure for 
the child table is a subtree of the parent table’s structure. The following are mas-
ter map structures for the Patient parent table and the Patient_Visit child table:

^mdata(“PATIENT”,0,{Patient})
^mdata(“PATIENT”,0,{Patient.Patient},“PATIENTVISIT-
2”,0,{Childsub})

The number 2 appended to the child table name indicates the childsub field, 
which is always defined as column 2 for default structure tables.
Open M with SQL Data Dictionary Guide 16-21



Chapter 16—Default Physical Structure
Examining a Default Index Map

When you use default physical structure, Open M with SQL creates an Index 
Map for:

 n Unique fields
 n Fields used in a lookup
 n Fields you define as index fields

See Chapter 9, Index Maps , to learn more about the function of Index Maps, how 
the Open M with SQL Query Optimizer selects Index Maps, how to index fields, 
and which fields to index.

Old and New Global Structures

At Version F.10, the global structure of Master Maps and Index Maps was 
improved to prevent the orphaning of data when importing default structured 
base tables. Because old-format map structures begin with a number, and new-
format map structures begin with a letter (all base table names must begin with a 
letter), there is no conflict between old and new map names.

 n Old (pre-F.10) base tables may continue to be used with their existing map 
structures. New-format index maps may coexist with an old-format Master 
Map, and old and new index maps may coexist for the same base table.

 n Newly created (F.10 and subsequent) base tables and indexes are automati-
cally assigned the new map structures.

 n Existing old-format master maps can be converted to the new format. For 
conversion procedures, see “Updating Default Physical Structure” on page 
16-27.

Old Index Map Structure

The old (pre-F.10) global structure for all fields except the multi-line field for an 
Index Map created under default physical structure is as follows:

^mdata(irn,indn,{indexfield1}[,{indexfield2},{indexfieldn
}],{RowID})=""

where irn the internal reference number for the base table

indn the value Open M with SQL gives this index table

indexfield1...indexfieldn the names of the fields in the Index Map, 
enclosed in curly braces
16-22 Open M with SQL Data Dictionary Guide



Examining a Default Index Map
RowID is:

 n The value of the Row ID field for parent tables or
 n Comprised of two subscripts

 • the first contains the value of the parent reference
 • the second the value of the childsub field

New Index Map Structure

The new (F.10 and subsequent) global structure for an Index Map is:

^mdata(TableName,col,{indexfield1}[,{indexfield2},{indexf
ieldn}],{RowID})=""

where TableName the initial table name of the base table.

col Column number of the field(s) in the index map. If multiple 
fields are specified in the index, this is a series of column numbers separated by 
hyphens. The Row ID is not included in this series of column numbers.

indexfield1...indexfieldn the names of the field(s) in the Index Map, 
enclosed in curly braces

RowID is:

 n The value of the Row ID field for the base table, or
 n Comprised of two subscripts:

 • the first contains the value of the parent reference field
 • the second contains the value of the childsub field

Example Assume you are using the default global, ^mdata, you have defined field1 as a 
unique field, and you have defined a lookup that is based on 2 fields: field3 and 
field5. Open M with SQL creates two Index Maps:

Old Format:

^mdata(irn,"map1_name",field1,RowID)=""
^mdata(irn,"map2_name",field3,field5,RowID)=""

New Format:

^mdata(TableName,1,field1,RowID)=""
^mdata(TableName,3-5,field3,field5,RowID)=""

Open M with SQL searches for the row where the value in the index fields 
matches the values the user enters. It can then take the corresponding Row ID 
field value and use it to access the row in the Master Map which contains all the 
data about the entity.
Open M with SQL Data Dictionary Guide 16-23



Chapter 16—Default Physical Structure
Example The Map Definition window of the Index Map for the field Doc_Name in the 
Docstaff base is shown below. Note that the values in the Global Name and the 
Fields Used To Specify the Row ID fields are the same as for the Master Map. 
However, the value in the Master Map? field is No, and, except for the first sub-
script, which is the base table name, the full row reference is different.

Index Maps for Name Data Type Fields

Note that Open M with SQL automatically breaks the Doc_Name field into two 
parts, so you can search either on first name or last name.

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Index Boss 12_____________                 Master Map (Y/N): No__	
Global Name: ^Docstaff_____________________	
Field(s) Used to Specify the RowID: (0/1)	
Docstaff.Docstaff	
< Access Path Specifications >	+
< Full Row Reference >	
< Map Data Specifications >	
< Row ID Specifications >	
Full Row Reference: (0/2)	
{%row} =  ^Docstaff("DOCSTAFF",3,{Address},{Docstaff})	
+-----------------------------------------------------------------------------+

...Map Definition            Inquiry Mode           Press <PF1><PF3> For Help 

 Advanced 
 Options  
16-24 Open M with SQL Data Dictionary Guide



Changing the Global Name in a Default Physical Structure
Changing the Global Name in a Default Physical 
Structure

The default global in which a base table's data will be stored according to default 
physical structure is ^mdata. You can change the name of this global.

Caution: Do not change the global name once you have entered data 
into this base table.

InterSystems recommends that you change the name of this global to match the 
name of the base table. It is much easier to work with the data in a table when it is 
contained in its own separate, easily identified, global. (If portability across sys-
tems is an issue, you may wish to limit your global field names to 8 characters.)

Procedure To change the name of the global holding a base table's data:

1. At the Base Table Definition master window, move the cursor to the <Physi-
cal Structure> branching field and press <RETURN>.

You see the Default Physical Structure window, with the cursor at the File 
name field.

2. Press <Erase Field> to remove the default global name, ^mdata.

3. Enter the name of the global you wish to use.

For the Guides table, we use the global name, ^Guides.

4. Press <PROCEED> to return to the Base Table Definition master window.
Open M with SQL Data Dictionary Guide 16-25



Chapter 16—Default Physical Structure
Changing a Global’s System or Directory

Open M with SQL supports the use of extended global syntax when specifying 
the file name for the master map of a base table that uses default physical struc-
ture. Extended global syntax lets you store a global on a system and/or in a direc-
tory other than the current one.

Base tables that share the same global are in the same namespace. For further 
information on globals and namespaces, refer to the Open M/SQL System Man-
agement Guide.

To specify a file name for the master map, go to the Base Table Definition win-
dow and press <RETURN> on the <Physical Structure> action field. You see the 
Default Physical Structure window. At the File Name field you specify the global 
file name for the master map. By default, this is ^mdata (or ^*parent). Here you 
may specify extended global syntax to store the master map on another system 
and/or in another directory. The following are examples of extended global syn-
tax:

On ISM systems:

^[“/usr/msql/dir”]myglobal

or

^[“herman”,”usr/msql/dir”]myglobal

On DSM or MSM systems:

^[“ISC”,”VOL”]myglobal

On DTM systems:

^[“NAMESPACE”]myglobal

These extended global references are shown in bracket syntax; there is also an 
environment syntax, which uses vertical bar characters. See “Extended Global 
Reference” on page 18-11 in Chapter 18, Creating a Customized Map Definition 
16-26 Open M with SQL Data Dictionary Guide



Updating Default Physical Structure
Updating Default Physical Structure

At Version F.10, InterSystems has improved the default structure for Base Tables. 
Previously, importing default structured Base Tables could have resulted in 
orphaned data. The new default structure eliminates this problem by using the 
Base Table name at the time of table creation as the first subscript and the column 
number as the second subscript.

The general global structure for maps created under default physical 
structure is as follows:

Example The Default Structure Base Table named “PATIENT” with one index on 
{DateOfBirth} (column 3) would be mapped with the following Master Map 
and Index Map:
^mdata("PATIENT",0,{Patient})
^mdata("PATIENT",3,{DateOfBirth},{Patient})

Old Global Structure for Default Structure Tables (prior to Version F.10)

Master 
map

^mdata(irn,0,{RowID})=field1^...^fieldn

Index map ^mdata(irn,indn,{indexfld1}[,{indexfld2}, 
...,{indexfldn}],{RowID})=""

New Global Structure for Default Structure Tables (Version F.10 and subsequent)

Master 
map

^mdata(TableName,0,{RowID})=field1^...^fieldn

Index map ^mdata(TableName,col,{indexfld1}[,{indexfld2}, 
...,{indexfldn}],{RowID})=""

Parameter Meaning

TableName Base Table name at the time of table creation

RowID Value of the RowID for the Base Table

fieldn Value of the field(s) defined in the Base Table

col Column number of the field in the index map

indexfldn Fields to index
Open M with SQL Data Dictionary Guide 16-27



Chapter 16—Default Physical Structure
There are two ways to update your global structure to the new format: 

1. Select Recreate all Default Structure Maps from the Data Dictionary 
menu. This recreates maps for all default structure Base Tables in the 
current database. 

2. Select the Recreate Structure menu item on the Default Physical 
Structure window in your Base Table definition. This applies the new 
structure to tables individually.

  ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M Developer 
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
  
  ÚÄÄÄÄÄÄÄÄÄÄÄData DictionaryÄÄÄÄÄÄÄÄÄÄÄ¿  
  ³                                     ³  
  ³ Base Table Definition               ³  
  ³ View Definition                     ³  
  ³ Compile a Table                     ³  
  ³ Copy a Base Table Field             ³  
  ³ Copy a View                         ³  
  ³ Change View's Starting Table        ³  
  ³ Recreate all Default Structure Maps ³  
  ³ Populate Index Maps for a Table     ³  
  ³ Reports on Data Dictionary          ³  
  ³                                     ³  
  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ  
                                           
                                                   Directory: /isc/patient/   
 Wednesday Sep 04, 1996           Copyright (c) 1993 - InterSystems Corporation

Data Dictionary  09:00AM                                   Press <Help> For Help

Press <RETURN> to recreate the structures of all default structure tables.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄBase Table DefinitionÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³                                                                  ³
³ Base Table Name              Description                         ³
³ RoomNo___________________    Room Number________________________ ³
³                                                                  ³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄDefault Physical 
StructureÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³                                                                              ³
³                                                                              ³
³    File name ^mdata_________________________                                 ³
³                                                                              ³
³                                                                              ³
³                      <  Fields to Index  >                                   ³
³                                                                              ³
³                      < Examine Structure >                                   ³
³                                                                              ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 

...Default Physical Structure                           Press <Help> For Help

Recreate Structure
16-28 Open M with SQL Data Dictionary Guide



Updating Default Physical Structure
You are prompted to confirm the map structure recreation. Enter ‘OK’ to recreate 
the global structure for your default structure table(s). 

Warning: If you recreate the structure of a table, you must also modify 
any existing globals containing data for that table. Once a 
table’s structure has been recreated, it cannot be reversed 
to the original format.

Compile the base table. See “Compiling a Base Table” on page 5-17 in Chapter 5, 
Defining a Base Table .

WARNING:
     Recreating the structure of this table can change the map
     definitions for this table in such a way that any existing
     data in this table may be lost.
     You must confirm your decision to recreate the map structures
     of this table by typing 'OK' at the prompt below.
          Type 'OK' to continue, anything else to quit:
Open M with SQL Data Dictionary Guide 16-29



Chapter 16—Default Physical Structure
16-30 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
CHAPTER

17
Relational Definition of an M 
Database
This chapter describes how to design and define a relational definition of an 
existing or planned M database.  It then provides an overview describing how to 
define the maps for each base table you define in the relational definition.  The 
topics covered are:

 n Overview of Creating a Relational Definition  page 17-2
 n Checklist for Creating a Relational Definition  page 17-4
 n Steps 1-12 from Checklist page 17-5
 n Example Using Enhanced ^SAMPLE Global  page 17-19
 n Example Using ^ACCT Global  page 17-22
 n Example Using ^FLAVORS Global  page 17-29
nary Guide 17-1



Chapter 17—Relational Definition of an M Database
Overview of Creating a Relational Definition

The Open M with SQL Data Dictionary provides features that allow you to 
define a relational definition of almost any M global database structure.  This 
capacity allows you to retain your investment in existing data.  And although 
InterSystems recommends that you use default physical structure for new appli-
cation, you can use customized physical structure if you wish. 

Existing M Database

If you have an existing M database, you can create a relational definition of it by 
examining its structure.  This chapter helps you in that process.  Once you design 
the relational definition — base tables and views — you define them in the Data 
Dictionary.  You must use customized mapping to describe the location of the 
base tables in your existing M database.

You Can Continue Using Existing M Applications

After you define a relational definition of an existing M database in the Data Dic-
tionary, you can continue to use your existing M applications with your database.  
Then, at your convenience, you add SQL code to your current applications to 
take advantage of data control you provide within the Data Dictionary base table 
definitions.  You can also create a new user interface to your application consist-
ing of menus, forms and reports you create using the Open M with SQL applica-
tion development environment.

New M Database

InterSystems recommends that you use default physical structure when you cre-
ate a new application.  However, the Data Dictionary provides the flexibility to 
allow you to design your own M global structure, if you wish.

Examples

As we discuss the steps involved in creating a relational definition of a global, we 
use a simple global, ^SAMPLE.  
17-2 Open M with SQL Data Dictionary Guide



Overview of Creating a Relational Definition
At the end of the chapter, we provide three examples of process of creating a rela-
tional definition of an M database using the following globals:

 n Enhanced ^SAMPLE We change this global so it contains a designative ref-
erence.

 n ^ACCT This global contains nested characteristic relation-
ships, a Row ID which is a meaningful data value, constant subscript values, 
data as pieces of node value, null values in nodes, and indices using efficient 
lookup technology.

 n ^FLAVORS This global illustrates a row which is a piece of node 
value.
Open M with SQL Data Dictionary Guide 17-3



Chapter 17—Relational Definition of an M Database
Checklist for Creating a Relational Definition

The following checklist specifies the steps you perform to create a relational def-
inition of an existing or planned M database using the Data Dictionary.  A 
description of each step appears later in this chapter.  For some steps, this chapter 
gives full details.  For the mapping steps, this chapter refers you to Chapter 18, 
Creating a Customized Map Definition .

Relational Definition Checklist
Step Required? Action

p 1. Yes Design the Relational Definition. See “Step 1: Design a Rela-
tional Definition” on page 17-5.

Then, define each base table in the relational definition:

p 2. Yes Create the base table. See  “Step 2: Create a Base Table” on 
page 17-9.

p 3. Optional Edit the Row ID field(s). Optional, can accept system-gener-
ated default. See “Step 3: Edit Row ID Field(s)” on page 17-10.

p 4. Yes Define one data field. See “Step 4: Define One Data Field” on 
page 17-13.

p 5. Yes Create preliminary Master Map for fields you’ve defined so far. 
)Optional if using default physical structure, otherwise 
required). See “Step 5: Create Preliminary Master Map” on 
page 17-13. 

p 6. Recom-
mended

Test Master Map Access Path Specifications with a query. See 
“Step 6: Test Access Path Specifications” on page 17-14.

p 7. Yes Define the remaining base table fields. See  “Step 7: Define 
Remaining Base Table Fields” on page 17-16.

p 8. Yes Complete your Master Map definition.Chapter 18, Creating a 
Customized Map Definition .

p 9. Optional Create Index Maps. See Chapter 18, Creating a Customized 
Map Definition .

p 10. Optional Create Conditional Maps. See “Step 10: Create Conditional 
Maps” on page 17-17.

p 11. Recom-
mended

Test each map definiton with a query. 

p 12. Yes Complete base table definition. See “Step 12: Complete Base 
Table Definition” on page 17-19.
17-4 Open M with SQL Data Dictionary Guide



Step 1: Design a Relational Definition
Step 1: Design a Relational Definition

An M database consists of globals.  A global is a sparse, subscripted array, which 
holds an application's data.  It has three components:

 n Global name
 n Subscripts (optionally)
 n Value (which might be null)

The syntax for a global reference is:

^Global_name(subscript1,subscript2...,subscriptn)=value

To design a relational definition of a global, you need to:

 n Examine the global

This will allow you to identify fields and potential base tables.

 n Understand the application which creates and uses this global.  

This will allow you to determine whether you need multiple tables, whether 
there is a designative reference or characteristic relationship between tables, 
and decide on descriptive field names.

Example The ^SAMPLE global contains the following data:

^SAMPLE("Jones,Judy")="18Jan51"
^SAMPLE("Rapp,Jeff")="11Dec51"
^SAMPLE("Stone,Jed")="30Aug66"

Identify Potential Tables

A global will always have at least one base table associated with it.  The excep-
tion is an index global.

To identify base tables, look for patterns in the global.  Patterns can represent 
repeating data, which you can define as a field in a base table.   For instance, you 
have seen patterns in the ^SAMPLE global, such as subscript values being 
names.  If there is lots of data a a particular global node, you might define a sepa-
rate table for that node.

The term field refers to a field you define in the relational definition of the global.  

Ignore Indexes

Do not be concerned with globals or global nodes which are indexes at this time.  
You can recognize index globals because they will contain data that exists else-
where in the global or in another global.  Often, an index node has no value.
Open M with SQL Data Dictionary Guide 17-5



Chapter 17—Relational Definition of an M Database
Indexes are handled as non-Master Maps in base table definition.  These are 
called Index Maps.

Subscripts of Similar Type

Look at the values of a particular subscript.  If its value changes, but all values 
are of a similar type, you may have the Row ID, or part of the Row ID, for a base 
table.

Example The ^SAMPLE global has a subscript which contains repeating data, which 
appear to be people's names.   

Numeric Subscripts and Multi-Line Fields

Numeric subscripts which increment by one from node to node are often used to 
store data which spans multiple lines.  Two types of multi-line storage are 
directly supported by Open M with SQL, as described in Chapter 6, Defining 
Base Table Fields . 

Values of Similar Type

Look at the values of a node of a given subscript level.  Does it contain different 
values of similar type?  If so, this may be a field or fields in a row of data in a 
base table.

Example The value of each node in the ^SAMPLE global is a date.

Identify Characteristic Relationships

Once you identify fields, you need to clarify whether the fields all belong in one 
base table, or in several tables that share a characteristic relationship or designa-
tive reference.  See “Example Using ^ACCT Global” on page 17-22.

Known vs. Unknown Number of Values

If you have identified a repeating node value which will be a base table field, you 
need to know if there is an unlimited number of values that can be entered for 
that field for a given row.  Unless it is a type of multi-line structure, you need to 
create a child table to contain that field.  One value will be in each row of the 
child table, and each row will be related to one row in the parent table.  

Dependent Relationships

See if multiple instances of data are related to nodes with specific subscript val-
ues.  This is a good indication of parent-child relationships, which are defined in 
Open M with SQL as a type of implicit join called a characteristic relationship.
17-6 Open M with SQL Data Dictionary Guide



Step 1: Design a Relational Definition
Identify Fields in Each Table

Now that we have resolved the base tables in the ^SAMPLE global, we can pin 
down the fields in its one base table.  We will need to look at the application to 
help us with this.

We will enclose the names we give fields in our sample base tables in curly 
brackets, as you do when referencing fields during customized mapping.

Example We have determined that the ̂ SAMPLE global has two data fields, which we will 
call {Name} and {Date} for now.   We do not know what {Date} represents, so 
we need to examine the application which populates ^SAMPLE.  It turns out that 
it represents date of birth.  We can create one base table for this global.  We will 
call it Birthdays, and we will now call the {Date} field {DOB}.

Identify Designative References

Look for nodes which contain pointers to a global subscripts and/or value.  If the 
pointer is a complete Row ID for one of the tables you have identified, you can 
define such a structure as a designative reference.  See “Example Using 
Enhanced ^SAMPLE Global” on page 17-19.

NULL Values in Fields

Once you have identified fields in the base table, you need to understand the 
meaning of the data in the fields, particularly if some nodes have no data (are 
NULL).

Identify the Row ID of Each Table

The Row ID completely identifies one row in a base table.  You first need to 
determine what comprises a row of data: is it a node value, or a node value and 
all subsequent subscript node levels, or is it a piece of node value?  You then 
determine which field or fields represent the Row ID: that is, uniquely identify 
the row.  Normally, you will base it on subscript values and possibly piece 
counters.

If the Row ID is based on other fields, the Row ID field itself does not really have 
a one-to-one match with some part of the global.  However, the fields that com-
prise it do.  The fields that comprise the Row ID do not have to be unique; how-
ever, their combination must be unique.

Some of the ideas discussed in this section might not be clear immediately. They 
will become clear once you learn how to map the specific Row ID structure in 
Chapter 18, Creating a Customized Map Definition .
Open M with SQL Data Dictionary Guide 17-7



Chapter 17—Relational Definition of an M Database
Full Row is Global Node Value

Generally, the Row ID field or fields are subscripts which identify the global 
node which is the Full Row Reference. In that case, all other fields are pieces of 
that node's value, or of a lower level subscript of that node, unless you define 
computed fields which are always equal to the results of the computation when 
defining base table fields. See “Two Types of Computed Fields” on page 6-42 in 
Chapter 6, Defining Base Table Fields .

Example In the ^SAMPLE global, a row is the value of the node.

Full Row Contains a Constant Subscript

Sometimes, there will be a subscript in the global which is a constant. This sub-
script is not part of the Row ID definition, because it does not vary and does not 
contribute to uniqueness. Rather, it is used when defining field locations during 
mapping, at the Map Data Specifications window. See Chapter 18, Creating a 
Customized Map Definition .

Example The Row ID of the following global is comprised of the subscripts A and C. 

^SampGlob(A,"B",C)=data1^data2

Remember, A and C do not need to be unique. However, their combination must 
be.

Full Row is Subscript

Rarely, a table consists of only one field, which is a subscript in the global. This 
field then doubles as the Row ID.

Full Row is a Delimited Piece of Node Value

Sometimes, a row is one piece of a node value, separated by delimiters. This is a 
case where the Row ID must include a field which is not actually in the global. 
Open M with SQL manages this special field as a piece counter. See “Step 3: Edit 
Row ID Field(s)” on page 17-10 to learn how to define the piece counter field. 
See “Step 4: Define Standard Access Path Specifications” on page 18-14 in 
Chapter 18, Creating a Customized Map Definition , to learn how to use this field 
when describing the final Access Level.

Full Row is an Undelimited Piece of Node Value

Sometimes, a row is an undelimited part of a node value, in which case you will 
use the M $EXTRACT command to describe how to retrieve a row. See “Step 4: 
Define Standard Access Path Specifications” on page 18-14 in Chapter 18, Cre-
ating a Customized Map Definition .
17-8 Open M with SQL Data Dictionary Guide



Step 1: Design a Relational Definition
Complex Global Structures

Some global structures are more complex than our sample globals. For instance, 
data may be kept in more than one global. Open M with SQL can handle such 
structures in Map Definition. See Chapter 18, Creating a Customized Map Defi-
nition .

Step 2: Create a Base Table

Create one of the base tables in your relational definition. 

Define Child Tables

Be certain not to create tables which are child tables directly. Rather, first create 
them from their parent table by selecting the Implicit Joins horizontal menu 
option at the Base Table Definition master window. See “Defining a Child Table” 
on page 5-11 in Chapter 5, Defining a Base Table .

Define Fields Using Default Physical Structure

It is more straight-forward to change to customized mapping right at the start of 
base table definition, which is the strategy we use in this guide.

However, if you are mapping to a simple global structure, you can define fields 
while using default physical structure. This causes Open M with SQL to automat-
ically enter all fields in the Master Map. You will need only to delete and re-enter 
the mapping for each field. 

Procedure To create a base table:

1. Name and describe the table.

See “Defining a Base Table” on page 5-4 in Chapter 5, Defining a Base Table 
.

2. Enter N at "Use Default Physical Structure?

3. Define characteristic (parent/child) relationships.

See “Defining a Child Table” on page 5-11 in Chapter 5, Defining a Base 
Table .
Open M with SQL Data Dictionary Guide 17-9



Chapter 17—Relational Definition of an M Database
Step 3: Edit Row ID Field(s)

Open M with SQL automatically creates a Row ID field (or fields, in the case of 
child tables) whether or not you are using default physical structure. Rarely will 
the Row ID of an existing M database match the default Row ID definition.   

You learned how to determine the Row ID for a base table in “Identify the Row 
ID of Each Table” on page 17-7. You usually need to edit the Row ID field or 
fields Open M with SQL creates to match the actual Row ID of your base table.

Change to Customized Structure Before Editing Row ID Field and 
Mapping

If you started by generating a default physical structure, you need to change the 
response at Use Default Physical Structure? on the Base Table Definition master 
window from No to Yes before you can edit the Row ID field or create the base 
table's customized map definitions.

Default Row ID Field in Non-Child Tables

Open M with SQL automatically creates a single Row ID field for all non-child 
tables, whether or not you start your base table creation with default or custom-
ized physical structure. Its field name is the base table name, its data type is Row 
ID, and  its maximum length is 16. None of these values are modifiable. The Row 
ID field also has the following modifiable values, with the defaults shown here:

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Accounts_________________    accounts base table________________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Accounts____________________   Accounts Row ID______________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? No__                                           |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? No__                    Number___________________        |
|                                                                              |
|    Fields   ________________________________________                         |
|    (0/)     ________________________________________                         |
|                                                                              |
|                                                                              |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type                                 Press <PF1><PF3> For Help 
17-10 Open M with SQL Data Dictionary Guide



Step 3: Edit Row ID Field(s)
Default Row ID Fields in Child Tables

You initially create a child table during parent base table definition.  At that time, 
Open M with SQL asks if you want to use default physical structure.  Answer No.

Open M with SQL automatically creates two fields in the child table: the Row ID 
field and the parent reference field.  The Row ID field of a child table has the fol-
lowing modifiable values, with the defaults shown here:

You need to add fields to complete the definition of the Row ID and update the 
definition of the Row ID field.

Row ID Field is a Single Data Field

Often, the Row ID field in an existing M database contains meaningful data, 
often of a non-numeric type.  In this case, you need to enter the Row ID Data 
Type window and:

 n Indicate that the Row ID is displayable.  
 n Define the Auxiliary Data Type to reflect the type of its data.  

Example When we create the Birthdays base table, we will edit the definition of the Row 
ID field, which Open M with SQL names {Birthdays}.  We change its name to 
{Name}.  At the Row ID Data Type window, we define it as a displayable field 
and give the field the auxiliary data type Name.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| child____________________    ___________________________________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| child_______________________   child Row ID_________________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? ____                                           |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? Yes_                    _________________________        |
|                                                                              |
|    Fields   parent__________________________________                         |
|    (0/2)    childsub________________________________                         |
|                                                                              |
|parent.parent || child.childsub                                               |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type         Inquiry Mode            Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 17-11



Chapter 17—Relational Definition of an M Database
Full Row is a Delimited Piece of a Global Node

If a full row is a delimited piece of a global node, you need to define a special 
field that is one of the fields on which the Row ID is based.  Open M with SQL 
uses this field as a piece counter when accessing rows of data in a loop.  You then 
use this field when you define the final Access Level in your master map.  See 
“Step 4: Define Standard Access Path Specifications” on page 18-14 in Chapter 
18, Creating a Customized Map Definition .

Procedure To create a piece counter field as part of Row ID:

1. Add a field named "Piece_Counter" or some similar descriptive name.

2. Make it Data Type Number, with no decimal places, of format type 1.

3. Enter N at Unique Field?

4. Save the field definition.

5. Select the Row ID field.

6. Press <RETURN> at the Data Type field.

You see the Row ID Data Type window.

7. Enter Yes at "Is this Row ID Based on Other Fields?".

8. Add the piece counter field to the list of fields on which the Row ID is based.

9. Save the Row ID field definition.
17-12 Open M with SQL Data Dictionary Guide



Step 4: Define One Data Field
Step 4: Define One Data Field

It is wise to test your Row ID field definition and mapping before defining and 
mapping all fields in the base table.  In order to test the mapping of your Row ID 
fields (which you define in Access Path Specifications), you must define one data 
field. Follow the steps in Chapter 6, Defining Base Table Fields .

Step 5: Create Preliminary Master Map

Each base table has one and only one Master Map.  It defines access to all rows in 
a base table, and all stored fields in each row.  It defines the location of these 
fields in your M database.  Once you have defined the fields in your base table, 
you can create the Master Map definition.  

You Must Define Row ID

The data in the Master Map is stored by Row ID.  To access the data for a partic-
ular row in the Master Map, you must identify the Row ID of the row.  Con-
versely, the Row ID is all you need to access that row.

A Master Map Cannot Be a Conditional Map

You may not define the Master Map to be a conditional map, since conditional 
maps only contain some rows from a base table, whereas the Master Map con-
trols the insertion of all rows added to the base table.

How to Create a Preliminary Master Map

To create the preliminary Master Map, you must define:

 n Name of Master Map
 n Global name
 n Access Path Specifications, possibly including:

 • Special Access Code 
 • Additional Data Access Variables

 n Full Row Reference
 n Row ID Specifications
 n One data field in Map Data Specifications

To learn how to accomplish the above, see Chapter 18, Creating a Customized 
Map Definition .  Be sure to note any issues that pertain specifically to the Master 
Map.
Open M with SQL Data Dictionary Guide 17-13



Chapter 17—Relational Definition of an M Database
Step 6: Test Access Path Specifications

It is always wise to test your Access Path Specifications before defining the loca-
tion of all fields based on those specifications.  You do this by defining and run-
ning an SQL query.

Note: You must compile your base table before you can use it as a 
data source for forms or reports.

Procedure To define a query to test Access Path Specifications:

1. Go to the Open M with SQL Main Menu.

2. Select the option Queries.

3. Select the option Define Queries.

You see the Query Definition row selection window.

4. Enter a name for your query at the Query Name prompt, such as 
TEST_basetablename.

5. Enter a description of the query.

You see the Query Definition master window.

6. In the SELECT field, enter the name of the one data field whose location you 
defined in Map Data Specifications in Step 9.

7. In the FROM field, enter the name of the base table.

8. Move the cursor to the Run this Query? field, enter Yes and press 
<RETURN>.

9. Press <RETURN> to accept the default "No" at the prompt "Compile in the 
background? No_" on the message line.

 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Query Definition−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                                                                              
   Query Name _______________   Description ______________________________    
                                                                              
   Select  __________________________________________________________________ 
   (2/1)   __________________________________________________________________ 
                                                                              
   From    _________________________   (one table name per line)              
   (1/3)  _________________________                                                                                                                               

  Order By __________________________________________________________________ 
   (0/0)   __________________________________________________________________ 
                                                                            
                                                                              
17-14 Open M with SQL Data Dictionary Guide



Step 6: Test Access Path Specifications
10. In the Device: prompt at the Device Selection window, enter the device to 
which you want Open M with SQL to send the output, or press <RETURN> 
to print output to your terminal.

11. Press <RETURN> at the remaining Device Selection fields, then <PRO-
CEED>.

Open M with SQL will send the output to the screen or device you selected.  
You can verify that the data is being retrieved as you expect.

12. Press <GETOUT> when you are done examining your data.

You return to the Query Definition window.

13. Press <Delete Row> to delete the query.

Example The Query Definition to test the Access Path Specifications for the Birthdays 
base table is shown below.  We defined the location of the field {DOB}.

The next window shows the output from this query:

 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Query Definition−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
                                                                              
   Query Name Birthdays______   Description ______________________________    
                                                                              
   Select  DOB_______________________________________________________________ 
   (0/1)   __________________________________________________________________ 
                                                                              
   From    Birthdays_______________________________ (one table name per line) 
  (0/1)    ________________________________________                           
                                                                              
   Where   __________________________________________________________________ 
  (0/)     __________________________________________________________________ 
                                                                              
                                                                              
  Order By __________________________________________________________________ 

Birthdays Row ID           DOB                                                 
-------------------------  -------                                             
                                                                               
Jones,Judy                 18Jan51                                             
Rapp,Jeff                  11Dec51                                             
Stone,Jed                  30Aug66                                             
Open M with SQL Data Dictionary Guide 17-15



Chapter 17—Relational Definition of an M Database
Step 7: Define Remaining Base Table Fields

Once you have determined that your preliminary Master Map definition is suc-
cessful, you return to the Base Table Definition form and define the remaining 
fields.  See Chapter 6, Defining Base Table Fields , for details on this process.

Some Fields You Define May Not Be in M Database

The Master Map defines where in your existing M database the data in the fields 
is located.  The Master Map should define a location for all fields in your table 
except:

 n Computed fields which are always equal to the results of the computation 
(see“Two Types of Computed Fields” on page 6-42  in Chapter 6, Defining 
Base Table Fields ).

 n Piece counter fields you create when a full row is a piece of a node value

Step 8: Complete Master Map Definition

Complete your Master Map definition by entering the names of the remaining 
data fields at the Map Data Specifications window and defining their location in 
your M database.  See “Step 9: Define Map Data Specifications” on page 18-45 
in Chapter 18, Creating a Customized Map Definition .

Step 9: Create Index Maps

Perhaps your M database contains global structures which are indexes to speed 
access to portions of your data.  If so, you can define these global structures in 
Index Maps when mapping the base table which contains the fields in the index.

To learn how to define an Index Map, see Chapter 18, Creating a Customized 
Map Definition .  Be sure to read the notes that pertain specifically to the creation 
of Index Maps.

Row ID Must Exist in Global Index Structure

When you define an index map, the Row ID of the Master Map must be identi-
fied by the subscripts and field data stored in the Index Map, as specified in the 
Row ID Specifications window.  (See “Step 8: Edit Row ID Specifications” on 
page 18-43 in Chapter 18, Creating a Customized Map Definition .)

If all fields required to form the Row ID are not present in the index global struc-
ture and they cannot be computed from index information, then the structure does 
not qualify as an Index Map for the table.
17-16 Open M with SQL Data Dictionary Guide



Step 10: Create Conditional Maps
Step 10: Create Conditional Maps

Perhaps your existing M database contains a structure which contains only a sub-
set of rows and/or fields in one of the base tables you define.  In other words, it 
holds only those rows, or fields of those rows, which meet a certain condition.  
These maps are called Conditional Maps.  Conditional Maps are a special form of 
Index Map.

To learn how to define an Index Map as a Conditional Map, see “Step 11: Define 
an Index Map as a Conditional Map” on page 18-58 in Chapter 18, Creating a 
Customized Map Definition .  

Step 11: Test Your Map Definitions

When you complete a map definition, it is wise to test it again prior to compiling 
the base table.  You may want to try a more rigorous query which includes a con-
dition.

Example This query selects only some fields and includes a condition:

SELECT field_a,field_k
FROM table
WHERE field_c=<value>

Procedure To define a query to test a customized map definition:

1. Go to the Open M with SQL Main Menu.

2. Select the option Queries.

3. Select the option Define Queries.

You see the Query Definition row selection window.

4. Enter a name for your query at the Query Name prompt, such as 
TEST_basetablename.

5. Enter a description of the query.

You see the Query Definition master window.

6. To test the Master Map, enter "*" (an asterisk without the quotes) in the 
SELECT field.

This will cause Open M with SQL to display all fields in the table.  As a 
result, it will use the Master Map definition, since that is the map which han-
dles all fields in the base table.
Open M with SQL Data Dictionary Guide 17-17



Chapter 17—Relational Definition of an M Database
If there are many fields, you may have one of the following problems:

 • The column headings and data will wrap, which could make the output 
difficult to read.  

 • The query won't compile.

In this case, it may make sense to define several queries, and actually name 
the 4 or 5 fields you want displayed in each.

7. To test an Index Map, select all the fields in that Index Map and no other 
fields.

This does not guarantee that the Open M with SQL Query Optimizer will use 
the index map to locate the fields; however there is a good chance that it will.

8. In the FROM field, enter the name of the base table.

9. In the WHERE field, add a condition.

10. Move the cursor to the Run this Query? field, enter Yes and press 
<RETURN>.

11. Press <RETURN> to accept the default "No" at the prompt "Compile in the 
background? No_" on the message line.

12. In the Device: prompt at the Device Selection window, enter the device to 
which you want Open M with SQL to send the output, or press <RETURN> 
to print output to your terminal.

13. Press <RETURN> at the remaining Device Selection fields, then <PRO-
CEED>.

Open M with SQL will send the output to the screen or device you selected.  
You can verify that the data is being retrieved as you expect.

14. Press <GETOUT> when you are done examining your data.

You return to the Query Definition window.

15. Press <Delete Row> to delete the query.
17-18 Open M with SQL Data Dictionary Guide



Step 12: Complete Base Table Definition
Step 12: Complete Base Table Definition

Now you can complete your base table definition: lookups, approximate number 
of rows, base table validation, base table triggers, routine name prefix.  You then 
compile your table.  These are Steps 5, 8, 9, 10, 12 and 13 from the Base Table 
Definition Checklist in Chapter 5, Defining a Base Table .  

If you have done your mapping in such a way that Open M with SQL does not 
generate automatic filing code for some fields in the table, you now enter over-
ride filing code on a field level in Base Table Triggers for those fields.

Example Using Enhanced ^SAMPLE Global

We will now enhance the ^SAMPLE global in order to illustrate how to identify, 
define and map designative references.  Let's say we want to keep track of the 
astrological sign of each of our friends.  Since this information would be very 
repetitive -- many people will share the same sign of the zodiac -- it makes sense 
to store the signs in a separate ^ZODIAC global and then add a pointer field in 
the ^SAMPLE global.  

Description of Enhancement

We create a global called ^ZODIAC.  The complete data it holds looks like this:

^ZODIAC(1)="Aries"
^ZODIAC(2)="Taurus"
^ZODIAC(3)="Gemini"
^ZODIAC(4)="Cancer"
^ZODIAC(5)="Leo"
^ZODIAC(6)="Virgo"
^ZODIAC(7)="Libra"
^ZODIAC(8)="Scorpio"
^ZODIAC(9)="Sagittarius"
^ZODIAC(10)="Capricorn"
^ZODIAC(11)="Aquarius"
^ZODIAC(12)="Pisces"

We add a piece to the value of each ^SAMPLE global node.  This piece contains 
the subscript of the node in ^ZODIAC which contains the sign of the person 
whose name is the subscript of the node in ^SAMPLE.  For example:

^SAMPLE("Rapp,Jeff")=30Aug66^6
Open M with SQL Data Dictionary Guide 17-19



Chapter 17—Relational Definition of an M Database
Identify Potential Tables

Subscripts and Values of Similar Type

The information in the ^ZODIAC global clearly lends itself to being defined a 
separate table, which we can call Zodiac.  

Identify Fields in Each Table

The Zodiac base table contains two fields, described in the table below.

The Birthdays table now contains one additional field.

Identify Designative References

The new field {Sign_DOB} in the table Birthdays is a designative reference to 
the table Zodiac, because it contains the full Row ID of that table.

Identify the Row ID of Each Table

We already know the Row ID of the Birthdays table is a person's name, which is 
the value of its one subscript.

Full Row is Global Node Value

In the Zodiac table, the data is a node value in the ^ZODIAC global.  Therefore, 
the Row ID is the value of the global's one subscript, which is an integer from 1 
to 12.

Create a Base Table

We need to create the new base table, Zodiac.

Table 17-1:  Zodiac Table

Field Name Description

{Zodiac} Subscript value, which is an integer from 1 to 12.

{Sign} A sign of the zodiac.

Table 17-2:  Birthdays Table

Field Name Description

{Sign_DOB} A pointer to the sign of the zodiac associated with a per-
son's date of birth.
17-20 Open M with SQL Data Dictionary Guide



Step 12: Complete Base Table Definition
Edit Row ID Field

{Zodiac}, the Row ID of the ZODIAC table, matches the default Row ID created 
by Open M with SQL, so we don't need to edit its field definition.

Define One Data Field

We define the field {Zodiac} as a text field.

We edit the definition of the base table Birthdays by adding the field definition 
for {Sign_DOB}.  We define its data type as designative reference.  The desig-
nated table is Zodiac, which we must have already created.

Create Master Map

See Chapter 18, Creating a Customized Map Definition , for information on how 
to create a Master Map.

Zodiac Table

Use {Zodiac} to define the Access Path Specifications for the Zodiac table.  
Enter Sub as the Access Type and enter {Zodiac} as the Value Expression for 
Acces Level 1.

Define {Sign} in Map Data Specifications by simply entering the name of the 
field.

Edit Map for Birthdays

Edit Map Data Specifications.  {DOB} is now Piece 1, with a delimiter of "^".  
{Sign_DOB} is Piece 2, with a delimiter "^".
Open M with SQL Data Dictionary Guide 17-21



Chapter 17—Relational Definition of an M Database
Example Using ^ACCT Global

We use the ^ACCT global to illustrate a number of structures the Data Dictionary 
handles, including the following:

 n Data as pieces of pieces of node value (Invoice_Date and Payment_Date) 
 n Constant subscripts ("Phone")
 n Limitations on Access Path Specifications
 n Indexes (The "CITY" and "n" nodes)
 n Storing index data in ALPHAUP format
 n Nested child tables 

Description of ^ACCT Global

Syntax

The ^ACCT global contains three subscript levels and six types of nodes.  These 
nodes are:

^ACCT(account_number)=City^Account_Name
^ACCT(account_number,"Phone")=Phone_Number
^ACCT(account_number,invoice_number)=Invoice_date:Payment
_Date^Total
^ACCT(account_number,invoice_number,item_number)=Quantity
^Item_Name^Cost
^ACCT("CITY",City,account_number)=""
^ACCT("n",Account_Name)=account_number^Account_Name
17-22 Open M with SQL Data Dictionary Guide



Example Using ^ACCT Global
Sample Data

Below is some sample data in the ^ACCT global:

^ACCT(100)=Butte^Communications Consultants
^ACCT(100,"Phone")=222-3333
^ACCT(100,1000)=55740:55759^1000.00
^ACCT(100,1000,1)=100^Paper Clip^100.00

      2)=100000^White Lined Paper^900.00
^ACCT(100,2000)=55496:^1.00
^ACCT(100,2000,1)=1^Paper Clip^1.00
^ACCT(200)=Los Angeles^Clean Air Lovers
^ACCT(200,1)=55708:55730^10.00
^ACCT(200,1,1)=3^Smog (cubic yds)^10.00
^ACCT("CITY","Butte",100)=""
^ACCT("CITY","Los Angeles",200)""
^ACCT("n",CLEANAIRLOVERS")=200^Clean Air Lovers
^ACCT("n",COMMMUNICATIONSCONSULTANTS")=100^Communications 
Consultants

Note that the date fields (Invoice_Date and Payment_Date) are stored in the same 
format as the 5-digit $HOROLOG date value.  $HOROLOG is an M function 
which stores a number that represents the current date and time.  The first 5 digits 
represent the date.

