
Using the Caché ^%R
Routine

Version 2008.1
29 January 2008

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Caché ^%R Routine
Caché Version 2008.1 29 January 2008
Copyright © 2008 InterSystems Corporation
All rights reserved.

This book was assembled and formatted in Adobe Page Description Format (PDF) using tools and information from
the following sources: Sun Microsystems, RenderX, Inc., Adobe Systems, and the World Wide Web Consortium at
www.w3c.org. The primary document development tools were special-purpose XML-processing applications built
by InterSystems using Caché and Java.

 and

Caché WEBLINK, Distributed Cache Protocol, M/SQL, N/NET, and M/PACT are registered trademarks of InterSystems
Corporation.

 and

InterSystems Jalapeño Technology, Enterprise Cache Protocol, ECP, and InterSystems Zen are trademarks of
InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies
or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation,
One Memorial Drive, Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation
and maintenance of the products of InterSystems Corporation. No part of this publication is to be used for any other
purpose, and this publication is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval system or
translated into any human or computer language, in any form, by any means, in whole or in part, without the express
prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except
to the limited extent set forth in the standard software license agreement(s) of InterSystems Corporation covering
such programs and related documentation. InterSystems Corporation makes no representations and warranties
concerning such software programs other than those set forth in such standard software license agreement(s). In
addition, the liability of InterSystems Corporation for any losses or damages relating to or arising out of the use of
such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY
INTERSYSTEMS CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER
SOFTWARE. FOR COMPLETE INFORMATION REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE
LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION, COPIES OF WHICH WILL BE MADE AVAILABLE
UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the
right, in its sole discretion and without notice, to make substitutions and modifications in the products and practices
described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Customer Support
+1 617 621-0700Tel:
+1 617 374-9391Fax:
support@InterSystems.comEmail:

Table of Contents

Using the Caché ^%R Routine... 1

ParseRoutineName^%R ... 5
ROUTINE^%R .. 7
FMTERR^%R .. 10
CHECK^%R .. 12
DATE^%R .. 13
DEL^%R .. 15
EXISTS^%R .. 16
LANG^%R ... 17
LANGSET^%R ... 18
LENGTH^%R .. 19
SIZE^%R ... 20
LINE^%R ... 22
LINESET^%R ... 24
LOCK^%R ... 26
UNLOCK^%R ... 27
VERMAX^%R .. 28
VERMAXSET^%R ... 30
VERSION1^%R .. 31
VERSION^%R .. 32

List of Tables
Name Interpretation ... 4
General Routine Manipulation ... 4
Version Control .. 5

Using the Caché ^%R Routine iii

Using the Caché ^%R Routine

Note: The functionality described in this document has been replaced by the methods of the class,
%Library.Routine. The entrypoints described herein are deprecated and provided only for
compatibility with earlier releases. They may be removed in a future release.

New applications, as well as upgrades to existing applications should be rewritten to use
%Library.Routine.

Background
In earlier releases of Caché, the generation and manipulation of routines by other routines was done
incrementally. That is, the controlling routine would use ZLOAD, ZINSERT, ZREMOVE, and
related commands to build up, manipulate, compile and save routines on a line-by-line basis.

While this approach provided excellent error isolation, it proved inefficient. As the ObjectScript
compiler evolved, the relative cost associated with the initialization and termination of a sophisticated
compiler became much larger than the cost associated with compiling one line of code. Consequently,
the %R routine was introduced in Caché Version 4 to improve the compilation speed of programmat-
ically generated routines. The %R routine made it possible to treat the generated routines as units
rather than dealing with them line-by-line.

Although it is still possible to manipulate routines one line at a time, %R is the preferred path.

Note: The two approaches are compatible with one caveat. If an application uses $ZUTIL(62, 0)
to determine whether there was a syntax error after each call to ZINSERT, this will always
report that no errors are present. Previously, ZINSERT caused compilation to occur upon
each insert. Now, compilation is delayed until the ZSAVE command is executed. However,
ZSAVE does not report errors via the $ZUTIL(62, 0) mechanism.

Routine Names
The use of a string to supply the name of a routine occurs in many of the entry points of %R. The
general approach to resolving this name into its components parts is discussed here.

In general terms, the routine name consists of three parts, each separated from the others by a period:
the base name, the routine extension, and the version of the source specified by the preceding two
elements. However, uncertainties in the interpretation of names occur because of the following:

• a namespace may be included as part of the routine name

• each of the extension and version components is optional and may not be supplied in a given
invocation

• under certain circumstances, the wildcard character (*) is permitted as all or part of each component

Using the Caché ^%R Routine 1

• as of Caché Version 4, periods are valid as part of the base name (they specify the package which
contains the routine).

To achieve backward compatibility for legacy programs evolving to use the ^%R functionality, the
following approach is used to resolve the string into the component parts of base name, extension,
version, and namespace:

1. The namespace component is initialized to the empty string.

2. If either of the characters "|" or "]" occurs in the string, the format is assumed to be of the form

• ["<NAMESPACE>"]<REMAINDER>

or

• |"<NAMESPACE>"|<REMAINDER>

The namespace component is extracted from between the ("). The string is set to <REMAINDER>
and processing continues.

3. If the string consists only of a wildcard character (*), then the extension and version components
are set to the empty string. The base name is set to the wildcard character. Processing of the name
is finished.