Note also that the node with "n" as the first subscript stores Account_Name 
twice, in two different formats.  In the subscript, it is in uppercase and stripped of 
punctuation and spaces.  This is equivalent to the effect of Open M with SQL 
$$ALPHAUP function.  The format in the node value is the actual name as 
entered by a user.  When we discuss defining Access Path Specifications for 
Index Maps in Chapter 18, Creating a Customized Map Definition , you will see 
how this is useful.

Identify Potential Tables

Ignore Indexes

In the ^ACCT global, you can see that two nodes are indexes because they repeat 
account name, city and number.  The first index has a null node value; the second 
index has the Row ID as the node value.  Below are 2 sample nodes which illus-
trate the indexes in the ^ACCT global for the account "Communication Consult-
ants".

^ACCT("CITY","Butte",100)=""
^ACCT("n","COMMUNICATIONSCONSULTANTS")=100^Communications 
Consultants
Open M with SQL Data Dictionary Guide 17-23



Chapter 17—Relational Definition of an M Database
Locate Subscripts of Similar Type

The ^ACCT global has nodes with 1, 2 and 3 subscripts.  The first subscript of 
the ^ACCT global has multiple values, some of which are of similar type: inte-
gers.  (The "CITY" and "n" values are clearly different.  We identified them ear-
lier as indices.)

These first subscript integers represent account numbers.  We will define these 
nodes as a base table named "Accounts."  The nodes with two subscripts, where 
the first subscript continues to be constant and the second subscript is a number 
which varies, represent invoices of a particular account.  The second subscript 
itself is an invoice number.  We will make a base table named "Invoices."  The 
nodes with three subscripts are line items for the invoice identified by the first 
and second subscripts.  The third subscript is a line item number.  We will make a 
table named "Line Items."

Values of Similar Type

In the ^ACCT global, the value of the first level node is two pieces:

^ACCT(100)=Butte^Communications Consultants

The first piece is a city, the second a name.  These would be fields describing an 
account, which is identified by the value of the first level subscript.

Information for the "Accounts" table is found in two subscript levels of the 
^ACCT global.  An example of these nodes follows:

^ACCT(100)=Butte^Communications Consultants

^ACCT(100,"Phone")=222-3333

Identify Characteristic Relationships

In the ^ACCT global, the line item nodes make no sense without the matching 
invoice node.  Therefore, the "Line Items" table is in an existence-dependent 
relationship to the "Invoices" table.  This meets the criteria for a parent-child 
relationship, with "Invoices" being the parent table and "Line Items" being the 
child table.  Likewise, an invoice only makes sense if it is associated with an 
account.  Thus, "Invoices" is a child table of the "Accounts" table.

Identify Fields in Each Table

Accounts Table

Accounts contains four fields, described in the table below.  The entry in the 
"Value" column is from these data nodes:

^ACCT(100)=Butte^Communications Consultants
^ACCT(100,"Phone")=222-3333
17-24 Open M with SQL Data Dictionary Guide



Example Using ^ACCT Global
Invoices Table

Information in the Invoices table is found in the ^ACCT node with two sub-
scripts, as in this example node:

^ACCT(100,1000)=55740:55759^1000.00

It contains 5 fields, described in the table below.

Line Items Table

The "Line Items" table is based on the ^ACCT node with three subscripts, as in 
this example node:

^ACCT(100,1000,1)=100^Paper Clip^100.00

Table 17-3:  Accounts Table

Field Name Value Description

{Account_num} 100 Account number, which is the first-level sub-
script. 

{City_Acct} Butte City where account is located, which is the first 
piece of the node value.

{Name_Acct} Communications 
Consultants

Name of account, which is the second piece

{Phone_Acct} 222-3333 Phone number, which is the value of the node 
with second subscript "Phone"

Table 17-4: Invoice Table

Field Name Value Description

{Account_num} 100 Account number, which is the first-level subscript

{Invoice_num} 1000 Invoice number, which is the second-level sub-
script

{Invoice_Date} 55740 Date of invoice, which is the first piece within the 
first piece of the node value

{Payment_Date} 55759 Date payment received, which is the second 
piece within the first piece of the node value

{Total} 1000.00 Total amount of invoice, which is the second 
piece of the node value
Open M with SQL Data Dictionary Guide 17-25



Chapter 17—Relational Definition of an M Database
It contains 6 fields, described in the table below.

NULL Values in Fields

One node in the ^ACCT global contains a piece with a null value (between the 
colon (:) and the carat (^):

^ACCT(100,2000)=55496:^1.00

There are similar nodes which contain a date in that field:

^ACCT(200,1)=55708:55730^10.00

Research into the application indicates that the null field represent the payment 
receipt date.  The value is null until payment is received.  It will be important not 
to make this a required field in the Data Dictionary definition, since the value of 
the field is unknown at initial input and there is significance to a NULL value.

Identify Row ID of Table

Full Row is Value of Full Row Reference Node

We defined an Accounts table to describe some of the data in the ^ACCT global.  
Each row in that table is identified by the field {Account_num}, which is the 
value of the first subscript.  This is the Full Row Reference for the Accounts 
table.  Two fields in the row, {City_Acct} and {Name_Acct}, are located at that 
node. 

^ACCT(100)=Butte^Communications Consultants

Table 17-5: Line Items Table

Field Name Value Description

{Account_num} 100 Account number, which is the first-level subscript

{Invoice_num} 1000 Invoice number, which is the second-level sub-
script

{Lineitem_num} 1 Line Item number, which is the third-level sub-
script

{Qty_Ordered} 100 Quantity of item ordered, which is the first piece 
of the node value

{Name_Item} Paper Clip Name of item ordered, which is the second piece 
of the node value

{Totalcost} 100.00 Total cost of quantity of ordered, which is the 
third piece of the node value
17-26 Open M with SQL Data Dictionary Guide



Example Using ^ACCT Global
Full Row Contains a Constant Subscript

The third field in the Accounts table, {Phone_Acct}, is the value of the node one 
subscript level down, where the second subscript is the constant, "Phone":

^ACCT(100,"Phone")=222-3333

The "Phone" subscript is not part of the Row ID.  However, it is used to identify 
the location of the field {Phone_Acct}, which is 222-3333 in the above node.

Edit Row ID Fields

We created the Invoices base table as a child table of the Account base table and 
entered No at the Use Default Structure field.  Therefore, Open M with SQL cre-
ated a Row ID field and a Parent Reference field based on the Row ID of the 
Account table.  However, it did not create a childsub field.  

In the ^ACCT global, the identifier of a child row is an invoice number.  There-
fore, we create a field to identify each child row.  Instead of giving it the name 
childsub, we gave it a informative name and description, as shown below.  We 
gave it the data type Number, described as an integer, since an invoice number in 
this application is an integer number field.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Invoices_________________    Invoices for Accounts______________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Invoice_num_________________   Invoice number_______________________________ |
|                                                                              |
|        Data Type Number___________________                                   |
|                                                                              |
|        Maximum Length 16_                 Unique Field? No__                 |
|                                                                              |
|        Number of Distinct Values ________________                            |
|                                                                              |
|        Multi-Line Field? No__             < Multi-Line Options >             |
|                                                                              |
|        Computed Field? No__                                                  |
+------------------------------------------------------------------------------+

...Field Definition         Unsaved Data            Press <PF1><PF3> For Help 

  Update       Conversion/      Error/Help    Indexing    Copy     Additional 
 Features    Validation Code     Messages     Options     Field     Options   
Open M with SQL Data Dictionary Guide 17-27



Chapter 17—Relational Definition of an M Database
Open M with SQL created a standard Row ID field.  It already is based on the 
parent reference.  We must edit it to base it also on {Invoice_Num}.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Invoices_________________    Invoices for Accounts______________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Invoices____________________   Invoices Row ID______________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? No____                                         |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? Yes_                    _________________________        |
|                                                                              |
|    Fields   Accounts________________________________                         |
|    (0/2)    Invoice_num_____________________________                         |
|                                                                              |
|Accounts.Accounts || Invoices.Invoice_num                                     |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type         Unsaved Data              Press <PF1><PF3> For Help 
17-28 Open M with SQL Data Dictionary Guide



Example Using ^FLAVORS Global
Example Using ^FLAVORS Global

The ^FLAVORS global is useful to illustrate the following Data Dictionary fea-
tures to handle its structure, such as:

 n Characteristic relationship (parent-child tables)
 n Row ID is displayable and of type text
 n Each row is a "^" piece of a node value

Description of ^FLAVORS Global

Syntax

The ^FLAVORS global has one subscript level.  We can summarize the ^FLA-
VORS global as follows:

^FLAVORS(first_name)=flavor1^flavor2^flavor3

Sample Data

The first four nodes of the ^FLAVORS global look like this:

^FLAVORS("Arthur,Art")=Vanilla^Chocolate^Coffee
^FLAVORS("Boyle,Bob")=Chocolate^Coffee^Strawberry
^FLAVORS("Coyle,Cari")=Vanilla^Mint^Pistachio
^FLAVORS("Derby,Diane")=Coffee^Peach^Mocha

The ^FLAVORS global is inefficient in its current form: it contains much data 
redundancy and thus wastes space on disk.  The values Vanilla, Chocolate and 
Coffee are all stored multiple times.  A better design might be to have two glo-
bals, one which contains all flavors, and the other which contains a person's name 
and pointers to their favorite flavors in the other global.

Identify Fields and Tables

Subscripts of Similar Type

The ^FLAVORS global subscript has multiple values of similar type -- first 
name.  It can identify a row in a base table, which we will call "People."

Values of Similar Type

In the ^FLAVORS global, the value of each node is three flavors: 

^FLAVORS("Art")=Vanilla^Chocolate^Coffee
Open M with SQL Data Dictionary Guide 17-29



Chapter 17—Relational Definition of an M Database
There are two ways to define this node value relationally:

 n You can make a base table named "FavFlavors" which is a child table of 
(dependent on) the People table, since each set of flavors is associated with a 
particular name in the People table.  

 n Since there always seem to be three flavors, you could include three flavor 
fields in the "People" base table.

The next section helps you decide whether to define the ̂ FLAVORS globals with 
one or two base tables.

Identify Characteristic Relationships

Known vs. Unknown Number of Values

When we last visited the ^FLAVORS global, we were unsure whether or not to 
create two base tables.  We need to know whether:

 n Users enter a name, followed by up to, but no more than, three favorite fla-
vors, or

 n Users enter a name, followed by as many flavors as they wish

The sample data we examined showed only three flavors per person.  But to be 
sure, we must examine the data entry code in the existing or planned application.

If you learn users enter a maximum of three flavors, you add 3 flavor fields to the 
People table.  You might call them Choice_1, Choice_2 and Choice_3. 

However, if users can enter more than three flavors for a particular person, you 
need to create two tables.  The first, People, contains only the name field.  We 
will also create a second, child table, named FavFlavors.   Each row of FavFla-
vors will contain one flavor enjoyed by the person in the corresponding row of 
the People table.

We now have defined the two tables in our ^FLAVORS example: People and 
FavFlavors.  They share a characteristic relationship, with FavFlavors being a 
child table of People.
17-30 Open M with SQL Data Dictionary Guide



Example Using ^FLAVORS Global
Identify Fields in Each Table

The People table has just one field:

The FavFlavors table, which is also mapped to the ^FLAVORS global, has two 
fields we have identified so far.  These fields are described in the table below.

In the next section, which discusses how to identify the Row ID of each table, we 
will see we need to create a third field in the FavFlavors table.

Identify Row ID of Table

Full Row is Subscript

The People table has only one field, {People}.  Since there is only one field, it 
must be the Row ID field.  

Full Row is Delimited Piece of Node Value

The child table, FavFlavors, must have the same field as the People table as its 
Row ID: namely, the first name subscript.  However, since each flavor is a delim-
ited piece of the node value, you need to define a special field which is a piece 
counter.  

Table 17-6:  People Table

Field Name Description

{People} Name.  We will define this field as data type Row ID.  Since 
it contains data in the format used by the Name data type, 
we give it the auxiliary data type Name. (See Chapter 6, 
Defining Base Table Fields .)  

Table 17-7:  FavFlavors Table

Field Name Description

{Flavor} One of the favorite flavors of a person in the People table.

{People} Identifies the person associated with the flavor.  
Open M with SQL Data Dictionary Guide 17-31



Chapter 17—Relational Definition of an M Database
Edit the Row ID Field(s)

Row ID Field is a Data Field

In the People base table, the Row ID is a single, meaningful field, which is the 
person's first name.  As such, we define it as displayable, and indicate that its 
auxiliary data type is Text, as shown below:

Full Row is a Delimited Piece of a Global Node

In the FavFlavors child table, each row is a piece of a global node.  Therefore, we 
needed to change the default definition of the childsub field to reflect its role in 
the Row ID.  We named it {Piece_Counter} and changed its description.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| People___________________    People in ^FLAVORS global__________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| People______________________   People Row ID________________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? Yes_                                           |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? No__                    Name_____________________        |
|                                                                              |
|    Fields   ________________________________________                         |
|    (0/)     ________________________________________                         |
|                                                                              |
|                                                                              |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type         Unsaved Data            Press <PF1><PF3> For Help 
17-32 Open M with SQL Data Dictionary Guide



Example Using ^FLAVORS Global
We redefined its Row ID field, FavFlavors, to be based on the renamed childsub 
field, {Piece_Counter}, as well as the parent reference field, People.

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| FavFlavors_______________    People's Favorite Flavors__________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| Piece_Counter_______________   Piece Counter for Row ID_____________________ |
|                                                                              |
|        Data Type Number___________________                                   |
|                                                                              |
|        Maximum Length 16_                 Unique Field? No__                 |
|                                                                              |
|        Number of Distinct Values ________________                            |
|                                                                              |
|        Multi-Line Field? No__             < Multi-Line Options >             |
|                                                                              |
|        Computed Field? No__                                                  |
+------------------------------------------------------------------------------+

...Field Definition         Unsaved Data            Press <PF1><PF3> For Help 

  Update       Conversion/      Error/Help    Indexing    Copy     Additional 
 Features    Validation Code     Messages     Options     Field     Options   

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| FavFlavors_______________    People's Favorite Flavors__________ |           
|                                                                  |           
+----------------------------Field Definition----------------------------------+
|                                                                              |
| Field Name                     Description                                   |
| FavFlavors__________________   FavFlavors Row ID____________________________ |
+-----------------------------Row ID Data Type---------------------------------+
|                                                                              |
|    Is this Field Displayable? No__                                           |
|                                                                              |
|    Is this Row ID Based                     Auxiliary Data Type              |
|    on Other Fields? Yes_                    _________________________        |
|                                                                              |
|    Fields   Piece_Counter___________________________                         |
|    (3/2)    ________________________________________                         |
|                                                                              |
|People.People || FavFlavors.Piece_Counter                                     |
|                                                                              |
+------------------------------------------------------------------------------+

...Row ID Data Type           Unsaved Data          Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 17-33



Chapter 17—Relational Definition of an M Database
17-34 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
CHAPTER

18
Creating a Customized Map 
Definition
This chapter describes how to create customized maps for base tables (Steps 5, 8, 
9 and 10 from the ”Checklist for Creating a Relational Definition” in Chapter 17, 
Relational Definition of an M Database ). These maps point to globals in your 
existing M database or new M database design. The topics covered are:

 n Overview of Customized Map Definition  page 18-2
 n Map Definition Checklist  page 18-3
 n Field Names for Map Definition  page 18-4
 n Checklist Steps 1-11 Described page 18-5
nary Guide 18-1



Chapter 18—Creating a Customized Map Definition
Overview of Customized Map Definition

If you define a base table with custom (non-default) physical structure, you need 
to perform customized mapping for that base table. You do this at the Map Defi-
nition form, accessed from the Base Table Definition master window. For map 
definition with default physical structure, see Chapter 16, Default Physical Struc-
ture .

Once you have created all base table fields and lookups, you are ready to map the 
base table to an existing or designed M global, global node, or part of a node. 
First, you create the Master Map. You then create Index Maps. You may wish to 
create some index maps as conditional Index Maps.

This chapter contains a “Map Definition Checklist” on page 18-3 and detailed 
steps that make it as easy as possible to define customized maps for your base 
tables.

1. Make copies of the Map Definition Checklist. Use this list to check off each 
step as you define each map in your base table.

2. Each step in the checklist is described in this chapter. Read the conceptual 
information and then follow the procedure to complete the step.

Sample Globals and Base Tables

We introduced the globals, ^SAMPLE, ^FLAVORS and ^ACCT, and the base 
tables that provide a relational view to them, in Chapter 17, Relational Definition 
of an M Database . We continue to use these examples in this chapter.
18-2 Open M with SQL Data Dictionary Guide



Map Definition Checklist
Map Definition Checklist

The Map Definition Checklist specifies all the required and optional user steps in 
the map definition procedure. Optional steps are designated "Opt" in the 
Required? column; highly recommended optional steps are designated "Rec". 
There are some differences between creating a Master Map and an Index Map for 
a base table. The steps outlined in this chapter point out those differences.

Map Definition Checklist

Step Required? Action

p 1 Rec Compose a SET command that puts data into a row in the 
base table. See page 18-5.

p 2 Yes Enter the Map Definition form. See page 18-6.

p 3 Yes Enter the name of the global in which data for this base 
table is stored. See page 18-11.

p 4 Yes Define how to reach a row of data in the M global in a stan-
dard manner on the Access Path Specifications form. See 
page 18-14.

p 5 Opt If necessary, provide Special Access Code on the Access 
Path Specifications form. See page 18-29.

p 6 Opt If necessary, define Additional Data Access Variables. See 
page 18-39.

p 7 Opt If necessary, provide an override to the Full Row Reference 
Open M with SQL creates from your Access Path Specifi-
cations. See page 18-41.

p 8 Opt If necessary, edit the default Row ID Specifications Open M 
with SQL creates from your Access Path Specifications. 
See page 18-43.

p 9 Yes Define how to get to base table fields on the Map Data 
Specifications form. See page 18-45.

p 10 Opt If necessary, define override filing code for fields that 
require it. See page 18-55.

p 11 Opt If desired, define an Index Map as conditional. See page 
18-58.
Open M with SQL Data Dictionary Guide 18-3



Chapter 18—Creating a Customized Map Definition
Field Names for Map Definition

Sometimes when you are providing a map definition, you need to enter the name 
of a field in the base table. When you do this, you enclose the field name in curly 
braces, as in {City_Acct}.

If you can't remember the field names, it is useful to know that you can display a 
lookup box of legal fields by entering a space, or an open curly brace "{", and 
then typing a question mark, closed curly brace "}". You can also press <Search 
Current Table>, or enter the beginning of a field name and then press <Search 
Current Table>.

In the following window, the user pressed <Search Current Table> to display a 
lookup box of field names at the Map Data Specifications window:

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: FavFlavors Master Map_____                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^FLAVORS______________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| People.People , FavFlavors.Piece_Counter                                    |
|                                                                             |
|+--------------------------Map Data Specifications--------------------------+|
|| Field               Node             Piece     Delimiter     Retrieval    ||
|| __________________  _______________  ________  __________    < M Code >   ||
|+---------------------------------------------------------------------------+|
	Piece_Counter                 Piece Counter for Row ID	
	FavFlavors                    FavFlavors Row ID	
	Flavor                        Person's Favorite Flavor	
	People                        People Parent Reference	
+---------------------------------------------------------------------------+		
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 
18-4 Open M with SQL Data Dictionary Guide



Step 1: Compose SET Command to Insert Row
Step 1: Compose SET Command to Insert Row

To accurately map a base table to an existing or planned global database on the 
Map Definition form, one approach is to compose a SET command that would 
put a row of data defined in this base table into the global database.

Example of Master Map SET Command

The ^FLAVORS global has no index nodes. Therefore, you only need to create a 
SET command for a Master Map for the two tables which provide the relational 
view of ^FLAVORS: People (a parent table) and Flavors (a child table).

To put data into the People table, you write the following SET command:

SET ^FLAVORS(People)=""

To put data in the Flavors child table, you write the following SET command:

SET $P(^FLAVORS(People),"^",counter)="flavor1"

For example:

SET $P(^FLAVORS("Judy"),"^",2)="Mocha"

Example of Index Map SET Command

The ^ACCT global contains nodes which are indexes:

^ACCT("CITY","Butte",100)=""

^ACCT("n",COMMUNICATIONSCONSULTANTS")=100^Communications 
Consultants

The generalized SET command to create the first Index Map looks like this:

SET ^ACCT("CITY",{City_Acct},{account_num})=""

For example:

SET ^ACCT("CITY","Cambridge",300)=""

For further details on the SET command, see “SET Commands for Master Map 
Structure” on page 16-14 in Chapter 16, Default Physical Structure .
Open M with SQL Data Dictionary Guide 18-5



Chapter 18—Creating a Customized Map Definition
Step 2: Enter Map Definition Form

You define a map, whether it be the Master Map, an Index Map, or a Conditional 
Index Map, using the Map Definition form. The process of entering this form 
will differ, depending on whether or not you immediately changed to customized 
physical structure when you created your base table.

If You Started Using Customized Physical Structure

If you answered "No" at the field "Use Default Physical Structure?" on the Base 
Table Definition master window when you first defined the base table, then Open 
M with SQL does not create a Master Map or any Index Maps.

Procedure To create a Master Map or Index Map:

1. Select the <Physical Structure> branching field at the Base Table Definition 
window.

You see the Map Definition row selection window.

2. Enter the name of your map. By convention, every table’s master map is 
called "Data Master Map". The naming convention for  index maps is the 
word "Index", followed by a space, then the name of the first indexed field in 
lowercase letters. (Default physical structure follows this with an automati-
cally-generated index number). You may wish to include the name of the glo-
bal file for the base table in your map name.

3. Press <RETURN> at the "Is this a new entry? Yes" prompt on the message 
line.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: __________________________                                        |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
+-----------------------------------------------------------------------------+

...Map Definition               Selecting           Press <PF1><PF3> For Help 
18-6 Open M with SQL Data Dictionary Guide



Step 2: Enter Map Definition Form
Open M with SQL displays the Map Definition master window. The cursor is 
on the Map Name field.

4. If this is the Master Map, press <TAB> to move the cursor to the Master 
Map? field, enter Y and press <RETURN>.

You have identified this map as the Master Map for the base table. From now 
on, any maps you create will have "No" in the Master Map? field, which you 
cannot edit. These non-Master Maps will serve as Index Maps.

If You Started Using Default Physical Structure

If you started your base table definition using default physical structure, Open M 
with SQL already created a Master Map and possibly Index Maps, which you 
need to edit. These default maps are described in Chapter 16, Default Physical 
Structure .

Procedure To edit a default map:

1. At the Base Table Definition master window, answer No at the Use Default 
Physical Structure? field.

2. Select the <Physical Structure> branching field at the Base Table Definition 
window, then press <RETURN>

3. Press <List Choices> to see the lookup box which displays the Master Map 
Open M with SQL created when you defined the base table using default 
physical structure.

You see the Map Definition row selection window.

+-----------------------------------------------------------------------------+
| Map Name                    Full Reference                                  |
+-----------------------------------------------------------------------------+
| Data Master Map             ^ACCT("ACCOUNTS",0,{Accounts})                  |
| Index Account_num 16        ^ACCT("ACCOUNTS",2,{Account_num},{Accounts})    |
+-----------------------------------------------------------------------------+
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
+-----------------------------------------------------------------------------+
                                                           

...Map Definition               Selecting           Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-7



Chapter 18—Creating a Customized Map Definition
The highlight bar is on the Master Map, which is named Data Master Map.

4. Press <RETURN> to select the Master Map, or move the highlight bar to an 
Index Map.

Open M with SQL displays the Map Definition master window. The cursor is 
on the Map Name field.

5. Optionally, press <Erase Field> to remove the default map name and enter a 
descriptive name for your map.

Examining the Map Definition Master Window

After creating or selecting a map, Open M with SQL displays the Map Definition 
master window.

The Map Definition master window for the Master Map of the People base table, 
as it appears if you had started defining the People base table using default phys-
ical structure is shown below. Note the default name, ^mdata, at the Global Name 
field. If you had started with customized physical structure, there would be no 
name in the Global Name field.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: People Master Map_________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^mdata________________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| People.People                                                               |
|                                                                             |
|                                                                             |
|                      < Access Path Specifications >                         |
|                         < Full Row Reference >                              |
|                                                                             |
|                       < Map Data Specifications >                           |
|                        < Row ID Specifications >                            |
|                                                                             |
|           Full Row Reference: (0/1)                                         |
| {%row} =  ^mdata({})                                                        |
|                                                                             |
+-----------------------------------------------------------------------------+

...Map Definition                                   Press <PF1><PF3> For Help 

 DELETE Row ID                              Advanced 
 Specifications                             Options  
18-8 Open M with SQL Data Dictionary Guide



Step 2: Enter Map Definition Form
The table on the following pages describes each field on the Map Definition mas-
ter window.

Table 18-1: Map Definition Master Window

Field Name Description

Map Name Name of the map; up to 26 alphanumeric characters, 
including blanks. Must be unique within the base table, but 
can repeat within the database.
Give the Master Map a descriptive name, preferably one 
that identifies the global, or first global, to which it maps. 
You should develop naming conventions to use when a 
table is mapped to more than one global. 

Master Map (Y/N) This field must say Yes for the Master Map. Only one map 
for a base table can be the Master Map. Any other map will 
have a default value of No in this field, which you cannot 
change. 

Global Name Enter the name of the global which holds the data in this 
base table. The name may be an extended reference. If 
more than one global is used to store the data, you enter 
an asterisk ("*"). If the data is stored in a non-standard 
fashion, such as a local array, leave this field blank. See 
“Step 3: Specify Global Name” on page 18-11.

Field(s) Used to Specify the 
RowID

Output only. Shows the Row ID field, or the fields on which 
the Row ID is based. Open M with SQL lists the fields the 
Row ID is based on as specified in your Row ID field defini-
tion. See “Examining the Row ID Field Definition” on page 
16-3 in Chapter 16, Default Physical Structure .
On the Master Map, you can use only these fields when 
you define Access Path Specifications. On Index Maps, 
other fields in the base table may be used as well.

<Access Path Specifica-
tions>

This branching field opens the Access Path Specifications 
form, where you define the database access path Open M 
with SQL should use to retrieve a row of data for this table. 
You identify this path level by level. Each level is called an 
Access Level. Commonly, each level contains a subscript. 
Sometimes a level contains a piece or a global. Sometimes 
it's a customized algorithm, such as $EXTRACT. Usually, 
you are defining the left side of the SET command you 
composed to put data into a row of this base table. See 
“Step 4: Define Standard Access Path Specifications” on 
page 18-14.

<Full Row Reference> This branching field opens the Full Row Reference form. 
Open M with SQL stores the value on this form in the vari-
able {%row}. It uses this Full Row Reference to locate data 
in a base table row. Open M with SQL creates a default Full 
Row Reference based on the Access Path Specifications 
you define. You may override this value. See “Step 7: 
Specify Override to Full Row Reference” on page 18-41.
Open M with SQL Data Dictionary Guide 18-9



Chapter 18—Creating a Customized Map Definition
<Map Data Specifications> This branching field opens the Map Data Definition form. At 
this form you define the location of each field in a row of the 
base table. Usually, you are defining the right side of the 
SET command you composed. See “Step 9: Define Map 
Data Specifications” on page 18-45.

<Row ID Specifications> This branching field opens the Row ID Specifications win-
dow. Open M with SQL uses the value displayed in this 
window to create the Row ID, given a Full Row Reference. 
Open M with SQL creates a default Row ID Specification 
from your Access Path Specifications. However, if you use 
M expressions as any of your Value Expressions, the Row 
ID Open M with SQL generates may be incorrect. Open M 
with SQL issues a warning and you need to check, and if 
necessary, edit the Row ID specification. See  “Step 8: Edit 
Row ID Specifications” on page 18-43.

Full Row Reference Output only. Displays the current Full Row Reference, 
which is either the default value Open M with SQL creates 
or the override value you enter at the Full Row Reference 
form when you select the <Full Row Reference> branching 
field. 

DELETE Row ID Specifica-
tions

When you define Access Path Specifications, if you enter 
an Access Level of type "Other", or if you enter an M 
expression in an Access Level's Value Expression field, the 
default Row ID Specifications Open M with SQL generates 
may be incomplete. Select this horizontal menu option to 
delete the existing specifications and cause Open M with 
SQL to regenerate the specifications. Then examine the 
new default value to see if it is accurate.

Advanced Options This horizontal menu option lets you define filing code 
(INSERT, UPDATE and DELETE) for a row of data when 
you have used mapping features that prevent Open M with 
SQL from generating its own filing code. See “Step 10: 
Define Override Filing Code” on page 18-55.
You can also define conditional maps from this option. A 
Master Map may not be conditional. See “Step 11: Define 
an Index Map as a Conditional Map” on page 18-58. 

Table 18-1: Map Definition Master Window

Field Name Description
18-10 Open M with SQL Data Dictionary Guide



Step 3: Specify Global Name
Step 3: Specify Global Name

The data in a base table is located in a global, global node, or piece or part of a 
global node value. Sometimes, the data is located in more than one global. Some-
times, it is stored in a non-standard fashion. The way the data is stored deter-
mines the value you enter at the Global Name field on the Map Definition master 
window.

If you provide a global name, Open M with SQL uses it as the starting point for 
the Full Row Reference. Open M with SQL inserts it as the default value of the 
first Access Level's Data Access Expression. See “Step 4: Define Standard 
Access Path Specifications” on page 18-14.

Data Stored in One Global

If the data is stored in one global, simply enter the name of that global at the Glo-
bal Name field. A global name can be up to 8 alphanumeric characters in length. 
It cannot contain embedded blanks and the first character must be a letter or the 
percent symbol (%). There is case sensitivity: ^A is not equivalent to ^a. 

Extended Global Reference

If the global is located in a directory other than the directory from which the 
application is run, you need to use extended global reference. There are two 
forms of extended reference that you may use:

 n Bracket syntax, as in:
 •   ^[dir]global, if the global is on the same computer
 •   ^[dir,dirset]global, if the global is on another computer

 n Environment syntax, as in:
 •   ^|"^^dir"|global, if the global is on the same computer
 •   ^|"^dirset^dir"|global, if the global is on another computer

Only use a syntax that is supported by your underlying version of M. All versions 
of Open M with SQL M support bracket syntax. Versions of Open M with SQL 
UNIX starting with 5.1 also support the environment syntax.

Global Name Used for Data Access Expression for Access Level 1

Open M with SQL uses this global name as the default Data Access Expression 
for Access Level 1.   To learn how to define Access Levels to reach a row of this 
base table, see “Step 4: Define Standard Access Path Specifications” on page 18-
14.

Example In the Birthdays base table, all data is stored in the ^SAMPLE global, which is 
located in the directory /friends on a UNIX system. The Global Name field in the 
Open M with SQL Data Dictionary Guide 18-11



Chapter 18—Creating a Customized Map Definition
top portion of the Map Definition master window for the Birthdays base table is 
shown below:

Data Stored in Two or More Globals

Sometimes, due to application logic, data is stored across two or more globals. In 
other words, perhaps the first 10,000 rows are stored in the global ^Patients1, the 
next 20,000 in the global ^Patients2, and the next 20,000 in the global ^Patients3. 
This storage scheme is often referred to as "fragmented tables".

If this is the case in your database, enter an asterisk ("*") in the Global Name 
field:

Global Name: *__________

Data Access Expression for Level 1 Undefined

If you use an asterisk for Global Name, Open M with SQL does not provide a 
default Data Access Expression for Access Level 1 in Access Path Specifica-
tions. Instead, you provide an M expression that defines the name of the global to 
use. See “Step 4: Define Standard Access Path Specifications” on page 18-14.

Data Stored in Local Array

Sometimes, you may want to store your data in a local array. For example, sup-
pose your data is stored in multiple globals and/or in a complex fashion. How-
ever, you only want to maintain one or two base tables and/or you do not want to 
be bothered with advanced mapping techniques.   You can accomplish this by 
writing a routine that loads the data from the globals into a local array. You then 
create one base table and map it to the simple structure of that local array. 

Procedure To specify global name:

1. At the Map Definition master window, move the cursor to the Global Name 
field.

2. If you had selected default physical structure and Open M with SQL there-
fore created a default Master Map, you see the default global name, ^mdata 
(or ^*parent). If so, press <Erase Field> to remove the default global name.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Birthdays Master Map______                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^["/friends"]SAMPLE___________                                 |
|                                                                             |
18-12 Open M with SQL Data Dictionary Guide



Step 3: Specify Global Name
3. Enter the name of the global where this base table's data is located, an aster-
isk if it is mapped to multiple globals, or leave the field blank if you are map-
ping to a local array.
Open M with SQL Data Dictionary Guide 18-13



Chapter 18—Creating a Customized Map Definition
Step 4: Define Standard Access Path Specifications

In this step, you describe the path through your M global hierarchy that Open M 
with SQL will use to access a row of data in this base table. You need to define 
each subscript or comparable level in the M global that leads to where the base 
table's data is stored. These levels are called Access Levels. Open M with SQL 
generates the Full Row Reference from the Access Levels you define. It also 
attempts to generate the Row ID Specifications from your Access Level defini-
tions.

Usually, a row of data is the value of a global node, as in the Invoices table:

^ACCT(account_num,invoice_num)=Order_Date:Payment_Date^Total

Sometimes, it is the value of that node plus one or more lower level nodes, as in 
the Accounts table:

^ACCT(account_num)=City_Acct^Name_Acct
^ACCT(account_num,"Phone")=Phone_Acct

Constant subscripts, such as "Phone" is the example above, are defined in Map 
Data Specifications.

Sometimes, a row is a piece or part of a node value, as in the FavFlavors table:

^FLAVORS("people")=FavFlav^FavFlav^FavFlav

Sometimes, some rows are in one global and other rows are in other globals, as in 
COSTAR applications. 

All these situations can be handled as you describe the Access Levels to reach a 
Full Row Reference.

There are several phases to this step, which are described in separate procedures:

a. Enter the Access Path Specifications form
If you started with default physical structure, you need to clear the 
default mapping that Open M with SQL created.

Then, as you define each Access Level necessary to locate a row of data, you:

b. Specify Data Access Expression, if the default value is not correct.
c. Specify how to get to this Access Level, based on the Data Access 

Expression, by providing Access Type and Value Expression.

Note: If you have a complex global structure, you may need to specify 
Special Access Code. For instance, you may have rows stored 
in more than one global, or your data may be stored in a local 
array. See “Step 5: Specify Special Access Code” on page 18-29 
18-14 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
to learn about locating and validating a particular Full Row Refer-
ence.

A. Enter Access Path Specifications Form

Procedure Enter the Access Path Specifications form:

1. Press <RETURN> at the <Access Path Specifications> field on the Map Def-
inition master window.

You see the Access Path Specifications master window. The cursor will be on 
the first row, on the field <Data Access Expression>. The Access Path Speci-
fication master window for the People base table is shown below. It uses the 
default physical structure and Open M with SQL to create a default Master 
Map.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: People Master Map_________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^FLAVORS______________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| People.People                                                               |
|                                                                             |
|+-----------------------Access Path Specifications--------------------------+|
	Access  Data Access  Access                                    Special	
	Level   Expression   Type    Value Expression                Access Code	
	L1    <Expression>  Sub___  {People}_____________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Access Path Specifications Unsaved Data          Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-15



Chapter 18—Creating a Customized Map Definition
Table 18-2, Access Path Specifications Master Window Fields, describes the 
fields in this window: 

2. If this is a default map, delete the default mapping that appears in this win-
dow. 

Table 18-2: Access Path Specifications Master Window Fields

Field Name Description

Access Level Output only. This column contains the name of the Access Level, 
which Open M with SQL assigns starting with L1. The variable {Li} 
refers to the value in the corresponding Value Expression column. 
You can use the Access Level names like field names to refer to an 
Access Level. You may want to do this if you provide an override 
Data Access Expression or provide Special Access Code for a level.

Data Access 
Expression

Press <RETURN> at this branching field to see the default Data 
Access Expression that Open M with SQL defines to get to the cur-
rent Access Level. Open M with SQL creates this from the Data 
Access Expression from the prior level together with the Access 
Level definition for the prior level. Open M with SQL uses the Data 
Access Expression as the context for the current Access Level's 
Value Expression.   In some global storage situations, you need to 
provide an override to Open M with SQL's default value. See “Defin-
ing an Override Data Access Expression” on page 18-19.

Access Type In this column, you enter a value to define the role of the Value 
Expression, which you provide in the next column. There are four 
Access Types: Sub (subscript), Global, Piece, or Other. The default 
type, if no value is entered here, is Sub.

Value Expression Enter a value that describes how to reach this Access Level, based 
on the current Data Access Expression. You can enter a constant, as 
in "Joe Jones" or 123, a field name enclosed in curly braces, as in 
{Patient_Name}, or an expression including constants and/or field 
names.

Special Access 
Code

This branching field opens the Special Access Code form. If not all 
values at an Access Level correspond to rows in this base table, you 
can define:
 n First and/or last subscript value where data is located.
 n Code in the NEXT subroutine that lets Open M with SQL find the 

next row in the table. Press the <Special Code> branching field.
 n Special Data Access Variables. Press the <Additional Data Vari-

ables - M Code> branching field.
18-16 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
Follow these steps:

a. Press <Delete Row>.
You see the following horizontal menu:
EXIT                       Delete ALL 'Access Specs'      

b. Move the highlight bar to Delete ALL 'Access Spec', and press 
<RETURN>.

c. Answer Y at the "This option will FILE the changes. OK to delete all 
subscripts? No__" prompt on the message line.

B. Examine, and If Necessary, Override, Data Access Expression

Normally, you only need to examine the default Data Access Expression Open M 
with SQL provides to verify that it is accurate. You specify an override value for 
this variable only when the default value Open M with SQL generates is incor-
rect.

Usually, an Access Level has a corresponding Data Access Expression. This 
expression shows the data access path Open M with SQL follows to reach the 
current Access Level. The Data Access Expression is used as the context for the 
Access Type and Value Expression values you enter.

Data Access Expression Names

Open M with SQL gives each Data Access Expression the name {iD}, where i is 
the number of the Access Level. For example, {2D} represents the Data Access 
Expression used to reach the second Access Level {L2}. You can use these 
names to refer to the value of a Data Access Expression at the following win-
dows:

 n Data Access Expression
 n Special Access Code
 n Override Full Row Reference
 n Map Data Node
 n M Retrieval Code
 n Additional Data Access Variables

Default Data Access Expression

Open M with SQL usually provides a default, or implicit, Data Access Expres-
sion, which is simply the value of the last Access Level.   
Open M with SQL Data Dictionary Guide 18-17



Chapter 18—Creating a Customized Map Definition
Example of Default for Access Level 1

For Access Level {L1}, the corresponding Data Access Expression name is 
{1D}. 

If you do not provide a global name at the Global Name field for this map, Open 
M with SQL provides no default Data Access Expression. In other words, the 
Data Access Expression is of type NULL. (See Table 18-3: Ways of Forming 
Data Access Expressions, on page 18-19.)

If you provide a name in the Global Name field on the Map Definition master 
window, Open M with SQL uses that name as the default value of {1D}. The 
Data Access Expression window for Access Level {L1} for the People table is 
shown below:

Types of Data Access Expressions

There are four ways you can form a Data Access Expression. The form of the 
Data Access Expression limits the Access Type you can enter for the Access 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Recipes Master Map________                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^RECIPES______________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| recipes.recipes                                                             |
|                                                                             |
|+--------------------------Data Access Expression---------------------------+|
	Implicit Reference at this level:	
	{1D}   =  ^RECIPES	
	Override Reference:	
	You may specify here an override reference  to the above:	
	{1D}   =  _____________________________________________________________	
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Data Access Expressions                          Press <PF1><PF3> For Help 
18-18 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
Level. These ways of forming a Data Access Expression are described in the fol-
lowing table: 

Defining a Local Array

The local array name must begin with a % sign.

Defining an Override Data Access Expression

If the implicit Data Access Expression Open M with SQL provides does not 
accurately define an Access Level, as it won't if you entered an asterisk at Global 
Name or left that field blank, you can define an override Data Access Expression.

An override Data Access Expression may only be of two types: 

 n Global Reference 
 n Other Non-NULL M expression

Table 18-3: Ways of Forming Data Access Expressions

Form Description and Interaction with Corresponding Value Expression

Global 
Reference

If the first character of the Data Access Expression is "^", it is a global refer-
ence, such as ^global(Sub1,Sub2).
The Data Access Expression must be of this type in order for the Access 
Level to have a Value Expression of Access Type "Sub".
If the previous Access Level is of Access Type "Sub", meaning subscript, 
then the default Data Access Expression for the current level is a global ref-
erence, with its final subscript equal to the Value Expression defined at that 
prior level.

Piece If the Data Access Expression of the previously referenced Access Level is a 
global reference or a piece and the Access Type of that previous Level is 
"Piece", the default Data Access Expression is in the form of a $PIECE 
expression, such as:
$PIECE(^FLAVORS({Name}),"^",{Piece_Counter})

Other non-
NULL M 
expression

The Data Access Expression will default to this type if:
 n The previously referenced Access Level was of Access Type "Piece".
 n You enter an override Data Access Expression and don't begin it with a 

"^", indicating a global reference.

NULL The default Data Access Expression is NULL only if:
 n The previously referenced Access Level is of Access Type "Other"
 n It is Access Level 1 and you did not specify a global name at the Global 

Name field for this map
If the Data Access Expression is NULL (the default is NULL and no override 
is given), the current Access Level must be of Access Type "Other".
Open M with SQL Data Dictionary Guide 18-19



Chapter 18—Creating a Customized Map Definition
You can refer to values from a prior Access Level in your override Data Access 
Expression. For instance, Data Access Expression {2D} can only refer to vari-
ables from the first Access Level: {L1}, {1D} and {1Di}. 

You cannot use field names, such as {Birthdays.Name}, in your Data Access 
Expression.

Procedure To examine and provide an override value for the Data Access Expres-
sion:

1. Press <RETURN> at the <Expression> branching field on the Access Path 
Specifications master window.

You see the Data Access Expression window.

2. Examine the default value Open M with SQL provides under the prompt 
"Implicit Reference at this level:".

3. If necessary, enter an override reference, using the allowed variables in your 
M expression.

Example You need to define an override Data Access Expression if you define a child table 
and its data is stored in a global different from that of the parent table. For 
instance, let's say you have a table, Patients, mapped to the global 
^A(Patient_ID). You create a child table from Patients, called "Office_Visits", 
mapped to ^B(Patient_ID,Visit_Date). 

When you map the Access Path Specifications for the Office_Visits table, you 
need to provide an override value for {L2}. The table "Access Path Specifica-
tions for Office_Visits" shows the default and override values for Data Access 
Expression, Access Type and Value Expression in {L1} and {L2}: 

The result is the following Full Row Reference for the Office_Visits child table:

{%row}=^B({L1}) 

C. Specify How to Reach Current Access Level

In this step, you define the Access Type and the Value Expression that describe 
how to get to the current Access Level. Open M with SQL uses this information 

Table 18-4: Access Path Specifications for Office_Visits

Access 
Level

Default Data 
Access 
Expression

Override Data 
Access 
Expression Access Type

Value 
Expression

{L1} ^A Sub {Patient_ID}

{L2} ^A({L1}) ^B({L1}) Sub {Visit_Date}
18-20 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
in conjunction with the Access Level's Data Access Expression to create the 
description of this Access Level. It uses this as the default value of the next Data 
Access Expression. If this is the last Access Level, this value is the Full Row 
Reference.

Access Type

This field defines the role of the Value Expression. There are four Access Types, 
described in the Table 18-5: Access Types, on page 18-21.

With the exception of Access Type "Other", and sometimes "Global", Open M 
with SQL automatically provides default values for the Special Code window 
fields "Invalid Values", "NEXT subroutine code", or the next Access Level's 
Data Access Expression. See “Define Special Access Code to Validate Row” on 
page 18-30. 

Table 18-5: Access Types

Type Description

Sub A global subscript, which Open M with SQL adds hierarchically to the 
current Data Access Expression to form the Data Access Expression 
for the next level, or for the final Full Row Reference if this is the last 
Access Level. Default value if you leave this field blank.

Piece Open M with SQL applies the $PIECE function to the current Data 
Access Expression using the value of a field you create in the base 
table and which you name in the Value Expression column. Open M 
with SQL uses this field as a piece counter, automatically initializing 
and updating its value as it retrieves rows of data.
When you specify "Piece", a small window appears where you enter 
the delimiter that separates the rows in the global node. The delimiter 
can be a constant enclosed in quotes, such as "^", or an expression 
such as $C(1) [which represents the vertical bar character].

Global The Value Expression resolves to a global name. 

Other None of the above. Open M with SQL provides no defaults for the 
Special Access Code fields "Invalid Values", "NEXT subroutine 
code", or the next Access Level's Data Access Expression, so you 
need to supply them yourself. You must specify this type if there is no 
Data Access Expression for the Access Level (the Data Access 
Expression is NULL).
Open M with SQL Data Dictionary Guide 18-21



Chapter 18—Creating a Customized Map Definition
The table "Location of Full Row and Access Type" describes how the location of 
a full row affects the Access Types you define: 

Value Expression

This field defines the value of the current Access Level. You may enter a:

 n Constant, which can be:
 • A string, such as "333 West 34th Street"
 • A number, such as 123

 n Field name enclosed in curly braces, such as:
{FavFlavors}

 or, if the table is linked via an implicit join:
{People.Name}

In the Master Map, you may only use the Row ID field, or fields on which 
the Row ID is based, in the Value Expression. In Index Maps, you may use 
any field in the base table.

Note: This is the only window in Access Path Specifications where you 
may use field names.

 n Expression which includes constants and/or field names and/or M variables, 
such as:

1000*{counter}+offset

or
$$ALPHAUP({Name})

Table 18-6:   Location of Full Row and Access Type

Location of Full Row Access Type

Full Row is Global Node 
Value or Subscript

All your Access Levels will be of type "Sub", unless your 
data is in more than one global, in which case the Access 
Type for {L1} is "Global".

Full Row is a Delimited 
Piece of Node Value

The final Access Level will be of Access Type "Piece".

Full Row is an Undelimited 
Piece of Node Value

The final Access Level will be of Access Type "Other" and 
you will use an M expression, which might include a func-
tion such as $EXTRACT, to retrieve a row.
18-22 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
The table "Location of Full Row and Value Expression" describes how the loca-
tion of a full row affects the Value Expressions you define: 

Functions in Value Expression and Index Maps

If your application frequently issues a SELECT statement which uses a Collating 
Function, such as $$ALPHAUP or $$UPPER, to retrieve data, it is a good idea to 
create an Index Map based on that function. Include the actual value of the field 
in the Index Map so Open M with SQL does not have to access the Master Map 
as well to retrieve the actual field value. You do this by including the field acted 
on by the function, in the Index Map's Access Path Specifications, and then 
including the actual field in Map Data Specifications. See “Collation Sequence 
Affects Name and Text Data Types” on page 6-28 in Chapter 6, Defining Base 
Table Fields .

Table 18-7: Location of Full Row and Value Expression

Location of Full Row Value Expression

Full Row is Global Node 
Value or Subscript

The final Access Level will include a subscript value, which 
can be a constant or a Row ID field name in curly braces 
by itself or in an M expression.

Full Row is a Delimited 
Piece of Node Value

The final Access Level will be the name of the piece 
counter field you defined in your base table field definitions. 
Open M with SQL uses this field to manage looping 
through rows in the base table.

Full Row is an Undelimited 
Piece of Node Value

The final Access Level will be of Access Type "Other" and 
you will use an M expression, which might include a func-
tion such as $EXTRACT, to retrieve a row.

Table 18-8: Collating Function Index Map Syntax

Collating 
Function

Index Map 
Syntax Index Map Example

ALPHAUP $$ALPHAUP ^mdata(TableName,col, 
$$ALPHAUP{indexfld1},{RowID})=""

EXACT [default] ^mdata(TableName,col, 
{indexfld1},{RowID})=""

Minus - ^mdata(TableName,col,-{indexfld1} 
,{RowID})=""

Plus + ^mdata(TableName,col,+{indexfld1} 
,{RowID})=""
Open M with SQL Data Dictionary Guide 18-23



Chapter 18—Creating a Customized Map Definition
Example of Function in Index Map

Suppose your application or lookup frequently uses the following SQL query:

SELECT Account_Name
FROM Accounts
WHERE $$ALPHAUP(Account_Name)=%edit(3)

Remember that the ^ACCT global structure looked like this:

^ACCT("n",$$ALPHAUP{Account_Name})={account_num}^{Account
_Name}

{Account_Name} is stored in ALPHAUP format in the second subscript position 
of the index. you define the Index Map with the following Access Path Specifica-
tions.

If in the field definition for {Account_Name} you specified using the 
$$ALPHAUP function for lookups, then the search for the matching name will 
be very efficient, as no transformation of the value in the database will be needed.

Space " "_ ^mdata(TableName,col," "_{indexfld1} 
,{RowID})=""

UPPER $$UPPER ^mdata(TableName,col, 
$$UPPER{indexfld1},{RowID})=""

Table 18-8: Collating Function Index Map Syntax

Collating 
Function

Index Map 
Syntax Index Map Example

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Accounts Index Map________                 Master Map (Y/N): No__ |
|                                                                             |
| Global Name: ^ACCT_________________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| Accounts.Accounts                                                           |
|                                                                             |
|+-----------------------Access Path Specifications--------------------------+|
	Access  Data Access  Access                                    Special	
	Level   Expression   Type    Value Expression                Access Code	
	L1    <Expression>  Sub___  "n"__________________________  <Access Code>	
	L2    <Expression>  Sub___  $$ALPHAUP({Account_Name})____  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Access Path Specifications Unsaved Data          Press <PF1><PF3> For Help 
18-24 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
Since the actual value of {Account_Name} is also stored in the node, this elimi-
nates the need for Open M with SQL to go to the Master Map to get the actual 
value. You define both {account_num} and {Account_Name} in the Map Data 
Specifications:

Expressions Invalidate Row ID Specifications

If you use an expression as the Value Expression, Open M with SQL usually can-
not deduce the Row ID Specifications correctly. Open M with SQL issues a 
warning and you must define the Row ID Specifications yourself. See “Step 8: 
Edit Row ID Specifications” on page 18-43.

Populating an Index Map

 It is the user's responsibility to populate index structures for an existing applica-
tion when the index did not exist previously. See “Populating an Index Map” on 
page 9-8 in Chapter 9, Index Maps .

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Accounts Index Map________                 Master Map (Y/N): No__ |
|                                                                             |
| Global Name: ^ACCT_________________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| Accounts.Accounts                                                           |
|                                                                             |
|+--------------------------Map Data Specifications--------------------------+|
	Field               Node             Piece     Delimiter     Retrieval	
	account_num_______  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-25



Chapter 18—Creating a Customized Map Definition
Examples of Access Path Specifications

Birthdays Base Table

The Birthdays base table is accessed via one Access Level, as shown below. It is 
based on the Data Access Expression, "^SAMPLE". The Access Type is sub-
script. The value is the field {Name}, which is the Row ID of this table.

FavFlavors Base Table

Remember a row of this base table is a piece of the node value. The first Access 
Level is the same as that for the People table. If you look at the Data Access 
Expression for {L2}, you see the value of {2D} is ^FLAVORS({People}).

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Birthdays Master Map______                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^SAMPLE_______________________                                 |
|                                                                             |+
Field(s) Used to Specify the RowID: (0/1)			
Sample.Name			
+-----------------------Access Path Specifications--------------------------+			
	Access  Data Access  Access                                    Special		
	Level   Expression   Type    Value Expression                Access Code		
	L1    <Expression>  Sub___  (Name)_______________________  <Access Code>		
	<Expression>  ______  _____________________________  <Access Code>		
	<Expression>  ______  _____________________________  <Access Code>		
	<Expression>  ______  _____________________________  <Access Code>		+
	<Expression>  ______  _____________________________  <Access Code>		
	<Expression>  ______  _____________________________  <Access Code>		
+---------------------------------------------------------------------------+			
+-----------------------------------------------------------------------------+

...Access Path SpecificationsInquiry Mode           Press <PF1><PF3> For Help 
18-26 Open M with SQL Data Dictionary Guide



Step 4: Define Standard Access Path Specifications
The next window shows the process of creating the second Access Level for the 
FavFlavors base table. We define it as Access Type "Piece" and then enter the 
delimiter:

For the Value Expression, we enter the name of the field we entered as 
Piece_Counter:

Delete Access Level Specifications

You can delete all Access Level specifications or only those for the last Access 
Level. If you started defining your base table using default physical structure, 
you delete all the default Access Level specifications Open M with SQL creates 
before entering your own specifications.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: FavFlavors Master Map_____                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^FLAVORS______________________                                 |
|                                                                             |
|                                                                              
|                                                                              
|                                                                              
|+-----------------------Access Path Specifications--------------------------+ 
	Access  Data Access  Access                                    Special	
	Level   Expression   Type    Value Expression                Access Code	
	L1    <Expression>  Sub___  {People.People}______________  <Access Code>	
	L2    <Expression>  Piece_  _____________________________  <Access Code>	
+---------------------------------------------------------------------------+		
	Piece Delimiter: "^"_________	
+---------------------------------------------------------------------------+		
	<Expression>  ______  _____________________________  <Access Code>	
+---------------------------------------------------------------------------+		

...Piece Delimiter           Unsaved Data           Press <PF1><PF3> For Help 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: FavFlavors Master Map_____                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^FLAVORS______________________                                 |
|                                                                             |
|                                                                              
|                                                                              
|                                                                              
|+-----------------------Access Path Specifications--------------------------+ 
	Access  Data Access  Access                                    Special	
	Level   Expression   Type    Value Expression                Access Code	
	L1    <Expression>  Sub___  {People.People}______________  <Access Code>	
	L2    <Expression>  Piece_  {Piece_Counter}______________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
	<Expression>  ______  _____________________________  <Access Code>	
+---------------------------------------------------------------------------+		

...Access Path Specifications                       Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-27



Chapter 18—Creating a Customized Map Definition
Procedure To delete the specifications for the last Access Level:

1. Move the cursor so it is on the last Access Level you defined.

2. Press <Delete Row>.

You see the following horizontal menu:

EXIT Delete Last Access LevelDelete ALL Access Level 
Specifications

3. Move the highlight bar to the horizontal menu item "Delete Last Access 
Level" and press <RETURN>.

Procedure To delete all Access Level Specifications:

1. Do Steps 1 and 2 from the procedure“To delete the specifications for the last 
Access Level:” on page 18-28.

2. Move the highlight bar to the horizontal menu option "Delete ALL Access 
Level Specifications" and press <RETURN>.
18-28 Open M with SQL Data Dictionary Guide



Step 5: Specify Special Access Code
Step 5: Specify Special Access Code

For most global structures, the standard Access Path Specifications you define 
allows Open M with SQL to accurately access and validate a row of data. How-
ever, for some global structures, not all values at an Access Level correspond to 
valid paths to a row of data in the base table. In such cases, the default methods 
Open M with SQL uses based on the standard Access Path Specifications may 
not work and you need to define additional Special Access Code. 

In this section, we first explain the default methods Open M with SQL uses to 
access and validate a row of data. Then we explain how you can add your own 
validation and accessing code to meet the requirements of your existing M data-
base.

How Open M with SQL Accesses and Validates a Row

In general, in a data retrieval query such as a SELECT statement, Open M with 
SQL accesses a row in one of the following two modes:

 n Single value access
 n Loop access

Single Value Access

In single value access, Open M with SQL knows the Row ID of the desired row. 
Open M with SQL uses the Row ID Specifications to plug the Row ID field or 
fields into the Value Expression of its corresponding Access Level. Open M with 
SQL then performs its default test for validity of that Full Row Reference: IF 
$DATA(Full Row Reference)'=0. If that test proves TRUE, then Open M with 
SQL considers the Full Row Reference to be valid. 

Example In the FavFlavors table, the Full Row Reference is:

^FLAVORS({People})  

Open M with SQL uses single value access if you issue a SELECT statement 
such as the one below, where the Row ID is provided:

SELECT Flavor
FROM FavFlavors
WHERE {People}="Judy"

If $DATA(^FLAVORS("Judy")) is non-zero, the Full Row Reference is valid. 
The field Flavor is actually in the child table, FavFlavors. Open M with SQL will 
return the value of the first row in that table, which is the first favorite flavor of 
Judy.
Open M with SQL Data Dictionary Guide 18-29



Chapter 18—Creating a Customized Map Definition
Loop Access

In loop access, Open M with SQL does not know the Row ID of the desired row. 
Rather, it searches through all rows, starting with the first valid Full Row Refer-
ence, until it either finds a row which meets the condition specified in the query 
or until it reaches a NULL value. It locates the next row by using the $ORDER 
function on "Sub" Access Types and a counter increment on "Piece" Access 
Types. Open M with SQL therefore locates rows in collating sequence according 
to subscript.

Example In the FavFlavors table, the Full Row Reference is:

$PIECE(^FLAVORS({People}),"^",Piece_Counter)  

Open M with SQL will use loop access if you issue the following command, 
since the Row ID of FavFlavors is not provided:

SELECT People
FROM FavFlavors
WHERE FavFlav="Vanilla"

It will return the value of the People field for the first row in FavFlavors where 
the field FavFlav contains the value "Vanilla". It loops through the rows by doing 
the following two steps:

1. {L1} is of type "Sub", with the value being {People}. Open M with SQL 
uses:

$O(^FLAVORS({People}))

2. {L2} is of type "Piece" with the value being {Piece_Counter}. Open M with 
SQL initializes {Piece_Counter} to 0 and then uses:

SET {Piece_Counter}={Piece_Counter}+1
SET value=$P(^FLAVORS({People}),"^",{Piece_Counter})

Define Special Access Code to Validate Row

If your global structure is complex, the default single access validation condition 
($DATA of the Full Row Reference) may validate and the default loop code 
($ORDER of the Full Row Reference) may point to a Full Row Reference which 
does not actually point to a row in the base table. In this case, you must describe 
certain types of Access Level limitations at the Special Access Code form (and 
its nested forms) which Open M with SQL checks to determine if it has a valid 
row. These limitations include:

 n First Value and Last Value subscript values for loop access.
 n IF conditions for single value access. 
 n NEXT subroutine code for loop access.
18-30 Open M with SQL Data Dictionary Guide



Step 5: Specify Special Access Code
Types of Special Access Code

For each Access Level, you can enter Special Access Code on four different win-
dows in the Special Access Code form:

At the Special Access Code window, you can specify:

 n  First and last valid Access Level values

Open M with SQL uses these first and last valid values to provide default values 
for the following two fields, each found on a separate window.

 n Special Code for Invalid Access Level values when single access retrieval is 
used, which is used in addition to $DATA(). From the Special Access Code 
window, press the <Special Code> action field to display the Special Code 
window. See page 18-33.

 n Custom code for the NEXT subroutine, for which Open M with SQL ordi-
narily uses $ORDER on the Access Level value. Press the <NEXT Subrou-
tine> branching field from the Special Code window. See page 18-35.

The following sections discuss conditions under which you can employ these fea-
tures to allow Open M with SQL to locate valid Access Level values in your M 
global.

 n Additional Data Access Variables

From the Special Access Code window you can select the <Additional Data Vari-
ables - M Code> branching field to define variables you can access at various 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Data Master Map___________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
	First Value: ____________________        Last Value: ____________________	
	<Special Code>	
	< Additional Data Variables - M Code>	
+		+
 +---------------------------------------------------------------------------+

...Special Access Code                              Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-31



Chapter 18—Creating a Customized Map Definition
mapping windows. See “Step 6: Specify Additional Data Access Variables” on 
page 18-39.

Range of Subscript Values Not Part of Base Table

When an Access Level is of type "Sub", sometimes not all values of that sub-
script lead to rows in the base table. If there is a pattern to the value change, you 
can often define the First and Last valid subscript values in the Special Access 
Code form.

If the valid values are all numbers, simply set the type of that field to Number in 
its field definition. If the valid values are all uppercase alphabetic, then set the 
First Value to "A" and the Last Value to "ZZZ", or a string of length equal to the 
maximum length of the subscript.

Default Invalid Values

Open M with SQL automatically sets up default Invalid Conditions for an Access 
Level value based on the First and Last Values you entered. It also enhances the 
NEXT subroutine code to reflect these invalid Access Level values.

Procedure To define first and last valid Access Level value:

1. Press <RETURN> at the branching field <Special Code> on the Access Path 
Specifications master window.

You see the Special Access Code window.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
	First Value: ____________________        Last Value: ____________________	
	<Special Code>	
	< Additional Data Variables - M Code>	
 +---------------------------------------------------------------------------+

...Special Access Code                              Press <PF1><PF3> For Help 
18-32 Open M with SQL Data Dictionary Guide



Step 5: Specify Special Access Code
2. Enter the first value for the subscript at that level Open M with SQL should 
use when it retrieves rows of data in a loop.

3. Enter the last value for the subscript Open M with SQL should use when it 
retrieves rows of data in a loop.

Single Value Access and Invalid Values

For times when single access retrieval mode is used, and therefore the NEXT 
subroutine is not employed, Open M with SQL uses the default or override code 
specified at the Special Code window to test the supplied Access Level value. It 
uses this code in addition to testing the value of $DATA on the Full Row Refer-
ence to make sure it is non-zero.

Default Invalid Values

If you entered First and Last Values at the Special Access Code window, Open M 
with SQL automatically generates default invalid values for you. 

Override Conditions Replace Invalid Values

The default code Open M with SQL creates, and which is displayed in the Invalid 
Values field, is in effect only if you do not enter code in the Override Conditions 
field. Therefore, if you enter first and last values but wish to enter other invalid 
conditions as well, you must include the Invalid Values code Open M with SQL 
creates based on first and last values when you enter your code in the Override 
Conditions field.

Procedure To examine or override default Invalid Values code:

1. Press <RETURN> at the branching field <Special Code> on the Special Sub-
script window.
Open M with SQL Data Dictionary Guide 18-33



Chapter 18—Creating a Customized Map Definition
You see the Special Code window:

2. If desired, enter invalid conditions in the Override Conditions portion of the 
screen.

Remember, the default IF conditions are only in effect if there is no value in 
the Override Conditions: field. 

NEXT Subroutine to Access Valid Access Level Values

When Open M with SQL does a loop access of an Access Level, it uses the 
NEXT subroutine to find the next valid value.

Using $ORDER for Access Levels Which are Global References

If $ORDER is used, you first set the value of the Access Level to NULL. Open 
M with SQL does this automatically if the default NEXT subroutine is used.

Default NEXT Subroutine

The default subroutine is used only if you do not enter an Override Subroutine. 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
|+------------------------------Special Code---------------------------------+|
	Invalid Values:	
	The following is used if nothing is entered below:	
	Value Invalid: (0/)	
	IF	
	OR IF	
	Override Conditions:	
	You may override the above Invalid Values by using the following:	
	Value Invalid: (1/0)	
	IF _________________________________________________________	
	OR IF _________________________________________________________	
	OR IF _________________________________________________________	
	OR IF _________________________________________________________	
+		+
<NEXT Subroutine>		
 +---------------------------------------------------------------------------+

...Special Code                                     Press <PF1><PF3> For Help 
18-34 Open M with SQL Data Dictionary Guide



Step 5: Specify Special Access Code
Override NEXT Subroutine

When entering an override NEXT subroutine, note the following:

 n The pseudo-tag "NEXT" is the tag of the first line of the subroutine. Within 
the subroutine, this tag may be used with a GOTO command to mean:
"this value is invalid, go look for the next one"

 n This pseudo-tag is replaced by an actual tag during code generation. Other 
lines in the subroutine may not have tags.

 n You may reference this and previous subscripts by using the level name 
enclosed in curly braces, as in {L1}, {L2}.

 n The value of the current Access Level should be set by an M SET of the level 
name, enclosed in {}. For example, SET {L1}=$ORDER(%local({L1})).

 n This subroutine is called with a DO statement, and is exited with a QUIT 
statement. QUIT commands may appear anywhere within the subroutine. 

 n Upon exiting, the Access Level value must be one of the following:
 • Constant
 • M expression including Row ID fields
 • a valid subscript value 
 • NULL

Note: A NULL value is used to indicate that there are no more valid 
values in this subscript level.

Override NEXT Subroutine Does Not Include First and Last Value 
Conditions

The default subroutine Open M with SQL creates is in effect only if you do not 
enter code in the Override Conditions field. Therefore, if you enter first and last 
values but wish to enter an override NEXT subroutine, you must include the code 
Open M with SQL creates based on first and last values in your override subrou-
tine.

Reactivating Default NEXT Subroutine

The default subroutine can be reactivated by the user at any time by setting the 
"Override" field to NULL. The system will never automatically modify or delete 
what the user enters in this window. 

Procedure To examine or provide override code for the NEXT subroutine:

1. Press <RETURN> at the <NEXT Subroutine> branching field on the Special 
Code window.
Open M with SQL Data Dictionary Guide 18-35



Chapter 18—Creating a Customized Map Definition
You see the NEXT Subroutine window. The top portion of the window shows 
the default NEXT subroutine Open M with SQL generates from the "Last 
Value" entry and the applicable "Invalid Values" entry.

Example of Using Special Code

The rows in the Accounts base table are located at the first and second subscript 
levels in the ^ACCT global, with the first subscript level being the Full Row Ref-
erence.

However, only some of the first subscript values lead to rows in the Master Map. 
The other subscripts lead to rows in the Index Maps. Since the valid subscript 
values are all numbers, the easiest way to be certain to get valid values is to 
define the {account_num} field as a Number data type. 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
|+------------------------------Special Code---------------------------------+|
|+------------------------------NEXT Subroutine------------------------------+|
	The following is used if no Override Subroutine is entered:	
	Subroutine Code: (0/2)	
	NEXT s {L1}=$o(^ACCT({L1}))	
	q:{L1}=""	
	QUIT	
	Override Subroutine:	
	Subroutine Code: (1/0)	
	NEXT _________________________________________________________________	
	_________________________________________________________________	
+	_________________________________________________________________	+
QUIT		
 +---------------------------------------------------------------------------+

...NEXT Subroutine                                  Press <PF1><PF3> For Help 
18-36 Open M with SQL Data Dictionary Guide



Step 5: Specify Special Access Code
However, you can also specify first and last values, as shown below:

Open M with SQL generates default Invalid Conditions code, based on the First 
and Last values you enter.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
	First Value: 1___________________        Last Value: "A"_________________	
	<Special Code>	
	< Additional Data Variables - M Code>	
+		+
 +---------------------------------------------------------------------------+

...Special Access Code        Unsaved Data          Press <PF1><PF3> For Help 

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
|+------------------------------Special Code---------------------------------+|
	Invalid Values:	
	The following is used if nothing is entered below:	
	Value Invalid: (0/2)	
	IF 1>{L1},{L1}=+{L1}	
	OR IF {L1}]"A",{L1}'=+{L1}	
	Override Conditions:	
	You may override the above Invalid Values by using the following:	
	Value Invalid: (1/0)	
	IF _________________________________________________________	
	OR IF _________________________________________________________	
	OR IF _________________________________________________________	
	OR IF _________________________________________________________	
+		+
<NEXT Subroutine>		
 +---------------------------------------------------------------------------+

...Special Code               Unsaved Data          Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-37



Chapter 18—Creating a Customized Map Definition
Open M with SQL also edits the NEXT subroutine to reflect the invalid condi-
tions implied by the values you enter in First Value and Last Value.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
|+------------------------------Special Code---------------------------------+|
|+------------------------------NEXT Subroutine------------------------------+|
	The following is used if no Override Subroutine is entered:	
	Subroutine Code: (1/4)	
	NEXT s {L1}=$o(^ACCT({L1}))	
	i {L1}]"A",{L1}'=+{L1} s {L1}=""     ; From 'Last Value'	
	q:{L1}=""	
	QUIT	
	Override Subroutine:	
	Subroutine Code: (0/)	
	NEXT _________________________________________________________________	
	_________________________________________________________________	
+	_________________________________________________________________	+
QUIT		
 +---------------------------------------------------------------------------+

...NEXT Subroutine           Unsaved Data           Press <PF1><PF3> For Help 
18-38 Open M with SQL Data Dictionary Guide



Step 6: Specify Additional Data Access Variables
Step 6: Specify Additional Data Access Variables

You rarely need to define Additional Data Access Variables. However, this fea-
ture allows you to handle an M global structure where:

 n Fields in a row are located in multiple storage locations, necessitating a more 
complex Full Row Reference. You can define Additional Data Access Vari-
ables which you use to define the Full Row Reference.

 n Data in a row exists at a level of a global higher than the Full Row Reference.

Names of Additional Data Access Variables

You reference a Data Access Variable as {iDd}, where {iD} is the Data Access 
Expression reference and d is the Additional Data Access Variable expression 
number. For example, {2D1} represents the first Data Access Variable expres-
sion of Access Level 2.

Where You Can Use Data Access Variables

Data Access Variables can be used in the following locations:

 n Override Full Row Reference
 n Map Data Node
 n M Retrieval Code
 n Special Access Code
 n Subsequent Data Access Variable code

Procedure To define Additional Data Access Variables:

1. Press <RETURN> at the <Special Code> branching field at the Access Path 
Specifications master window for the level where you wish to define one or 
more special variables.

You see the <Special Code> master window.

2. Press <RETURN> at the <Additional Data Variables - M Code> branching 
field.
Open M with SQL Data Dictionary Guide 18-39



Chapter 18—Creating a Customized Map Definition
You see the Additional Data Access Variables - M Code window:

The table "Additional Data Access Variables Window" describes the fields 
on this form: 

3. Enter code for as many Data Access Variables as you wish to define at this 
Access Level.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: Account Master Map________                 Master Map (Y/N): Yes_ |
|+---------------------------Special Access Code-----------------------------+|
	First Value: 1___________________        Last Value: "A"_________________			
	<Special Code>			
	+----------------Additional Data Access Variables - M Code----------------+			
		M Code for Additional Data Variables:		
		Var  Var     You may have additional Data Access Variables by using		
		#    Name    SET {lDd}=... in the following code lines:		
		1_  {1D1}    SET {1D1}=^INVOICE({L1},{L2})___________________________		
		________________________________________________________		
		2_  {1D2}    SET {1D2}=^ITEM($p({1D1},"^",2))________________________		
+		________________________________________________________		+
+-------------------------------------------------------------------------+				
 +---------------------------------------------------------------------------+

...Additional Data Access Variables                 Press <PF1><PF3> For Help 

Table 18-9: Additional Data Access Variables Window

Field Name Description

Var # Enter the number of the variable.

Var Name Output only. Open M with SQL displays the name of this variable. 
Use this name to access the value of this variable elsewhere in Map 
Definition.

SET {iDd} Enter one or more lines of M code that sets the value of the Data 
Access Variable. If your code includes multiple paths, be sure each 
path provides a value for the Data Access Variable. You can include 
the name of routine, Access Levels ({Li}, Data Access Expressions, 
{iD}, or previously defined Data Access Variables, {iDd}. You may not 
use field names. Open M with SQL sets the value of these variables, 
one by one, following the d order, immediately after setting the value 
of the Access Level, {Li}, with which they are associated.
18-40 Open M with SQL Data Dictionary Guide



Step 7: Specify Override to Full Row Reference
Step 7: Specify Override to Full Row Reference

Open M with SQL uses the Full Row Reference to access a row of data in the 
table. It appends expressions you define in the Map Data window to locate each 
field in the base table.

Default Full Row Reference

Open M with SQL creates a default Full Row Reference from the result of the 
final Access Level you define in Access Path Specifications. This is equivalent to 
the Data Access Expression for the level past the last Access Level for which you 
provide a Value Expression or Special Access Code.

{%row} Represents Full Row Reference

The special variable {%row} contains the value of the Full Row Reference. It is 
the implicit value used for the location of fields you specify in Map Data Specifi-
cations. 

You can use this variable to represent the value of the Full Row Reference when 
defining:

 n Special Access Code
 n Map Data M Retrieval Code

Override Full Row Reference

If your data is stored in more than one location, you may need to provide an over-
ride to the Full Row Reference. You can use Data Access Expression variables, 
{iD}, or Data Access Variables, {iDd}, in the M expression you use to define the 
override value.

Procedure To examine or override the default Full Row Reference:

1. Select the <Full Row Reference> branching field at the Map Definition mas-
ter
Open M with SQL Data Dictionary Guide 18-41



Chapter 18—Creating a Customized Map Definition
You see the Full Row Reference window:

2. If necessary, enter an override value at the Override Full Row Reference 
field.

+--------------------------------Map Definition-------------------------------+
|                                                                             |
| Map Name: FavFlavors Master Map_____                 Master Map (Y/N): Yes_ |
|                                                                             |
| Global Name: ^FLAVORS______________________                                 |
|                                                                             |
| Field(s) Used to Specify the RowID: (0/1)                                   |
| People.People , FavFlavors.Piece_Counter                                    |
|                                                                             |
|+----------------------------Full Row Reference-----------------------------+|
	Implicit Full Row Reference: (0/1)	
	{%row} = $p($g(^FLAVORS({L1})),"^",{L2})	
	Override Full Row Reference:	
	{%row} = ________________________________________________________________	
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Full Row Reference                               Press <PF1><PF3> For Help 
18-42 Open M with SQL Data Dictionary Guide



Step 8: Edit Row ID Specifications
Step 8: Edit Row ID Specifications

Once Open M with SQL locates a row in loop access, it must calculate the value 
of the Row ID field or fields. It uses the Row ID Specifications to accomplish 
this. Row ID Specifications indicate how to determine the value of each field in 
the Row ID, based in the values of each Access Level you define. 

If you use an M expression as the Value Expression at the Access Path Specifica-
tions window, Open M with SQL may not be able to generate accurate Row ID 
specifications.

Procedure To examine or override the Row ID Specifications:

1. If you see the message "Row ID Specification no longer valid" on the mes-
sage line, follow these steps:

a. Press <Go to Bottom Menu> at the Map Definition master window.
b. Press <RETURN> at the option Delete Row ID Specifications.

You see the following prompt on the message line:
Delete & Regenerate Row ID Specifications? ____

c. Enter Yes to have Open M with SQL recreate the Row ID Specifications.

2. Select the <Row ID Specifications> branching field at the Map Definition 
master window to see the default specifications Open M with SQL gener-
ated:

+--------------------------------Map Definition-------------------------------+
+-------------------------Access Path Specifications---------------------------+
| Access  Access                                                               |
| Level   Type     Value Expression                                            |
|  L1     Sub___   {People.People}____________________________________________ |
|  L2     Piece_   {Piece_Counter}____________________________________________ |
|         ______   ___________________________________________________________ |
|         ______   ___________________________________________________________ |
|         ______   ___________________________________________________________ |
|         ______   ___________________________________________________________ |
+------------------------------------------------------------------------------+
+---------------Calculate Row ID Given: Access Levels and Fields---------------+
| Field                                         Expression                     |
| People.People                                 {L1}__________________________ |
| Piece_Counter                                 {L2}__________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
|                                               ______________________________ |
+------------------------------------------------------------------------------+

...Row ID Calculation                               Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-43



Chapter 18—Creating a Customized Map Definition
The table below describes the fields on the Row ID Specifications window: 

3. If necessary, delete existing specifications and enter new M code that accu-
rately describes how to calculate the value of each field in the Row ID.

Table 18-10: Row ID Specifications Window

Field Name Description

Field Output Only. Contains the name of the Row ID, or the fields on which 
the Row ID field is based.

Expression Contains the M expression used to calculate the value of the corre-
sponding Row ID field. You can use Access Level, Data Expression or 
Additional Data Access Level variables, as well as field names defined 
in the Map Data window in curly braces, in your M expression. 
18-44 Open M with SQL Data Dictionary Guide



Step 9: Define Map Data Specifications
Step 9: Define Map Data Specifications

As described in the Checklist for Creating a Relational View, InterSystems rec-
ommends that you first map one data field and then test your Access Path Speci-
fications with a query. Once you are sure you have correctly defined how to reach 
a row of data in Access Path Specifications, you are ready to define how to find 
the remaining fields in the row. 

You define data field locations on the Map Data Specifications form.

Two Ways to Define Field's Location

You can define a field's location in one of two ways:

 n Standard Specifications
If the field is located at or below the Full Row Reference, and it is either a 
node value, or piece of the node value, then you define Node, and/or Piece 
and Delimiter.

 n Retrieval M Code
If the field is not located at or below the Full Row Reference, or if it must be 
extracted from part of a node value, you define M Retrieval Code. You also 
need to define your own Override Filing Code. See “Step 10: Define Over-
ride Filing Code” on page 18-55.

Standard Specifications

The following sections describe the standard fields on the Map Data Specifica-
tions screen: Node, Piece and Delimiter. The remaining sections describe using 
M Retrieval Code.

Node Specification

The Node field specifies the node contains a specified field in the base table. Its 
value usually represents additional levels of subscripting beneath the Full Row 
Reference. These subscripts must be constant or literal values. They may not be 
variable field values. This is because a variable field value must be part of the 
Access Path Specifications.

In addition to describing additional subscripts, you may also use any previously 
defined non-NULL {iD}, {iDd}, or {%row} reference as the entry in the Node 
field. Piece/Delimiter entries may optionally be used in conjunction with a Node 
entry of this type, to further identify the location of the field. Leaving the Node 
field blank is equivalent to using {%row} as the Node entry. Note that use of any 
{} reference in the Node field means that the Node is not a descendent of the Full 
Open M with SQL Data Dictionary Guide 18-45



Chapter 18—Creating a Customized Map Definition
Row Reference, but an entirely independent location from which to retrieve the 
field.

Caution: If any {iD} or {iDd} reference is specified as the Node entry, 
Open M with SQL will not automatically generate filing code 
for that field. If such code is necessary, you may enter it 
either through the "Filing Override" feature (see “Step 10: 
Define Override Filing Code” on page 18-55), or by using 
pre-filing and post-filing base table triggers (see Chapter 11, 
Base Table Triggers ). 

The table "Possible Node Field Values" shows how the semantics of Node can 
designate different access strategies: 

Note: Node may only have a literal value or +n or -n if the Full Row 
Reference ({%row}) takes the form of a global reference that 
may be further subscripted. The same holds for a multi-line field 
stored in nodes, which also requires additional subscripting.

Multi-Line Field

If your data is in one of the two standard Open M with SQL multi-line storage 
formats, you define the field as multi-line at the Field Definition window, and 
then you simply name the node which contains its value in Map Data Specifica-
tions. 

Piece and Delimiter Specification

If a field is a piece of a node value, you need to specify which piece it is, and the 
delimiter that separates the pieces.

Table 18-11: Possible Node Field Values

Node Value Meaning

Blank Use the Full Row Reference.

Literal Use a descendent of the Full Row Reference.

+n or -n Use an offset from the lowest subscript in the Full Row Reference.

{%row} Use the Full Row Reference (same as leaving Node blank).

{iD} Use the specified Data Access Expression.

{iDd} Use the specified Additional Data Access Variable.
18-46 Open M with SQL Data Dictionary Guide



Step 9: Define Map Data Specifications
Examples of Standard Map Data Specifications

Field is Value of Full Row Reference

If the field is represented by the entire value of the Full Row Reference, then you 
simply enter the field name in the Field column. Enter nothing in the other col-
umns.

Example The value of a row in the FavFlavors table is the value of the entire row (which, 
since the row is a piece of a node, happens to be a piece of a node value.)

Field is Multi-Line

In this example, the table testmulti contains two fields of data type text:

{Allinone} is a multi-line field using All in One Node storage mode:

^A(1,2)=Line3^Line4

{Onepernode} is a multi-line field using One Per Node storage mode:

^A(1,1,0)=2    
^A(1,1,1)=Line1
^A(1,1,2)=Line2

                                                    

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: FavFlavors Master Map_____                 Master Map (Y/N): Yes_	
Global Name: ^FLAVORS______________________	
Field(s) Used to Specify the RowID: (0/1)	
People.People , FavFlavors.Piece_Counter	
+--------------------------Map Data Specifications--------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	FavFlav___________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-47



Chapter 18—Creating a Customized Map Definition
The Map Data Specifications for these fields are shown below:)

Fields are Pieces of Node Value

In many cases, a node contains the values of more than one field, separated by 
piece delimiters. If this is the case, when you get to the Access Level where you 
are defining that structure, enter the piece number in the Piece column and the 
delimiter that separates the pieces in the Delimiter column. 

Example Two fields in the Accounts table are pieces of the Full Row Reference. The third 
field is the full value of a node one subscript level down from the Full Row Ref-
erence. The Map Data Specifications window for this scenario is shown below:

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: testmulti Master Map______                 Master Map (Y/N): Yes_	
Global Name: ^A____________________________	
Field(s) Used to Specify the RowID: (0/1)	
testmulti.testmulti	
+--------------------------Map Data Specifications--------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	allinone__________  2______________  ________  __________    < M Code >
	onepernode________  1______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Accounts Master Map_______                 Master Map (Y/N): Yes_		
Global Name: ^ACCT_________________________		
Field(s) Used to Specify the RowID: (0/1)		
Accounts.Accounts		
+--------------------------Map Data Specifications-------------------------+		
	Field               Node             Piece     Delimiter     Retrieval	
	City_Acct_________  _______________  1_______  "^"_______    < M Code >	
	Name_Acct_________  _______________  2_______  "^"_______    < M Code >	
	Phone_Acct________  "Phone"________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
	__________________  _______________  ________  __________    < M Code >	
+---------------------------------------------------------------------------+		
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 
18-48 Open M with SQL Data Dictionary Guide



Step 9: Define Map Data Specifications
Field is Piece of a Piece

If a field is a piece of a piece, you manage that by putting down two piece num-
bers in the piece column, and two delimiters in the Delimiter column.

Example The Invoices table contains 2 fields which are a piece of a piece, {Invoice_Date} 
and {Payment_Date}. The structure of the node looks like this:

^ACCT(account_num,invoice_num)=Invoice_Date:Payment_Date^Total

The Map Data Specifications window for the fields in the Invoices table is shown 
below:

Field is Located in Node Below Full Row Reference

If the field is located at a subscript level below the Full Row Reference, then you 
enter a value in the Node field. List all the additional subscripts beyond those 
included in the Full Row Reference, separated by commas.