4. If the string is of the form "<TEXT>.*.*", then set the extension and version to "*", and the base
name to <TEXT>. Processing is complete.

5. If the string is of the form "<TEXT>.*", then set the version to 0, the extension to "*", and the
base name to <TEXT>. Processing is complete.

6. If the string is of the form "<TEXT>.<EXT>.*", and <EXT> is a valid extension, that is, one of

• MAC

• INT

• INC

• OBJ

• BAS

• COS

(case is ignored for this comparison), then set the version to "*", the extension to <EXT>, and the
base name to <TEXT>.

Otherwise, set the version to 0, the extension to "*", and the base name to <TEXT>.<EXT>.
Processing is complete.

2 Using the Caché ^%R Routine

7. If the string is of the form "<TEXT>.<EXT>.<VER>", and EXT is one of the valid extensions
listed above, and VER is an integer (signed or unsigned), then set the version to VER, the extension
to <EXT>, and the base name to <TEXT>.

Otherwise, set the version to 0, the extension to "*", and the base name to
<TEXT>.<EXT>.<VER>. Processing is complete.

8. Otherwise, set the version to 0, the extension to "*", and the base name to the remaining string of
characters. Processing is complete.

The preceding is only a general description of the algorithm for parsing names. For examples of how
names are parsed, see the ParseRoutineName entry point below. This is the name parser used by the
other entry points of ^%R.

Language Encoding
In several entry points, an integer value is used to identify the language that the subject routine is
written in. The encoding used for specifying the language is:

• 0 - Caché ObjectScript (default)

• 1 - DSM-11

• 2 - DTM

• 3 - Unused - Obsolete

• 4 - Unused - Obsolete

• 5 - DSM-VMS

• 6 - DSM-J

• 7 - DTM-J

• 8 - MSM

• 9 - Caché Basic

The values 1 through 8 inclusive are used to customize the compiler for subtle differences in the
interpretation of the source code among these legacy systems.

Note: Current users of Caché are strongly advised to use either 0 or 9 as appropriate. The remaining
values should only be used for maintaining or updating legacy applications.

Versioning
There are entry points in %R that provide a limited form of version control when used with the "B"
option to the ROUTINE entry point. They provide for keeping a specified number of previous
“ancestor” versions of the specified routine available, and for being able to recover them as needed.
For details, see VERMAX, VERMAXSET, VERSION1, and VERSION.

Using the Caché ^%R Routine 3

Note: If you do not wish to use versioning at all, you may set the maximum to zero. Alternatively,
you may kill the system globals ^rBACKUP, as well as ^rMACSAVE and ^rINCSAVE.

Entry Points
The publicly supported entry points in ^%R grouped functionally are:

Name Interpretation

PurposeEntry Point

Separate a routine name into its component partsParseRoutineName

General Routine Manipulation

PurposeEntry Point

Compile, save, or load source code in databaseROUTINE

Display errorsFMTERR

Check syntax of source codeCHECK

Get the saved routine dateDATE

Remove a routine from the databaseDEL

Check to see if a routine existsEXISTS

Get the source language indicator for a routineLANG

Set the source language indicator for a routineLANGSET

Count the source lines in a routineLENGTH

Count the source characters in a routineSIZE

Return a line from a saved routineLINE

Insert/replace a new source line in a saved routineLINESET

Attempt to gain exclusive use of a saved routineLOCK

Gives up exclusive use of a saved routineUNLOCK

4 Using the Caché ^%R Routine

Version Control

PurposeEntry Point

Returns the maximum number of versions to keep as
backups

VERMAX

Sets the maximum number of versions to keep as
backups

VERMAXSET

Returns the version number of the oldest backupVERSION1

Returns the version number corresponding to a relative
version number

VERSION

For more information on Caché ObjectScript functions generally, see the section “Functions” in Using
Caché ObjectScript.

ParseRoutineName^%R

ParseRoutineName^%R (rtn, .extent, .version, .namesp)

Parameters

The name of the target routine.rtn

A string holding the parsed extension.extent

A string giving the version number.version

A string giving the namespace, if any, contained in the routine
name.

namesp

Description
This function provides access to the routine name parser used by the other entry points of ^%R.

Parameters

rtn

A string that specifies the name of the routine to be fetched from the database or stored into the database.
A full or partial name of the routine may be given. The name is case-sensitive; the extension is not.

Using the Caché ^%R Routine 5

ParseRoutineName^%R

extent

This is an output argument and will hold the parsed extension.

version

This is an output argument and will hold the parsed version number.

namesp

If rtn contains an explicit namespace component, this output argument will contain it. Otherwise, it
will be set to the empty string.

Remarks
This function is a really an internal routine used by the other entry points of ^%R. It is a PUBLIC
entry point, however, and is described here to aid developers who wish to determine exactly how the
parsing rules outlined in the introduction will be applied.

In addition to the output arguments, this function returns the base routine name as its result.