Field in Node Which is Offset of Full Row Reference Node 

Sometimes, a field is located in a node which is at the same level as the Full Row 
Reference.

In a case like this, you need to do the following:

 n Enter Special Access Code to indicate which values are invalid when Open 
M with SQL retrieve a row. 

 n Use an offset value to specify the node which contains the field at the Map 
Data window.

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Invoices Master Map_______                 Master Map (Y/N): Yes_	
Global Name: ^ACCT_________________________	
	+
Field(s) Used to Specify the RowID: (0/1)	
Accounts.Accounts , Invoices.Invoice_Number	
+--------------------------Map Data Specifications--------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	Invoice_Date______  _______________  1,1_____  "^",":"___    < M Code >
	Payment_Date______  _______________  1,2_____  "^",":"___    < M Code >
	Total_____________  _______________  2_______  "^"_______    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data SpecificationsInquiry Mode              Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-49



Chapter 18—Creating a Customized Map Definition
Example The global ^G contains one field, City, which is at a node one level below the 
Full Row Reference node. It also contains two fields, SS# and Age, which are in 
nodes which are offsets from the Full Row Reference.

^G(10)="Jones,Judy"

^G(10,"CITY")="Boston"
^G(11)=SS#
^G(12,"AGE")=25

^G(20)="Hancock,John"
^G(20,"CITY")="Cambridge"
^G(21)=SS#
^G(22,"AGE")=43

The Map Data Specifications window for the fields in this global is shown 
below:

Retrieval M Code

You don't normally need to enter Retrieval M Code. However, if a field is located 
at a node level that is not at or below the Full Row Reference, if it is stored in 
another global, or if it is a concatenation of information from several different 
locations, you define how to locate it at the Retrieval M Code form.

If you need to use Retrieval M Code, then you leave the Node, Piece and Delim-
iter fields blank. If you enter a value in any of those fields, Open M with SQL 
will not allow you to enter the Retrieval M Code form.

Example Assume you have the following global structure:

^Global(Sub)=ABCDEFGHIJ

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Employees Master Map______                 Master Map (Y/N): Yes_	
Global Name: ^G____________________________	
	+
Field(s) Used to Specify the RowID: (0/1)	
Employees.Employee_Num	
+--------------------------Map Data Specifications-------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	Name______________  _______________  ________  __________    < M Code >
	City______________  "CITY"_________  ________  __________    < M Code >
	SSnum_____________  +1_____________  ________  __________    < M Code >
	Age_______________  +2,"AGE"_______  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data SpecificationsInquiry Mode              Press <PF1><PF3> For Help 
18-50 Open M with SQL Data Dictionary Guide



Step 9: Define Map Data Specifications
Sub is the Row ID. Field 1 is the first four characters, field 2 is the second three 
characters and field 3 is the last 3 characters of the node value. You would obtain 
these values with the following M function:

field_1=$EXTRACT(^Global(Sub),1,4)
field_2=$EXTRACT(^Global(Sub),5,7)
field_3=$EXTRACT(^Global(Sub),8,10)

Enter Own Filing Code

If you do define M Retrieval Code for a field, you must also provide override fil-
ing code for that field, since default filing code Open M with SQL provides is 
always based on the Full Row Reference.

Procedure To map data specifications:

1. Press <RETURN> at the <Map Data> branching field.

You see the Map Data window.

2. Enter the name of the field or press ? to see a list of fields in the table from 
which you can select the field you want.

3. If the field is located at or below the Full Row Reference, enter Node and/or 
Piece and Delimiter values and go to Step 6. 

4. If the field is not located at or below the Full Row Reference, move the cur-
sor to the <M Code> branching field and press <RETURN>.

You see the Map Data Field Retrieval Code window:

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Accounts Master Map_______                 Master Map (Y/N): Yes_	
Global Name: ^ACCT_________________________	
Field(s) Used to Specify the RowID: (0/1)	
account.account	
+--------------------------Map Data Specifications--------------------------+	
+-----------------------Map Data Field Retrieval Code-----------------------+	
	You may use M code to retrieve this field's value by using
	SET {*}=... in the following code lines: (1/0)
	_________________________________________________________________________
	_________________________________________________________________________
	_________________________________________________________________________
	_________________________________________________________________________
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data Field Retrieval Code                    Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-51



Chapter 18—Creating a Customized Map Definition
The table Map Data Field Retrieval Code Window describes the field in this win-
dow: 

5. Repeat Steps 2 through 4 until you have defined the location of all fields in 
the map.

Examples of Map Data Specifications

Example of Field as Value of Full Row Reference

The value of the Full Row Reference of the FavFlavors table is the value of its 
Flavor field. Remember the structure of the underlying ^FLAVORS global:

^FLAVORS("Art")=Vanilla^Chocolate^Coffee

The Map Data Specifications window for this base table is shown below. The 
Access Path Specifications window for this base table is shown in the “Examples 
of Access Path Specifications” on page 18-26.

Table 18-12: Map Data Field Retrieval Code Window

Field Name Description

SET {*} Enter M code which describes the location of the field. Be certain all 
paths in your M code provide an M SET command which defines the 
location of the field. Reference this field as {*}. Open M with SQL will 
replace the asterisk with the field name automatically.
You can use any previously described:
 n Access Levels {Li}
 n Data Access Expressions {iD}
 n Additional Data Access Variables {iDd}
and the {%row} variable in your code. You may not reference any 
field name other than the one you are SETting. 
18-52 Open M with SQL Data Dictionary Guide



Step 9: Define Map Data Specifications
Example of Field in Node Level Below Full Row Reference

In the Account table, the fields Address and Phone are located one subscript level 
down. 

^ACCT(100)=Butte^Communication Consultants
^ACCT(100,"Phone")=222-3333

The Map Data Specifications window entries are shown below:

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: FavFlavors Master Map_____                 Master Map (Y/N): Yes_	
Global Name: ^FLAVORS______________________	
Field(s) Used to Specify the RowID: (0/1)	
People.People , FavFlavors.Piece_Counter	
+--------------------------Map Data Specifications--------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	FavFlavors________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Accounts Master Map_______                 Master Map (Y/N): Yes_	
Global Name: ^ACCT_________________________	
Field(s) Used to Specify the RowID: (0/1)	
Accounts.Accounts	
+--------------------------Map Data Specifications--------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	City_Acct_________  _______________  1_______  "^"_______    < M Code >
	Name_Acct_________  _______________  2_______  "^"_______    < M Code >
	Phone_Acct________  "Phone"________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 18-53



Chapter 18—Creating a Customized Map Definition
Example of Fields Which Are a Piece Within a Piece

The Invoice table contains two date fields which are pieces of a piece. Remember 
the global structure of the underlying ^ACCT global:

^ACCT(100,1000)=55740:55759^1000.00

The first date is the invoice date, the second date is the payment receipt date, and 
the final piece is the total amount of the invoice.

The Map Data Specifications window entries are shown below:

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Invoices Master Map_______                 Master Map (Y/N): Yes_	
Global Name: ^ACCT_________________________	
	+
Field(s) Used to Specify the RowID: (0/1)	
Accounts.Accounts , Invoices.Invoice_Number	
+--------------------------Map Data Specifications--------------------------+	
	Field               Node             Piece     Delimiter     Retrieval
	Total_____________  _______________  2_______  "^"_______    < M Code >
	Invoice_Date______  _______________  1,1_____  "^",":"___    < M Code >
	Payment_Date______  _______________  1,2_____  "^",":"___    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
	__________________  _______________  ________  __________    < M Code >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Map Data Specifications                          Press <PF1><PF3> For Help 
18-54 Open M with SQL Data Dictionary Guide



Step 10: Define Override Filing Code
Step 10: Define Override Filing Code

Open M with SQL defines default filing code for a field only if {%row} is:

 n A simple global reference (Type 1) or
 n The result of one or more "Piece" levels of a simple global reference (Type 2) 

and the map is the Master Map.

Even if the above conditions are met, you need to define a field's filing code if:

 n You define a field's location in the Map Data Specifications form by using 
Retrieval M Code.

 n You use {iD} or {iDd} variables in the Node specification for a field's loca-
tion at the Map Data Specifications window.

Two Ways to Define Override Filing Code

You can define override filing code in one of two ways:

 n For all fields
Use the Override Filing Code form accessed via the Advanced Options hori-
zontal menu choice at the Map Definition master window. See the procedure 
below.

 n For selected fields 
Use base table triggers to handle the filing of fields for which Open M with 
SQL did not generate filing code due to the conditions described above. See 
Chapter 11, Base Table Triggers , to learn how to create such triggers.

Referencing Fields in Filing Code

The M code, and any routines it may call, may not reference any {} variables. It 
may reference field values in the row being filed in accordance with the follow-
ing InterSystems filing conventions using the filing arrays %data() and %edit():

 n %data(1) is the RowID value,
 n  %data(c) is the most up-to-date value for a field with column number c,
 n %edit(c) is defined only if the value of field c is changing, in which case it 

holds the field's old value. 

Note also that:

 n In case of DELETE, %edit holds the old value of each field, while all 
%data(c) (except for %data(1)) are set to NULL.

 n Multi-line fields are stored using the usual local array format, as follows:
%data(c)=n 
Open M with SQL Data Dictionary Guide 18-55



Chapter 18—Creating a Customized Map Definition
with the actual values stored as follows:
%data(c,1), ...,%data(c,n)

 n If internal-to-external conversion code is defined for a field, then its value 
will take the following format:

<internal> $c(1) <external>

Procedure To override the default filing code for all fields:

1. Press <Go to Bottom Menu> at the Map Definition master window.

2. Move the highlight bar to Advanced Options and press <RETURN>.

You see the Advanced Options window:

The table Filing Code Fields describes the fields on this screen.

3. Enter a line of M code at the INSERT field.

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: People Master Map_________                 Master Map (Y/N): Yes_	
Global Name: ^FLAVORS______________________	
Field(s) Used to Specify the RowID: (0/1)	
People.People	
+----------------------------Advanced Options-------------------------------+	
	M code to replace the generated filing code.
	Code unspecified will be replaced by system generated code.
	INSERT: _________________________________________________________________
	UPDATE: _________________________________________________________________
	DELETE: _________________________________________________________________
	< Conditional Map >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Advanced Options                                 Press <PF1><PF3> For Help 

Table 18-13: Filling Code Fields

Field Name Description

INSERT Enter a line of M code, up to 200 characters in length.   You must 
define how to file each field in the base table, since entries here sup-
press any filing code Open M with SQL generates for any field in the 
table.
Normally, you will use a SET command, or a DO command which 
calls a filing routine. The M code, or any routines it calls, may not con-
tain any {} references. 

UPDATE

DELETE
18-56 Open M with SQL Data Dictionary Guide



Step 10: Define Override Filing Code
For your convenience, Open M with SQL automatically propagates that code 
to the UPDATE and DELETE fields.

4. If necessary, edit the code at the UPDATE and DELETE fields.

Remember, you must provide code for each type of filing.
Open M with SQL Data Dictionary Guide 18-57



Chapter 18—Creating a Customized Map Definition
Step 11: Define an Index Map as a Conditional Map

A Conditional Map is an Index Map that contains rows only for a subset of rows 
within a base table. A specified condition determines which rows are included in 
the map. In addition, it may contain only a subset of fields from the base table, 
rather than all fields. This is useful if you frequently access a subset of rows and 
only need the data in certain fields for your query. 

Procedure To make an Index Map conditional:

1. At the Map Definition master window, press <Go to Bottom Menu>.

2. Move the highlight bar to the <Advanced Options> branching field and press 
<RETURN>. 

You see the Advanced Options window:.

3. Move the cursor to the <Conditional Map> branching field and press 
<RETURN>. 

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Accounts Index Map________                 Master Map (Y/N): No__	
Global Name: ^ACCT_________________________	
Field(s) Used to Specify the RowID: (0/1)	
Accounts.Accounts	
+----------------------------Advanced Options-------------------------------+	
	M code to replace the generated filing code.
	Code unspecified will be replaced by system generated code.
	INSERT: _________________________________________________________________
	UPDATE: _________________________________________________________________
	DELETE: _________________________________________________________________
	< Conditional Map >
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Advanced Options                                 Press <PF1><PF3> For Help 
18-58 Open M with SQL Data Dictionary Guide



Step 11: Define an Index Map as a Conditional Map
You see the Conditional Map Definition window:

The table below describes the fields on the Conditional Map window: 

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Accounts Index Map________                 Master Map (Y/N): No__	
Global Name: ^ACCT_________________________	
+------------------------Conditional Map Definition-------------------------+	
	Conditional Map (Y/N): No__
	Fields for Conditional Updates: ________________________________________
	(0/)                ________________________________________
	Set Map IF ________________________________________
	Percentage of Rows in this Map: __________
	Use Conditional Map when comparison against host variables? No__
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Conditional Map Definition                       Press <PF1><PF3> For Help 

Table 18-14: Conditional Map Window

Field Name Description

Conditional Map (Y/N) NO inactivates all other options in this window except Use 
Conditional Map when comparison against host variables.
YES activates all window options.

Fields for Conditional 
Updates

Enter fields to be included in each row of Conditional Map.

Set Map IF Enter condition(s) a row must meet to be included in Condi-
tional Map. May contain multiple conditions separated by 
commas, as in the Standard M IF command. Can include 
field names in curly braces.

Percentage of Rows in this 
Map

Enter an estimate of the percentage of rows from the Mas-
ter Map which will be included in the Conditional Map. This 
estimate will be used by Open M with SQL to optimize the 
use of this map.

Use Conditional Map when 
comparison against host 
variables

This parameter allows you to specify if Conditional Maps 
are valid index maps for a WHERE clause comparing to a 
host variable.
YES specifies that Conditional Maps may be used. The 
host variable must never be null ("").
NO specifies do not use Conditional Maps. NO is the 
default.
Open M with SQL Data Dictionary Guide 18-59



Chapter 18—Creating a Customized Map Definition
4. At the Fields for Conditional Updates field, enter the names of the fields 
from the base table which you want to include in the Conditional Map.

5. At the Set Map IF field, enter the condition(s) for determining row inclusion 
in the map.

6. At the Percentage of Rows in this Map field, enter the percentage of rows 
you estimate will satisfy this condition. 

Example In an employees application where you often deal separately with retired 
employees, you might want to make a Conditional Map which includes 
records for retired employees only:

+--------------------------------Map Definition-------------------------------+
|                                                                             |+
Map Name: Employees Index Map_______                 Master Map (Y/N): No__	
Global Name: ^Employees____________________	
+------------------------Conditional Map Definition-------------------------+	
	Conditional Map (Y/N): Yes_
	Fields for Conditional Updates: {Name}__________________________________
	(1/2)               {Pension_Monthly}_______________________
	Set Map IF {Retired}="Y"___________________________
	Percentage of Rows in this Map: 10________
	Use Conditional Map when comparison against host variables? No__
+---------------------------------------------------------------------------+	
+-----------------------------------------------------------------------------+

...Conditional Map Definition                       Press <PF1><PF3> For Help 
18-60 Open M with SQL Data Dictionary Guide



Step 11: Define an Index Map as a Conditional Map
Open M with SQL Data Dictionary Guide 18-61



PART

IV
Special Topics
Chapter 19

The FileMan Interface

Chapter 20

Importing Data Definitions







Open M with SQL Data Dictio
CHAPTER

19
The FileMan Interface
FileMan is an M-based public domain software package that was developed and 
is distributed and maintained by the U.S. Department of Veteran Affairs. Inter-
Systems provides an automated interface from VA FileMan to Open M with 
SQL.

This chapter describes how to use the FileMan Interface to connect FileMan data 
to Open M with SQL. Specifically, it covers the following topics:

 n Overview of the FileMan Interface  page 19-2
 n Accessing the FileMan Interface  page 19-8
 n Creating the FileMan-Open M Link  page 19-10
 n Extending, Updating, and Deleting the FileMan-Open M Link  page 19-13
 n Generating Views of FileMan Files  page 19-23
 n FileMan-Open M with SQL Cross Reference Report  page 19-25
 n Conversion Error Log  page 19-27
 n Using the FileMan Interface with Open M with SQL PDP  page 19-29
 n Limitations to the FileMan Interface  page 19-30
 n FileMan Interface Questions and Answers  page 19-32
nary Guide 19-1



Chapter 19—The FileMan Interface
Overview of the FileMan Interface

To use the FileMan Interface, you must be running Version 18.1 or higher of the 
VA FileMan software.

The FileMan Interface is a one-way link that creates one or more Open M with 
SQL data dictionary specifications from a FileMan data dictionary specification. 
Once created, the Open M with SQL data dictionary coexists with the FileMan 
data dictionary but as a distinct and separate entity. The FileMan-Open M with 
SQL link does not remain active beyond the initial connection, meaning it does 
not automatically update changes made to one data dictionary into the other. You 
can, however, manually relink FileMan files to Open M with SQL tables in order 
to update the link with changes made to the FileMan data dictionary. You can 
never link Open M with SQL tables back to FileMan files.

When you connect a FileMan file to Open M with SQL, the FileMan Interface 
converts the file into an Open M with SQL relational table, which is then avail-
able for data insert, update, delete, or query using forms created in the Form Gen-
erator, queries created using the Open M with SQL query facilities, and reports 
created in M/PACT.

Database Normalization

A FileMan file is composed of a main file which may have any number of fields 
and sub-files. Fields with multiple values are stored in a sub-file under the main 
file. For example, a hospital patient file may have a visit sub-file for multiple 
visit dates associated with a single patient. Other fields may have one logical 
occurrence but have multiple lines, e.g., a word processing field used to hold 
comments. Such hierarchical relationships are not permissible within a relational 
database.

The FileMan Interface uses normalization to connect FileMan files that have 
hierarchical logical relationships to two-dimensional Open M with SQL tables. 
This action converts all one-to-many relationships to characteristic relationships 
or parent-child links. In FileMan terminology, all sub-files and word processing 
fields are converted to child tables within Open M with SQL.

Conversion Logic

When you create the FileMan-Open M with SQL link, the FileMan Interface uses 
the information in the FileMan data dictionary specification to create one or more 
relational base tables in Open M with SQL. The interface routines are recursive. 
Each time Open M with SQL finds a sub-file or word processing field in a field 
specification, the interface suspends processing of the current file and creates a 
child table from the sub-file specification. If the sub-file in turn has its own sub-
files, the interface also creates their child tables before control returns to the cur-
rent file. Recursive logic is also used if a field is a pointer to another file. In such 
19-2 Open M with SQL Data Dictionary Guide



Overview of the FileMan Interface
instances, the interface suspends processing of the current file in order to convert 
the file to which the field in the original table points.

Identifiers

Some FileMan identifiers for files, sub-files and fields do not conform to naming 
conventions required by Open M with SQL. The interface handles unacceptable 
identifiers in the following fashion:

 n If an identifier does not start with an alphabetic character, a single "f" charac-
ter is placed as a prefix to the identifier.

 n In FileMan field names, all punctuation other than the underscore character 
"_" is removed. All spaces are converted to the underscore character. (See 
FileMan Preferences, below.)

 n In FileMan field numbers, the decimal point (.) character is converted to the 
underscore character by default. Because underscore characters are elimi-
nated from base table names before checking for uniqueness, you may want 
to translate the decimal point character into another alphanumeric character 
to ensure unique base table names. (See FileMan Preferences, below.)

 n If the identifier is longer than the maximum allowed length (40 characters), 
vowels are removed from the identifier starting at the end and working back-
wards until an acceptable length is reached. Once all vowels have been 
stripped, the identifier is truncated if it exceeds the allowable length. (See 
FileMan Preferences, below.)

 n If the identifier is not unique or is an SQL reserved word, the FileMan field 
number is appended to the end of the identifier to make it acceptable. Option-
ally, you can append the FileMan field number to all base table names. (See 
FileMan Preferences, below.)

For example, the FileMan file:

MAIN HOSPITAL (NORTH WING) POST-SURGERY PATIENTS TABLE

would be converted to an Open M with SQL table name as follows:

MAIN_HOSPITL_NRTH_WNG_PSTSRGRY_PTNTS_TBL
Open M with SQL Data Dictionary Guide 19-3



Chapter 19—The FileMan Interface
FileMan Preferences

The FileMan Preferences window, accessed from the FileMan Interface main 
menu, gives you more specific control over FileMan-to-base table translation 
mapping:

   +--------------------------FileMan Preferences--------------------------+
   |                                                                       |
   | Map Word Processing fields as Multi-line?        Enable mapping?      |
   |                                                                       |
   | Append Fileman File Number to Table Name?       < Data Type Options > |
   |                                                                       |
   | File Name -> Base Table Name Character Translations:                  |
   |            Translate From:            To:                             |
   |                                                                       |
   |---------------------- Name Mapping Conventions -----------------------|
   |                                                                       |
   | Subfile Prefix                        Eliminate Duplicate Words?      |
   |                                                                       |
   | < Mandatory Abbreviations >              < Additional Abbreviations > |
   |                                                                       |
   | Disable Mapping of files/fields                                       |
   |         starting with                                                 |
   |                                                                       |
   +-----------------------------------------------------------------------+

FileMan Preferences                                    Press <PF1><PF3> For Help

Enter Yes or No.

Table 19-1: FileMan Preferences Options

Map Word Processing fields 
as Multi-line?

YES/NO field.

Enable Mapping? Required YES/NO field.

Append FileMan File Num-
ber to Table Name?

YES/NO field.
YES appends the FileMan file number to all base 
table names.
NO only appends the FileMan file number when it is 
required to create a unique base table name.

<Data Type Options> This action field displays the Data Type Options win-
dow. This window allows you to specify the following:
Does the installed version of FileMan allow you to 
convert seconds? YES/NO field for the Time data 
type.
Force Length of Date Fields to be X Characters Long. 
Specify a number value for X. Length is used for all 
Date data type fields, and overrides all checks during 
conversion.

File Name -> Base Table 
Name Character Transla-
tions

Specify a list of characters in the From and To fields. 
Every instance of each character in the From field is 
translated to the corresponding To character (see 
example below). 
19-4 Open M with SQL Data Dictionary Guide



Overview of the FileMan Interface
Example To eliminate vowels and underscores from Base Table names, define 
File Name->Base Table Name Character Translations as follows:  

A generated Fileman Base Table named ‘PATIENT_10000’ would be translated 
to ‘PTNT10000’. All vowels and underscores have been translated to an empty 
string (‘null’).

File Specifications

For main files, the interface derives the Open M with SQL table name from the 
FileMan file name. This is done according to the logic for converting identifiers 
discussed previously. If a description field exists, the first line of the field is con-
verted to the base table description. If no description exists, the description is 
copied from the table name.

For sub-files, the base table name is composed of "SUB" followed by the name 
of the sub-file. The description is created from the description of the parent file 
field pointing to the sub-file, followed by the parent file number.

File Name -> Base Table Name Character Translations:
              Translate From: AEIOUaeiou_            To:                                                                                        

Table 19-2: Name Mapping Conventions Options

Subfile Prefix Enter the prefix for the subfile. A subfile prefix may be 
up to 10 characters long, may contain only letters, 
numbers, and the underscore character, and must 
begin with a letter.

Eliminate Duplicate Words Specify YES to eliminate duplicate words when map-
ping FileMan names onto Open M with SQL base 
table, view, and field names. Specify NO to retain 
duplicate words.

<Mandatory Abbreviations> Press <RETURN> at this action field to define manda-
tory abbreviations for mapping FileMan names onto 
Open M with SQL base table, view, and field names.

<Additional Abbreviations> Additional abbreviations are automatically applied 
during name mapping when the use of Mandatory 
Abbreviations creates a name that is still too long. 
Press <RETURN> at this action field to define addi-
tional abbreviations to be used along with the manda-
tory abbreviations.

Disable mapping of 
files/fields starting with

Specify the initial characters (up to 15 characters) of 
the names of fields or files that are not to be mapped 
to base tables or base table fields.
Open M with SQL Data Dictionary Guide 19-5



Chapter 19—The FileMan Interface
Field Specifications

The FileMan Interface derives the Open M with SQL field name from the File-
Man field name, according to the logic for converting identifiers. The field 
description is derived from the FileMan field title.

The following table lists FileMan data types and shows the Open M with SQL 
data types to which the FileMan Interface converts them:

All converted FileMan fields are placed on a base table master map, except for 
computed fields and fixed-length fields. Fixed-length fields are maintained 
through post-filing triggers. 

Variable Pointer Fields

In Open M with SQL, variable pointer fields are represented by multiple fields. 
There is a main field that is mapped and holds the variable pointer field value. 
The main field is defined as a Text field. There is also one field for each table 
designated by the variable pointer field. These fields are represented as Designa-
tive Reference computed fields that are always equal to the calculation and are 
based on the main field. Their field names are formed by a three digit number 
(starting with 001 and incremented by one for each field) appended to the first 14 
characters of the main field name. For a given value of the main field, the other 
fields are computed to null, except for the field which corresponds to the table 
pointed by that value. The code to compute them will always be updated to 
reflect the current designated tables.

Table 19-3: FileMan Data Types

FileMan Data 
Type Open M with SQL Data Type

Date Text (with conversion/validation code)

Computed Date Number (with internal FileMan date flag)

Time Text (with conversion/validation code)

Number Number

Computed Text

Pointer Designative Reference

Variable Pointer Main field - Text
Each designated table - Designative Reference

Sets of codes Multiple Choice

All others Text
19-6 Open M with SQL Data Dictionary Guide



Overview of the FileMan Interface
Field Mapping

Open M with SQL maps all FileMan fields as nodes and pieces of a global.

The only exception to this rule are fields defined with the function $EXTRACT. 
Open M with SQL maps these fields via base table triggers.

Indices

Open M with SQL uses all FileMan indices. It treats only regular indices as M 
with SQL index maps. Post-filing triggers maintain other index types. Because of 
this, only regular indices are candidates for database searches and retrievals. The 
other index types are maintained for database integrity, but are not used for 
searches and/or retrievals.

FileMan Interface Does Not Link ScreenMan Applications

The FileMan Interface links only FileMan files to Open M with SQL. It does not 
link applications built using the ScreenMan application generator.

If you have such applications, you can link the underlying FileMan files to Open 
M with SQL, then recreate forms on top of the relational tables using the Form 
Generator component of Open M with SQL.
Open M with SQL Data Dictionary Guide 19-7



Chapter 19—The FileMan Interface
Accessing the FileMan Interface

The FileMan Interface is automatically distributed with every Open M with SQL 
Developer license. You can only access the FileMan Interface when the FileMan 
^DIC and ^DD globals exist in your current directory. The ^DIC global holds file 
names, and the ^DD global holds fields, sub-files, and pointers.

When these globals are present, Open M with SQL automatically loads the File-
Man Interface

Procedure To access the FileMan Interface:

1. Enter Open M with SQL.

2. From the Open M with SQL main menu, select the Data Dictionary option.

When the FileMan ^DIC and ^DD globals are present in the current direc-
tory, the Data Dictionary menu appears as follows:

When the FileMan globals are not present in the current directory, the Data 
Dictionary menu suppresses display of the third option, FileMan Interface.

3. From the Data Dictionary menu, select the FileMan Interface option.

                                                                                
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ OPEN M Developer 
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 
                                                                                
  ÚÄÄÄÄÄÄÄÄÄÄÄData DictionaryÄÄÄÄÄÄÄÄÄÄÄ¿                                       
  ³                                     ³                                       
  ³ Base Table Definition               ³                                       
  ³ View Definition                     ³                                       
  ³ FileMan Interface                   ³                                       
  ³ Compile a Table                     ³                                       
  ³ Copy a Base Table Field             ³                                       
  ³ Copy a View                         ³                                       
  ³ Change View's Starting Table        ³                                       
  ³ Recreate all Default Structure Maps ³                                       
  ³ Populate Index Maps for a Table     ³                                       
  ³ Reports on Data Dictionary          ³                                       
  ³                                     ³                                       
  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ                                       
                                                                                
                                                                                
                                                   Directory: /dbms1/morrow/ 
 Wednesday Feb 19, 1997           Copyright (c) 1993 Ä InterSystems Corporation 
                                                                                

Data Dictionary  12:02PM                               Press <PF1><PF3> For Help

Press <RETURN> to link FileMan files to Open M Developer
19-8 Open M with SQL Data Dictionary Guide



Accessing the FileMan Interface
You will see the FileMan Interface menu, as shown below:

This menu provides a full range of capabilities for linking your FileMan applica-
tion to Open M with SQL, including a Link Maintenance facility for extending, 
updating, and deleting pieces of the link, and a View Generation facility for join-
ing the tables that comprise a main file.

It also provides several FileMan Interface reporting options, including a File-
Man-Open M with SQL Cross Reference report and a Conversion Error Log 
report.

                                                                                
 ------------------------------ OPEN M Developer ------------------------------ 
                                                                                
  +----------FileMan Interface----------+                                       
  |                                     |                                       
  | FileMan-Open M Developer Link       |                                       
  | Link All FileMan Files To Developer |                                       
  | Generate Views of FileMan Files     |                                       
  | FileMan Preferences                 |                                       
  | Test Name Conversion                |                                       
  | Print FileMan-Developer Cross Ref.  |                                       
  | Print Conversion Error Log          |                                       
  | Purge Conversion Error Log          |                                       
  |                                     |                                       
  +-------------------------------------+                                       
                                                                                
                                                                                
                                                                                
                                                                                
                                                   Directory: /dbms1/morrow/ 
 Wednesday Feb 19, 1997           Copyright (c) 1993 - InterSystems Corporation 
                                                                                

FileMan Interface  12:04PM                             Press <PF1><PF3> For Help

Link a FileMan file and its sub-files to Developer
Open M with SQL Data Dictionary Guide 19-9



Chapter 19—The FileMan Interface
Creating the FileMan-Open M Link

The first step in using the FileMan Interface is to create the FileMan—Open M 
link. This link maps FileMan files to Open M with SQL relational tables.

There are two ways to create the FileMan—Open M link:

1. You can create the link for all FileMan files within a specified range.

2. You can create the link one FileMan file at a time.

Method #1 automatically links all FileMan files within the specified range to 
Open M with SQL. Depending on the size of the range you specify and the com-
plexity of your application, this can be a time-consuming process. However, it is 
the most efficient way to link a large number of files.

Method #2 is a more conservative approach. It lets you build the link on a file-by-
file basis, where you individually select each file that you want to connect to 
Open M with SQL. This capability is most useful when you want to extend the 
link by adding new files after the original link is already in place.

When you link a file, Open M with SQL generates all fields, sub-files, and 
pointer files associated with the main file into relational tables.

Creating The Link for All FileMan Files Within a Range

This option lets you link all FileMan files within a specified range to Open M 
with SQL. The range of files may be as small as one file or as large as your entire 
application.

To define the range, you specify the file numbers of the first and last files to be 
included. The files you specify must be main files; they cannot be sub-files.

Note: To use this facility, you must know the file numbers of the files 
you want to link. It is not sufficient to know just the file names. To 
determine the file numbers, go to the FileMan Interface main 
menu and select the Print FileMan-Developer Cross Ref. option. 
This prints out a list of all FileMan files with their file numbers.

Procedure To create the FileMan-Open M with SQL link for all FileMan files within a 
range:

1. Select the Link All FileMan Files to Developer option from the FileMan 
Interface menu.
19-10 Open M with SQL Data Dictionary Guide



Creating the FileMan-Open M Link
You see the Link All Files to Developer window, as shown below:

2. In the Starting File # field, type the file number of the starting file in the 
range of files you want to link to Open M with SQL.

This must be a main file; it cannot be a sub-file.

3. In the Ending File # field, type the file number of the last file in the range of 
fields you want to link to Open M with SQL.

This must be a main file; it cannot be a sub-file.

4. Answer Yes at the Compile Base Table(s)? prompt to compile all tables gen-
erated for the FileMan link.

This field defaults to No. Do not change this value if you want to leave the 
generated tables uncompiled.

5. Answer Yes at the O.K. To Proceed? prompt to initiate creation of the link.

                      +--Link All Files To Developer----+
                      |                                 |
                      | Starting File # _______________ |
                      |                                 |
                      | Ending File #   _______________ |
                      |                                 |
                      | Compile Base Table(s)?     No__ |
                      |                                 |
                      | OK To Proceed?             No__ |
                      |                                 |
                      +---------------------------------+

Main                                                Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 19-11



Chapter 19—The FileMan Interface
You will see messages similar to the following as Open M with SQL builds 
the link:

The linking messages are hierarchically indented to reflect levels of dependency 
in the created tables.

Messages that represent the creation of a parent table are pushed flush left.

Messages that represent the creation of a child table are indented one tab space.

Messages that represent the creation of a grandchild table are indented two tab 
spaces.

Creating The Link One File at a Time

As a more conservative approach, you may create the FileMan-Open M with 
SQL link by specifying one file at a time.

This approach is most useful for extending the link, i.e., adding a new file after 
the original link is already in place.

To learn how to do this, see “Extending, Updating, and Deleting the FileMan-
Open M Link” on page 19-13.

     CREATING CHILD TABLE FOR SUB-FILE #1.001                                  
     CHILD TABLE 'SUBDSCRPT3' SUCCESSFULLY CREATED                             
                                                                               
     CREATING CHILD TABLE FOR SUB-FILE #1.005                                  
     CHILD TABLE 'SB_PPLCTN_G' SUCCESSFULLY CREATED                            
BASE TABLE 'FILE' SUCCESSFULLY CREATED FOR FILE #1                             
                                                                               
CREATING BASE TABLE(S) FOR FILE #1.4                                           
                                                                               
     CREATING CHILD TABLE FOR SUB-FILE #1.41                                   
                                                                               
          CREATING CHILD TABLE FOR SUB-FILE #1.42                              
          CHILD TABLE 'SB_SRS_LLWD' SUCCESSFULLY CREATED                       
                                                                               
          CREATING CHILD TABLE FOR SUB-FILE #1.43                              
          CHILD TABLE 'SB_SRS_DSLL' SUCCESSFULLY CREATED                       
                                                                               
          CREATING CHILD TABLE FOR SUB-FILE #1.44                              
          CHILD TABLE 'SB_GRPS_LLW' SUCCESSFULLY CREATED                       
 
          CREATING CHILD TABLE FOR SUB-FILE #1.45                              
          CHILD TABLE 'SB_GRPS_DSL' SUCCESSFULLY CREATED                       
     CHILD TABLE 'SUB_NTRY_NM' SUCCESSFULLY CREATED                            
                                                                           
19-12 Open M with SQL Data Dictionary Guide



Extending, Updating, and Deleting the FileMan-Open M Link
Extending, Updating, and Deleting the FileMan-Open M  
Link

Open M with SQL provides an extensive facility for maintaining the FileMan-
Open M with SQL link once it has been created.

This Link Maintenance facility lets you perform the following operations on the 
link:

 n You can extend the link to include new main files.

Note: You can also use this option to create the link on a file-by-file 
basis.

 n You can update the link by main file, sub-file, or field.
 n You can delete the link by main file, sub-file, or field.

Link Maintenance Facility Runs Many Operations in Succession

Within the Link Maintenance facility, one operation (INSERT, UPDATE, 
DELETE) acts on a scope no larger than one main file. However, you may pro-
gram multiple operations of the same or different kinds to occur in succession.

For example, you can add one or more main files, update fields within one or 
more main files, and delete sub-files of one or more main files all at the same 
time.

Accessing the Link Maintenance Facility

To access the Link Maintenance facility, select the FileMan-Open M Developer 
Link option from the FileMan Interface menu.
Open M with SQL Data Dictionary Guide 19-13



Chapter 19—The FileMan Interface
The File Man Interface window appears, as shown below:

The following table lists and describes the fields located on the File Man Inter-
face window: 

+-----------------------------File Man Interface-------------------------------+
|                                                                      Update  |
| FileName                                               Number       Indices? |
|                                                                              |
| __________________________________________________                           |
|                                                     INSERT    ( _ )          |
| Field ____________________________________________  UPDATE    ( _ )   ____   |
|                                                     DELETE    ( _ )          |
|                                                                              |
| __________________________________________________                           |
|                                                               ( _ )          |
| Field ____________________________________________            ( _ )   ____   |
|                                                               ( _ )          |
|                                                                              |
| __________________________________________________                           |
|                                                               ( _ )          |
| Field ____________________________________________            ( _ )   ____   |
|                                                               ( _ )          |
|                                                                              |
+------------------------------------------------------------------------------+

File Man Interface                                  Press <PF1><PF3> For Help 

Table 19-4: Fields Located on File Man Interface Window

Field Name Description

FileName Enter the name of the FileMan main file that you want to add, update 
or delete. You may press the <List Choices> key to see a lookup box 
that lists all main files.

Number Optionally, you may specify a main file by its file number instead of by 
its file name. Open M with SQL automatically fills in the file number if 
you specify the file by its name.

INSERT Use the INSERT action to add an unlinked main file to the link. An 
INSERT action can only be performed when the specified file is not 
already linked. When selectable, INSERT appears in boldface type. 
Enter a value of X to enable this action. Leave blank if no action is 
desired.

UPDATE Use the UPDATE action to update the link for an entire main file or a 
sub-file/field of that main file. An UPDATE action can only be per-
formed when the specified file is already linked. When selectable, 
UPDATE appears in boldface type. Enter a value of X to enable this 
action. Leave blank if no action is desired.

DELETE Use the DELETE action to delete the link for a main file or a sub-
file/field of that main file. A DELETE action can only be performed 
when the specified file is already linked. When selectable, DELETE 
appears in boldface type. Enter a value of X to enable this action. 
Leave blank if no action is desired.
19-14 Open M with SQL Data Dictionary Guide



Extending, Updating, and Deleting the FileMan-Open M Link
Extending the FileMan-Open M with SQL Link

When you have created a FileMan-Open M with SQL link, you can extend the 
link by adding additional main files to it.

You can extend the link on a main file basis only, one file at a time.

When you add a main file to the link, Open M with SQL generates all fields, sub-
files, and pointer files associated with the main file into relational tables.

You Can Create the Link on a File-by-File Basis

You can also use this option to create the link from scratch. This is a conservative 
approach to creating the link, where you build the link on a file-by-file basis by 
individually selecting each file that you want to connect to Open M with SQL.

Procedure To create/extend the FileMan-Open M with SQL link:

1. Select the FileMan-Open M Developer Link option from the FileMan Inter-
face menu.

Field This field applies only when the main file specified in the FileName 
field has already been linked to Open M with SQL. Enter the name of 
the field or sub-file of the specified main file that you want to add, 
update, or delete from the link. Leave this field blank to specify all 
fields and sub-files associated with the main file. Use arrow syntax (->) 
when referring to fields in sub-files. Press the <List Choices> key to 
see a list of all possible entries. To specify that lower level sub-files 
should also be targeted, end the string with '...'.

Update Indices? This is a Yes/No field. It applies only when you perform the UPDATE 
action on a file, sub-file, or field. Answer Yes to delete the old index 
maps and recreate them with the new definitions, and also to delete 
and recreate base table UPDATE triggers. Answer No to leave index 
maps unchanged.

Table 19-4: Fields Located on File Man Interface Window

Field Name Description
Open M with SQL Data Dictionary Guide 19-15



Chapter 19—The FileMan Interface
The FileMan Interface window appears, as shown below:

2. At the FileName field, enter the name of the main file you want to link to 
Open M with SQL.

This must be a main file; it cannot be a sub-file.

You may press the <List Choices> key to see a lookup box that lists all File-
Man main files.

Alternatively, you may select the main file by its file number.

3. Type X at the INSERT field to specify the insert action.

INSERT appears in boldface type to indicate that it is an allowable action for 
the specified file. If it does not appear in boldface type, this means the file 
has already been linked, in which case UPDATE and DELETE are the only 
allowable actions.

4. Press <RETURN> to specify the next main file.

You may specify as many main files for INSERT as you like, one file at a 
time.

5. When you have specified all the main files that you want to link, press the 
<PROCEED> key.

+-----------------------------File Man Interface-------------------------------+
|                                                                      Update  |
| FileName                                               Number       Indices? |
|                                                                              |
| Inventory Record__________________________________     54.2                  |
|                                                     INSERT    ( X )          |
| Field ____________________________________________  UPDATE    ( _ )   ____   |
|                                                     DELETE    ( _ )          |
|                                                                              |
| Patient___________________________________________     2                     |
|                                                     INSERT    ( x )          |
| Field ____________________________________________  UPDATE    ( _ )   ____   |
|                                                     DELETE    ( _ )          |
|                                                                              |
| __________________________________________________                           |
|                                                               ( _ )          |
| Field ____________________________________________            ( _ )   ____   |
|                                                               ( _ )          |
|                                                                              |
+------------------------------------------------------------------------------+

File Man Interface                                  Press <PF1><PF3> For Help 
19-16 Open M with SQL Data Dictionary Guide



Extending, Updating, and Deleting the FileMan-Open M Link
You see the Compile window, as shown below:

6. Answer Yes at the Compile Tables? prompt to force Open M with SQL to 
compile all tables created for the FileMan link.

This field defaults to No. Do not change this value if you want to leave the 
generated tables uncompiled.

7. Answer Yes at the O.K. To Proceed? prompt to initiate creation of the link.

You see messages similar to the following as Open M with SQL builds the 
link:

The linking messages are hierarchically indented to reflect levels of depen-
dency in the created tables.

Messages that represent the creation of 
a parent table are pushed flush left.

Messages that represent the 
creation of a child table are 
indented one tab space.

+-----------------------------File Man Interface-------------------------------+
|                                                                      Update  |
| FileName                                               Number       Indices? |
| Inventory Record__________________________________     54.2                  |
|                                                     INSERT    ( X )          |
| Field ____________________________________________  UPDATE    ( _ )   ____   |
|                                                     DELETE    ( _ )          |
|                                                                              |
| Patient___________________________________________     2                     |
|                                                     INSERT    ( x )          |
| Field ____________________________________________ +---------Compile---------+
	Compile Tables? ____
__________________________________________________	
	O.K. to Proceed? ____
Field ____________________________________________	
+-------------------------+	
+------------------------------------------------------------------------------+

Compile                                             Press <PF1><PF3> For Help 

inserting fileman File # INVENTORY RECORD                                      
                                                                               
CREATING BASE TABLE(S) FOR FILE #54.2                                          
                                                                               
     CREATING CHILD TABLE FOR SUB-FILE #54.21                                  
     CHILD TABLE 'SUB_VAULT' SUCCESSFULLY CREATED                              
                                                                               
     CREATING CHILD TABLE FOR SUB-FILE #54.22                                  
     CHILD TABLE 'SUB_QCK_CDS' SUCCESSFULLY CREATED                            
BASE TABLE 'INVNTRY_RCR' SUCCESSFULLY CREATED FOR FILE #54.2                   
                                                                               
                                                                               
CONVERTING POINTER FIELDS TO DESIGNATIVE REFERENCES                            
                                                                               
DESIGNATIVE REFERENCES CONVERTED                                               
Open M with SQL Data Dictionary Guide 19-17



Chapter 19—The FileMan Interface
Messages that 
represent the creation 
of a grandchild table 
are indented two tab 
spaces.

Updating the FileMan-Open M with SQL Link

Once you have linked one or more FileMan files to Open M with SQL, you can 
update the link at any time. This lets you keep the link current with any changes 
you make to the file definition structure at the FileMan level.

You Can Update the Link for a Main File, Sub-File, or Field

You can update the FileMan-Open M with SQL link at the level of any of the fol-
lowing objects:

 n An entire main file
 n A sub-file of the main file
 n A field within the main file or any of its sub-file(s)

When you update the link for an entire main file, Open M with SQL deletes the 
old link and recreates a new one.

When you update the link for a sub-file, Open M with SQL deletes and recreates 
the link for the starting sub-file as well as for each dependent sub-file recursively.

When you update the link for a field, Open M with SQL deletes and recreates just 
that field.

Using the Update Link action, you can do the following:

 n Update sub-files and/or fields that have been modified since the link was last 
updated.

 n Add new sub-files and/or fields to the link.

Selecting a Sub-file

To select a sub-file, use arrow syntax, as follows:

main_file->sub_file->...->field

Procedure To update the FileMan-Open M with SQL link:

1. Select the FileMan-M with SQL Link option from the FileMan Interface 
menu.
19-18 Open M with SQL Data Dictionary Guide



Extending, Updating, and Deleting the FileMan-Open M Link
The FileMan Interface window appears, as shown below:

2. At the FileName prompt, enter the name of the main file that you want to 
relink to Open M with SQL.

This must be a main file; it cannot be a sub-file.

You may press the <List Choices> key to see a lookup box that lists all File-
Man main files.

Alternatively, you may select the main file by its file number.

3. At the Field prompt, enter the name of the field or sub-file within the speci-
fied main file that you want to link to Open M with SQL.

To relink the entire main file, leave this field blank.

To relink a selected sub-file (and its dependent sub-files recursively) or just a 
selected field, specify the sub-file or field here.

You may press the <List Choices> key to see a lookup box that lists all fields 
and sub-files associated with the specified main file.

4. Type X at the UPDATE field to specify the update action.

UPDATE appears in boldface type to indicate that it is an allowable action 
for the specified file. If it does not appear in boldface type, this means the file 
has not yet been linked, in which case INSERT is the only allowable action.

5. Answer Yes at the Update Indices? field to force Open M with SQL to delete 
and recreate the index maps and UPDATE triggers generated for the tables.

+-----------------------------File Man Interface-------------------------------+
|                                                                      Update  |
| FileName                                               Number       Indices? |
|                                                                              |
| Patient___________________________________________     2                     |
|                                                     INSERT    ( _ )          |
| Field ____________________________________________  UPDATE    ( X )   Yes_   |
|                                                     DELETE    ( _ )          |
|                                                                              |
| Inventory Record__________________________________     54.2                  |
|                                                     INSERT    ( _ )          |
| Field VAULT->QUANTITY ON HAND_____________________  UPDATE    ( X )   Yes_   |
|                                                     DELETE    ( _ )          |
|                                                                              |
| __________________________________________________                           |
|                                                               ( _ )          |
| Field ____________________________________________            ( _ )   ____   |
|                                                               ( _ )          |
|                                                                              |
+------------------------------------------------------------------------------+

File Man Interface                                  Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 19-19



Chapter 19—The FileMan Interface
Leave this field blank if you do not want to update the index maps and 
UPDATE triggers.

6. Press <RETURN> to specify the next main file.

To relink a second field or sub-file from the same main file, reenter the name 
of the main file here, then specify another field or sub-file, as described in 
steps 2-6.

Or, you may specify a new main file, repeating steps 2-6.

7. When you have specified all the main files that you want to update, press the 
<PROCEED> key.

The Compile window appears.

8. Answer Yes at the Compile Tables? prompt to force Open M with SQL to 
recompile all updated tables.

By default, Open M with SQL does not compile these tables. You may leave 
this field blank to leave the tables uncompiled.

9. Answer Yes at the O.K. To Proceed? prompt to initiate update of the link.

Open M with SQL displays linking messages as it updates the link according 
to your specifications.

Deleting the FileMan-Open M with SQL Link

Once you have created a FileMan-Open M with SQL link, you can delete it at 
any time.

You Can Delete the Link for a Main File, Sub-File, or Field

You can delete the FileMan-Open M with SQL link at the level of any of the fol-
lowing objects:

 n An entire main file
 n A sub-file of the main file
 n A field within the main file or any of its sub-file(s)

When you delete the link for an entire main file, Open M with SQL deletes the 
link for the main file and all its sub-files recursively.

When you deletes the link for a sub-file, Open M with SQL deletes the link for 
the starting sub-file as well as for each dependent sub-file recursively.

When you delete the link for a field, Open M with SQL deletes the link just for 
that field.
19-20 Open M with SQL Data Dictionary Guide



Extending, Updating, and Deleting the FileMan-Open M Link
Selecting a Sub-file

To select a sub-file, use arrow syntax, as follows:

main_file->sub_file->...->field

Open M with SQL Enforces Referential Integrity When Deleting a File

When you delete the link at the level of a FileMan main file or sub-file, Open M 
with SQL deletes every field in the starting file, then deletes every dependent 
sub-file recursively. This recursive deletion prevents the existence of a child table 
whose parent has been deleted.

Procedure To delete the FileMan-Open M with SQL link:

1. Select the FileMan-M with SQL Link option from the FileMan Interface 
menu.

The FileMan Interface window appears, as shown below:

2. At the FileName field, enter the name of the main file whose link you want to 
delete.

This must be a main file; it cannot be a sub-file. You may press the <List 
Choices> key to see a lookup box that lists all FileMan main files.

Alternatively, you may select the main file by its file number.

3. In the field entitled Field, enter the name of the field or sub-file within the 
specified main file that you want to delete from the link.

To delete the entire main file, leave this field blank.

+-----------------------------File Man Interface-------------------------------+
|                                                                      Update  |
| FileName                                               Number       Indices? |
|                                                                              |
| Patient___________________________________________     2                     |
|                                                     INSERT    ( _ )          |
| Field ____________________________________________  UPDATE    ( _ )   ____   |
|                                                     DELETE    ( X )          |
|                                                                              |
| Inventory Record__________________________________     54.2                  |
|                                                     INSERT    ( _ )          |
| Field INVENTORY ITEM______________________________  UPDATE    ( _ )   ____   |
|                                                     DELETE    ( X )          |
|                                                                              |
| __________________________________________________                           |
|                                                               ( _ )          |
| Field ____________________________________________            ( _ )   ____   |
|                                                               ( _ )          |
|                                                                              |
+------------------------------------------------------------------------------+

File Man Interface                                  Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 19-21



Chapter 19—The FileMan Interface
To delete a selected sub-file (and its dependent sub-files recursively) or just a 
selected field, specify the sub-file or field here.

You may press the <List Choices> key to see a lookup box that lists all fields 
and sub-files associated with the specified main file.

4. Type X at the DELETE field to specify the delete action.

DELETE appears in boldface type to indicate that it is an allowable action 
for the specified file. If it does not appear in boldface type, this means the file 
has not yet been linked, in which case INSERT is the only allowable action.

5. Press <RETURN> to complete the delete specification (the actual deletion is 
not performed until step 8).

To delete a second field or sub-file from the same main file, reenter the name 
of the main file here, then specify another field or sub-file, as described in 
steps 2-5.

Or, you may specify a new main file, repeating steps 2-5.

6. When you have specified all the main files that you want to delete, press the 
<PROCEED> key.

The Compile window appears.

7. Answer Yes at the Compile Tables? prompt to force Open M with SQL to 
recompile all updated tables.

By default, Open M with SQL does not compile these tables. You may leave 
this field blank to leave the tables uncompiled.

8. Answer Yes at the O.K. To Proceed? prompt to initiate deletion of the link.

Open M with SQL displays delete messages as it deletes the link according to 
your specifications.
19-22 Open M with SQL Data Dictionary Guide



Generating Views of FileMan Files
Generating Views of FileMan Files

The FileMan Interface provides a facility that automatically generates an Open M 
with SQL view of a FileMan file. The view joins all Open M with SQL tables 
created for the file. In Open M with SQL, you can use the view as the data source 
for reports, queries, and other views.

In order to generate a view of a file, the file must already be linked to Open M 
with SQL.

The view generation facility generates one view for every FileMan file you spec-
ify. You can specify a range of multiple files, in which case it will generate multi-
ple views.

To define the range, you specify the file numbers of the first and last files to be 
included. These files must be main files; they cannot be sub-files.

Note: To use this facility, you must know the file numbers of the files for 
which you want to generate views. It is not sufficient to know just 
the file names. To determine the file numbers, go to the FileMan 
Interface main menu and select the Print FileMan-Developer 
Cross Ref. option. This prints out a list of all FileMan files with 
their file numbers.

Procedure To generate views for FileMan files:

1. Select the Generate Views of FileMan Files option from the FileMan Inter-
face menu.

You will see the FileMan View Generation window, as shown below:

2. In the Starting File # field, type the file number of the first in the range of 
files for which you want to generate a view.

This must be a main file; it cannot be a sub-file.

3. In the Ending File # field, type the file number of the last in the range of files 
for which you want to generate a view.

                      +-----FileMan View Generation-----+
                      |                                 |
                      | Starting File # _______________ |
                      |                                 |
                      | Ending File #   _______________ |
                      |                                 |
                      | OK To Proceed?  Yes_            |
                      |                                 |
                      +---------------------------------+

FileMan View Creation                               Press <PF1><PF3> For Help 
Open M with SQL Data Dictionary Guide 19-23



Chapter 19—The FileMan Interface
This must be a main file; it cannot be a sub-file.

4. Answer Yes at the O.K. To Proceed? prompt to initiate generation of the view.

You see the following message as Open M with SQL generates the view:

Generating view...Please wait.

Then, you see:

View generation completed!
19-24 Open M with SQL Data Dictionary Guide



FileMan-Open M with SQL Cross Reference Report
FileMan-Open M with SQL Cross Reference Report

The FileMan-Open M with SQL Cross Reference Report shows the correspon-
dence between FileMan files (both main files and sub-files) and the interface-
generated Open M with SQL base tables equivalent to them.

For each FileMan main file and sub-file that has been linked to Open M with 
SQL, the FileMan-Open M with SQL Cross Reference Report prints the follow-
ing information:

 n The file number
 n The file name
 n The name of the equivalent interface-generated Open M with SQL base table 

or child table

Procedure To print the FileMan-Open M with SQL Cross Reference Report

1. Select the Print FileMan-Developer Cross Ref. option from the FileMan 
Interface menu.

You see the Device Selection window, as shown below:

2. In the Device field, enter the name of the device to which you want to send 
this report.

You can send the report to any valid output device to which your current 
device is linked.

The default device is always your current device. To print the report to your 
screen, press the <PROCEED> key without altering the device name.

                                             +--------Device Selection--------+
                                             | Device                         |
                                             | /dev/ttyp9__________           |
                                             |                                |
                                             | Description                    |
                                             | BJB-Feb 19                     |
                                             |                                |
                                             | Print Format                   |
                                             | ____________________           |
                                             +--------------------------------+

Device Selection                                    Press <PF1><PF3> For Help 

 Exit Without selecting 
Open M with SQL Data Dictionary Guide 19-25



Chapter 19—The FileMan Interface
The FileMan-Developer Cross Reference Report appears as follows:

                                                                               
               FileMan - Open M Developer Cross Reference Report        Page: 1
                           Printed: 02/19/97  02:39PM                          
FileMan Number   File Mananger File Name                   Base Table Name
---------------  ----------------------------------------  ---------------------
.2               DESTINATION                               DESTINATION_2
.4               PRINT TEMPLATE                            PRINT_TEMPLATE_4
.401             SORT TEMPLATE                             SORT_TEMPLATE_401
.402             INPUT TEMPLATE                            INPUT_TEMPLATE_402
.41              FORMATTER-FIELD SUB-FIELD                 SUB_FORMATTERFIELD_41
.5               FUNCTION                                  FUNCTION_5
.7               MUMPS OPERATING SYSTEM                    MUMPS_OPERATING_SYSTE
                                                           M_7
.8               SCREEN                                    SCREEN_8
.81              DISPLAY SUB-FIELD                         SUB_DISPLAY_81
.87              WINDOW SUB-FIELD                          SUB_WINDOW_87
.871             '@'-NAMES SUB-FIELD                       SUB_NAMES_871
.88              COMMAND ACTION                            COMMAND_ACTION_88
.881             COMMAND SCREEN SUB-FIELD                  SUB_COMMAND_SCREEN_88
                                                           1
.882             SYNONYMS SUB-FIELD                        SUB_SYNONYMS_882
Press <Return> to continue, <Options> to scroll, <Exit> to Exit                 
19-26 Open M with SQL Data Dictionary Guide



Conversion Error Log
Conversion Error Log

Print Conversion Error Log Report

Use this option to print a report of all errors encountered during INSERT, 
UPDATE, and DELETE operations performed on the FileMan-Open M with 
SQL link.

The Conversion Error Log Report provides the following information about each 
error:

 n Date
 n Time
 n Directory
 n FileMan File Number
 n Error Type
 n Error Description
 n SQL Error Code

Procedure To print the Conversion Error Log Report

1. Select the Print Conversion Error Log Report option from the FileMan Inter-
face menu.

You see the Device Selection window, as shown below:

2. In the Device field, enter the name of the device to which you want to send 
this report.

You can send the report to any valid output device to which your current 
device is linked.

The default device is always your current device. To print the report to your 
screen, press the <PROCEED> key without altering the device name.

                                             +--------Device Selection--------+
                                             | Device                         |
                                             | /dev/ttyp9__________           |
                                             |                                |
                                             | Description                    |
                                             | BJB-Feb 19                     |
                                             |                                |
                                             | Print Format                   |
                                             | ____________________           |
                                             +--------------------------------+

Device Selection                                    Press <PF1><PF3> For Help 

 Exit Without selecting 
Open M with SQL Data Dictionary Guide 19-27



Chapter 19—The FileMan Interface
The Print Conversion Error Log Report appears as follows:

Purge Conversion Error Log

Use this option to purge the conversion error log of all entries prior to a specified 
date. The system requests confirmation before purging the error log.

Procedure To purge the conversion error log:

1. Select the Purge Conversion Error Log option from the FileMan Interface 
menu.

The Purge FileMan Error Log window appears, as shown below:

2. Enter the date up to which you want to purge all errors from the log at the 
Purge Errors Up To Date prompt.

To enter the current date, type t. This purges all errors from the log.

3. Answer Yes at the OK to Proceed? prompt.

4. Press <RETURN> on the <proceed> prompt located on the bottom boundary 
of the window to start the purge.

                                                                               
FileManager Interface Errorpage: 1
Printed: 02/19/97  02:46PM
Date: 01/10/97  Time: 08:03PM  Directory: /dbms1/cust/saic/
File #: 44.2 (PATIENT APPOINTMENT)
Error Type: Message
updating fileman File # PATIENT APPOINTMENT   - Updating indices
SQLCODE = 0
Date: 01/10/97  Time: 08:03PM  Directory: /dbms1/cust/saic/
File #: 44.2 (PATIENT APPOINTMENT)
Error Type: Warning Only
Invalid FileMan Index. Omitting Index #2 On Field #.01.
SQLCODE = 0
Date: 01/10/97  Time: 08:03PM  Directory: /dbms1/cust/saic/
File #: 44.2 (PATIENT APPOINTMENT)
Error Type: Fatal Error
Press <Return> to continue, <Options> to scroll, <Exit> to Exit                 

                     +------Purge FileMan Error Log-------+
                     |                                    |
                     | Purge Errors Up To Date: ________  |
                     |                                    |
                     | Ok To Proceed? No__                |
                     |                                    |
                     +------------------------------------+

Main                                                Press <PF1><PF3> For Help 
19-28 Open M with SQL Data Dictionary Guide



Conversion Error Log
When the purge is complete, you see the following message at the bottom of 
the screen:

Error Log Purged.

Using the FileMan Interface with Open M with SQL PDP

Using the FileMan Interface with Open M with SQL PDP has special require-
ments. Hardware resource limitations prevent you from defining and compiling 
base tables or forms on the Digital PDP-11 platform.

The workaround for this is to define and compile base tables and forms on 
another development machine, then export them to the PDP-11 production 
machine. The export utility downloads both globals and macro source routines. 
You must compile the macro source routines on the PDP-11 machine to generate 
PDP-executable object code. Once you have done this, you can run compiled 
forms and define new reports and queries from compiled base tables on the PDP-
11 production machine.

Since the FileMan Interface generates and compiles base tables, you must run the 
interface on a non-PDP-11 development machine. You can then export the base 
tables and macro routines to the PDP-11 machine and compile the macro routines 
on the PDP-11. Please consult the chapter entitled “Export/Import” in the Open 
M/SQL Developer Guide for information on using the export utility.

Since FileMan routines and globals are accessed both during creation of the inter-
face and during execution of reports and forms, you need to copy the complete 
set of FileMan routines and globals onto both the development machine and the 
production machine.
Open M with SQL Data Dictionary Guide 19-29



Chapter 19—The FileMan Interface
Limitations to the FileMan Interface

The following is a list of limitations associated with the FileMan Interface:

 n The FileMan pointer data type is supported.  However, additional logic for 
screened pointers and restricted "Learn-As-You-Go" (LAYGO) access is not 
supported. Screened pointers and LAYGO access are controlled at the form 
level.

 n Computed fields are supported. However, only the following standard File-
Man variables are automatically available for computations:
 • U
 • DT
 • D0 - Dn

 n Special lookup programs are not supported.
 n Post-selection programs are not supported.
 n Neither file level security access nor field level security access is supported. 

Open M with SQL's security system is compliant with the ANSI SQL stan-
dard, and supersedes FileMan security.

 n Output transformations are supported. However, the only FileMan variables 
which are automatically available are X and Y. Any other required variables 
must be established in the application environment prior to invoking Open M 
with SQL.

 n The only cross-reference index structure supported for Open M with SQL 
lookups and retrievals is the regular index. The following index types are not 
supported for lookups and retrievals, but are maintained for database integ-
rity:
 • Kwik
 • Mnemonic
 • Soundex
 • Trigger
 • Bulletin Board

 n FileMan currently permits a programmer to define standard delimited fields 
and fixed-length fields in the same positions of a global node, allowing one 
field to overwrite another. Open M with SQL does not rectify such database 
design errors.

 n Any M programs referenced within FileMan field validation or transforma-
tion logic, computed field logic, or index maintenance logic must be accessi-
ble from the Open M with SQL directory where the interface-generated base 
tables reside.
19-30 Open M with SQL Data Dictionary Guide



Limitations to the FileMan Interface
 n Under certain circumstances FileMan allows the same global node to be used 
for multiple cross-reference indices. This confuses Open M with SQL when 
using a cross-reference index to perform a lookup.

 n Under certain circumstances FileMan allows a cross-reference index for a 
file to be maintained through one of its sub-files. Because such an index is 
not relationally correct, it is not used by Open M with SQL for lookups or 
searches on the sub-file. However, the index is maintained to enforce data-
base integrity.

 n Field auditing is not supported.
 n Basic help messages are supported, but executable help messages are not 

supported.
 n Word processing fields are supported only as text fields. No genuine word 

processing capability is currently available within Open M with SQL.
Open M with SQL Data Dictionary Guide 19-31



Chapter 19—The FileMan Interface
FileMan Interface Questions and Answers

Q: Can I use Open M with SQL for generating reports and queries, while 
continuing to use my FileMan application for data entry?

A: Yes, the interface does not diminish the viability of existing FileMan 
applications. You may also use the Open M with SQL Form Generator to create 
new data entry applications for your database.

Q: Once I run the interface against a FileMan database, can I modify the 
tables within Open M with SQL? What happens to my FileMan definitions if I do 
this?

A: You can modify any base table generated by the FileMan Interface. 
However, the FileMan-Open M with SQL link is a one-way link, and there is no 
interface to send changes from Open M with SQL back to FileMan. InterSystems 
recommends making any changes first to the FileMan definition, then updating 
the FileMan-Open M with SQL link appropriately.

Q: If there are problems with my FileMan definitions, can I revise them 
and re-run the interface?

A: Yes, you can use the UPDATE option to relink a file or part of a file at 
any time.

Q: What are the limitations to using the FileMan Interface under Open M 
with SQL PDP on the Digital PDP-11 platform?

A: Due to hardware limitations, you must create the link on a non-PDP-11 
development machine, then use the Export/Import utility to copy the generated 
base tables and macro source routines to a production environment on the PDP-
11 machine. You must have a copy of all FileMan routines and globals on both 
the development and production machines.

Q: Why doesn't Open M with SQL support screened pointers and restricted 
LAYGO access?

A: Open M with SQL supports both of these features. However, Open M 
with SQL differs from FileMan in how it approaches these features. FileMan 
makes these features an integral part of the database, while Open M with SQL 
considers these as application-dependent features. Therefore, Open M with SQL 
allows these features to be defined at the form level, rather than at the database 
level.

Q: Why doesn't Open M with SQL support special lookup programs and 
post-selection programs?
19-32 Open M with SQL Data Dictionary Guide



FileMan Interface Questions and Answers
A: Again, Open M with SQL takes the approach that these are application-
dependent, and not intrinsic to the database definition.

Q: Why doesn't Open M with SQL support FileMan's security features?

A: Open M with SQL employs its own database security system, which is 
compliant with the ANSI SQL standard. FileMan's security scheme is not com-
patible with this standard.

Q: Why doesn't Open M with SQL support non-regular index types for 
searches and retrievals?

A: In order to convert a FileMan index to an index map, Open M with SQL 
must be able to parse a global reference from the executable M code used by 
FileMan to maintain indices. The nature of the non-regular indices makes it 
impractical to obtain a global reference for them. Instead, Open M with SQL 
calls the FileMan index maintenance code through base table Post-Filing trig-
gers.

Q: Why doesn't Open M with SQL support FileMan's field auditing fea-
ture?

A: Currently, Open M with SQL makes field auditing the responsibility of 
the application developer.

Q: Why doesn't Open M with SQL support FileMan's executable help mes-
sages?

A: Open M with SQL help messages are lines of constant text. No provi-
sion currently is made for executing M code when displaying help.
Open M with SQL Data Dictionary Guide 19-33



Chapter 19—The FileMan Interface
19-34 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
CHAPTER

20
Importing Data Definitions
Often, when users want to convert existing M applications to the Open M with 
SQL RDBMS, they want to transfer existing data definitions. You can automate 
this transfer to Data Dictionary base tables by writing a program that creates a 
global, named ^mxdd, which contains the information in the format expected by 
the Data Dictionary. This chapter discusses the format of this global. Topics cov-
ered include:

 n Overview of Data Dictionary Import  page 20-2
 n Basic Structure of ^mxdd Import Global  page 20-2
 n Base Table Node Structure  page 20-5
 n View Node Structure  page 20-25
 n Privileges Definition Node Structure  page 20-30
nary Guide 20-1



Chapter 20—Importing Data Definitions
Overview of Data Dictionary Import

Users often want to transfer their existing data definitions into the Data Dictio-
nary so they can use the many features available with InterSystems' Open M 
Developer environment.

Create ^mxdd Global

In order to do this, users must write an application to place the information they 
currently have defined into the global, ^mxdd. Users can then run the Open M 
with SQL import utility, which will take the information in the ^mxdd global to 
create a Data Dictionary definition. 

Basic Structure of ^mxdd Import Global

The ^mxdd global describes two types of objects:

 n Base tables
 n Views

Provide Definition as Described in Data Dictionary

The values you provide to describe base tables and views must be in the form 
described in this guide for the corresponding window and field. 

For instance, when you provide the format of a field of data type Date, you will 
enter a number from 1 - 7, to represent one of the seven formats described under 
the Date data type in “Defining a Date Field” on page 6-11 in Chapter 6, Defining 
Base Table Fields .

Values Provided as Subscripts and Node Values

Object information may be in the form of node value and/or subscript value. 

For instance, when you describe a base table, you will provide the base table 
name as the second subscript value, as in:

^mxdd(1,<Base Table Name>,...)

You may reference a field name. Enclose the field name in curly braces, as in 
{fieldname}. If the field is in another base table, use the table.fieldname format, 
as in {Other_table.fieldname}.
20-2 Open M with SQL Data Dictionary Guide



Overview of Data Dictionary Import
Abbreviations Used to Represent Values

In the descriptions of the ^mxdd global in this document, the following subscript 
values refer to definition information you provide:

<ObjectType>="View" or "BaseTable"
<Name>= Object Name (either name of View or name of Base 
Table)
<BName>  = Base Table Name
<VName>  = View Name
<FName>  = Field Name
<MName>  = Map Name
<VFName> = View Field Name
<Node>   = Node Name 

Open M with SQL runs each base table or view name through the $$ALPHAUP 
function. The resulting name must not match any of the SQL reserved words.   
See Appendix C, SQL Reserved Words.

Fixed Subscript Values

Many nodes have fixed subscript values, which will be enclosed in quotation 
marks ("). These are case sensitive. For example, the subscript "ViewFields" is 
different from the subscript "viewfields". Be sure to enter subscripts in quotes 
exactly as they appear in this document.

Identify Object as Base Table or View

You define whether a node refers to a base table or a view, it will be the value of 
the node:

^mxdd(1,<Name>)=<ObjectType>

where <ObjectType> can equal "View" or "BaseTable". Note the first subscript 
of ^mxdd is currently fixed with the value of 1.

Subsequent subscripts define different types of information about the base table 
or view named in the second subscript. For instance, each base table field is 
described in subnodes of the following node:

^mxdd(1,<BName>,"Field",<FName>,<Node>)

Required and Default Values

The descriptions of each node of the ^mxdd global indicate when information is 
required and must be included as a node in ^mxdd.   If you do not include these 
nodes, you will receive an error message when you attempt to import the ^mxdd 
global.
Open M with SQL Data Dictionary Guide 20-3



Chapter 20—Importing Data Definitions
Sometimes a node is marked REQUIRED but the information is only required 
based on the value given to another node. 

Some nodes contain information that is required when entered in a Data Dictio-
nary window, but for which Open M with SQL provides a default value. There-
fore, you do not have to provide a value for these fields. These nodes will not be 
marked as required in the descriptions that follow, but their default values are 
provided.

Multi-Line Node Structure

Most nodes contain actual values. However, some nodes represent a multi-line 
field, then the value of the node will be a number representing the number of 
lines in the field. There then are that number of lower-level nodes, with sub-
scripts starting at 1, containing the value of each of the lines. For example, if # is 
a node in ^mxdd which represents a multi-line field, then:

^mxdd(....,#) = n, where n is the number of lines in this 
multi-line field
^mxdd(....,#,1) = value of first line
^mxdd(....,#,2) = value of second line
 .

.

.
^mxdd(....,#,n) = value of last line
20-4 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Base Table Node Structure

The definition of a base table consists of nodes which describe:

 n Basic definition
 n Field definitions
 n Field error message translations
 n Field help message translations
 n Trigger definitions
 n  Mapping definition

 •   Basic definition
 •   Access Path Specifications
 •   Data Access Variables
 •   Row ID Specifications
 •   Map Data Specifications
 •   Index Maps

Base Table Basic Definition

The basic definition describes the main features of the base table. The top-level 
node structure of a Base Table definition is:

^mxdd(1,<BName>,#)

Location in Data Dictionary

In the Data Dictionary, you define most of these values at the Base Table Defini-
tion master window. The fileman fields you define in the Fileman Interface win-
dow, accessed via the Fileman-M with SQL Link option on the Fileman Interface 
menu. The Fileman Interface menu is an option on the Data Dictionary menu.
Open M with SQL Data Dictionary Guide 20-5



Chapter 20—Importing Data Definitions
Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Base Table Top-Level Nodes" below:  

Table 20-1:  Base Table Top-Level Nodes

#
How to Access from the Base Table 
Definition Master Window

Field Name on 
Window Notes

3 On the window Description

11 Validation Code horizontal menu 
option displays "Base Table Validation 
Code" window

"Insert" Valida-
tion M code Lines 

(MULTILINE)

13 Implicit Joins horizontal menu option 
displays "Characteristic Joins" window

Name of the Par-
ent Table (if it 
exists)

14 Implicit Joins horizontal menu option 
displays "Characteristic Joins" window

Names of Child 
Tables

(MULTILINE)

31 Validation Code horizontal menu 
option displays "Base Table Validation 
Code" window

"Update" Valida-
tion M code Lines

(MULTILINE)

32 On the window Approximate 
number of rows

34 Validation Code horizontal menu 
option displays "Base Table Validation 
Code" window

"Delete" Valida-
tion M code Lines

(MULTILINE)

35 Do not access from Base Table Defini-
tion Master Window, but at the File-
man Interface window

Number Number of File-
man file

41 Advanced Options horizontal menu 
option displays "Advanced Base Table 
Options" window

Routine Name Routine name 
prefix

44 On the window Use default physi-
cal structure? 
(Y/N)

REQUIRED

47 <Physical Structure> branching field File Name Default file name 
(Meaningful only 
if node 44 = "Y"). 

48 Advanced Options horizontal menu 
option displays "Advanced Base Table 
Options" window

BaseTable Owner Owner of this 
table
20-6 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Example This node provides the name, description, parent table, approximate number of 
rows, routine name prefix, whether using default structure, and base table owner.

^mxdd(1,"MachCompnts",3)=Connector table to Parts
   13)=Machines
   32)=500
   41)=mt15
   44)=N
   48)=_SYSTEM

Base Table Field Definitions

The field definition node structure is identified by the "Field" value in the third 
subscript.

^mxdd(1,<BName>,"Field",<FName>,<Node>)

Data Dictionary Location

In the Data Dictionary, you define most of these values at the Field Definition 
master window. The fileman fields you define in the Fileman Interface window, 
accessed via the Fileman-M with SQL Link option on the Fileman Interface 
menu. The Fileman Interface menu is an option on the Data Dictionary menu.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Base Table Field Nodes":   

Table 20-2: Base Table Field Nodes

#

How to Access 
from Field 
Definition 
Master Window

Field Name on 
Window Notes

3 On the window Description

4 Update Features 
horizontal menu 
option displays 
"Update Fea-
tures" window

Column Number REQUIRED  (Output only on Field Defini-
tion form)
Input Value Meaning
0    Designative reference to parent table
1     Row ID
2      childsub child subscript field
Unique integer    All other fields
Open M with SQL Data Dictionary Guide 20-7



Chapter 20—Importing Data Definitions
6 On the window Data type REQUIRED
Input Values
 Date
 Designative Reference
 Multiple Choice
 Name
 Number
 Row ID
 Text
 Time
 Yes/No

7 On the window Maximum length REQUIRED

8 Update Features 
horizontal menu 
option displays 
"Update Fea-
tures" window 
horizontal menu 
option

Field protection Input Value  Protection Level
AE                Add/Edit
A                  Add only
O                  Output only

9 Update Features 
horizontal menu 
option displays 
"Update Fea-
tures" window

Required? Input Value  Meaning
Y                  Yes
N                   No
M                   Maybe

10 Update Features 
horizontal menu 
option displays 
"Update Fea-
tures" window

M code for 
"Maybe" required

REQUIRED if field is Maybe Required.

11 On the window Multi-line field? (Y/N)

14 Multi-Line Stor-
age window

Storage type REQUIRED if it is a multi-line field
Input Value  Meaning
 1                All in One Node
 2                One per Node

15 Multi-Line Stor-
age window

Storage delimiter REQUIRED if multi-line field with "All in 
One Node" storage type

Table 20-2: Base Table Field Nodes

#

How to Access 
from Field 
Definition 
Master Window

Field Name on 
Window Notes
20-8 Open M with SQL Data Dictionary Guide



Base Table Node Structure
19 Time data type 
window

Number data type 
window

First time Format HH:MMAM or HH:MMPM For a 
"Time" data type

20 Last time Format HH:MMAM or HH:MMPM
For a "Time" data type

21 Format For a "Time" data type
Input Value
A digit from the range 1-6

22 Number minimum

23 Number maxi-
mum

24 # of decimal 
places

25 Format

26 Leading punctua-
tion

27 Number data type 
window

Multiple Choice 
data type window

Show minus

28 Used in arithmetic 
calculation?

(Y/N)
For a "Number" data type

29 Multiple choices (MULTILINE) 
For "Multiple Choice" data type

30 Date data type 
window

First Date Format MM/DD/YYYY
For "Date" data type 

31 Date last 

33 Format For "Date" data type

36 Designative Ref-
erence data type 
window

Designated base 
table name

REQUIRED
For "Designative Reference" data type

38 On the window Approximate 
Number of distinct 
values

43 On the window Computed field? (Y/N)

45 Computed Field 
window

Names of the 
fields whose 
change triggers 
the computation 
of this field

(MULTILINE)
For a computed field of type "Not Always 
Equal"-- see Node 82 in this table) 

Table 20-2: Base Table Field Nodes

#

How to Access 
from Field 
Definition 
Master Window

Field Name on 
Window Notes
Open M with SQL Data Dictionary Guide 20-9



Chapter 20—Importing Data Definitions
46 Computed Field 
window

Code to compute 
the value of the 
field 

(MULTILINE) (for a computed field)

49 Help/Error Mes-
sages horizontal 
menu option dis-
plays "Error and 
Help Messages" 
window

Error message 
(English)

50 Help message 
(English) 

(MULTILINE)

51 Conversion/Vali-
dation Code hori-
zontal menu 
option displays 
"Conversion/Vali-
dation Code" win-
dow

External to Inter-
nal Conversion M 
code 

(MULTILINE)

52 Conversion/Vali-
dation Code hori-
zontal menu 
option displays 
"Conversion/Vali-
dation Code" win-
dow

Internal to Exter-
nal Conversion M 
code

(MULTILINE)

61 On the window Unique? (Y/N)

62 Row ID data type 
window

Field displayable? (Y/N) 
For Row ID data type

63 Multiple Choice 
data type window

Do you want 
external and inter-
nal values?

(Y/N)
For Multiple Choice data type 

72 Report Defaults 
horizontal menu 
option

Column title For an M/PACT report

73 Row ID data type 
window

Is it based on 
other fields? 

(Y/N)
REQUIRED if value in 6 is Row ID.

74 Row ID data type 
window

Fields Names of fields on which Row ID is based.
REQUIRED if value in 73 is Yes and in 6 is 
Row ID.
(MULTILINE)

75 Auxiliary data 
type

For Row ID data type
For input values, see #6 above

Table 20-2: Base Table Field Nodes

#

How to Access 
from Field 
Definition 
Master Window

Field Name on 
Window Notes
20-10 Open M with SQL Data Dictionary Guide



Base Table Node Structure
79 Text and Name 
data type win-
dows

Function used for 
collating and look-
ups

Input  Meaning
A     ALPHAUP
E     EXACT (default)
U     UPPER

80 Conversion/Vali-
dation Code hori-
zontal menu 
option displays 
"Conversion/Vali-
dation Code" win-
dow

Additional Valida-
tion code

(MULTILINE)

81 Update Features 
horizontal menu 
option displays 
"Update Fea-
tures" window

M expression for 
default value 

(External)
If Row ID, defaults to:
$$next("^mdata(<TableID>)")
where <TableID is the table’s irn.

82 Computed Field 
window

Is value always 
equal to computa-
tion? 

(Y/N)
REQUIRED for computed fields

83 "Compute as null 
IF" M expression

(MULTILINE)
For computed field only

86 Do not access 
from Base Table 
Definition Master 
Window, but at 
the Fileman Inter-
face window

Number FileMan field number

88 1. Error/Help 
Messages hori-
zontal menu 
option displays 
"Error and Help 
Messages" win-
dow
2. <Edit Override 
Help>

Help Override 
routine

89 Array to store 
override help

96 Do not access 
from Base Table 
Definition Master 
Window, but from 
Fileman Interface 
option on Data 
Dictionary menu

INSERT FileMan general triggers (MULTILINE)

97 UPDATE
DELETE

FileMan update triggers (MULTILINE)

Table 20-2: Base Table Field Nodes

#

How to Access 
from Field 
Definition 
Master Window

Field Name on 
Window Notes
Open M with SQL Data Dictionary Guide 20-11



Chapter 20—Importing Data Definitions
Example These nodes describe the field "MachCompnts", which is the Row ID field for 
the base table "MachCompnts".

^mxdd(1,"MachCompnts","Field","MachCompnts",
3)=MachCompnts Row ID
4)=1
6)=Row ID
7)=16
8)=O
9)=Y
11)=N
25)=1
27)=1
28)=Y
38)=NUMROWS
43)=N
49)=Enter a number such as 1234.56
61)=Y
73)=Y
74)=2
74,1)=Machines
74,2)=childsub
20-12 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Example These nodes describe the Machines field, which is a designative reference field to 
the parent table.  (Note that node 4, column number, is therefore given the value 
"0".)

^mxdd(1,"MachCompnts","Field","Machines",
3)=Machines Parent Reference
4)=0
6)=Designative Reference
7)=16
8)=O
9)=Y
11)=N
28)=Y
36)=Machines
43)=N
49)=Press <CHOICE> for a list of choices.
51)=6
51,1)=n c,k,neg,p,reg
   2)=s reg=0 s:%val=+%val reg=1 q:reg
   3)=s neg=1 s:%val<0 neg=-1,%val=$e(%val,2,999)
   4)=s:%val'?.n.1".".n %ok=0
   5)=s:%val?.p %val="" s:%val&$g(neg)%val=%val*neg
   6)=s %val=+%val
62)=N
75)=Number
81)=$g(da12)

Base Table Field Error Translations

The field error translation definition node structure is identified by the "FEr-
rTrans" value in the fifth subscript.  The translation, like the English version of 
the error message, may be one line long.

Data Dictionary Location

In the Data Dictionary, you define Error Message translations at the window dis-
played when you press <Error Translations> on the Error and Help Messages 
window. See “Defining Long Help and Error Messages” on page 13-4 in Chapter 
13, Field Help and Error Messages 

<Language> Subscript

Replace the <Language> subscript with the name of the language in which this 
error message is written.
Open M with SQL Data Dictionary Guide 20-13



Chapter 20—Importing Data Definitions
Node Descriptions

The value of this node is one line which is the error message that will be dis-
played if invalid data is entered into a field.

^mxdd(1,<BName>,"Field",<FName>,"FErrTrans",
        <Language>)=error message 

Example This node shows an error message translated into German.

^mxdd(1,"Machines","Field","Notes","FErrTrans","Deutsch 
(German)")

=German error message

Base Table Field Help Translations

The field help translation definition node structure is a multi-line structure, iden-
tified by the "FHelpTrans" value in the fifth subscript.

Data Dictionary Location

In the Data Dictionary, you define the Help translations at the window displayed 
when you press <Long Help Translations> on the Error and Help Messages win-
dow. See “Defining Long Help and Error Messages” on page 13-4 in Chapter 13, 
Field Help and Error Messages .

<Language> Subscript

Replace the <Language> subscript with the name of the language in which this 
error message is written.

Node Descriptions

This is a multi-line node.  The first node contains a counter of the number of lines 
in the help message.  The subnodes contain the lines of the help message.

^mxdd(1,<BName>,"Field",<FName>,"FHelpTrans",
        <Language>)=number of lines in help message
^mxdd(1,<BName>,"Field",<FName>,"FHelpTrans",
        <Language>,n)=help message line
20-14 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Example This German help message contains 2 lines:

^mxdd(1,"Machines","Field","Notes","FHelpTrans","Deutsch 
(German)")=2
^mxdd(1,"Machines","Field","Notes","FHelpTrans","Deutsch 
(German)",
1)=German help message - first line
2)=German help message - second line

Base Table Triggers Definition 

The trigger definition node structure is identified by a <TriggerType> value (see 
the section “<TriggerType> Subscript” on page 20-15) in the third subscript.