Examples
The following example demonstrates the use of ParseRoutineName^%R on a variety of routine
names:

 ; Build a list of names
 Set samples = $LISTBUILD("foo",
 "foo.bar",
 "foo.mac",
 "foo*.bar",
 "foo*.*.13",
 "foo.mac.-234",
 "^|""DeltaQuadrant""|Voyager.int.1",
 "^[""^AlphaQuadrant""]NCC.1701.MAC.4",
 "^[""twilight"",""zone""]Somewhere.INT.19")

 ; show the results
 For i = 1 : 1 : $LISTLENGTH(samples)
 {
 Set (Ext, Ver, Nsp) = "???"
 Set Input = $LIST(samples, i)
 Set BaseName = $$ParseRoutineName^%R(Input, .Ext, .Ver, .Nsp)
 Write Input, !
 Write ?3, "Base:", ?15, BaseName, !
 Write ?3, "Extension:", ?15, Ext, !
 Write ?3, "Version:", ?15, Ver, !
 Write ?3, "Namespace:", ?15, Nsp, !, !
 }

6 Using the Caché ^%R Routine

ParseRoutineName^%R

ROUTINE^%R

ROUTINE^%R (rtn, .code, .errs, options, langmode, filedate, namesp,
iunlock)

Parameters

The name of the target routine.rtn

A reference to an array of source code.code

A reference to a list of the errors detected during processing.errs

A string containing the processing options desired.options

An indicator specifying the language of the source.langmode

The timestamp to be used for the resulting file.filedate

The namespace the routine is to be processed in.namesp

A switch indicating to immediately unlock the routine after processing.iunlock

Description
This function permits a Caché ObjectScript program to manipulate source code programmatically.
Depending on the parameters passed to the function, an executing program may:

• Save source code for later use

• Retrieve saved source code

• Compile source code and optionally save the compiled object code

Parameters

rtn

An expression which evaluates to a string. The content of the string specifies the name of the routine
to be fetched from the database or stored into the database. The full name of the routine must be given,
that is, the name and extension separated by a period as in "SomeRoutine.MAC". The name is case-
sensitive; the extension is not.

code

An array of the source code. This array supplies the source code of the routine when a routine is being
compiled and/or saved. It receives the source when a routine is fetched.

The format of the array is as follows:

Using the Caché ^%R Routine 7

ROUTINE^%R

• code(0) contains the number of lines of source code involved in the operation.

• code(1) through code(N) contains individual lines of source code, where N is the value contained
in Code(0).

errs

A list of the errors detected while attempting to carry out the processing specified by options. The
argument, err is returned as a $LIST of values. The values can be displayed by calling FMTERR^%R
function.

options

A string consisting of a series of characters indicating the operations to be attempted on the routine.
The permitted values and their meanings are:

• L - Load the previously saved routine into the code parameter.

• C - Compile the routine contained in code.

• D- Delete the saved source for the target routine.

• S - Save the routine source, and if there is a compiled version, save it as well.

• B - When saving routines of type "MAC" or "INT", create a backup version before doing the save.

The string is case-insensitive. The order in which operations are attempted is the order in which they
occur in the string.

langmode

An integer indicating the language that the statements of code are written in.

filedate

The timestamp to be used as the modification date of the routine in Caché. The value of filedate is
given in $HOROLOG format (see the Caché ObjectScript Reference for details). If filedate is not
specified, the current date and time is used.

namesp

A string whose value is the namespace in which the specified operations are to take place. The
parameter is optional. If unspecified, the current namespace is assumed.

iunlock

A boolean value where true (1) indicates that all locks for the routine are to be released as soon as
processing is completed. False (the default) means to treat any locks held as in prior versions of Caché'.

8 Using the Caché ^%R Routine

ROUTINE^%R

Remarks
This routine attempts to carry out the specified operation(s) on the routine named in its first argument.
It returns as its result a string of the form:

• N^Status1,Status2,...

The value of N is an indicator of the overall success or failure of the attempt. If N is 1, all operations
completed successfully. If N is 0, one or more of the operations failed.

Status1, Status2, Status3, and so on represent short result summaries of the corresponding options.

Examples
The following example demonstrates the use of ROUTINE^%R to compile, save and execute a
simple routine. It then executes the routine directly:

This example makes use of other entry points in ^%R that are described elsewhere in this document.

WARNING! This example creates a routine in the SAMPLES namespace called AnExample.INT.
If there is already a routine by that name in that namespace, it will be overridden.

 ; Change the namespace we will use
 Znspace "SAMPLES"

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 ; Note leading spaces on the following entries"
 Set code($INCREMENT(N)) = " Write ""Starting AnExample"", !"
 Set code($INCREMENT(N)) = " Set Y = 1"
 Set code($INCREMENT(N)) = " Set Z = 3"
 Set code($INCREMENT(N)) = " Write Y, "" + "", Z, "" = "", (Y + Z), !"
 Set code($INCREMENT(N)) = " Write ""Finished AnExample"", !"
 Set code($INCREMENT(N)) = " Quit"
 Set code(0) = N

 Set name = "AnExample"
 Set ext = "INT"
 Set routine = name _ "." _ ext
 Set options = "CS" ; Compile and Save
 Set errors = "" ; empty list

 ; do it
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)

 ; show the simple result
 Write "Compilation result: ", return, !
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 }
 Else
 {
 ; run it
 Write "Calling AnExample", !
 Set entrypoint = name _ "^" _ name
 Do @entrypoint
 ; remove the source and object

Using the Caché ^%R Routine 9

ROUTINE^%R

 for suffix = "int", "OBJ"
 {
 Set component = name _ "." _ suffix
 Write "Removing ", component, ": ", $$DEL^%R(component), !
 }
 }

FMTERR^%R

FMTERR^%R (.errs, .code, .lines)

Parameters

A reference to a list of the errors detected during processing.errs

A reference to an array of source code.code

A reference to an array of text lines containing the interpretation of the
errors found.

lines

Description
This function converts the error data generated by an invocation of ROUTINE^%R or CHECK^%R
into a form suitable for presentation to users.