^mxdd(1,<BName>,<TriggerType>,<TriggerItem#>,#)

Data Dictionary Location

In the Data Dictionary, you define triggers at the window displayed when you 
select the Base Table Triggers horizontal menu option at the Base Table Defini-
tion master window. See Chapter 11, Base Table Triggers .

<TriggerType> Subscript

The <TriggerType> subscript can have the values described in the table "<Trig-
gerType> Subscript Values":

<TriggerItem#> Subscript

You should number trigger items sequentially, starting from 1 for each new value 
of <TriggerType>.

Table 20-3:  <TriggerType> Subscript Values

Value Description

PreInsert Pre-file CREATE trigger

PreUpdate Pre-file UPDATE trigger

PreDelete Pre-file DELETE trigger

PostInsert Post-file CREATE trigger

PostUpdate Post-file UPDATE trigger

PostDelete Post-file DELETE trigger
Open M with SQL Data Dictionary Guide 20-15



Chapter 20—Importing Data Definitions
Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in Table 20-4: Base Table Triggers Nodes, on page 20-16.

These fields are found on the Trigger Definition window.  To get to this window 
select the Base Table Triggers horizontal menu option from Base Table Defini-
tion master window.  Press <RETURN> at any of the six branching fields 
described in the table "<TriggerType> Subscript Values>.  The Trigger Definition 
window appears: 

+------------------------Base Table Definition---------------------+           
|                                                                  |           
| Base Table Name              Description                         |           
| Accounts_________________    accounts base table________________ |           
|                                                                  |           
|            Use Default Physical Structure? No__                  |           
|                                                                  |           
|            < Fields >                                            |           
+------------------------------Trigger Definition------------------------------+
|                                                                              |
|     Action      Form/Window/Field                                            |
|      Type       Query/Routine                     (M Expressions)            |
|                                                                              |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
| _______________ _____________________ IF ___________________________________ |
+------------------------------------------------------------------------------+
 Implicit  Validation  BaseTable  Compile  Comp Rel  Copy   Advanced  Comments 

...Trigger Definition                               Press <PF1><PF3> For Help 

Table 20-4:  Base Table Triggers Nodes

#
Field Name on "Trigger 
Definition" Window Description

2 Access Code ("IF ...)

3 Action Type REQUIRED. Input values:
 n Routine
 n M Code
 n SQL

4 Routine name REQUIRED if Action Type is 
"Routine".

7 M Code Lines REQUIRED if Action Type is "M 
Code".
(MULTILINE)

8 SQL Lines REQUIRED if Action Type is 
"SQL".
(MULTILINE) 
20-16 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Example This node describes a PreDelete trigger.  It is of type SQL, and is one line long.

^mxdd(1,"Machines","PreDelete",1,

3)=SQL
8)=1
8,1)=DELETE FROM InstldSftwr WHERE Machine=:%data(1)

Base Table Map Node Structure

Include this node only if you are defining customized mapping, i.e., the value of 
the node ^mxdd(1,<BName>,44)="N".

The map node structure definition is identified by the literal value "Map" in the 
third subscript.

^mxdd(1,<BName>,"Map",<MName>,#)

Data Dictionary Location

In the Data Dictionary, you define maps at the Map Definition row selection win-
dow, which you access by selecting <Physical Structure> at the Base Table Defi-
nition master window.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Base Table Map Nodes":  

Table 20-5:  Base Table Map Nodes

#

How to Access from 
Map Definition Master 
Window

Field 
Name on 
Window Notes

4 On window Global 
name

REQUIRED

6 On window Is this a 
Master 
Map?

(Y/N)
REQUIRED
There must be exactly 1 
Master Map for each 
base table.
Open M with SQL Data Dictionary Guide 20-17



Chapter 20—Importing Data Definitions
Example This node describes the Master Map named "Machines Master Map".  The data is 
in the global ^mxddMachine, and it is not a conditional map.

^mxdd(1,"Machines","Map","Machines Master Map",   
4)=^mxddMachine
6)=Y
15)=N

                         

Base Table Map Access Path Specifications Structure

The map Access Path Specifications structure is identified by a "Map" value in 
the third subscript and a "MapSubs" value in the fifth subscript.

^mxdd(1,<BName>,"Map",<MName>,"MapSubs",<AccessLevel>,#)

15 1. Advanced Options on 
horizontal menu

2. <Conditional Map>      

Conditional 
Map? 

(Y/N)
Only if value of Node 6 
is "N".

22 Set Map IF M expression to evalu-
ate the condition (if 
Conditional Map node = 
"Y")

25 Percent-
age of rows 
in this map.

Provide the percentage 
with a leading decimal 
point.  For example 
".25" will translate to 
25%.

28
Advanced Options on 
horizontal menu

INSERT See ”Step 10: Define 
Override Filing Code” in 
Chapter 18, Creating a 
Customized Map Defini-
tion .

29 UPDATE

30 DELETE

32 <Full Row Reference> Override Row reference override 
value.  See ”Step 7: 
Specify Override to Full 
Row Reference” in 
Chapter 18, Creating a 
Customized Map Defini-
tion .

Table 20-5:  Base Table Map Nodes

#

How to Access from 
Map Definition Master 
Window

Field 
Name on 
Window Notes
20-18 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Data Dictionary Location

In the Data Dictionary, you define Access Levels at the Access Path Specifica-
tions window, which you access from the Map Definition master window. See 
“Access Path Specifications” on page 16-17 in Chapter 16, Default Physical 
Structure .

<AccessLevel> Value

This is the number of the Access Level.  You start with the number 1, and con-
tinue until you have defined all Access Levels necessary to provide the Full Row 
Reference.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Base Table Map Access Path Specification Nodes":  

Table 20-6:  Base Table Map Access Path Specification Nodes

#

How to Access 
from Access 
Path 
Specifications 
Master Window

Field Name on 
Window Notes

2 On window Level REQUIRED  
(Output Only on 
window)

8 On window Value Expression REQUIRED
You can refer-
ence a field, as in 
{fieldname} or 
{Other_table.field-
name}.

9
<Access Code>

First Value

10 Last Value

16 1. <Access 
Code>
2. <Special 
Code>

Special invalid 
condition code - 
override

(MULTILINE)

18 1. <Access 
Code>
2. <Special 
Code>
3. <NEXT Sub-
routine>

Next subroutine - 
override value

(MULTILINE)
Open M with SQL Data Dictionary Guide 20-19



Chapter 20—Importing Data Definitions
Example These nodes describe three master map subscripts for the base table "MachCom-
pnts".

^mxdd(1,"MachCompnts","Map","Machine Comp Master 
Map","MapSubs",1,

2)=1
         8)=0
^mxdd(1,"MachCompnts","Map","Machine Comp Master 
Map","MapSubs",2,
2)=2
8)={Machines.Machines}
^mxdd(1,"MachCompnts","Map","Machine Comp Master 
Map","MapSubs",3,
2)=3
8)={childsub}

20 Piece auxiliary 
window

Piece delimiter REQUIRED for 
Access Type 
"PIECE" -- see 
node 23 below)

22 <Data Access 
Expression>

Override Refer-
ence

Override value for 
Data Access 
Expression

23 On window Access Type Input Values
 Global
 Sub
 Piece
 Other

Table 20-6:  Base Table Map Access Path Specification Nodes

#

How to Access 
from Access 
Path 
Specifications 
Master Window

Field Name on 
Window Notes
20-20 Open M with SQL Data Dictionary Guide



Base Table Node Structure
These nodes describe 2 subscripts for the index map of the base table "Machines" 
named "Index InHseName 15".

^mxdd(1,"Machines","Map","Index InHseName 
15","MapSubs",1,
2)=18)="Inhse machine name"
^mxdd(1,"Machines","Map","Index InHseName 
15","MapSubs",2,
2)=2
8)=$$UPPER({InHseNa})

Base Table Map Data Access Variable

The map data access variable structure is identified by the "MapVars" value in 
the seventh subscript.  It is a multi-line node.

^mxdd(1,<BName>,"Map",<MName>,"MapSubs",
<AccessLevel>,"MapVars",<VariableNumber>)= count
^mxdd(1,<BName>,"Map",<MName>,"MapSubs",
<AccessLevel>,"MapVars",<VariableNumber>,n)= M Code

Data Dictionary Location

To access the Additional Data Access Variables window in the Data Dictionary, you:

1. Enter the Base Table Definition master window

2. Select <Physical Structure>

3. If the table has default physical structure, select <Examine Structure>

4. Specify the Map Name

5. Select <Access Path Specifications>

6. Select <Access Code>

7. Select <Additional Data Variables - M Code>

<VariableNumber> Value

This is the number of a Data Access Variable for the given <AccessLevel> 
value.  Assign 1 to the first variable, 2 to the second, and so on.
Open M with SQL Data Dictionary Guide 20-21



Chapter 20—Importing Data Definitions
Example These nodes describe 1 Data Access Variable.  Its value is one line long.

^mxdd(1,"Machines","Map","Machines Master 
Map","MapSubs",

2,"MapVars",1)=1
^mxdd(1,"Machines","Map","Machines Master 

Map","MapSubs",
2,"MapVars",1,1)=SET {2D1}={S2}_"a"

Base Table Row ID Specifications

The Row ID specifications definition is identified by the "MapRowID" value in 
the fifth subscript.

^mxdd(1,<BName>,"Map",<MName>,"MapRowID",
<MRowIDSub>,#)

Data Dictionary Location

The values for these fields are defined at the Row ID Specifications window, 
accessed from the Map Definition master window.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Base Table Row ID Specification Nodes".  These fields are both on 
the Row ID Specifications window.   

Example This node describes a Row ID field named Machines which is not based on other 
fields.  It is equal to the Value Expression defined for Access Level 3 of the 
Access Path Specifications.

^mxdd(1,"Machines","Map","Index InHseName 
15","MapRowID",1,3)=Machines
        4)={L3}

Table 20-7:  Base Table Row ID Specification Nodes

#
Field Name on "Row ID 
Specifications" Window Notes

3 Field REQUIRED

4 M expression REQUIRED
20-22 Open M with SQL Data Dictionary Guide



Base Table Node Structure
Base Table Map Data Specifications Structure

The Map Data Specifications structure is identified by the "MapData" value in 
the fifth subscript.

^mxdd(1,<BName>,"Map",<MName>,"MapData",
<MapDataSubscript>,#)

Data Dictionary Location

These values are all defined at the Map Data Specifications window, accessed 
from the Map Definition master window.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Base Table Map Data Nodes":

Example In this example, node 5 (delimiter definition) is required since there is a value 
given to node 4.

^mxdd(1,"Machines","Map","IndexInHseName15","MapData",1,
2)=InHseName

4)=1
5)="^mxdd"

Default Physical Structure Index Definitions

This node is required only if you plan to use default physical structure.  Include 
this if you gave a value of "Y" to the node ^mxdd(1,<BName>,44).

Table 20-8:  Base Table Map Data Nodes

#
How to Access from Map Data 
Specifications Master Window

Field Name on 
Window Notes

2 On the window Field name REQUIRED 

3 On the window Node  

4 On the window Piece

5 On the window Delimiter REQUIRED if a 
value is given for 
node 4.

10 <M Code> branching field M Code (MULTILINE) 
Open M with SQL Data Dictionary Guide 20-23



Chapter 20—Importing Data Definitions
The index definition for a base table created with default physical structure is 
identified by a "MapDefIdxFd" value in the third subscript.  It is a multi-line 
node.  

^mxdd(1,<BName>,"MapDefIdxFd",<IndexNumber>)=count
^mxdd(1,<BName>,"MapDefIdxFd",<IndexNumber>,#)=Field Name

Data Dictionary Location

When you are using default physical structure, you create additional index maps 
in the Data Dictionary by following these steps:

1. Select <Physical Structure> at the Base Table Definition master window

2. Select <Fields to Index>

3. Enter one or more groups of fields.  Each group creates a separate Index 
Map.

<IndexNumber> Value

This is the number of the Index Map, starting from 1.  

Example These nodes describe one index map.

^mxdd(1,"MachCompnts","MapDefIdxFd",1)=1
^mxdd(1,"MachCompnts","MapDefIdxFd",1,1)=Machines
20-24 Open M with SQL Data Dictionary Guide



View Node Structure
View Node Structure

There are three types of views:

 n Views based on a base table
 n Views based on another view
 n Views based on a query (General Views)

View Basic Definition

The basic definition exists of all three types of views.  It describes the main fea-
tures of the view.  The top-level node structure of a View definition is:

^mxdd(1,<VName>,"ViewName",#)

Data Dictionary Location

These values are defined at or from the View Definition master window.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "View Top-Level Nodes" below.  These fields are all found on the 
View Definition form.  

Table 20-9:  View Top-Level Nodes

#

How to Access 
from the View 
Definition 
Master Window Field Notes

5 On the window Description

6 On the window Starting table REQUIRED
Base table name 
if view is based 
on a base table or 
View name if view 
is based on 
another view 

8 <Query> branch-
ing field

Query text REQUIRED if a 
query-based view
(MULTILINE)
Open M with SQL Data Dictionary Guide 20-25



Chapter 20—Importing Data Definitions
Example ^mxdd(1,"MachManuf",5)=Machines with manufacturers shown
   6)=Machines
  11)=1

14)=_SYSTEM

View Join Specification

You need to provide these nodes which define view joins only if the view is 
based on a base table, but not if the view is based on another view or a query.

The view join specification is identified by the "Link" value in the third sub-
script.

^mxdd(1,<VName>,"Link",<LinkNumber>,#)

Data Dictionary Location

You define these fields at the View Join Specification window, accessed by 
selecting <Join Specifications> at the View Definition master window.

<LinkNumber> Definition

Replace <LinkNumber> with a unique, sequential integers, starting with 1, for 
each base table join comprising this view.  You will use this number when you 

11 On the window Start Type: Output only on 
window.
Input  Meaning
 1    View is based 
on a base table
 3     View is 
based on another 
view
8     View is a 
General (Query-
based) View

14 Advanced 
Options horizon-
tal menu option

Owner Output only in 
Data Dictionary

Table 20-9:  View Top-Level Nodes

#

How to Access 
from the View 
Definition 
Master Window Field Notes
20-26 Open M with SQL Data Dictionary Guide



View Node Structure
describe the fields from each joined table (including the starting one) that are 
included in this view.  See the section “View Field Definition” on page 20-27.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "View Join Specification Nodes" below:  

Example These nodes describe a designative reference to the Machines base table.

^mxdd(1,"MachManuf","Link",1,2)=Vendors
   3)=to get manufacturer's name
   5)=Machines.VendorID

These nodes describe a link using extended arrow syntax.

^mxdd(1,"MachManuf","Link",1,2)=Parts
   3)=parts table
   5)=Machines.MachCompnts->PartID

View Field Definition

The definition of view fields exists only if the view is based on a base table or 
another view, but not if the view is based on a query.

View fields descend hierarchically in global nodes for views based on a base 
table.  All fields belong to link #1 for views based on another view.

The view field definition is identified by the "ViewFields" value in the fifth sub-
script.

^mxdd(1,<VName>,"Link",<LinkNumber>,"ViewFields",
<VFName>,#)

Table 20-10:  View Join Specification Nodes

#
Field Name on "View Join 
Specifications" Window Meaning

2 Base Table REQUIRED

3 Join Description

5 Implicit Join REQUIRED
Use extended 
arrow syntax
Open M with SQL Data Dictionary Guide 20-27



Chapter 20—Importing Data Definitions
Data Dictionary Location

You enter the values in these nodes at the Fields on View Definition window.  
You reach that window by pressing <Fields> at the View Join Specification win-
dow.

<LinkNumber> Definition

Views Based on Base Table

Replace <LinkNumber> with the number of each base table you defined in your 
View Links Definition.  See the section “View Join Specification” on page 20-26.

Views Based on a View

Replace <LinkNumber> with the number 1.  You will define all fields included in 
this view under this number.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "View Field Nodes":   

Table 20-11:  View Field Nodes

#
Field Name on "Fields on View 
Definition" Window Meaning

3 Description

4 Field Name in Linked Table REQUIRED
The name of the underlying base table 
field on which this view field is based, 
in the form: <BName>_"."_<FName> 
For views based on another view, 
<BName> refers to the underlying 
base tables in view on which this view 
is based.

7 Not on window REQUIRED if view is based on 
another view only <LinkNumber> of 
base table on which underlying view is 
based from which the field is derived 

8 Field Name in View REQUIRED
Name of the view field from the view 
on which this view is based on which 
this field is based (for view-based 
views only).
20-28 Open M with SQL Data Dictionary Guide



View Node Structure
Example This is a view based on a base table.  Therefore, there are no nodes 7 and 8 to 
define this field ("BrandName"), but only a node 4 (Node 3 -- field description -- 
is always optional and was not included).

^mxdd(1,"MachManuf","Link",1,"ViewFields","BrandName",4)=
Machines.BrandName
Open M with SQL Data Dictionary Guide 20-29



Chapter 20—Importing Data Definitions
Privileges Definition Node Structure

Privileges may be defined for a specific base table or view, as follows:

^mxdd(1,<BName or VName>,"Privilege")=<Number of 
privileges>
^mxdd(1,<BName or VName>,"Privilege",<PrivilegeNumber>,#)

Data Dictionary Location

Define all values, except Grantor, at the GRANT window, accessed via the Grant 
Privileges option on the Privileges Menu.

Node Descriptions

The meaning of the various nodes represented by different values of # is provided 
in the table "Privilege Nodes" below:  

Example ^mxdd(1,"MachCompnts","Privilege")=1
^mxdd(1,"MachCompnts","Privilege",1,3)=a

4)=sales
5)=_SYSTEM
6)=N

Table 20-12:  Privilege Nodes

#
Field Name on 
"GRANT" Window Notes

3 GRANT (Action) REQUIRED
Input Value     Meaning
 "a"                  %ALTER
 "s"                  SELECT
 "i"                    INSERT
 "u"                   UPDATE
 "d"                   DELETE
 "r"                    REFERENCES

4 TO (User) REQUIRED

5 Grantor name REQUIRED
Name of the grantor of this privilege

6 WITH GRANT 
OPTION? 

REQUIRED
(Y/N)
20-30 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
APPENDIX

A 
Data Dictionary Specifications
Data Dictionary Specifications

System Parameters Maximum Value

Number of Fields per Base Table 150

Length of Base Table/View Name 40 characters

Length of Field Name 40 characters

Number of options for Multiple Choice field 1023

Length of Multiple Choice field option 75 characters

Number of Fields to Lookup On 7

Number of fields to display in Lookup Box Up to screen width.
No multi-line fields
nary Guide A-1



Appendix A—Data Dictionary Specifications
A-2 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
APPENDIX

B
Keyboard Actions
Open M/SQL supports many terminals.  To see a complete list of supported ter-
minals, do the following:

1. Enter the following command:

>DO ^%

2. Enter a ? at the "Terminal type vt100=>" prompt.

The tables in this appendix show the keyboard mapping of form actions for the 
terminal types supported by Open M/SQL.

 n The first column, "Form Action," lists the actions supported by the Form 
Generator.

 n The second column, "Primary Key," lists the primary keystroke or keystroke 
sequence used to invoke each action.

 n The third column, "Alternate Key(s)," lists the alternate keystroke(s) or key-
stroke sequence(s) used to invoke each action.

Altos

Altos Keyboard Mapping

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-SCRN Next <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Delete Row Del Line <Enhance>-D

Delete Instance (Multi-line 
fields)

<Enhance>-Del Line
nary Guide  B-1



Appendix B—Keyboard Actions
Delete Word <Ctrl-W>

Delete Previous Character Del

Delete Character <Ctrl-D> Del Char

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F13 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Del

Explain F14

GETOUT F10 <Enhance>-F

GETOUTALL <Enhance>-F10

Go to Bottom Menu F15

Help Menu <Enhance>-F15

Insert Instance (Multi-line 
fields)

<Enhance>-Ins Line

Insert Row (Multi-row forms) Ins Line <Enhance>-I

Left Arrow Left Arrow <Ctrl-H>

List Choices <Enhance>-L

Next Field Tab

Next Word <Ctrl-F>

Next Screen SCRN Next <Enhance>-N

Previous Screen SCRN Prev <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS F16

PROCEED F12

RETURN Retn
Enter

Right Arrow Right Arrow <Ctrl-K>

SAVE F11 <Enhance>-S

Search Current Table <Enhance>-F14

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-SCRN Prev <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Enhance>-^

Form Action Primary Key Alternate Key(s)
 B-2 Open M with SQL Data Dictionary Guide



ANSI

ANSI Keyboard Mapping

Undo <Ctrl-X>

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-Page Down <Enhance>-V

<Ctrl-V>

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Delete Row (Multi-row 
forms)

F8

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Word <Ctrl-W> <Enhance>-W

Delete Previous Character <--

Delete Character Del Char <Ctrl-D>
<Enhance>-D

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Del
<Enhance>-<--

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow
Open M with SQL Data Dictionary Guide  B-3



Appendix B—Keyboard Actions
CIT-500

CIT-500 Keyboard Mapping

List Choices F7

Next Field Tab

Next Word <Ctrl-F> <Enhance>-F

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6 <Enhance>-F2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List Page Up <Enhance>-T
<Ctrl-T>

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-J>

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Bottom of List <Enhance>-Center <Enhance>-B

Break <Ctrl-C>

Delete Character <Ctrl-D>

Delete Word <Ctrl-W>

Delete Previous Character Backspace
 B-4 Open M with SQL Data Dictionary Guide



Delete Instance (Multi-line 
fields)

<Enhance>-Under Score

Delete Row (Multi-row 
forms)

Under Score

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance PF1

Erase Field Line <Ctrl-L> <Enhance>-Del

Explain PF2

GETOUT F20 <Enhance>-F

GETOUTALL <Enhance>-F20

Go to Bottom Menu PF3

Help Menu F15
<Enhance>-F15

Insert Row (Multi-row forms) EOL <Enhance>-I

Insert Instance (Multi-line 
fields)

<Enhance>-EOL

Left Arrow Left Arrow <Ctrl-H>

List Choices Home <Enhance>-L

Next Field Tab

Next Screen Center <Enhance>-N

Next Word <Ctrl-F>

Previous Word <Ctrl-B>

Previous Screen EOP <Enhance>-P

PREVIOUS PF4

PROCEED F16

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F19 <Enhance>-S

Search Current Table F9 <Enhance>-PF2

Top of List <Enhance>-EOP <Enhance>-T

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Typeover/Insert Mode Tog-
gle

<Enhance>-^

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-5



Appendix B—Keyboard Actions
COBRA

COBRA Keyboard Mapping

Undo <Ctrl-X>
<Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-PageDn <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>
Break <Ctrl-C>

Delete Row (Multi-row 
forms)

F8 <Enhance>-D

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Word <Ctrl-W>

Delete Character <Ctrl-D>

Delete Previous Character Backspace Delete

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Delete
<Enhance>-Backspace

Explain F2

GETOUT F10 <Enhance>-F

GETOUTALL F11

Go to Bottom Menu F3

Help Menu F12

Insert Instance (Multi-line 
fields)

<Enhance>-INS

Insert Row (Multi-row forms) INS <Enhance>-I
 B-6 Open M with SQL Data Dictionary Guide



DECTERM

DECTERM (DEC-PC7XL-AA) Keyboard Mapping

Left Arrow Left Arrow

List Choices F7 <Enhance>-L

Next Field Tab

Next Word <Ctrl-F>

Next Screen PageDn <Enhance>-N

Previous Screen PageUp <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS F4

PROCEED F5 Esc-Esc

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9 <Enhance>-S

Search Current Table F6

Top of Window <Enhance>-Up Arrow

Top of List <Enhance>-PageUp <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Enhance>-^

Undo <Enhance>-X

Up Arrow Up Arrow

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-B <Enhance>-Next Screen

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Character <Ctrl-D>

Delete Previous Character Backspace
Open M with SQL Data Dictionary Guide  B-7



Appendix B—Keyboard Actions
Delete Row (Multi-row 
forms)

<Enhance>-D

Delete Instance (Multi-line 
fields)

<Enhance>-Delete

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F9

Erase Field Line <Ctrl-L>

Explain F10

GETOUT <Enhance>-F

GETOUTALL <Enhance>-F8

Go to Bottom Menu <Enhance>-F9

Help Menu <Enhance>-F11

Insert Row (Multi-row forms) <Enhance>-I

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Left Arrow Left Arrow <Ctrl-H>

List Choices <Enhance>-L

Next Field Tab

Next Word <Ctrl-F>

Next Screen Next Screen <Enhance>-N

Previous Screen Prev Screen

Previous Word <Ctrl-B>

PREVIOUS <Enhance>-Tab

PROCEED <Enhance>-P

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE <Enhance>-S

Search Current Table <Enhance>-F10

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-T

Typeover/Insert Mode Tog-
gle

Insert

Form Action Primary Key Alternate Key(s)
 B-8 Open M with SQL Data Dictionary Guide



DTM-PC Console

See NT Console.

DESQView Console

See PC Console.

ED3638

ED3638 (Edisa) Keyboard Mapping

Undo <Enhance>-X <Ctrl-X>

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow ^E Left Arrow

Bottom of List <Enhance>-V <Ctrl-V>
<Enhance>-Page Down

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>
^E Down Arrow

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

<Enhance>-D F8

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Word <Enhance>-W <Ctrl-W>

Delete Character Delete <Ctrl-D>

Delete Previous Character <--

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>
^E Right Arrow

Enhance F1 <Ctrl-G>

Erase Field Line <Enhance>-Delete <Ctrl-L>
<Enhance><--

Explain F2

GETOUT F10
Open M with SQL Data Dictionary Guide  B-9



Appendix B—Keyboard Actions
GETOUTALL <Enhance>-F10

Go to Bottom Menu <Enhance>-F1

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7

Next Field Tab

Next Word <Enhance>-F <Ctrl-F>

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS F4 <Enhance>-Tab

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>
^E Up Arrow

Top of List <Enhance>-T <Enhance>-Page Up
<Ctrl-T>

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Enhance>-X <Ctrl-X>

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)
 B-10 Open M with SQL Data Dictionary Guide



FALCO

Falco Keyboard Mapping (Emulates DEC VT 220)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-Next Screen <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Instance (Multi-line 
fields)

<Enhance>-Remove

Delete Row (Multi-row 
forms)

Remove

Delete Previous Character Delete

Delete Character <Ctrl-D>

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance PF1

Erase Field Line <Ctrl-L> <Enhance>-Delete

Explain PF2

GETOUT F10 <Enhance>-F

GETOUTALL <Enhance>-F10

Go to Bottom Menu PF3

Help Menu Help

Insert Instance (Multi-line 
fields)

<Enhance>-Insert Here

Insert Row (Multi-row forms) Insert Here <Enhance>-I

Left Arrow Left Arrow

List Choices Select <Enhance>-L

Move Window (in Quick-
Form)

<Enhance>-Space

Next Field Tab

Next Word <Ctrl-F>

Next Screen Next Screen <Enhance>-N
Open M with SQL Data Dictionary Guide  B-11



Appendix B—Keyboard Actions
Generic

Generic (pure roll and scroll) Keyboard Mapping

Previous Screen Prev Screen <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS PF4

PROCEED Do

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F19 <Enhance>-S

Search Current Table Find <Enhance>-PF2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-Prev Screen <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-<Ctrl-H>

Bottom of List

Bottom of Window <Enhance>-<Ctrl-J>

Break

Delete Row (Multi-row 
forms)

<Ctrl-V>

Delete Instance (Multi-line 
fields)

Delete Word

Delete Character <Ctrl-D>

Delete Previous Character Delete

Down Arrow <Ctrl-J>

End of Field <Enhance>-<Ctrl-K>

Enhance <Ctrl-G>
 B-12 Open M with SQL Data Dictionary Guide



Erase Field Line <Ctrl-L>

Explain <Ctrl-F>

GETOUT <Ctrl-Z>

GETOUTALL <Enhance>-<Ctrl-Z>

Go to Bottom Menu <Enhance>-<Ctrl-G>

Help Menu <Ctrl-A>

Insert Instance (Multi-line 
fields)

Insert Row (Multi-row forms)

Left Arrow <Ctrl-H>

List Choices <Ctrl-O>

Next Word

Next Screen

Previous Screen

Previous Word

PREVIOUS <Ctrl-P>

PROCEED <Ctrl-N>

RETURN Return

Right Arrow <Ctrl-K>

SAVE

Search Current Table <Ctrl-R>

Tab <Ctrl-I>

Top of Window <Enhance>-<Ctrl-U>

Top of List

Typeover/Insert Mode Tog-
gle

<Ctrl-B>

Undo

Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-13



Appendix B—Keyboard Actions
IBM 3151-ANSI

IBM 3151 ANSI-like Keyboard Mapping

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-V <Ctrl-V>

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Row (Multi-row 
forms)

F8 <Enhance>-D

Delete Previous Character Backspace

Delete Character <Ctrl-D> Del Char

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1

Erase Field Line <Ctrl-L> <Enhance>-Backspace

Explain F2

Finished Form <Enhance>-F

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Window F3

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-F6

Insert Row (Multi-row forms) F11 <Enhance>-I

Insert/Typeover/Insert Tog-
gle

<Enhance>-^

Left Arrow Left Arrow Backspace

List Choices F7 <Enhance>-L

Macro Ctrl/z <Ctrl-Z>

Macro Definition <Enhance>-K
 B-14 Open M with SQL Data Dictionary Guide



IBM 3151 Ascii Display

IBM 3151 Ascii Display Station Keyboard Mapping

Macro Gold y <Enhance>-Y

Macro Gold z <Enhance>-Z

Next Field Tab

Next Screen <Enhance>-N

Next Word <Ctrl-F>

Previous Field <Enhance>-Tab

Previous Screen <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9 <Enhance>-S

Search Current Table F6

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-T <Ctrl-T>

Undo <Enhance>-X <Ctrl-X>

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-<- Tab <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Instance (Multi-line 
fields)

<Enhance>-F7

Delete Row (Multi-row 
forms)

F7
Open M with SQL Data Dictionary Guide  B-15



Appendix B—Keyboard Actions
Delete Previous Character Backspace

Delete Character <Ctrl-D>

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1

Erase Field Line <Ctrl-L> <Enhance>-Backspace

Explain F2

GETOUT F12 <Enhance>-F

GETOUTALL <Enhance>-F12

Go to Bottom Menu F3

Help Menu F5
<Enhance>-F5

Insert Instance (Multi-line 
fields)

<Enhance>-F6

Insert Row (Multi-row forms) F6 <Enhance>-I

Left Arrow Left Arrow <Ctrl-H>

List Choices F8 <Enhance>-L

Move Window (in Quick-
Form)

<Enhance>-Space

Next Word <Ctrl-F>

Next Screen <- Tab <Enhance>-N

Previous Screen Home <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS F4

PROCEED F10

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F11 <Enhance>-S

Search Current Table F9

Tab Tab

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-Home <Enhance>-T

Form Action Primary Key Alternate Key(s)
 B-16 Open M with SQL Data Dictionary Guide



IBM 6091

IBM 6091 Keyboard Mapping

Typeover/Insert Mode Tog-
gle

<Enhance>-^

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-Page Down <Enhance>-End

Bottom of Window End <Enhance>-<Ctrl-J>
<Enhance>-<Ctrl-V>

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

F8

Delete Instance (Multi-line 
fields)

Delete Word <Ctrl-W> <Enhance>-W

Delete Character Del <Ctrl-D>

Delete Previous Character Delete <Ctrl-H>
<-Backspace

Down Arrow Down Arrow <Ctrl-J>
<Ctrl-V>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L>

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Go to Top Menu <Enhance>-F1

Help Menu <Enhance>-F3
Open M with SQL Data Dictionary Guide  B-17



Appendix B—Keyboard Actions
IBM PC

IBM PC Keyboard Mapping

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert

Left Arrow Left Arrow <Ctrl-H>

List Choices F7 <Enhance>-F2

Macro Definition <Enhance>-K

Next Field Tab

Next Screen Page Down

Next Word <Ctrl-F> <Enhance>-F

Previous Field <Enhance>-Tab

Previous Screen Page Up

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-Page Up <Enhance>-Home

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Enhance>-X <Ctrl-X>

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-PageDn
 B-18 Open M with SQL Data Dictionary Guide



Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>
<Ctrl-V>

Break <Ctrl-C>

Delete Word <Ctrl-W> <Enhance>-W

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Row (Multi-row 
forms)

F8

Delete Previous Character <- (Previous Space) <Ctrl-H>

Delete Character Delete <Ctrl-D>
<Enhance>-D

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Del
<Enhance>-Delete Key

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Ins

Insert Row (Multi-row forms) Ins <Enhance>-I

Left Arrow Left Arrow

List Choices F7 <Enhance>-F2

Next Field Tab

Next Word <Ctrl-F> <Enhance>-F

Next Screen PgDn

Previous Screen PgUp

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-19



Appendix B—Keyboard Actions
IBM PC With Color

IBM PC with wired Color Keyboard Mapping

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-PgUp

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-PageDn <Enhance>-End

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>
<Enhance>-<Ctrl-V>
End

Break <Ctrl-C>

Delete Word <Ctrl-W> <Enhance>-W

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Row (Multi-row 
forms)

F8

Delete Previous Character <- (Previous Space) Delete
<Ctrl-H>

Delete Character Del <Ctrl-D>
<Enhance>-D

Down Arrow Down Arrow <Ctrl-J>
<Ctrl-V>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>
 B-20 Open M with SQL Data Dictionary Guide



Erase Field Line <Ctrl-L> <Enhance>-Del
<Enhance>-Delete Key

Explain F2
<Enhance>-F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Ins

Insert Row (Multi-row forms) Ins <Enhance>-I

Left Arrow Left Arrow

List Choices F7 <Enhance>-F2

Next Field Tab

Next Word <Ctrl-F> <Enhance>-F

Next Screen PgDn

Previous Screen PgUp

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-PgUp <Enhance>-Home

Typeover Mode Toggle <Enhance>-^

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-21



Appendix B—Keyboard Actions
MSM PC Console

MSM PC Console Keyboard Mapping

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-Page Down <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

Delete

Delete Instance (Multi-line 
fields)

<Enhance>-Delete

Delete Word <Ctrl-W>

Delete Character <Ctrl-D>

Delete Previous Character Backspace

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1

Erase Field Line <Ctrl-L> <Enhance>-Backspace

Explain F2

GETOUT F10 <Enhance>-F

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7 <Enhance>-L

Next Field Tab

Next Word <Ctrl-F>

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B>
 B-22 Open M with SQL Data Dictionary Guide



NT Console

NT Console (DTM-PC Console) Keyboard Mapping

PREVIOUS F4

PROCEED F8

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9 <Enhance>-S

Search Current Table F6 <Enhance>-F2

Top of Window <Enhance>-Up Arrow

Top of List <Enhance>-Page Up <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Enhance>-^

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-Page Down <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

Delete <Enhance>-D

Delete Instance (Multi-line 
fields)

<Enhance>-Delete

Delete Character <Ctrl-D>

Delete Previous Character Backspace

Delete Word <Ctrl-W>

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L>

Explain F2
Open M with SQL Data Dictionary Guide  B-23



Appendix B—Keyboard Actions
GETOUT F10 <Enhance>-F

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7

Next Field Tab

Next Word <Ctrl-F>

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS F4

PROCEED F8

RETURN Enter

Right Arrow Right Arrow <Ctrl-K>

SAVE F9 <Enhance>-S

Search Current Table F6

Top of Window <Enhance>-Up Arrow

Top of List <Enhance>-Page Up <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Enhance>-X

Up Arrow Up Arrow

Form Action Primary Key Alternate Key(s)
 B-24 Open M with SQL Data Dictionary Guide



Open M Terminal

Open M Terminal Keyboard Mapping

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-B <Enhance>-Page Down

Bottom of Window <Enhance>-Down Arrow

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

Delete <Enhance>-D

Delete Instance (Multi-line 
fields)

<Enhance>-Delete

Delete Word <Ctrl-W>

Delete Character <Ctrl-D>

Delete Previous Character Backspace

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Backspace

Explain F2

GETOUT F10 <Enhance>-F

GETOUTALL <Enhance>-F10

Go to Bottom Menu <Enhance>-F1

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow <Ctrl-H>

List Choices F7

Macro Definition <Enhance>-K

Next Field Tab

Next Word <Ctrl-F>

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P
Open M with SQL Data Dictionary Guide  B-25



Appendix B—Keyboard Actions
PC Console

PC Console (DESQView) Keyboard Mapping

Previous Word <Ctrl-B>

PREVIOUS F4 <Enhance>-Tab

PROCEED F8

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9 <Enhance>-S

Search Current Table F6

Top of Window <Enhance>-Up Arrow

Top of List <Enhance>-T <Enhance>-Page Up

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-Page Down <Enhance>-V
<Ctrl-V>

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W> <Enhance>-W

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Row (Multi-row 
forms)

F8

Delete Previous Character <--

Delete Character Delete <Ctrl-D>
<Enhance>-D

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>
 B-26 Open M with SQL Data Dictionary Guide



Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Delete
<Enhance>-<--

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7

Next Field Tab

Next Word <Ctrl-F> <Enhance>-F

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6 <Enhance>-F2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-Page Up <Enhance>-T
<Ctrl-T>

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-27



Appendix B—Keyboard Actions
SUN

SUN Keyboard Mapping

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-Page Down <Enhance>-End
Ctrl-V

Bottom of Window End <Enhance>-Down Arrow
<Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

F8

Delete Instance (Multi-line 
fields)

<Enhance>-Del Line

Delete Word <Ctrl-W>

Delete Character Del <Ctrl-D>

Delete Previous Character Backspace Delete

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Del
<Enhance>-Delete

Explain F2

GETOUT F10 <Enhance>-F

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Help Menu Help <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow <Ctrl-H>

List Choices F7

Macro Definition <Enhance>-K

Next Field Tab

Next Word <Ctrl-F>
 B-28 Open M with SQL Data Dictionary Guide



TV905

Televideo 905 Terminal Keyboard Mapping

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6

Top of Window <Enhance>-Up Arrow Home
<Enhance>-<Ctrl-U>

Top of List <Enhance>-Page Up <Enhance>-Home
<Ctrl-T>

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X>

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow

Bottom of List <Enhance>-V

Bottom of Window <Enhance>-Down Arrow

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

Line Delete

Delete Instance (Multi-line 
fields)

<Enhance>-Line Delete

Delete Word <Ctrl-W> <Enhance>-W

Delete Character <Ctrl-D> <Enhance>-D

Delete Previous Character Del
Open M with SQL Data Dictionary Guide  B-29



Appendix B—Keyboard Actions
Down Arrow Down Arrow <Ctrl-V>

End of Field <Enhance>-Right Arrow

Enhance F1 <Ctrl-G>

Erase Field Line <Enhance>-Del <Ctrl-U>
Line Erase

Explain F2

GETOUT <Enhance>-F

GETOUTALL <Enhance>-F4

Go to Bottom Menu F3

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Line Insert

Insert Row (Multi-row forms) Line Insert <Enhance>-I

Left Arrow Left Arrow

List Choices <Enhance>-L

Next Field Tab

Next Word <Ctrl-F> <Enhance>-F

Next Screen <Enhance>-N

Previous Field <Ctrl-P>

Previous Screen <Enhance>-P

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED Esc-Esc

RETURN Return

Right Arrow Right Arrow <Ctrl-L>

Search Current Table <Enhance>-F2

Top of Window <Enhance>-Up Arrow

Top of List <Enhance>-T <Ctrl-T>

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Enhance>-X <Ctrl-X>

Up Arrow Up Arrow <Ctrl-K>

Form Action Primary Key Alternate Key(s)
 B-30 Open M with SQL Data Dictionary Guide



Unisys Console

Unisys Console Keyboard Mapping

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow ^E Left Arrow

Bottom of List <Enhance>-Page Down <Enhance>-V
<Ctrl-V>

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>
^E Down Arrow

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

F8

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Word <Ctrl-W> <Enhance>-W

Delete Character Delete <Ctrl-D>
<Enhance>-D

Delete Previous Character <--

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>
^E Right Arrow

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Delete
<Enhance>-<--

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Go to Top Menu <Enhance>-F1

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7
Open M with SQL Data Dictionary Guide  B-31



Appendix B—Keyboard Actions
VT100

DEC VT 100 Keyboard Mapping

Macro Definition <Enhance>-K

Next Field Tab

Next Screen Page Down <Enhance>-N

Next Word <Ctrl-F> <Enhance>-F

Previous Field <Enhance>-Tab

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6 <Enhance>-F2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>
^E Up Arrow

Top of List <Ctrl-T> <Enhance>-T
<Enhance>-Page Up

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

<Enhance>-D
 B-32 Open M with SQL Data Dictionary Guide



Delete Instance (Multi-line 
fields)

<Enhance>-Delete

Delete Word <Ctrl-W>

Delete Character <Ctrl-D>

Delete Previous Character Delete

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance PF1 <Ctrl-G>

Erase Field Line <Ctrl-L>

Explain PF2

GETOUT <Enhance>-F

GETOUTALL <Enhance>-PF4

Go to Bottom Menu PF3

Go to Top Menu <Enhance>-PF1

Help Menu <Enhance>-PF3

Insert Instance (Multi-line 
fields)

<Enhance>-G

Insert Row (Multi-row forms) <Enhance>-I

Left Arrow Left Arrow <Ctrl-H>

List Choices <Enhance>-L

Macro Definition <Enhance>-K

Next Field Tab

Next Screen <Enhance>-N

Next Word <Ctrl-F>

Previous Field <Enhance>-Tab

Previous Screen <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS PF4

PROCEED <Enhance>-C <Enhance>-Space Bar

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE <Enhance>-S

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-33



Appendix B—Keyboard Actions
VT220

DEC VT 220 and Compatables Keyboard Mapping

Search Current Table <Enhance>-PF2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-Next Screen <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Instance (Multi-line 
fields)