Parameters

errs

A list of the errors returned by the invocation of ROUTINE^%R or CHECK^%R.

code

An array containing the source code. This array supplies the source code of the routine so that the
displayed information may include the source line that caused the error as part of the text. Its format
is the same as used by the ROUTINE^%R entry point. If it is not supplied, then the error message
will only show the error location, but not the contents, of the line in error.

lines

A reference to an array that will be filled in with lines of text making up the error message(s). The
format is the same as that of the source code array; lines(0) contains the number of error message lines
in the remainder of the array.

If this parameter is not supplied, the resultant text will be returned as the value of the function invocation.
Line breaks will be present in the returned string as occurrences of $CHAR(13, 10).

10 Using the Caché ^%R Routine

FMTERR^%R

If lines is supplied, the individual array items represent separate lines. There are no internal line breaks.
There is no result returned, that is, the routine should be invoked as a subroutine (via the DO command).

Remarks
This routine reformats the error list returned by ROUTINE^%R into more user-friendly form.

Examples
The following uses CHECK^%R on an illegal program to generate an error array. This array is then
converted into text and displayed.

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 Set code($INCREMENT(N)) = " Write ""Starting AnExample"", !"
 Set code($INCREMENT(N)) = " Write ""A closing quote is missing here^, !"
 Set code($INCREMENT(N)) = " Quiet"
 Set code(0) = N

 Set errors = "" ; empty list

 ; do it
 Set return = $$CHECK^%R(.code, .errors)

 ; show the simple result
 Write return, !
 If (return = 0)
 {
 ; format and display the errors
 Write !, "Errors as one text string", !
 Write $$FMTERR^%R(.errors, .code), !
 Write !, "Errors as lines from an array", !
 Set lines = ""
 Do FMTERR^%R(.errors, .code, .lines)
 for i = 1 : 1 : lines(0)
 {
 Write "errors(", i, ") = ", lines(i), !
 }
 }
 Else
 {
 ; should never get here
 Write "Something is radically wrong", !
 }

Using the Caché ^%R Routine 11

FMTERR^%R

CHECK^%R

CHECK^%R (.code, .errs, langmode)

Parameters

A reference to an array of source code.code

A reference to a list of the errors detected during processing.errs

An indicator specifying the language of the source.langmode

Description
This function performs a syntax check on the source code supplied and returns any errors found.

Parameters

code

An array containing the source code. This array supplies the source code of the routine to be checked
for correct syntax. Its format is the same as used by the ROUTINE^%R entry point.

errs

A list of the errors reported by the syntax checker returned as a $LIST of values. The values can be
displayed by calling FMTERR^%R routine.

langmode

An integer which specifies the language that the statements of code are written in. The permitted values
are the same as those permitted in the ROUTINE^%R routine.

Remarks
This routine is invoked as a function and returns either a 0 or 1 as its result. The interpretation of the
result is:

• 1 - Success. There are no syntax errors present.

• 0 - Failure. Syntax errors were found and they are returned in the errs array.

Note: A return value of 1 only indicates that the supplied source will compile without error. There
is no implication that the source code will execute without error, or produce the intended
result.

12 Using the Caché ^%R Routine

CHECK^%R

Examples
See the example for the FMTERR^%R routine for an instance of CHECK^%R.

DATE^%R

DATE^%R (rtn, format, namesp)

Parameters

The name of the target routine.rtn

The desired format of the time stamp.format

The namespace the routine is saved in.namesp

Description
This function returns the date and time that the named routine was saved in Caché.

Parameters

rtn

A string specifying the name of the routine to be fetched from the database or stored into the database.
The full name of the routine must be given, that is, the name and extension separated by a period as
in "SomeRoutine.MAC". The name is case-sensitive; the extension is not.

If the specified routine is not found, the function returns a null string.

format

An integer specifying the format the date and time are to be returned as. The allowed values are the
same as for the $ZDATETIME function. The value given for format is used to format the date portion;
the time is always shown as "HH:MM:SS".

In addition to the values permitted by $ZDATETIME, a value of zero will return the time stamp in
$HOROLOG format.

If the format value supplied is not one of those permitted, an error status will be returned as the value
of the function. This is shown in the examples below.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Using the Caché ^%R Routine 13

DATE^%R

Remarks
This function and returns the time stamp associated with the routine at the time it was saved.

Note: This will not be the true date and time when the routine was saved if the caller of
ROUTINE^%R provided a different value in the filedate parameter.

Examples
The following example displays the date and time that %R was saved in all the allowed formats.

 ; set up the data
 Set name = "%R"
 Set ext = "OBJ"
 Set routine = name _ "." _ ext
 Set namespace = "%CACHELIB"

 ; do it
 Write "Timestamp for ", routine, !
 for fmt = 0 : 1 : 12
 {
 Set filedate = $$DATE^%R(routine, fmt, namespace)
 Write "Format ", fmt, ": ", ?10, filedate, !
 }

This example shows the error status produced when the value of format is illegal.

 ; set up the data
 Set name = "%R"
 Set ext = "OBJ"
 Set routine = name _ "." _ ext
 Set namespace = "%CACHELIB"

 ; do it
 Write "Timestamp for ", routine, !
 Set filedate = $$DATE^%R(routine, 100, namespace)
 Write "Value: ", ?10, filedate, !

Here is what happens when there is no routine by that name. A null string is returned as the value of
the function.

 ; set up the data
 Set name = "%NONEXISTENT"
 Set ext = "OBJ"
 Set routine = name _ "." _ ext
 Set namespace = "%CACHELIB"

 ; do it
 Write "Timestamp for ", routine, !
 Set filedate = $$DATE^%R(routine, 1, namespace)
 Write "Return length: ", $LENGTH(filedate), !

14 Using the Caché ^%R Routine

DATE^%R

DEL^%R

DEL^%R (rtn, namesp)

Parameters

The name of the target routine.rtn

The namespace the routine is saved in.namesp

Description
This function removes the named routine from the Caché database.

Parameters

rtn

A string which gives the name of the routine to be fetched from the database or stored into the database.
The name is case-sensitive; the extension is not.

Wildcards are in the name and the extension. For example, "Foo*.*" will remove all routines whose
first three characters are "Foo" regardless of their extension.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Remarks
This function remove the specified routines from the database. It returns a value of 1 if at least one
routine was found and removed, and a value of 0 otherwise.

Examples
See the example for the ROUTINE^%R routine for an instance of DEL^%R.

Using the Caché ^%R Routine 15

DEL^%R

EXISTS^%R

EXISTS^%R (rtn, namesp)

Parameters

The name of the target routine.rtn

The namespace the routine is saved in.namesp

Description
This function determines whether the specified routine exists within the Caché database.

Parameters

rtn

A string that specifies the name of the routine to be searched for.

Wildcards are allowed in the name and the extension.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Remarks
This function returns 1 if there is a routine in the specified namespace which matches rtn. Otherwise,
it returns 0.

Examples
Here we check to see if the subject of this article exists.

16 Using the Caché ^%R Routine

EXISTS^%R

 ; set up the data
 Set ext = "OBJ"
 Set namespace = "%CACHELIB"

 ; do it
 for basename = "%R", "ArbitraryName"
 {
 Set routine = basename _ "." _ ext
 Set present = $$EXIST^%R(routine, namespace)
 Write routine, $SELECT(present:" exists", 1:" is missing"), "!", !
 }

LANG^%R

LANG^%R (rtn, namesp)

Parameters

The name of the target routine.rtn

The namespace the routine is saved in.namesp

Description
This function returns the value of the language encoding for the specified routine.

Parameters

rtn

An expression which evaluates to a string. The content of the string specifies the name of the routine
to be searched for.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Remarks
This function returns the integer value which encodes the language mode of the specified routine. A
list of the encodings is given at the beginning of this document.

If the routine extension is invalid, this function returns an empty string. If the extension is "MAC",
the value returned is 0 (ObjectScript), regardless of whether the routine exists or not.

Examples
Here we check to see what some routines are written in.

Using the Caché ^%R Routine 17

LANG^%R

 ; set up the data
 Set namespace = "%CACHELIB"

 set languages = $LISTBUILD("ObjectScript",
 "DSM-11",
 "DTM",
 "",
 "",
 "DSM-VMS",
 "DSM-J",
 "DTM-J",
 "MSM",
 "Basic")

 ; do it
 for routine = "%R.OBJ", "ArbitraryName.MAC", "SomeOther.RTN"
 {
 Set code = $$LANG^%R(routine, namespace)
 If ($ISVALIDNUM(code))
 {
 Set lang = $LISTGET(languages, (code + 1), "")
 Set:(lang = "") lang = "Unknown"
 Write routine, " language: ", lang, !
 }
 Else
 {
 Write routine, ": invalid extension", !
 }
 }

LANGSET^%R

LANGSET^%R (rtn, langmode)

Parameters

The name of the target routine.rtn

An indicator specifying the new language of the source.langmode

Description
This function returns the value of the language encoding for the specified routine.

Parameters

rtn

A string that specifies the name of the routine to be searched for.

langmode

An integer specifying the language that the statements of rtn are written in.

18 Using the Caché ^%R Routine

LANGSET^%R

Remarks
This function changes the language encoding stored with the source of the named routine saved in the
database. It is intended for those legacy applications that run on multiple platforms and need to adapt
themselves to the environment at runtime.

This function returns 1 if the stored language mode was successfully changed, and 0 otherwise.

Examples

LENGTH^%R

LENGTH^%R (rtn, namesp)

Parameters

The name of the target routine.rtn

The namespace the routine is saved in.namesp

Description
This function returns the number of lines in the routine saved in the database.

Parameters

rtn

The name of the routine (as a string) to be searched for.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Remarks
This function returns an integer value which is the number of lines in the named routine saved in the
database. If the routine does not exist, the result of this function is 0.

Examples
The following creates a routine, and then saves it in the database. It erases its in-memory information
on the routine, and queries the database for its info.

This example makes use of other entry points in ^%R that are described elsewhere in this document.

Using the Caché ^%R Routine 19

LENGTH^%R

WARNING! This example creates a routine in the SAMPLES namespace called AnExample.INT.
If there is already a routine by that name in that namespace, it will be overridden.