<Enhance>-Remove

Delete Row (Multi-row 
forms)

Remove

Delete Previous Character Delete

Delete Character <Ctrl-D>

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance PF1

Erase Field Line <Ctrl-L> <Enhance>-Delete

Explain PF2

GETOUT F20

GETOUTALL <Enhance>-F20

Go to Bottom Menu PF3

Help Menu Help
 B-34 Open M with SQL Data Dictionary Guide



WAYTEC

WAYTEC (tis-pc) Keyboard Mapping

Insert Instance (Multi-line 
fields)

<Enhance>-Insert Here

Insert Row (Multi-row forms) Insert Here <Enhance>-I

Left Arrow Left Arrow <Ctrl-H>

List Choices Select <Enhance>-L

Move Window (in Quick-
Form)

<Enhance>-Space

Next Field Tab

Next Word <Ctrl-F>

Next Screen Next Screen <Enhance>-N

Previous Screen Prev Screen <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS PF4

PROCEED Do

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F19 <Enhance>-S

Search Current Table Find <Enhance>-PF2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-Prev Screen <Enhance>-T

Typeover/Insert Mode Tog-
gle

<Enhance>-^

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow ^E Left Arrow

Bottom of List <Ctrl-V> <Enhance>-V
<Enhance>-Page Down
Open M with SQL Data Dictionary Guide  B-35



Appendix B—Keyboard Actions
Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>
^E Down Arrow

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

F8

Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Word <Ctrl-W> <Enhance>-W

Delete Character Delete <Ctrl-D>
<Enhance>-D

Delete Previous Character <--

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>
^E Right Arrow

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Delete
<Enhance>-<--

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10

Go to Bottom Menu F3

Go to Top Menu <Enhance>-F1

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7

Macro Definition <Enhance>-K

Next Field Tab

Next Screen Page Down <Enhance>-N

Next Word <Ctrl-F> <Enhance>-F

Previous Field <Enhance>-Tab

Previous Screen Page Up <Enhance>-P

Form Action Primary Key Alternate Key(s)
 B-36 Open M with SQL Data Dictionary Guide



WYSE60 (Native)

WYSE60 (Native Mode) Keyboard Mapping

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6 <Enhance>-F2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>
^E Up Arrow

Top of List <Ctrl-T> <Enhance>-T
<Enhance>-Page Up

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>
Backspace

Bottom of List <Enhance>-Page Down <Enhance>-V
End

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Character <Ctrl-D> Del Char

Delete Previous Character Del

Delete Instance (Multi-line 
fields)

<Enhance>-PF8

Delete Row (Multi-row 
forms)

PF8 Delete
<Enhance>-D
Open M with SQL Data Dictionary Guide  B-37



Appendix B—Keyboard Actions
Delete Previous Character Delete

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow

Enhance PF1 <Ctrl-G>

Erase Field Line PF12 <Enhance>-Del

Explain PF2

GETOUT PF10 <Enhance>-F

GETOUTALL <Enhance>-F10 <Enhance>-PF4

Go to Bottom Menu PF3

Help Menu <Enhance>-PF3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert <Enhance>-G

Insert Row (Multi-row forms) Insert <Enhance>-I

Insert Mode Toggle Ins <Enhance>-Ins

Left Arrow Left Arrow <Ctrl-H>
Backspace

List Choices PF7 <Enhance>-L

Macro Ctrl/z <Ctrl-Z>

Macro Definition <Enhance>-K

Macro Gold y <Enhance>-Y

Macro Gold z <Enhance>-Z

Next Field Tab

Next Word <Ctrl-F>

Next Screen Page Down <Enhance>-N

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS PF4

PROCEED PF5 Esc-Esc

RETURN Return

Right Arrow Right Arrow <Ctrl-L>

SAVE PF9 <Enhance>-S

Search Current Table PF6 <Enhance>-PF2

Form Action Primary Key Alternate Key(s)
 B-38 Open M with SQL Data Dictionary Guide



WYSE85

WYSE-85 (VT 220 Emulation) Keyboard Mapping

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-K>

Top of List <Enhance>-Page Up <Enhance>-T

Typeover Mode Toggle <Enhance>-^

Undo <Ctrl-X> <Enhance>-<Ctrl-X>

Up Arrow Up Arrow <Ctrl-K>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow <Enhance>-<Ctrl-H>

Bottom of List <Enhance>-Next Screen <Enhance>-B

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>

Break <Ctrl-C>

Delete Word <Ctrl-W>

Delete Instance (Multi-line 
fields)

<Enhance>-Remove

Delete Row (Multi-row 
forms)

Remove

Delete Previous Character Delete

Delete Character <Ctrl-D>

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>

Enhance PF1

Erase Field Line <Ctrl-L> <Enhance>-Delete

Explain PF2

GETOUT F20

GETOUTALL <Enhance>-F20

Go to Bottom Menu PF3

Help Menu Help

Insert Instance (Multi-line 
fields)

<Enhance>-Insert Here

Insert Row (Multi-row forms) Insert Here <Enhance>-I
Open M with SQL Data Dictionary Guide  B-39



Appendix B—Keyboard Actions
Xterm

Xterm (X-Windows) Keyboard Mapping

Left Arrow Left Arrow <Ctrl-H>

List Choices Select <Enhance>-L

Move Window (in Quick-
Form)

<Enhance>-Space

Next Field Tab

Next Word <Ctrl-F>

Next Screen Next Screen <Enhance>-N

Previous Screen Prev Screen <Enhance>-P

Previous Word <Ctrl-B>

PREVIOUS PF4

PROCEED Do

RETURN Return

Right Arrow Right Arrow <Ctrl-K>

SAVE F19 <Enhance>-S

Search Current Table Find <Enhance>-PF2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>

Top of List <Enhance>-Prev Screen <Enhance>-T

Typeover Mode Toggle <Enhance>-^

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)

Form Action Primary Key Alternate Key(s)

Beginning of Field <Enhance>-Left Arrow ^E Left Arrow

Bottom of List <Ctrl-V> <Enhance>-V
<Enhance>-Page Down

Bottom of Window <Enhance>-Down Arrow <Enhance>-<Ctrl-J>
^E Down Arrow

Break <Ctrl-C>

Delete Row (Multi-row 
forms)

F8
 B-40 Open M with SQL Data Dictionary Guide



Delete Instance (Multi-line 
fields)

<Enhance>-F8

Delete Word <Ctrl-W> <Enhance>-W

Delete Character Delete <Ctrl-D>
<Enhance>-D

Delete Previous Character <--

Down Arrow Down Arrow <Ctrl-J>

End of Field <Enhance>-Right Arrow <Enhance>-<Ctrl-K>
^E Right Arrow

Enhance F1 <Ctrl-G>

Erase Field Line <Ctrl-L> <Enhance>-Delete
<Enhance>-<--

Explain F2

GETOUT F10

GETOUTALL <Enhance>-F10 <Enhance>-F4

Go to Bottom Menu F3

Go to Top Menu <Enhance>-F1 <Enhance>-PF1

Help Menu <Enhance>-F3

Insert Instance (Multi-line 
fields)

<Enhance>-Insert

Insert Row (Multi-row forms) Insert <Enhance>-I

Left Arrow Left Arrow

List Choices F7 <Enhance>-L

Macro Definition <Enhance>-K

Next Field Tab

Next Screen Page Down <Enhance>-N

Next Word <Ctrl-F> <Enhance>-F

Previous Field <Enhance>-Tab

Previous Screen Page Up <Enhance>-P

Previous Word <Ctrl-B> <Enhance>-B

PREVIOUS F4

PROCEED F5

RETURN Return

Form Action Primary Key Alternate Key(s)
Open M with SQL Data Dictionary Guide  B-41



Appendix B—Keyboard Actions
Right Arrow Right Arrow <Ctrl-K>

SAVE F9

Search Current Table F6 <Enhance>-F2

Top of Window <Enhance>-Up Arrow <Enhance>-<Ctrl-U>
^E Up Arrow

Top of List <Ctrl-T> <Enhance>-T
<Enhance>-Page Up

Typeover/Insert Mode Tog-
gle

<Ctrl-^>

Undo <Ctrl-X> <Enhance>-X

Up Arrow Up Arrow <Ctrl-U>

Form Action Primary Key Alternate Key(s)
 B-42 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
APPENDIX

C 
SQL Reserved Words
Do not use SQL reserved words for names of Open M/SQL objects, such as base 
tables, views, and fields.
ALL
AND
ANY 
AS
ASC
AUTHORIZA-
TION
AVG
BEGIN
BETWEEN
BY
CHAR
CHARACTER
CHECK
CLOSE
COBOL
COMMIT
CONTINUE
COUNT
CREATE
CURRENT
CURSOR
DEC
DECIMAL
DECLARE
DELETE
DESC

DISTINCT
DOUBLE
END
ESCAPE
EXEC
EXISTS
FETCH
FLOAT
FOR
FORTRAN
FOUND
FROM
GO
GOTO
GRANT
GROUP
HAVING
IN
INDICATOR
INSERT
INT
INTEGER
INTO
IS
LANGUAGE
LIKE

MAX
MIN
MODULE
NOT
NULL
NUMERIC
OF
ON
OPEN
OPTION
OR
ORDER
PASCAL
ALI
PRECISION
PRIVILEGES
PROCEDURE
PUBLIC
REAL
ROLE
ROLLBACK
SCHEMA
SECTION
SELECT
SET
SMALLINT

SQL
SQLCODE
SQLERROR
SUM
TABLE
TO
UNION
UNIQUE
UPDATE
USER
VALUES
VIEW
WHENEVER
WHERE
WITH
WORK
nary Guide  C-1



Appendix C—SQL Reserved Words
 C-2 Open M with SQL Data Dictionary Guide



Open M with SQL Data Dictio
APPENDIX

D
Base Table Design Charts
The following charts are provided for your convenience in designing the base 
tables in your relational application.  The charts provided are:

 n Base Table Definition
 n Base Table Fields
 n Field Definition by Data Type

Base Table Definition
Base Table Name: __________________   Routine 

Name Prefix: ________
Description: ______________________   Global 

Name: ________________

Structure?     Default     Customized Approximate # of Rows

Row ID Fields

Lookups Fields to lookup Fields to Display

 1 Unqualified Leave blank

 2

 3

 4

 5

Characteristic Relationships
nary Guide  D-3



Appendix D—Base Table Design Charts
Base Table Fields
Base Table 

___________________________
____

  Parent Base Table  None or Name: 

  Child Tables

Designative References Referenced 
Table

From Field

Validation Code

Triggers

InsertPre ( )  
Post ( )

UpdatePre ( )
Post ( )

DeletePre ( ) 
Post ( )

Field Data Type Req? Unique? Lookup?
If Computed, 
How?

Row ID Fields
 D-4 Open M with SQL Data Dictionary Guide



Field Definition
Data Type:  DATE

Data Fields
Open M with SQL Data Dictionary Guide  D-5



Appendix D—Base Table Design Charts
Base Table Name: _________________________________
Field Name: _____________________   Description: 

_______________________________

Maximum Length Unique?  Yes   No Number of Distinct Values

Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

If Maybe, M code to deter-
mine if required

M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____

Computed Field

Result Always = to the Com-
putation?        Yes   No

If NO: only when these fields are updated

M code to compute result

NULL result IF
 D-6 Open M with SQL Data Dictionary Guide



Field Definition
Data Type:  MULTIPLE CHOICE

Format: 
1 10/18/934 18/10/93
2 18 Oct 935 Oct 18, 1993
3 18.10.936 October 18, 1993

First Date
Last Date

Base Table Name: _________________________________
Field Name: _____________________   Description: 

_____________________________

Maximum Length Unique?  Yes   No Number of Distinct Values

Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

If Maybe, M code to determine 
if required

M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____

Computed Field

Result Always = to the Compu-
tation?        Yes   No

If NO: only when these fields are updated

M code to compute result
Open M with SQL Data Dictionary Guide  D-7



Appendix D—Base Table Design Charts
NULL result IF

Multiple Choices  (External||Internal)

Field Definition
Data Type:  NAME
Base Table Name: 

_________________________________
Field Name: _____________________   Description: 

__________________________

Maximum Length Unique?  Yes   No Number of Distinct Values

Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

If Maybe, M code to deter-
mine if required

M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____
 D-8 Open M with SQL Data Dictionary Guide



Computed Field

Result Always = to the 
Computation?        Yes   No

If NO: only when these fields are updated

M code to compute result

NULL result IF

Last, First M. Collation FunctionEXACT (default)  
ALPHAUP
UPPER

Field Definition
Data Type:  NUMBER

Base Table Name: _________________________________
Field Name: _____________________   Description: 

___________________________

Maximum Length Unique?  Yes   No Number of Distinct Values

Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

  If Maybe, M code to  
  determine if required

M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____
Open M with SQL Data Dictionary Guide  D-9



Appendix D—Base Table Design Charts
 

Computed Field

Result Always = to the Compu-
tation?        Yes   No

If NO: only when these fields are updated

M code to compute result

NULL result IF

Minimum Maximum Decimal Places

Leading Punctuation Show Minus  
  -x    x   (x)

Used in Calculation?  
  Yes  No

Format
1:  1234567.894:  1.234.567,89
2:  1234567,895:  1 234 567.89
3:  1,234,567.89 6:  1'234'567,89

Field Definition
Data Type:  TEXT
Base Table Name: 

_________________________________
Field Name: _____________________   
Description: ______________________

Maximum Length Unique?  Yes   No Number of Distinct Values

Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

If Maybe, M code to deter-
mine if required
 D-10 Open M with SQL Data Dictionary Guide



M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____

Computed Field

Result Always = to the 
Computation?        Yes   No

If NO: only when these fields are updated

M code to compute result

NULL result IF

  Collation FunctionEXACT  (default)
ALPHAUP
UPPER

Field Definition
Data Type:  TIME
Base Table Name: 

_________________________________
Field Name: __________________   Description: 

_______________________

Maximum Length Unique?  Yes   No Number of Distinct Values

Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe
Open M with SQL Data Dictionary Guide  D-11



Appendix D—Base Table Design Charts
If Maybe, M code to deter-
mine if required

M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____

Computed Field

  Result Always = to
  the Computation?        Yes   
No

If NO: only when these fields are updated

  M code to compute
  result

  NULL result IF

Format
1:  04:59PM
2:  16:59
3:  04:59:59PM
4:  16:59:59

First Time
Last Time

Field Definition
Data Type:  TEXT
Base Table Name: 

_________________________________
Field Name: _____________________   
Description: _____________________

Maximum Length Unique?  Yes   No Number of Distinct Values
 D-12 Open M with SQL Data Dictionary Guide



Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

  If Maybe, M code to
  determine if required

M/PACT Column Title 

Multi-Line Field

Storage Mode One Per Node    (  )
All in One Node (  )  Delimiter: ____

Computed Field

  Result Always = to the
  Computation?        Yes   No

If NO: only when these fields are updated

  M code to compute result

  NULL result IF

  Collation FunctionEXACT  (default)
ALPHAUP
UPPER

Field Definition
Data Type:  Yes/No
Base Table Name: 

_________________________________
Field Name: _____________________   

Description: _______________________

Maximum Length Unique?  Yes   No Number of Distinct Values
Open M with SQL Data Dictionary Guide  D-13



Appendix D—Base Table Design Charts
Field 
Protection:  

Output Only
Add       Add/Edit

Default Value

Required?Yes  No   Maybe

If Maybe, M code to deter-
mine if required

M/PACT Column Title 

Computed Field

  Result Always = to the
  Computation?        Yes   No

If NO: only when these fields are updated

  M code to compute result

  NULL result IF
 D-14 Open M with SQL Data Dictionary Guide



Glossary of Terms
Alternative Data Source Form

A non-database form that uses programmer-defined filing code to interact with a 
data structure other than the Data Dictionary.

Application

A set of forms, reports, and other Open M with SQL objects and programs linked 
together by menus to form a structure that provides a working user interface to a 
database.

Application Mode

The mode in which users interact with the Data Dictionary using forms and win-
dows designed by the application programmer. In application mode, the user has 
no program development capabilities and never sees the M prompt. S/he enters 
and exits the application directly from the operating system prompt. Menus set 
up by the application designer govern navigation in application mode.

Auxiliary Window

Any window defined for a form that is neither the form's master window nor its 
row selection window.

Base Table

A collection of data represented in a simple 2-dimensional format consisting of 
one or more rows with one or more columns. Each row has at most one value for 
each column, and each row is unique, meaning that it differs by at least one col-
umn value from every other row. Also called a "relation" in relational database 
terminology.
Open M with SQL Data Dictionary Guide Glossary-1



Glossary
Characteristic Relationship

A user-defined join between base tables in which rows in a "child table" are 
existence-dependent on rows in a "parent table" in a many-to-one manner: a sin-
gle parent row can have many child rows.

Child Table

A base table that is existence-dependent on a parent table in a characteristic rela-
tionship. Rows in a child table must have contain a pointer to a row in the parent 
table.

Code Generation

The process by which Open M with SQL generates executable routines from pro-
grammer specifications.

Column

See Field.

Compilation

The process in which program source code is translated by Open M with SQL's 
language compiler into executable M code (called object code) and stored in rou-
tines.

Computed Field

A field whose value is derived from a calculation, often involving the values of 
other fields. 

Conversion Code

M code used by Open M with SQL to convert data values from internal storage 
formats to external display formats, and from external input formats to internal 
storage formats.

Cross-Table Reference Form

A form that uses a Designative Display field to retrieve information from an out-
side base table, i.e. not the base table declared as the form's data source.

Database Form

A form created by the Form Generator that retrieves its data from a base table in 
the Data Dictionary.
Glossary-2 Open M with SQL Data Dictionary Guide



Glossary
Data Dictionary

The Open M with SQL component that describes the elements of the relational 
database, including both its conceptual content and the mapping of its logical 
data definition to physical data structures in the global database.

Data Source

The Data Dictionary base table from which a database form retrieves its data.  A 
form may have only one data source.  Non-database forms do not have any data 
source.

Designative Display Field

A form-only field created from a Designated Reference field (in the associated 
base table) that retrieves information from a specified column (field) in the desig-
nated table.  Designative Display fields may appear on a form.

Designative Reference

A user-defined join between two base tables in which one field of the designating 
table contains Row IDs of rows in the referenced table. In relational database ter-
minology, the designating table has a "foreign key" on the referenced table.

Embedded SQL

SQL statements that are directly embedded within M routines. These statements 
are prefixed by the M binding &sql.

Export/Import

Window-based facility that allows you to port Open M with SQL base tables, 
views, forms, reports, queries, menus, routines, and globals between different 
directories and different computers.

External Value

The value of a field as revealed by Open M with SQL for all external display, or 
the value entered by the user in a form or in an SQL statement.  A field may have 
both an internal and an external value.

Field

A named unit of data in a base table row, usually representing a real world entity, 
such as a name, social security number, or date of birth for that row.  Also called 
"column" or "attribute".
Open M with SQL Data Dictionary Guide Glossary-3



Glossary
Field Caption

The descriptive text attached to a field on a window.

Foreign Key

See Designative Reference

Form

One or more related windows referencing the same base table and their corre-
sponding field definitions.  Used to add, retrieve, delete, and modify data from 
the associated base table.

Form Generator

The Open M with SQL application generator product, which allows you to 
design highly sophisticated forms and windows that interact with the relational 
Data Dictionary to add, update, retrieve, and delete data.

Form-Only Field

A field that is created and exists only at the form level, independent of any Data 
Dictionary association.  Fields of this type may appear on a form but cannot file 
data to the Data Dictionary.  All fields on a non-database form are form-only.

Form-Only Form

A non-database form that does not file data.

Full Screen Editor

An Open M with SQL utility that allows you to create, edit, and view macro 
source routines, intermediate code routines, and include files.

Global

A disk-based data storage unit specified by the M programming language stan-
dard. Also called "global variables", these are commonly implemented using bal-
anced-tree technology.

Global Database

The underlying logical and physical data storage structure of Open M with SQL, 
in which all data is stored in a system of multiply-subscripted arrays called "glo-
bals". Relational tables are mapped to the global database through the Data Dic-
tionary.
Glossary-4 Open M with SQL Data Dictionary Guide



Glossary
Implicit Join

A user-defined join between related tables defined in the Data Dictionary. In 
Open M with SQL, implicit joins can be characteristic relationships or designa-
tive references. Implicit joins facilitate data access by simplifying WHERE 
clauses.

Include File

Files containing definitions that can be used in the preprocessor phase of compi-
lation to expand macro source routines and determine whether optional lines of 
code should be included. They can also be used to include a common block of 
code in several routines, saving the overhead of calls to a common subroutine.

Index Map

A mapping from one or more field values into the Row ID of each row in a table 
that speeds up access to rows when these values are known. It allows rapid 
retrieval of rows sorted by one or more field values.

Integrity Constraints

User-defined constraints on data insert, update, and delete operations that ensure 
the accuracy and completeness of the application and the underlying database.

Intermediate Source Code

The standard 3GL M source code available in all M implementations. Intermedi-
ate code is produced from macro source by the Open M with SQL compiler. At 
this level, all preprocessor syntax, including embedded SQL, has been resolved, 
and the routine contains only pure M source code. It is possible to write M rou-
tines at this level, but without the benefit of embedded SQL or other preprocessor 
syntax, such as macros.

Internal Value

The value of a field as stored internally by Open M with SQL. A field may have 
both an internal and an external value.

Join

A request for information from a base table (via a query, form, or report) in which 
data must be retrieved from more than one table, necessitating a link between 
base tables.
Open M with SQL Data Dictionary Guide Glossary-5



Glossary
Learn-As-You-Go

The ability for a form that makes a cross reference via Designative Display field 
to a another form owned by a different base table to add new rows to the desig-
nated table at runtime.

Lookup Specifications

Lookup specifications define how a single-row form searches and retrieves rows 
from the database.

M/PACT

The Open M with SQL report writer product and environment. Allows you to 
extract very specific data from the relational Data Dictionary and output that data 
in reports of row and column format with the benefit of many format enhance-
ment features.

Macro Source Code

The highest, most flexible and permissive level of code at which routines can be 
written. Macro source code permits the definition of macros and embedded SQL 
statements using a combination of ANSI-Standard M syntax, special macro pre-
processor commands, and ANSI-Standard SQL.

Map

In Open M with SQL, a map describes the relationship of the logical structure of 
a table to the physical structure of the global database.

Master Map

The single master map for each base table defines the global structure for all of 
the data fields of the table. In M terminology, the master map defines the "upright 
file."

Master Window

The introductory window of any form.  Every form must unconditionally have a 
master window.

Menu

A structure used for tying together and governing navigation through the various 
components of an application. Menus consist of one or more selectable options 
and may display those options vertically (top to bottom) or horizontally (left to 
right).
Glossary-6 Open M with SQL Data Dictionary Guide



Glossary
Multi-Row Form

A form that presents multiple rows of data from its associated base table simulta-
neously.  The windows of a multi-row form display their set of fields in repeating 
units, each unit corresponding to one database row.

M Language

An ANSI-Standard procedural programming language, which was formerly 
called MUMPS.

National Language Independence

Open M with SQL environment customization feature that allows you to convert 
system-generated runtime messages and menus to the language best suited to the 
users at a particular installation site as well as tailor the display formats of num-
bers and dates according to national conventions. 

Non-Database Form

A form that is not associated with a base table in the Data Dictionary, i.e., has no 
data source.

Object Code

The lowest level of code produced by the Open M with SQL compiler. This is the 
code that is actually interpreted and executed. Routines cannot be written at the 
object code level.

OPENM.DAT

The primary volume of your M database.

Parent Reference Field

Field automatically created to define the Row ID in the dependent child table 
when a characteristic link is defined. The Parent Reference Field acts like a des-
ignative reference from the child table to the parent table and has the same name 
as the parent table.

Primary Key

A field or combination of fields used to uniquely identify each row of a base 
table. In Open M with SQL, the function of the primary key is performed by the 
Row ID.
Open M with SQL Data Dictionary Guide Glossary-7



Glossary
Privilege

The authority of a user to perform an action on an object. The owner of an object 
grants and revokes privileges on that object.

Programmer Mode

The mode in which all program development activity takes place. In programmer 
mode, you initiate all activity from the M prompt, and the M prompt reappears at 
the conclusion of every program you run. Programmer mode encompasses the M 
environment and all programs that can be called from it, including the Open M 
with SQL development environment as well as Open M with SQL runtime pro-
grams. In programmer mode, you create applications that users subsequently run 
in application mode.

Prompt

System-generated signal requesting some user response.

Query

An SQL language construct that enables the interrogation and manipulation of 
the database in a relationally complete manner. In Open M with SQL, queries can 
be embedded directly within M code, or may be written interactively using the 
Query Editor or the Query Generator (for SELECT-statement queries only).

Referential Integrity

Referential integrity constraints ensure that database insert, update, and delete 
operations that apply to tables linked by implicit joins do not compromise the 
accuracy and completeness of the database.

Relation

Indicates a link between base tables. See Characteristic Relationship and Desig-
native Reference.

Relational Database

A collection of related tables. See Base Table.

Report

A program defined using the M/PACT report writer that retrieves and displays 
data from the relational Data Dictionary.
Glossary-8 Open M with SQL Data Dictionary Guide



Glossary
Required Field

A field in a table that must contain a valid non-null value before the row can be 
filed.

Row

A group of related field values that describes an entity in the domain of the table. 
For example, in a Customers table, a row describes a single customer.

Also called a "record" in traditional data processing terminology, or a "," in rela-
tional database terminology.

Row ID

In Open M with SQL, the field in a row whose value uniquely identifies that row 
in the table. In relational terminology, the Row ID functions as the primary key.

Row Selection Window

A window that is automatically generated by Open M with SQL for single-row 
forms based on the lookup specifications defined by the programmer.  The row 
selection window is the first window to appear when the form is called and is 
used to select the database row to be retrieved.  Multi-row forms do not have row 
selection windows.

Single-Row Form

A form that presents data from its associated base table one row at a time.

SQL

Structured Query Language. SQL is the ANSI-standard fourth generation pro-
gramming language designed specifically for accessing and maintaining rela-
tional data bases.

Stand-Alone Caption

Descriptive text that appears on a window but is not attached directly to a field.  
Often used in the capacity of a window header.

Trigger

User-defined SQL or M code that executes automatically in response to 1.) insert, 
update, or delete operations performed on base tables in order to enforce referen-
tial integrity and 2.) data entry in an M/WINDOWS form in order to enforce 
application integrity.
Open M with SQL Data Dictionary Guide Glossary-9



Glossary
Validation Code

M code that validates row and field values. Base Table Validation Code specifies 
a condition that must be satisfied among all the fields in a row before the row can 
be filed. Field Validation code specifies constraints on individual field values.

View

A virtual table created using the fields from a base table or set of base tables 
linked by implicit joins.

Virtual Field

A field that does not correspond directly to a single stored value possibly com-
posed of several stored values. For example, the Row ID field for a child table is 
sometimes composed of two stored values: the Row ID of the parent and a sub-
script corresponding to a particular child row.

Virtual Table

A table not directly represented in physical storage. Views and the results of que-
ries are virtual tables.

Window

A set of fields and captions displayed together on the screen.
Glossary-10 Open M with SQL Data Dictionary Guide



Index
A
Access Level  18-16

default physical structure  16-16
deleting specifications  18-27
special access code  18-29
specifying how to reach  18-20

Access Path Specifications  18-9
access type  18-21
data access expression  18-17
default physical structure  16-16, 16-18
defining in ^mxdd global  20-18
defining standard  18-14
examples  18-26
master window  18-15
special access code  18-29
testing  17-14
value expression  18-22

Access Type  18-16, 18-21
default  18-16
full row location  18-22
Global  18-21
Other  18-10, 18-19, 18-21
Piece  18-21
Sub  18-19, 18-21, 18-32

^ACCT global example  17-3, 17-22, 18-2
access path specifications  18-14
SET command  18-5
syntax  17-22

Add protection  6-47, 6-48

Advanced Base Table Options window  12-4
Ope
All in One Node storage mode  6-38, 6-41

ALPHAUP  6-29, 8-16, 8-22

$$ALPHAUP function  18-24
index maps  18-23
names of tables  20-3

%ALTER privilege
base table  12-2
copying a view  14-28
deleting a base table  5-23
deleting a view  14-24
editing a base table  5-21
editing a view  14-23
editing/deleting a field  6-59
privilege node  20-30

ALTER VIEW statement  14-20

Alternative Data Source Form  Glossary-1

AND clause
example  2-21, 8-24

Application development
existing applications  1-16
open systems architecture  1-5
productivity  1-15
relational applications  1-6
via relational server  1-5

Application mode  Glossary-1

Applications  Glossary-1
COSTAR  18-14
data retrieval tools  1-5
default field value  6-47
defining the data structure  1-8, 4-3
n M with SQL Data Dictionary Guide Index-1



Index
designing  4-1
existing  17-2
importing data definitions  20-1
mapping functional specifications  1-7, 

4-2
relational view data  17-5
sample application  4-4

Arrow syntax  2-21, 7-7
See also Extended arrow syntax

Auxiliary Window  Glossary-1

B
Base table  2-3, 5-1, Glossary-1

advanced options  5-10
approximate number of rows  5-8
characteristic relationships  2-19, 5-11
compiling  5-17, 5-23
creating under customized physical 

structure  17-9
data on disk  2-4
defining in ^mxdd import global  20-5
defining lookups  8-3
definition  5-1
deleting definition  5-23
description field  5-6
designative reference  2-18
editing definition  5-21
field length check  5-10
first normal form  2-6
help messages  5-10, 12-1
help topics  12-4
identifying in ^ACCT global example  

17-20, 17-23
identifying in ^FLAVORS global 

example  17-29
in view  14-14
irn  5-10, 12-4, 16-12
listing all tables  15-4
listing fields report  15-5
listing multiple  15-7
message translations  12-10
name in master map  16-13
naming conventions  5-4
override lock reference  5-10
overview  1-9
owner  5-10, 5-23, 12-2, 12-4

relationships report  15-8
report  15-4
routine name prefix  5-17
routines  5-17
row insert and delete messages  5-10, 

12-5, 12-7
sample application  4-5
saving definition  3-13
top-level nodes  20-6
triggers  11-2
validation code  1-16

Base Table Definition window  5-9

Base table fields  1-11, 6-1, Glossary-3
add/edit protection  6-48
attributes  1-12
checklist for defining  6-3
column number  6-47, 6-60
column number listing  15-6
computed  6-7, 6-42, Glossary-2
conversion and validation order  10-10
conversion code  10-4
data entry  6-2
data type  6-7, 6-9
%data variable  11-8
default value  6-47, 6-50
defining in ^mxdd import global  20-7
defining location  18-45
deleting data  6-59
description field  6-5
%edit variable  11-8
editing and deleting  6-59
error messages  13-2
external value  10-2, Glossary-3
external-to-internal conversion code  

10-4
field name  6-5
field name for map definition  18-4
full row reference value  18-47, 18-52
global storage  16-12
global structure  16-19
help messages  13-2
ID number  6-47
identifying in ^ACCT global example  

17-24
identifying in ^FLAVORS global 

example  17-29, 17-31
identifying in existing M database  17-7
Index-2 Open M with SQL Data Dictionary Guide



Index
in offset of Full Row Reference  18-49
in views  14-11, 14-14, 14-15, 14-27
index maps  9-4
internal value  10-2, Glossary-5
internal-to-external conversion code  

10-5
length checking  5-10, 12-5
level below Full Row Reference  18-49
listing report  15-5
lookup  1-9, 6-53
maximum length  6-7, 12-5
maximum number  6-2
multi-line  6-7, 6-37
naming conventions  6-5
node  15-15
node below Full Row Reference  18-53
nodes  20-7
NULL values  17-7, 17-26
number of distinct values  6-7, 6-35
output only protection  6-48
piece of a piece of node value  18-49
pieces of node value  18-48
printing a list of  15-5
protection  6-47, 6-48
required  6-47, 6-49, Glossary-9
sample application  4-7
saving definition  6-56
triggers  11-8
unique fields  6-7, 6-34
update features  6-7, 6-46
validation code  1-16, 10-7, 12-5

BName subscript  20-3

C
$C

See $CHAR function
C programming language

applications  1-5

Caption  Glossary-4
stand-alone  Glossary-9

Cartesian product operation  2-10

Case transformation
See Collation sequence

Case transformation functions
See ALPHAUP, UPPER, EXACT

$CHAR function  6-41

Characteristic relationship  2-19, 5-11, 7-5, 
Glossary-2

See also Parent table, Child table
child-to-parent relationship  2-22
defining  5-11
description  1-10
example  7-6
identifying in ^ACCT global example  

17-24
identifying in ^FLAVORS global 

example  17-30
identifying in existing M database  17-6
implicit join syntax  2-22
inner join  7-5
listing all  15-8
lookups  8-13
parent-to-child relationship  2-22
pre-delete trigger  5-21
relationships report  15-8
Row ID field  16-5
view  14-2, 14-8

Checklist
base table definition  5-2
field definition  6-3
map definition  18-3
relational definition  17-4

Child table  2-19, 5-11, 7-5, Glossary-2
arrow syntax  2-21
cannot change status  5-21
childsub field  16-6, 16-8
creating  5-11
defining from parent table  17-9
defining lookups for  8-13
designative reference to  7-4
parent reference field  5-21, 16-6
Row ID field  16-5, 17-11
row ID field example  16-6

childsub field  16-6, 16-8, 17-27
in master map  16-13
modifying  17-32

Code generation  Glossary-2

Collation sequence
ALPHAUP  6-29
EXACT  6-28
name data type  6-19
Open M with SQL Data Dictionary Guide Index-3



Index
ORDER BY clause  6-31
string comparisons  6-31
text data type  6-24
UPPER  6-30

Column number
determining field’s  6-47, 6-60
fields in %data and %edit  11-8
listing fields by  15-6
parent reference field  6-47, 16-6
row ID field  6-47

Columns  2-2
See Base table fields

Comments
display sequence  12-13
for base table  5-10, 12-12
^mcomment global  12-11
searching  12-13
views  14-22

Comparison operators
collation sequence  6-31

Compiling  Glossary-2
base table  5-17
base table after editing  5-23
create default structure  5-16
not required for table name change  5-6
populate index maps  9-8
related objects  5-9, 5-20
specify routine name  5-10

Computed field  6-7, 6-42, Glossary-2
always equal to computation  6-42, 16-20, 

17-8
benefits  6-42
maximum number of fields referenced  

6-42
multi-line  6-37
not always equal to computation  6-43
types  6-42
variables in calculation  6-42

Computed Field window  6-44

Conditional map  16-17
creating  17-17
defining  18-58
example  18-60

Conversion code  6-7, Glossary-2
automatically generated  8-17, 10-3

date fields  6-14
external-to-internal  10-4
fields  10-4
internal-to-external  10-5, 18-56
overview  10-2
variables allowed  10-9

Conversion/Validation Code window  10-12

COSTAR applications
data stored in multiple globals  18-14

CREATE VIEW statement  14-20

Cross-Table Reference Form  Glossary-2

Customized physical structure  18-1
^ACCT global example  17-22
beginning with  18-6
computed fields  6-42, 6-43
conditional map  16-17
creating map definition  18-1
creating preliminary Master Map  17-13
^FLAVORS global example  17-29
index maps  9-7, 17-16
override filing code  16-17
row ID field  2-3
^SAMPLE global example  17-19
testing mapping  17-14, 17-17
when to use  1-14

D
Data

accessing  1-9
conversion  10-2
converting from FileMan data  19-1
maximum length  6-33, 12-5
not deleted when field definition deleted  

6-59
sorting by field values  9-4
validation  10-2, 12-5

Data access
efficiency  7-8
loop  18-30
single value  18-29, 18-33

Data Access Expression  18-16, 18-17
access level 1  18-11
customized physical structure  18-18
default  18-17
default physical structure  16-18
Index-4 Open M with SQL Data Dictionary Guide



Index
defining override  18-19
forms  18-19
global reference  18-19
names  18-17
NULL  18-19
piece  18-19

Data Access Variables
defining  18-16
defining in ^mxdd global  20-21
M Code window  18-40
names  18-39
specifying  18-39
where used  18-39

Data conversion
See Conversion code

Data Dictionary  Glossary-3
accessing  3-2, 3-5
accessing data from  2-9
benefits  1-15
defining base table fields  1-11, 6-1
defining base tables  1-9, 5-1
defining data structures  1-8, 4-3
defining views  1-12, 14-1
exiting  3-13
getting started  3-1
importing data definitions  20-1
main menu  3-4
maximum values  A-1
overview  1-2
reports  15-1
saving definitions  3-13

Data entry  16-2
field conversion and validation sequence  

10-10
field length validation  12-5

Data entry mode  3-8

Data entry window  3-8

$DATA function  18-29, 18-30, 18-33
conditional trigger item  11-18
single loop access validation  18-31

Data source  Glossary-3

Data type  6-7
common errors  6-10
conversion and validation code  10-3
defining  6-9

existing M database  6-10

Data validation
See Validation code

%data variable  10-9
column number  11-8
designative reference value  11-17
field subscripts  6-47
filing code  18-55
in triggers  11-8
trigger conditional execution  11-18
trigger type and value  11-9

Database  1-7, 2-1
define base table fields  6-1
define base tables  5-1
for non-ISM systems  2-8
relational  2-2

Database Form  Glossary-2

%DATE  10-5

Date data type  6-11
additional validation code example  10-8
conversion code  6-14, 10-3, 10-4, 10-6
conversion code example  10-5, 10-6
conversion/validation code  10-12
data type errors  6-10
default value  6-51
defaults  6-9
delimiter  6-12
existing data  6-10
imported fields  6-54
internal storage format  6-13
space requirements  6-2
t variable  6-12
validation code  10-3, 10-7
year display  6-12

^DD global
FileMan interface  19-8

Default physical structure  16-1
access path specifications  16-18
data access expression for Level 1  16-18
full row reference  16-19
generating  5-15
index maps  9-3, 9-5, 16-22
index maps for imported data  20-23
index maps for lookups  8-3
index maps for unique fields  6-34
Open M with SQL Data Dictionary Guide Index-5



Index
map data specifications  16-19
multi-line field storage mode  6-37, 16-14
overview  16-2
row ID field  2-3, 5-16
row ID specifications  16-20
sample application  4-4
when to use  1-14
window  16-10

DELETE filing code field  18-55, 18-56

DELETE privilege
for base table  12-2

DELETE trigger  11-9
field value  11-8
pre-filing  11-4, 11-5, 11-9, 11-17
pre-filing example  11-19

Designated table  2-18
See Referenced Table

Designating table  7-2

Designative display fields  8-10, Glossary-3

Designative reference  2-18, 7-2, Glossary-3
arrow syntax  2-21
conversion code  10-4, 10-6
conversion/validation code  10-3
data type error  6-10
defaults  6-9
defining  6-14
designative display field  1-11
example  7-2
existing data  6-14
foreign key  7-2
identifying in existing M database  17-7
implicit join syntax in queries  2-21
listing all  15-8
number of distinct values  6-36
outer join  7-3
overview  1-10
privileges required  12-2
relationships report  15-8
to child table  5-14
validation code  10-7
view  14-2, 14-8

^DIC global
FileMan interface  19-8

%DN variable  10-5

DROP VIEW statement  14-20

%DS variable  10-5

DSM implementation  2-8, 16-26

DTM implementation  16-26

E
$E

See $EXTRACT function
%edit variable  10-9

array  11-21
column number  11-8
field subscripts  6-47
filing code  18-55
in triggers  11-8
trigger conditional execution  11-18
trigger type and value  11-9
trigger update  11-5

Embedded SQL  Glossary-3

Equijoins
See Inner joins

Error and Help Messages master window  
13-2, 13-5

Error messages
defining  13-4
field  6-8
for fields  13-1, 13-2
languages supported  13-4
translations  13-4

EXACT  6-28, 8-16, 8-22

%EXACT SQL extension function  8-22

Existing M database
^ACCT global example  17-22
^FLAVORS global example  17-29
indices  17-16

EXPLAIN key  13-2

Export/Import facility  Glossary-3

Extended arrow syntax
example  7-7
simplifies queries  7-7
view join specification  14-9, 20-27

Extended global reference  18-11
Index-6 Open M with SQL Data Dictionary Guide



Index
External value  Glossary-3

$EXTRACT function  18-22
defining Row ID location  17-8
FileMan fields  19-7

F
FErrTrans subscript  20-13

FHelpTrans subscript  20-14

Field Definition main window  6-6

Field Name  6-5
during map definition  18-4

Field protection  6-48

Fields
form-only  Glossary-4
See also Base table fields

Fields on View Definition window  14-15

Fields to Include in View window  14-26

File  6-54

FileMan interface  19-1
accessing  19-8
conversion error log  19-27
conversion logic  19-2
creating the link  19-10
cross reference report  19-25
data format  6-54
database normalization  19-2
date/time format  6-54
deleting the link  19-20
extending the link  19-15
field mapping  19-7
field specifications  19-6
file specifications  19-5
generating views  19-23
identifiers  19-3
indices  19-7
limitations  19-30
link maintenance facility  19-13
overview  19-2
PDP machines  19-29
purge conversion error log  19-28
questions and answers  19-32
ScreenMan applications  19-7
updating the link  19-18
variable pointer fields  19-6