 ; Change the namespace we will use
 Znspace "SAMPLES"

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 ; Note leading spaces on the following entries"
 Set code($INCREMENT(N)) = " Write ""Starting AnExample"", !"
 Set code($INCREMENT(N)) = ""
 Set code($INCREMENT(N)) = " Write ""Some text"", !"
 Set code($INCREMENT(N)) = ""
 Set code($INCREMENT(N)) = " Write ""Finished AnExample"", !"
 Set code($INCREMENT(N)) = " Quit"
 Set code(0) = N

 Set routine = "AnExample.INT"
 Set options = "S" ; Save
 Set errors = "" ; empty list

 ; do it
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)

 ; show the simple result
 Write "Save result: ", return, !
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 }
 Else
 {
 ; remove local info
 Kill code

 ; find out about it
 Write "Lines in ", routine, ": ", $$LENGTH^%R(routine), !

 ; remove the saved source
 Write "Removing ", routine, ": ", $$DEL^%R(routine), !
 }

SIZE^%R

SIZE^%R (rtn, namesp)

Parameters

The name of the target routine.rtn

The namespace the routine is saved in.namesp

20 Using the Caché ^%R Routine

SIZE^%R

Description
This function returns the number of characters in the routine saved in the database.

Parameters

rtn

A string that gives the name of the routine to be searched for.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Remarks
This function returns an integer value which is the number of characters in the named routine saved
in the database. If the routine does not exist, the result of this function is 0.

Examples
The following creates a routine, and then saves it in the database. It erases its in-memory information
on the routine, and queries the database for its info.

This example makes use of other entry points in ^%R that are described elsewhere in this document.

WARNING! This example creates a routine in the SAMPLES namespace called AnExample.INT.
If there is already a routine by that name in that namespace, it will be overridden.

 ; Change the namespace we will use
 Znspace "SAMPLES"

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 ; Note leading spaces on the following entries"
 Set code($INCREMENT(N)) = " Write ""AnExample"", !"
 Set code($INCREMENT(N)) = " Quit"
 Set code(0) = N

 Set routine = "AnExample.INT"
 Set options = "S" ; Save
 Set errors = "" ; empty list

 ; do it
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)

 ; show the simple result
 Write "Save result: ", return, !
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 }
 Else
 {

Using the Caché ^%R Routine 21

SIZE^%R

 ; remove local info
 Kill code

 ; find out about it
 Write "Characters in ", routine, ": ", $$SIZE^%R(routine), !

 ; remove the saved source
 Write "Removing ", routine, ": ", $$DEL^%R(routine), !
 }

LINE^%R

LINE^%R (rtn, linenum, namesp)

Parameters

The name of the target routine.rtn

The number of the line desired.linenum

The namespace the routine is saved in.namesp

Description
This function returns a line of source from a routine saved in the database.

Parameters

rtn

The name of the routine to be searched for.

linenum

The number of the line in the routine whose contents is desired. The line number of the initial line of
the routine is always 1.

namesp

A string whose value is the namespace in which the designated routine has been saved. The parameter
is optional. If unspecified, the current namespace is assumed.

Remarks
This function returns the contents of the desired line as a string. If linenum does not satisfy the constraint
that

• 1 <= linenum <= $$LENGTH^%R(rtn, namesp)

22 Using the Caché ^%R Routine

LINE^%R

then the line does not exist and the function returns an empty string as its result. It is not possible to
distinguish a non-existent line from a line containing no characters solely by using this function.

Examples
The following creates a routine, and then saves it in the database. It erases its in-memory information
on the routine, and queries the database for its info.

This example makes use of other entry points in ^%R that are described elsewhere in this document.

WARNING! This example creates a routine in the SAMPLES namespace called AnExample.INT.
If there is already a routine by that name in that namespace, it will be overridden.

 ; Change the namespace we will use
 Znspace "SAMPLES"

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 ; Note leading spaces on the following entries"
 Set code($INCREMENT(N)) = " Write ""AnExample"", !"
 Set code($INCREMENT(N)) = " Quit"
 Set code(0) = N

 Set routine = "AnExample.INT"
 Set options = "S" ; Save
 Set errors = "" ; empty list

 ; do it
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)

 ; show the simple result
 Write "Save result: ", return, !
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 }
 Else
 {
 ; remove local info
 Kill code

 ; list the routine backwards
 For i = $$LENGTH^%R(routine) : -1 : 1
 {
 Write "Line ", i, ":: ", $$LINE^%R(routine, i), !
 }

 ; remove the saved source
 Write "Removing ", routine, ": ", $$DEL^%R(routine), !
 }

Using the Caché ^%R Routine 23

LINE^%R

LINESET^%R

LINESET^%R (rtn, linenum, linetext)

Parameters

The name of the target routine.rtn

The number of the line to be replaced or added.linenum

The contents of the new line.linetext

Description
This function inserts the source text at the position indicated in the specified routine.

Parameters

rtn

A string which specifies the name of the routine to be modified.

linenum

The number of the line in the routine whose contents is desired. The line number of the initial line of
the routine is 1.

linetext

A string of source text to be placed in the routine.

Remarks
This function inserts linetext in the routine at position linenum. If

• linenum > $$LENGTH^%R(rtn, namesp)

then the routine source is effectively extended by appending

• linenum - $$LENGTH^%R(rtn namesp)

empty lines to the source so that linenum is in the range

• 1 <= linenum <= $$LENGTH^%R(rtn. namesp)

Then the existing text at that line is replaced.

The function returns a result of 1 if the replacement was successful, and 0 otherwise.

24 Using the Caché ^%R Routine

LINESET^%R

Note: Replacing a line of source does not affect any corresponding object routine. To have the
change take effect, the source routine must be recompiled.

Examples
The following creates a routine, and then compiles it and saves it in the database. It erases its in-
memory information on the routine. It invokes the newly created routine.

Then it changes a line of the source and invokes the routine to demonstrate that no change has been
made to the object.

Finally, it loads the new source from the database, re-compiles and saves it, and once more invokes
the routine to show the effect of the change.

This example makes use of other entry points in ^%R that are described elsewhere in this document.

WARNING! This example creates a routine in the SAMPLES namespace called AnExample.INT.
If there is already a routine by that name in that namespace, it will be overridden.

 ; Change the namespace we will use
 Znspace "SAMPLES"

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 ; Note leading spaces on the following entries"
 Set code($INCREMENT(N)) = " Write ""User: """"Hello, world"""""", !"
 Set code($INCREMENT(N)) = " ; A dummy line to be replaced later"
 Set ReplaceLoc = N
 Set code($INCREMENT(N)) = " Quit"
 Set code(0) = N

 Set name = "AnExample"
 Set ext = "INT"
 Set routine = name _ "." _ ext
 Set options = "CS" ; Compile and Save
 Set errors = "" ; empty list

 ; do it
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 Quit
 }

 ; run it
 Set entrypoint = name _ "^" _ name
 Do @entrypoint

 Set NewLine = " Write ""World: """"Hello yourself"""""", !"
 If ($$LINESET^%R(routine, ReplaceLoc, NewLine) '= 1)
 {
 Write "Line replacement failed", !
 Quit
 }

 ; show what is in the local array and in database
 Write "Local: ", code(ReplaceLoc), !

Using the Caché ^%R Routine 25

LINESET^%R

 Write "Saved: ", $$LINE^%R(routine, ReplaceLoc), !

 ; run it again to show same result
 Do @entrypoint

 ; load, re-compile and save
 Write "Updating...", !
 Set return = $$ROUTINE^%R(routine, .code, .errors, "LCS")
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 Quit
 }

 ; run it one last time to show change
 Do @entrypoint

 ; remove the source and object
 for suffix = "int", "OBJ"
 {
 Set component = name _ "." _ suffix
 Write "Removing ", component, ": ", $$DEL^%R(component), !
 }

LOCK^%R

LOCK^%R (rtn, timeout)

Parameters

The name of the target routine.rtn

The number of seconds to wait before giving up the attempt.timeout

Description
This function attempts to gain exclusive access to a routine saved in the database.

Parameters

rtn

The name of the routine to be locked as a string.

timeout

An integer giving the maximum number of seconds that can elapse before the routine will give up
trying to acquire a lock on the routine. This parameter is optional; if it is not supplied the default
timeout is 2.

26 Using the Caché ^%R Routine

LOCK^%R

Remarks
This attempts to gain exclusive access to the specified routine in the database. It returns 1 if the attempt
was successful, and 0 if the lock could not be obtained.

Examples

UNLOCK^%R

UNLOCK^%R (rtn, iunlock)

Parameters

The name of the target routine.rtn

A switch indicating immediately unlock the routine after processing.iunlock

Description
This function undoes the action of UNLOCK.

Parameters

rtn

The name of the (presumably locked) routine as a string.

iunlock

A boolean value where true (1) indicates that all locks for the routine are to be released as soon as
processing is completed. False (the default) means to treat any locks held as in prior versions of Caché.

Remarks
This function gives up the lock to the routine it acquired via UNLOCK. It returns 1 if the attempt was
successful, and 0 if the operation was unsuccessful as, for example, if the routine had not been previously
locked.

Using the Caché ^%R Routine 27

UNLOCK^%R

Examples

VERMAX^%R

VERMAX^%R (extent, namesp)

Parameters

The extent for which version information is desired.extent

The namespace this extent is saved in.namesp

Description
This function returns the number of versions of routines with this extent that will be maintained.

Parameters

extent

A string giving the extent for which version information is desired.

namesp

The content of the string specifies the namespace to examine for the extent versioning information. If
this is not supplied, the current namespace is assumed.

Remarks
This function examines the specified namespace for version information about the specified extent. If
no version information has explicitly been set by an application before this call is made, then a system
default value is used (currently 4).

If N is the value returned by the function, then there will be one current (most recent, or master) version
and N-1 backup versions.

Note: The version numbers available as backups are not required to be a sequence of consecutive
numbers. Intermediate versions may have been eliminated by calls to DEL^%R.

Examples
The following example illustrates the use of many of the entry points associated with version manage-
ment.

28 Using the Caché ^%R Routine

VERMAX^%R

WARNING! This example creates a routine in the SAMPLES namespace called AnExample.INT.
If there is already a routine by that name in that namespace, it will be overridden.