Filing code  17-19
See also Override filing code
%data variable  18-55
default  18-55
%edit variable  18-55
filing arrays  18-55
in base table triggers  11-4
multi-line fields  18-55
not generated  18-46
override  18-51

First normal form  2-6

^FLAVORS global example  17-3, 17-29, 18-2
access path specifications  18-14
syntax  17-29

FName subscript  20-3

Foreign key  2-18, 7-2, Glossary-4
See Designative reference

Foreign languages
See Translations

Form Generator  1-4, Glossary-4
column header  6-5
computed field  6-42
defining lookups  8-3
designative display field  Glossary-3
field caption  6-5
field maximum length  6-7
field protection  6-48
forms affected by field definition  6-2
Keyboard actions  B-1
multi-line fields  6-37
row delete message  12-5
row ID field  6-51
row insert message  12-5
triggers  11-2
views  14-2

Form-only fields  Glossary-4

Forms  Glossary-4
alternative data source  Glossary-1
cross-table reference  Glossary-2
database  Glossary-2
designative display field  Glossary-3
form-only  Glossary-4
multi-row  3-5, Glossary-7
navigating  3-9
non-database  Glossary-7
Open M with SQL Data Dictionary Guide Index-7



Index
single-row  3-5, Glossary-9

FROM clause  2-21
example  2-21
query options  8-20

Full Row Reference  16-12, 16-17, 18-10
$DATA function  18-33
default  16-16, 18-41
default physical structure  16-19
example  17-26
listing  15-15
%row variable  16-19, 18-41
specifying override  18-41
validity testing  18-29

Full Screen Editor  Glossary-4
horizontal options menu  3-8
status line  3-7

G
GETOUT key  3-11

GETOUTALL key  3-11

Global  1-3, Glossary-4
bracket syntax  16-26, 18-11
COSTAR applications  18-14
database  Glossary-4
definition of  17-5
environment syntax  18-11
extended global reference  18-11
multi-line fields  16-13
^mxdd  20-2
naming conventions  18-11
reference  17-5
report on mapped globals  15-13

Global name  18-9
access level 1  18-11
asterisk  18-9
customized physical structure  18-8
default value  5-13
defining in default physical structure  

16-25
editing  5-15, 5-21
editing default  5-15
specifying  18-11, 18-12

Global structure  1-3
base table fields  16-19
defined in Master Map  16-12

indexes in existing M database  17-16
multi-line field  16-14
new format  16-27
old format  16-27

Go to Bottom Menu key  3-10

GROUP BY clause  8-20

H
$H

See $HOROLOG function
HAVING clause  8-20

Help facility  3-11

Help messages
array reference  13-8
defining  13-4
field  6-8
for fields  13-1
help key  13-2
long help  13-4
override help  13-3
short help message  13-5
translations  13-4

Horizontal options menu  3-8

$HOROLOG function  6-13, 10-3, 17-23
computed field calculations  6-42

I
Implicit joins  2-18, 7-1, Glossary-5

arrow syntax  2-21
as characteristic relationships  2-19, 5-11
as designative references  2-18
benefits  7-7
extended arrow syntax  7-7
integrity constraints  2-23
referential integrity  7-8
report  15-8
syntax for child-to-parent references  

2-22
syntax for designative reference  2-21
syntax for parent-to-child references  

2-22
view  14-9, 14-14

Importing data definitions  20-2
^mxdd global  20-2
Index-8 Open M with SQL Data Dictionary Guide



Index
Include file  Glossary-5

Index Maps  17-6, Glossary-5
accessing definition  16-10
additional fields to index  9-5
advantages and disadvantages  9-2
creating customized  17-16, 18-5
customized physical structure  9-7, 18-5
default physical structure  9-5, 16-2
defining as conditional  16-17, 18-58
defining default in ^mxdd global  20-23
deleting a field  6-59
examining default  16-22
existing M database  17-16
fields to index  9-4, 16-22
fields with NULL value  9-3
from FileMan indices  19-7
functions  18-23
in ^mxdd import global  20-23
lookups  8-3
name data type fields  16-24
naming conventions  18-6
new format  16-27
old format  16-27
Row ID field  9-3
structure  9-3
unique fields  6-34

indn  16-27

Inner joins  2-14
characteristic relationship  7-5

Inquiry mode  3-8

INSERT filing code field  18-56

INSERT privilege
for base table  12-2

INSERT statement
multi-line field line count  6-41

INSERT trigger
field value  11-8
pre-filing  11-4, 11-5, 11-9, 11-17
pre-filing example  11-17

Integrity
constraints  7-8, Glossary-5
referential  1-16, Glossary-8

Intermediate source code  Glossary-5

Internal value  Glossary-5

irn  5-10, 12-4, 16-12, 16-27

%IS output device  15-3

ISM implementation  16-26

J
$j  12-5

Join Specifications  14-8
examples  14-10
for view  14-7
report listing  15-9

Joins  2-14, 7-1, Glossary-5
equijoin  2-14
implicit joins  2-18, 7-1
inner joins  2-14
one-way outer joins  2-16, 7-3

K
Keyboard actions  3-9

frequently used  3-10
on-line help  3-11

Keyboard mapping  B-1

L
Languages

See Translations
Learn-As-You-Go  Glossary-6

%linenum variable  10-9

Local array storage  18-12
defining  18-19
global name  18-9
help message text  13-3, 13-8
multi-line fields  18-55
naming conventions  18-19
special access code  18-14

%local variable
current access level  18-35

Lookup Specifications window  8-8

Lookups  8-1, Glossary-6
child table  8-13
collation sequence  6-32
compound lookup query  8-6
computed field  6-43
Open M with SQL Data Dictionary Guide Index-9



Index
customize query  8-19
default query  8-18
defining  8-3, 8-7
deleting a field  6-59
designative display fields  8-10
enabling lookup queries  8-6
exact matching  8-15
example  8-2
exclude field  6-53
fields to display  8-9
fields to lookup on  1-9, 6-53, 8-1
index map for  8-3, 9-4, 16-22
lookup display fields  8-4
lookup fields  8-3
lookup query  8-2
matching  8-14
override query  8-18
partial matching  8-15
precedence of queries  8-6
queries  8-8
query types  8-5
Search Current Table key  8-4
single field lookup query  8-5
SQL extensions  8-21
suppress lookup box  8-19
toggle between default and override 

query  8-19
user input variables  8-23

M
M database

designing a relational definition  17-5
existing  1-8, 1-16, 17-2, 20-1
existing and field data types  6-10
for non-ISM systems  2-8
mapping links to relational view  1-13
new  17-2
physical structure  1-9
referential integrity  1-16
time stamp format  6-54
viewing as relational database  17-1

M directory
as schema  2-8

M language  1-3, Glossary-7
SET command  1-3

M/PACT  Glossary-6

column header  6-5
column headers  6-5, 6-54
column titles defined in view  14-12, 

14-15, 14-27
computed field  6-42
data from multiple tables  2-5
field maximum length  6-7
index map for  9-4
multi-line fields  6-37
reports affected by field definition  6-2
time display format  6-26
view as data source  2-5, 14-3
view as source for  14-2

Macro source code  Glossary-6

Map Data Specifications  18-10
default physical structure  16-19
defining  18-45
defining in ^mxdd global  20-23
entering filing code  18-51
examples  18-52
multi-line fields  16-19
node field  18-45
piece and delimiter  18-46
retrieval M code  18-50
standard  18-45

Map Definition master window  16-15, 18-8
entering  18-6

Mapping  Glossary-6
access path specifications for default 

structure  16-18
Advanced Options window  18-56
computed fields  6-42, 6-43
creating customized map definition  18-1
defining in ^mxdd global  20-17
deleting default mapping  18-16
field names  18-4
map definition checklist  18-3
map name  18-9
naming conventions  18-6
new format  16-27
old format  16-27
overview  1-13
report  15-15
report by global  15-13
See also Default physical structure, 

Customized physical structure
Index-10 Open M with SQL Data Dictionary Guide



Index
See also Global
SET command to insert row  18-5
testing customized  17-14, 17-17

Master Map  1-13, Glossary-6
accessing definition  16-10
base table name in  16-13
creating preliminary for customized 

physical structure  17-13
customized physical structure  18-6
default physical structure  16-2
defining map as  18-9
editing default  18-7
examining default  16-12
irn  5-10, 16-12
naming conventions  18-6, 18-9
new format  16-13, 16-27
old format  5-10, 16-12, 16-27
testing  17-14

^mcomment global  12-11

^mdata global  5-13, 5-15, 16-2, 16-10, 16-12, 
16-16, 16-25

Menu  Glossary-6

Message line on window  3-9

Messages For Form Generator window  12-8

MIIS date and time formats  6-54

MName subscript  20-3

%msg variable  10-9, 10-14
base table validation  10-16
in conversion code  10-6
overrides error message  13-2

MSM implementation  16-26

^%msql command  3-2

mt# routine name prefix  5-17

Multi-line field  2-23, 6-7, 6-37
All in One Node global storage  6-38
computed  6-37
default physical structure  16-14
defining  6-39
display indicator  6-37
filing code  18-55
global storage  16-13
global structure  16-14, 16-19, 20-4
%linenum variable  10-9

map data specifications  16-19, 18-47
maximum length  6-37
maximum line count  6-41
One Per Node global storage  6-38, 16-14
referencing  6-39
relational model  2-23
storage modes  6-37

Multiple Choice data type  6-16
conversion code  10-4, 10-6
conversion/validation code  10-3
defaults  6-9
existing data  6-16
internal values  6-16

Multi-row form  3-5
GETOUT key  3-11

$mux command  3-2

^mxdd global  20-2
access path specification node  20-19
base table node structure  20-5
basic structure  20-2
creating  20-2
first subscript  20-3
map nodes  20-17
multi-line field node  20-4
nodes  20-3, 20-6
privileges  20-30
required and default values  20-3
row ID specification nodes  20-22
structure  20-2
subscript values  20-3
views  20-25

^mxdd import file
See ^mxdd global

N
N variable  6-26

Name data type  6-18
collating sequence  6-28, 6-31
conversion code  10-4, 10-6
conversion/validation code  10-3
defaults  6-9
index maps  16-24
validation code  10-7

Name subscript  20-3
Open M with SQL Data Dictionary Guide Index-11



Index
National language  Glossary-7
help and error message translations  13-4

%new variable  10-9

%newext variable  10-9

$$NEXT function  16-4
assigns Row ID values  16-5
Row ID node  20-11

NEXT subroutine  18-31
access level values  18-34
defining override  18-35
reactivating default  18-35
where to define  18-16

Node field values  18-46
required  20-4

Node subscript  20-3

Notes
See Comments

Number data type  6-20
conversion code  10-4, 10-6
conversion/validation code  10-3
defaults  6-9
validation code  10-7

NUMROWS reserved word  6-35

O
Object code  Glossary-7

ObjectType subscript  20-3

%ok variable  10-9
base table validation  10-16
in conversion code  10-6

%old variable  10-9

%oldext variable  10-9

One Per Node storage mode  6-38, 6-41, 16-13

One-way outer joins  2-16, 7-3

On-line help  3-11
for fields  13-1

Open M Developer  1-2, 1-4, 3-3
See also Data Dictionary, FileMan 

interface, Form Generator, 
Query Editor

access privileges  12-2

privileges menu  5-21, 14-23, 14-24
privileges option  5-23

Open M Developer Menu  3-3

Open M with SQL  1-2
accessing the relational database  2-9
defining a database  1-7
extensions to relational model  2-16
open systems architecture  1-5
relational database  2-1
schemas  2-8

OPENM.DAT  2-8, Glossary-7

ORDER BY clause
collation sequence  6-31
example  8-24
override lookup query  8-19
query options  8-20
transformation functions affect  8-22

$ORDER function  18-30
NEXT subroutine  18-31, 18-34

Outer join
designative reference  7-3

Output device  15-3

Output only protection  6-47

Override filing code  16-17, 17-19
defining  18-55
defining override  18-56
for all fields  18-55
for selected fields  18-55

Override help  13-5
defining  13-8
replaces Long Help message  13-3
window  13-8

Owner
of base table  5-10, 5-23, 12-2
of view  14-21, 14-23, 14-24

P
^*parent global  5-13, 5-15

Parent reference field  16-6, Glossary-7
column number  6-47
in master map  16-13

Parent table  2-19, 5-11
Index-12 Open M with SQL Data Dictionary Guide



Index
arrow syntax  2-21

Piece
access type  18-16, 18-21, 18-22
data access expression  18-19
delimited  17-8, 18-27, 18-45
listing report  15-15
undelimited  17-8

Piece counter field  17-12, 18-23, 18-27, 18-30
incrementing  18-30

$PIECE function  18-19, 18-21

PREVIOUS key  3-10
unsaved data options  3-14

Primary key  Glossary-7
See Row ID field

Printing
specifying device  15-3

Privileges  Glossary-8
defining in ^mxdd import global  20-30
granting  12-2
to copy a view  14-28
to edit a view  14-23

Privileges menu  5-21, 5-23, 14-23, 14-24, 20-30

PROCEED key  3-10
save toggle  3-15
unsaved data options  3-14

Programmer mode  Glossary-8

Project operation  2-12

Prompt  Glossary-8

Q
Query  2-9, Glossary-8

compiling  17-18
computed field  6-42
copy another view’s query  14-19
copy into view  14-18
index map for  9-4
override lookup query example  8-23
query-based view  14-17
query-based view and DDL  14-20
SQL SELECT statement  2-9
using to test customized mapping  17-14
view  14-7

Query Editor  14-18, 14-20

Query Generator  14-18

Query Optimizer  1-15

Query Options window  8-20

R
Record

See Row
Referenced table  6-15

REFERENCES privilege
for base table  12-2

Referential integrity  1-16, Glossary-8

Relation  Glossary-8

Relational database  Glossary-8
accessing data from  2-9
as view of existing M database  1-8
characteristics  2-2
define in Data Dictionary  1-7
design  17-5
designing  4-2
fields  2-2
first normal form  2-6
for non-ISM systems  2-8
mapping links to M globals  1-13
overview  1-2, 2-1
querying via SQL  2-9
referential integrity  7-8
relation implemented as table  2-2
structure of  2-2
tables  2-3
viewing M database as  17-1

Relational model  2-1
first normal form  2-6
implicit joins  2-18
InterSystems extensions  2-16
one-way outer joins  2-16
schemas  2-8
support for multi-line fields  2-23

Relational operators  2-10
cartesian product  2-10
joins  2-14
project  2-12
restrict  2-13
Open M with SQL Data Dictionary Guide Index-13



Index
Relational server  1-5

Reports  Glossary-8
See M/PACT
data dictionary definitions  15-1
fields listed by column number  15-6
fields listed by name  15-5
list of base tables report  15-4
list of views  15-9
listing fields in a base table  15-5
listing fields in a view  15-11
listing mapping  15-15
printing  15-3
series of base tables  15-7

Required field  Glossary-9
defining  6-47, 6-49
maybe option  6-47
only upon condition  6-49

REQUIRED node  20-4

Restrict operation  2-13

RETURN key  3-10

Right Arrow key  3-10

Routine name prefix  12-4
defining  5-17

Routines
base table compile  5-17
deleting  5-18
routine name  5-17
specifying  5-10

Row  2-2, Glossary-9
approximate number in base table  5-8
delete messages  12-7, 12-9
insert messages  12-7, 12-8
locking/unlocking  5-10
message display logic  12-11
message translations  12-9

Row ID field  2-3, 17-13, Glossary-9
as data field  17-32
based on childsub field  16-6, 16-8
based on delimited piece  17-32
based on parent reference field  16-6, 16-8
based on piece counter field  17-12
child table example  16-6
column number  6-47
conversion code  10-5, 10-6

conversion/validation code  10-3
customized physical structure  17-10, 

18-9
default physical structure  5-16
default value  6-51
defaults  6-9
definition  16-2
examining default definition  16-3
fields used to specify  16-16, 18-9
foreign key in designative reference  7-2
global storage  16-12
identifying in ^ACCT global example  

17-26
identifying in ^FLAVORS global 

example  17-31
identifying in ̂ ZODIAC global example  

17-20
identifying in existing M database  17-7
in child tables  16-5
in master map  16-13
index maps  9-3
piece counter  17-12
row ID specifications  16-20

Row ID Specifications  18-10
default physical structure  16-20
defining in ^mxdd global  20-22
deleting  18-10
editing  18-43
invalidated  18-25

Row selection mode  3-8

%row variable  16-17, 16-19, 18-9
default filing code  18-55
full row reference  18-20, 18-41
node field entry  18-45
node field value  18-46
SET command  18-52

Runtime environment
customize via on-line help  3-11

S
^SAMPLE global example  17-2, 18-2

data  17-5
enhanced  17-19
fields  17-7

Save and Remain key  3-10
Index-14 Open M with SQL Data Dictionary Guide



Index
Save Data menu
on exit from form  3-14
PROCEED options  3-14

Save Menu  3-14

Save on PROCEED menu
toggle  3-15

Schema  2-8

ScreenMan application generator  19-7

Security
See Privileges

SELECT privilege
copying a view  14-28
for base table  12-2

SELECT statement  2-9
example  2-21
field display order  6-47
index map example  18-24
index maps  18-24
loop access  18-30
multi-line fields  2-23
query options  8-20
single value access  18-29
views  14-4
with collating function  18-23

Selecting mode  3-8

Server
See Relational Server

SET command
additional validation code example  10-8
external-to-internal conversion example  

10-5, 10-14
index map structure  18-5
internal-to-external conversion example  

10-6, 10-14
master map structure  16-14, 18-5
multi-line fields  16-14
set global value  1-3

Single-row form  3-5
GETOUT key  3-11

Sort
See Collation sequence

Sorting data
index maps for  9-4

Special Access Code  18-16
additional data variables  18-31
data access variables  18-39
default invalid values  18-32
defining first and last valid values  18-32
specifying  18-29
types  18-31

SQL  1-3, 2-9, Glossary-9
affected by field definition  6-2
arrow syntax  2-21, 7-7
automatic code generation  1-15
colon syntax  8-23
comparison operators  8-22
computed fields  6-44
embedded  6-44, Glossary-3
InterSystems extensions to  2-16, 2-21, 

8-21
lookup query example  8-24
multi-line fields  2-23
query-based view DDL statements  14-20
querying the relational database  2-9
relational operations  2-10
reserved words  6-5, C-1
%STARTSWITH operator  8-21
user input variables  8-23

##sql  6-44

&sql  6-44, Glossary-3

SQL statements
AND clause  2-21
DISTINCT clause  8-20
FROM clause  2-21, 2-22, 8-20, 14-3
GROUP BY clause  8-20
HAVING clause  8-20
INSERT statement  6-41
ORDER BY clause  8-20
SELECT statement  6-47, 8-20, 18-23
UPDATE statement  6-41
WHERE clause  2-21, 2-22, 8-20

Starting Table of view  14-7, 14-8
changing  14-23, 14-25
in another view  14-3

%STARTSWITH operator  8-21

STORE error  6-2

sub
See Access Type
Open M with SQL Data Dictionary Guide Index-15



Index
Subscript
abbreviations  20-3
access level  18-9
access type  18-16
constant value  17-8
defining  18-14
in master map  16-12
in ^mxdd import global  20-2

Sub-view
join specifications  14-11

System Help Menu  3-11

System Manager
assigns privileges  5-21, 5-23, 14-23, 14-24
sets date format default  6-12
sets full year display default  6-13
sets global name default  5-13
sets save menu toggle  3-15

T
T variable  6-12

TAB key  3-10

Table
See Base table, Child table, Parent table, 

View, Virtual table
^temp  12-5

Terminal types  B-1
Keyboard mapping  B-1

Text data type  6-24
collating sequence  6-28, 6-31
conversion code  10-5, 10-6
conversion/validation code  10-3
defaults  6-9

Time data type  6-25
conversion code  10-5, 10-6
conversion/validation code  10-3
data type errors  6-10
defaults  6-9
importing data  6-54
midnight  6-26
n variable  6-26
validation code  10-8

$TRANSLATE function  10-14

Translations

defining error messages in ^mxdd 
import file  20-13

defining help messages in ̂ mxdd import 
file  20-14

field help and error messages  13-4
languages supported  12-10, 13-4

Triggers  1-8, 1-9, 1-16, 4-3, 11-1, Glossary-9
action type  11-12
characteristic relationship  5-21, 7-5, 

11-14
conditional execution  11-7
%data variable  11-9
defining filing code for a field  11-4
defining in ^mxdd global  20-15
defining override filing code  18-55
%edit variable  11-9
entering filing code  18-46
examples  11-15
execution conditions  11-7
form triggers  11-2
from FileMan indices  19-7
M code  11-6
multiple trigger items  11-8
override filing code  17-19
overview  11-2
post-filing  11-5
pre-filing  11-4
SQL code  11-5
subscript values  20-15
trigger item  11-7
unconditional execution  11-7
variables in code  11-8

Tuple
See Row

U
Unique field  6-7, 6-34

index map for  6-34, 9-4, 16-22

UPDATE filing code field  18-56

UPDATE privilege
for base table  12-2

UPDATE statement
field default value  6-51
multi-line field line count  6-41
pre-filing DELETE trigger  11-19
Index-16 Open M with SQL Data Dictionary Guide



Index
UPDATE trigger
field value  11-8
pre-filing  11-4, 11-5, 11-9, 11-17
pre-filing example  11-18

UPPER  6-30, 8-16, 8-22

$$UPPER function  18-24
index maps  18-23

%UPPER SQL extension function  8-22

%urdel utility  5-18, 5-19

V
%val variable  10-6, 10-9

additional validation code  10-8
data conversion  10-5
in field conversion code  10-13

Validation code  6-7, Glossary-10
accessing a row  18-29
additional validation code  10-7
automatically generated  10-3
base table level  1-16, 10-15
computed fields  6-43
$DATA function  18-31
defining first and last values  18-32
field length  12-5
field level  1-16, 10-7
first/last subscript values  18-16
on external value  10-8
overview  10-2
variables allowed  10-9

Value Expression  18-16
access level  18-22
functions and index maps  18-23

VFName subscrpt  20-3

View  1-12, 14-1, Glossary-10
advanced options  14-21
argument to FROM clause  14-3
benefits  2-5
changing starting table  14-25
characteristic relationship  14-8
comments  14-22
convert query-based to table-based  

14-20
copy another view’s query  14-19
copy existing query into  14-18

copying  14-28
creating  14-5
defining in ^mxdd global  20-25
deleting definition  14-24
description  14-2
designative reference  14-8
duplicate field names  6-5
editing definition  14-23
field name  14-12
fields  14-14, 14-15
fields to include  14-11, 14-27
implicit joins  14-14
implicit joins link tables  14-9
join specifications  14-7, 14-8
listing all  15-9
listing fields in a view  15-11
M/PACT report source  14-3
of FileMan file  19-23
overview  2-5
owner of  14-21
query-based  14-7, 14-17, 14-20
report on definition  15-9
report sorted by fields  15-11
report sorted by join path  15-9
source for M/PACT report  14-2
starting table  14-3, 14-23
sub-view  14-11
table-based  14-7, 14-8
types  14-4
uses of  14-3

View Definition master window  14-6

View Join Specification window  14-13

Virtual field  Glossary-10

Virtual table  1-7, 1-12, 2-3, 2-4, 14-2, 
Glossary-10

See also View, Query
VName subscript  20-3

W
WHERE clause  2-21

example  2-21, 8-24
override lookup query  8-19
query options  8-20

Window  3-7, Glossary-10
auxiliary  Glossary-1
Open M with SQL Data Dictionary Guide Index-17



Index
caption  Glossary-4
data entry  3-8
horizontal options menu  3-8
master  3-7, Glossary-6
row selection  Glossary-9

Y
Yes/No data type  6-27

conversion code  10-5, 10-6
conversion/validation code  10-3
defaults  6-10
null value  6-27
validation code  10-8

Z
$ZDATE function  10-6

computed field calculations  6-42

^ZODIAC global example  17-19
Index-18 Open M with SQL Data Dictionary Guide


	Open M with SQL Data Dictionary Guide
	Version: Open M with SQL F.10
	Revision Date: April 18, 1997
	Legacy Archive Acrobat File Generated on: January 22, 2004
	Preface
	Audience
	Organization of This Guide
	Other References
	Typographic Conventions Used in This Guide


	Introduction
	Introduction to the Data Dictionary
	The Open M with SQL Application Development Environment
	Defining a Relational Database in the Data Dictionary
	Open M with SQL Combines Two ANSI-Standard Languages: SQL and M
	M Language
	Open M Developer
	Open M with SQL Server Opens Your Relational Database
	How is Open M with SQL “Open”
	Developing Relational Applications

	Defining a Relational Database in the Data Dictionary
	Mapping the Functional Specifications of Your Database
	Defining the Data Structure in the Data Dictionary
	Defining Existing M Databases Relationally
	Accessing Data
	Defining Base Tables in the Data Dictionary
	Defining Database Fields in Base Tables
	Defining Views in the Data Dictionary

	Mapping a Relational Database to M Globals
	Selecting Default or Customized Physical Structure
	When to Use Default Physical Structure
	When to Use Customized Physical Structure

	The Data Dictionary Provides Many Benefits
	Developer Productivity
	Existing Applications
	Referential Integrity


	The Open M with SQL Relational Database
	Relational Database Is a Collection of Tables
	Open M with SQL Supports Two Types of Tables
	Base Tables Contain Data Stored on Disk
	Virtual Tables Exist in Temporary Memory
	A View Produces a Virtual Table

	Open M with SQL Tables Follow First Normal Form
	Open M with SQL Implements Schemas as M Directories
	Open M with SQL Database Structure for Non-ISM Implementations of M

	Accessing Data in an Open M with SQL Relational Database
	Using SQL to Query the Database
	Cartesian Product
	Project
	Restrict
	Joins

	InterSystems’ Extensions to the Relational Model
	One-Way Outer Joins
	Implicit Joins
	Multi-Line Fields


	Using the Data Dictionary Interface
	Accessing the Data Dictionary
	Understanding the Data Dictionary Interface
	Single-Row Forms
	Multi-Row Forms
	Accessing the Base Table Definition Window
	Elements of a Window

	Navigating in Forms
	Keyboard Actions

	Using On-Line Help
	Saving a Base Table Definition and Exiting the Form
	Save Menu
	Save on PROCEED Menu


	Designing a Sample Application
	Designing a Relational Database
	Mapping the Functional Specifications
	Defining the Data Structure in the Data Dictionary

	Overview of Sample Application
	Sample Application Uses Default Physical Structure

	Base Tables in Documentation Tracking System
	Relationships Between Base Tables
	Base Table Fields

	Reports in Documentation Tracking System


	Basic Operations
	Defining a Base Table
	Base Table Definition Overview
	Base Table Definition Checklist

	Defining a Base Table
	Horizontal Options Menu

	Defining a Child Table
	Creating a Child Table from the Parent Table
	Defining a Designative Reference to Child Table

	Generating Default Physical Structure
	Edit the Default Global Name
	Open M with SQL Generates Structure Automatically
	Physical Structure Updates Automatically
	Row ID Field Created

	Compiling a Base Table
	Compilation Produces Routines
	Base Table Routine Names
	Routine Size
	Number of Routines

	Compiling Related Objects
	Editing a Base Table Definition
	Do Not Change Global Name Once Data Entered
	You Cannot Change Status of a Child Table
	Pre-Delete Trigger Updated if Parent Reference Edited

	Deleting a Base Table Definition
	Restrictions on Deleting a Base Table Definition


	Defining Base Table Fields
	Field Definition Overview
	Field Definition Checklist
	Field Definition Checklist

	Steps 1 & 2: Specify a Field Name and Description
	Step 3: Specify the Data Type
	Exercise Care When Mapping to an Existing M Database
	Defining a Date Field
	Defining a Designative Reference Field
	Defining a Multiple Choice Field
	Defining a Name Field
	Defining a Number Field
	Defining a Row ID Field
	Defining a Text Field
	Defining a Time Field
	Defining a Yes/No Field

	Collation Sequence Affects Name and Text Data Types
	Numbers Come First
	EXACT
	ALPHAUP
	Minus
	Plus
	Space
	UPPER
	Effects of Collation Sequence

	Step 4: Specify Maximum Length of Data
	Step 5: Specify If Values Must be Unique
	Index Maps for Unique Fields

	Step 6: Specify the Number of Distinct Values
	Enter a Number
	Enter NUMROWS
	Use Rows in Designated Table for Designative Reference Fields

	Step 7: Specify If the Field is Multi-Line
	Displaying Multi-Line Fields on Forms and Reports
	Multi-Line Fields May be Computed Fields
	Two Storage Modes
	Referencing Multi-Line Fields

	Step 8: Define Computed Field Calculations
	Benefits and Limitations of Computed Fields
	Two Types of Computed Fields

	Step 9: Define User Update Features
	Defining Field Protection
	Defining a Required Field
	Defining Default Field Values
	Examples of Default Values

	Step 10: Define Data Conversion and Validation Code
	Step 11: Define Error and Help Messages
	Step 12: Define Additional Options
	Define Column Titles for Reports

	Step 13: Save the Field Definition
	Copying a Field Definition
	Editing and Deleting a Field Definition
	Deleting a Field Definition


	Implicit Joins
	Use Designative Reference to Join Independent Tables
	Defining a Designative Reference Field
	Tables Joined by Designative Reference are Independent
	Many-to-One Relationship
	Relational Foreign Key Implemented as a Pointer to Row ID
	Designative Reference is a One Way Outer Join
	Multiple Designative Reference Fields
	Designative Reference to a Child Table
	Designative References from Multiple Tables

	Use Characteristic Relationship to Join Dependent Tables
	Automatically Created Trigger Deletes Child Rows
	One-to-many Parent to Child Relationship
	Characteristic Relationship is an Inner Join
	Multi-Generation Parent-Child Relationships

	Benefits of Implicit Joins
	Extended Arrow Syntax
	Referential Integrity Constraints
	Efficient Data Access


	Base Table Lookups
	What is a Lookup?
	Where to Define Lookups
	Lookups and Index Maps

	Lookup Specifications
	Lookup Fields
	Lookup Display Fields

	Types of Lookup Queries
	Unqualified Lookup Query
	Single Field Lookup Query
	Compound Lookup Query
	Enabling Lookup Queries
	Precedence Given to Most Restrictive Queries

	Defining Base Table Lookups
	Designative Display Fields in Lookup Specifications

	Defining Lookups for a Child Table
	Two Types of Lookups

	Matching
	Field Matching Functions
	Field Conversion Code
	Summary of Case Transformation and Field Conversion Code

	Customizing a Lookup Query
	You Can Toggle Between Default and Override Versions
	Suppress Lookup Box
	Lookup Queries Use InterSystems' SQL Extensions


	Index Maps
	Index Maps Speed Row Selection
	Advantages of Indexing
	Disadvantages of Indexing

	Structure of Index Maps
	Index Field and Row ID Values are Subscripts
	Index Maps are Small
	Rows with Null Value In Index Field Not Included
	Make Indexed Fields Required to Avoid Null Values

	Which Fields Should You Index?
	Unique Fields
	Fields Used to Retrieve Rows
	Fields You Sort By

	Default Structure Index Maps
	Defining Additional Fields to Index

	Customized Structure Index Maps
	Populating an Index Map

	Data Conversion and Validation
	Overview of Data Conversion and Validation
	Data Conversion
	Data Validation
	Fields Can Have Internal and External Values
	Automatically Generated Conversion and Validation Code

	Field Conversion Code
	Field Validation Code
	Variables for Field Conversion and Validation Code
	Order of Field Conversion and Validation Events
	Modifying Field Conversion and Validation Code
	Base Table Validation Code
	Defining Base Table Validation Code


	Base Table Triggers
	Overview of Open M with SQL Triggers
	You Can Associate Triggers with Different Kinds of Objects

	Overview of Base Table Triggers
	Pre-Filing Triggers
	Post-Filing Triggers
	SQL Code Triggers
	M Code Triggers
	M Routine Triggers

	Base Table Trigger Code
	Trigger Items
	Trigger Action Types
	Conditional Execution of Triggers
	Execution of Multiple Trigger Items
	You May Reference Field Values in Base Table Triggers
	%-Variables in Base Table Triggers

	Defining a Base Table Trigger
	Automatic Trigger Deletes Child Table Rows

	Examples of Base Table Triggers

	Base Table Help and Error Messages
	Base Table Access Privileges
	Base Table Advanced Options
	Help Text
	Row Insert and Delete Messages
	Developer Comments
	Comment Reports


	Field Help and Error Messages
	Overview of the Field Help Facility
	M with SQL Help Menu
	Three Types of Field Help
	Error Messages
	Users Press <Explain> to Display Help
	Override Help
	Choosing Between Long Help and Override Help

	Defining Long Help and Error Messages
	Translations

	Defining Override Help

	Views
	What Is a View?
	How to Use Views
	Types of Views
	All Views Based on SELECT Queries

	Creating a View
	Defining a Table-Based View
	Starting Table Is the Table on Which View is Based
	Join Specifications Link Base Tables
	Examples of Join Specifications
	Sub-Views Copy Join Specifications Automatically
	You Must Designate Fields to Appear in the View

	Defining a Query-Based View
	Observe These Restrictions on Query-Based Views
	Copy an Existing Query Into the Current View
	Copy Another View's Query Into the Current View
	You Can Convert a Query-Based View to Table-Based
	You Cannot Convert a Table-Based View to Query-Based
	View-Related DDL Statements for Query-based Views

	View Definition Options Menu
	View Definition Advanced Options
	View Definition Reports
	View Definition Comments

	Editing a View
	Deleting a View
	Deleting a View Automatically Deletes Dependent Objects

	Changing a View's Starting Table
	Restrictions on the Use of This Utility

	Copying a View
	You Must Have Privileges to Copy a View


	Data Dictionary Reports
	How To Run a Data Dictionary Report
	List of Base Tables Report
	Base Table (Order by Field Name) Report
	Base Table (Order by Column Number) Report
	Series of Base Tables Report
	List Table Relationships Report
	List of Views Report
	View -- Sorted by Path Report
	View -- Sorted by Fields Report
	Global Documentation Report
	Global Doc -- Map Version Report


	Physical Structure
	Default Physical Structure
	Overview of Default Physical Structure
	Examining Default Physical Structure is Optional
	Converting from Default to Custom Physical Structure

	Examining the Row ID Field Definition
	Row ID Definition in Non-Child Tables
	Row ID Definition in Child Tables

	Accessing the Master Map and Index Maps
	Examining a Default Master Map
	New and Old Master Map Structures
	SET Commands for Master Map Structure
	Map Definition Master Window
	Access Path Specifications
	Full Row Reference
	Map Data Specifications
	Row ID Specifications
	Child Table Default Master Map

	Examining a Default Index Map
	Index Maps for Name Data Type Fields

	Changing the Global Name in a Default Physical Structure
	Changing a Global’s System or Directory
	Updating Default Physical Structure

	Relational Definition of an M Database
	Overview of Creating a Relational Definition
	Existing M Database
	New M Database
	Examples

	Checklist for Creating a Relational Definition
	Relational Definition Checklist

	Step 1: Design a Relational Definition
	Identify Potential Tables
	Identify Characteristic Relationships
	Identify Fields in Each Table
	NULL Values in Fields
	Identify the Row ID of Each Table
	Complex Global Structures

	Step 2: Create a Base Table
	Define Child Tables
	Define Fields Using Default Physical Structure

	Step 3: Edit Row ID Field(s)
	Change to Customized Structure Before Editing Row ID Field and Mapping
	Default Row ID Field in Non-Child Tables
	Default Row ID Fields in Child Tables
	Row ID Field is a Single Data Field
	Full Row is a Delimited Piece of a Global Node

	Step 4: Define One Data Field
	Step 5: Create Preliminary Master Map
	You Must Define Row ID
	A Master Map Cannot Be a Conditional Map
	How to Create a Preliminary Master Map

	Step 6: Test Access Path Specifications
	Step 7: Define Remaining Base Table Fields
	Some Fields You Define May Not Be in M Database

	Step 8: Complete Master Map Definition
	Step 9: Create Index Maps
	Row ID Must Exist in Global Index Structure

	Step 10: Create Conditional Maps
	Step 11: Test Your Map Definitions
	Step 12: Complete Base Table Definition
	Example Using Enhanced ^SAMPLE Global
	Description of Enhancement
	Identify Potential Tables
	Identify Fields in Each Table
	Identify the Row ID of Each Table
	Create a Base Table
	Edit Row ID Field
	Define One Data Field
	Create Master Map

	Example Using ^ACCT Global
	Description of ^ACCT Global
	Identify Potential Tables
	Identify Characteristic Relationships
	Identify Fields in Each Table
	NULL Values in Fields
	Identify Row ID of Table
	Edit Row ID Fields

	Example Using ^FLAVORS Global
	Description of ^FLAVORS Global
	Identify Fields and Tables
	Identify Characteristic Relationships
	Identify Fields in Each Table
	Identify Row ID of Table
	Edit the Row ID Field(s)


	Creating a Customized Map Definition
	Overview of Customized Map Definition
	Sample Globals and Base Tables

	Map Definition Checklist
	Map Definition Checklist

	Field Names for Map Definition
	Step 1: Compose SET Command to Insert Row
	Step 2: Enter Map Definition Form
	If You Started Using Customized Physical Structure
	If You Started Using Default Physical Structure
	Examining the Map Definition Master Window

	Step 3: Specify Global Name
	Data Stored in One Global
	Extended Global Reference
	Data Stored in Two or More Globals
	Data Stored in Local Array

	Step 4: Define Standard Access Path Specifications
	A. Enter Access Path Specifications Form
	B. Examine, and If Necessary, Override, Data Access Expression
	C. Specify How to Reach Current Access Level
	Examples of Access Path Specifications
	Delete Access Level Specifications

	Step 5: Specify Special Access Code
	How Open M with SQL Accesses and Validates a Row
	Define Special Access Code to Validate Row
	Types of Special Access Code
	Range of Subscript Values Not Part of Base Table
	Single Value Access and Invalid Values
	NEXT Subroutine to Access Valid Access Level Values
	Example of Using Special Code

	Step 6: Specify Additional Data Access Variables
	Names of Additional Data Access Variables
	Where You Can Use Data Access Variables

	Step 7: Specify Override to Full Row Reference
	Default Full Row Reference
	{%row} Represents Full Row Reference
	Override Full Row Reference

	Step 8: Edit Row ID Specifications
	Step 9: Define Map Data Specifications
	Two Ways to Define Field's Location
	Standard Specifications
	Examples of Standard Map Data Specifications
	Retrieval M Code
	Examples of Map Data Specifications

	Step 10: Define Override Filing Code
	Two Ways to Define Override Filing Code
	Referencing Fields in Filing Code

	Step 11: Define an Index Map as a Conditional Map


	Special Topics
	The FileMan Interface
	Overview of the FileMan Interface
	Database Normalization
	Conversion Logic
	Identifiers
	FileMan Preferences
	File Specifications
	Field Specifications
	Indices
	FileMan Interface Does Not Link ScreenMan Applications

	Accessing the FileMan Interface
	Creating the FileMan-Open M Link
	Creating The Link for All FileMan Files Within a Range
	Creating The Link One File at a Time

	Extending, Updating, and Deleting the FileMan-Open M Link
	Link Maintenance Facility Runs Many Operations in Succession
	Accessing the Link Maintenance Facility
	Extending the FileMan-Open M with SQL Link
	Updating the FileMan-Open M with SQL Link
	Deleting the FileMan-Open M with SQL Link

	Generating Views of FileMan Files
	FileMan-Open M with SQL Cross Reference Report
	Conversion Error Log
	Print Conversion Error Log Report
	Purge Conversion Error Log

	Using the FileMan Interface with Open M with SQL PDP
	Limitations to the FileMan Interface
	FileMan Interface Questions and Answers

	Importing Data Definitions
	Overview of Data Dictionary Import
	Create ^mxdd Global

	Basic Structure of ^mxdd Import Global
	Provide Definition as Described in Data Dictionary
	Values Provided as Subscripts and Node Values
	Abbreviations Used to Represent Values
	Fixed Subscript Values
	Identify Object as Base Table or View
	Required and Default Values
	Multi-Line Node Structure

	Base Table Node Structure
	Base Table Basic Definition
	Base Table Field Definitions
	Base Table Field Error Translations
	Base Table Field Help Translations
	Base Table Triggers Definition
	Base Table Map Node Structure
	Base Table Map Access Path Specifications Structure
	Base Table Map Data Access Variable
	Base Table Row ID Specifications
	Base Table Map Data Specifications Structure
	Default Physical Structure Index Definitions

	View Node Structure
	View Basic Definition
	View Join Specification
	View Field Definition

	Privileges Definition Node Structure

	Data Dictionary Specifications
	Data Dictionary Specifications

	Keyboard Actions
	Altos
	ANSI
	CIT-500
	COBRA
	DECTERM
	DTM-PC Console
	DESQView Console
	ED3638
	FALCO
	Generic
	IBM 3151-ANSI
	IBM 3151 Ascii Display
	IBM 6091
	IBM PC
	IBM PC With Color
	MSM PC Console
	NT Console
	Open M Terminal
	PC Console
	SUN
	TV905
	Unisys Console
	VT100
	VT220
	WAYTEC
	WYSE60 (Native)
	WYSE85
	Xterm

	SQL Reserved Words
	Base Table Design Charts
	Base Table Definition
	Base Table Fields
	Field Definition
	Field Definition
	Field Definition
	Field Definition
	Field Definition
	Field Definition
	Field Definition
	Field Definition


	Glossary of Terms
	Index