 ; Change the namespace we will use
 Znspace "SAMPLES"

 ; fill in the source code array
 Set N = 0
 Set code($INCREMENT(N)) = "AnExample ; An example routine"
 Set code($INCREMENT(N)) = " Write ""Starting AnExample"", !"
 Set code($INCREMENT(N)) = " Write ""Line to be replaced"", !"
 Set lininx = N
 Set code($INCREMENT(N)) = " Write ""Finished AnExample"", !"
 Set code($INCREMENT(N)) = " Quit"
 Set code(0) = N

 Set name = "AnExample"
 Set ext = "MAC"
 Set routine = name _ "." _ ext
 Set options = "BCS" ; Backup, Compile and Save
 Set errors = "" ; empty list
 Set abort = 0

 ; get the number of backups
 Set maxvers = $$VERMAX^%R(ext)
 Write "Default versions: ", maxvers, !
 ; increase it by one
 Do VERMAXSET^%R(ext, (maxvers + 1))
 ; confirm it
 set maxvers = $$VERMAX^%R(ext)
 Write "Explicit versions: ", maxvers, !

 ; process the base version
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)
 ; show the simple result
 Write "Compilation result: ", return, !
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 set abort = 1
 }
 Else
 {
 ; run it
 Write "Calling AnExample", !
 Set entrypoint = name _ "^" _ name
 Do @entrypoint
 }
 Quit:(abort)

 ; generate a bunch of versions
 for i = 1 : 1 : 10
 {
 ; process the new version
 Write !, "Loop ", i, !
 Set code(lininx) = " Write ""Iteration " _ i _ """, !"
 Set return = $$ROUTINE^%R(routine, .code, .errors, options)
 ; show the simple result
 Write "Compilation result: ", return, !
 If (+return = "")
 {
 ; format and display the errors
 Write $$FMTERR^%R(.errors, .code), !
 set abort = 1
 }

Using the Caché ^%R Routine 29

VERMAX^%R

 Else
 {
 ; run it
 Write "Calling AnExample", !
 Set entrypoint = name _ "^" _ name
 Do @entrypoint
 }

 ; get the version boundaries
 Set oldest = $$VERSION1^%R(routine)
 Set vername = routine _ "." _ "-1"
 Set youngest = $$VERSION^%R(vername)
 Write "Oldest: ", oldest, "; ", "Youngest: ", youngest, !
 }
 ; remove the source and object
 for suffix = "int", "OBJ"
 {
 Set component = name _ "." _ suffix
 Write "Removing ", component, ": ", $$DEL^%R(component), !
 }
 ; reset the maximum versions
 Kill ^rBACKUP(0,ext)
 Quit

VERMAXSET^%R

VERMAX^%R (extent, max, namesp)

Parameters

The extent for which version information is desired.extent

The maximum number of versions to be saved.max

The namespace this extent is saved in.namesp

Description
This function sets the number of versions of routines with this extent that will be maintained in the
specified namespace.

Parameters

extent

The content of the string specifies the extent for which version information is desired.

max

An expression which evaluates to a positive, non-zero integer giving the number of versions to be
maintained as backups.

30 Using the Caché ^%R Routine

VERMAXSET^%R

namesp

The content of the string specifies the namespace to examine for the extent versioning information. If
this is not supplied, the current namespace is assumed.

Remarks
This function sets the versioning information about the specified extent in the specified namespace.
If max is set to 1, only the most recent version will be saved.

It returns 1 if the new maximum is set, and 0 otherwise.

Examples
See the example supplied with the VERMAX^%R entry point.

VERSION1^%R

VERSION1^%R (rtn, namesp)

Parameters

An expression which evaluates to a string giving the routine name.rtn

The namespace this extent is saved in.namesp

Description
This returns the number of the oldest version maintained as a backup.

Parameters

rtn

A string that supplies the name of the routine to whose oldest version the application is interested in.
It includes the extent as part of the name. The name is case-sensitive; the extent is not. Any version
number supplied as part of rtn is ignored.

namesp

An expression which evaluates to a string. The content of the string specifies the namespace to examine
for the extent versioning information. If this is not supplied, the current namespace is assumed.

Using the Caché ^%R Routine 31

VERSION1^%R

Remarks
This function examines the specified namespace looking for versions of the named routine which have
been backed up. The version number of the oldest such routine is returned.

Examples
See the example supplied with the VERMAX^%R entry point.

VERSION^%R

VERSION^%R (rtn, namesp)

Parameters

An expression which evaluates to a string giving the routine name.rtn

The namespace this extent is saved in.namesp

Description
This returns the number of the version relative to the most recent version.

Parameters

rtn

A string which specifies the name of the routine the application is interested in. It includes the extent
as part of the name. The name is case-sensitive; the extent is not. The version number is can be a signed
value indicating its relationship to the most recent backup, for example, “SomeRoutine.MAC.-1”
asks for the version number of the routine before the most recent one.

namesp

An expression which evaluates to a string. The content of the string specifies the namespace to examine
for the extent versioning information. If this is not supplied, the current namespace is assumed.

Remarks
This returns the version number specified if the version part of the name is not relative. If the version
portion of the name is relative, it returns the version number of the backup which is relative to the
most recent version.

If the version specified does not exist, the routine returns 0.

32 Using the Caché ^%R Routine

VERSION^%R

Examples
See the example supplied with the VERMAX^%R entry point.

Using the Caché ^%R Routine 33

VERSION^%R

