
Revision Date:
May 13, 1999

Caché includes an environment for using objects interactively as well as an API for compiling and
manipulating objects and class definitions. This utility is called the Caché Object Utility Library
implemented as a calls within %apiOBJ.

This utility allows you to perform the following tasks:

● Manipulate classes
● Load classes
● Compile classes
● Export classes
● Delete classes

● Manipulate Environment Settings
● Manipulate Default Flags
● Manipulate Storage Strategies
● Manipulate Default Locales

● Error Handling
● Add an error mssage
● Display error text

● Debugging Object Applications
● Display details of an object
● List all objects in the current process
● Kill all objects in the current process

● Other Tasks
● Access a method indirectly
● Get the value of a property
● Set the value of a property
● Get the version number
● Manipulate concurrency settings
● Manipulate transaction settings

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

You can use the Caché Object Utility Library to manipulate classes in four ways:

● Load classes
● Compile classes
● Export classes
● Delete classes

 Loading Classes

You can use the Caché Object Utility Library to load classes from CDL files. You can load all classes in a
single CDL file or load all classes in all CDL files within a single directory.

Loading All Classes in a Single CDL File

You can use the following command to load all classes in a single CDL file:

Do LoadFile^%apiOBJ(filename,flag,.errorlog)

This command loads one CDL file into the class dictionary. filename is the name of the CDL file to load into
class dictionary and optionally compile, depending on the value of flag. flag and errorlog are described in
their own sections elsewhere.

Loading all classes in all CDL files in a Single Directory

You can use the following command to load all classes in all CDL files in a single directory:

Do LoadDir^%apiOBJ(dir,flag,.errorlog)

Loads all CDL files in a directory into the class dictionary. dir is the path for a directory containing CDL
files. All the CDL files in this directory will be loaded into the class dictionary and optionally compiled,
depending on the value of flag. flag and errorlog are described in their own sections elsewhere.

Compiling Classes

You can use the Caché Object Utility Library to compile classes loaded in the Class Dictionary. Classes can
also be loaded and compiled in a single command, as described in Loading Classes and The Flag Argument.

You can compile a single class, compile a list of classes, compile all classes in a namespace, compile all
system classes, or compile all classes in a namespace and all system classes.

Compiling a Single Class

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html

You can use the following command to compile a single class already loaded into the Class Dictionary:

Do Compile^%apiOBJ(classname,flag,.errorlog)

Compiles the class classname. It is assumed that class classname is defined in the class dictionary. flag
and errorlog are described in their own sections elsewhere.

Compiling a List of Classes

You can use the following command to compile a list of classes already loaded into the Class Dictionary:

Do CompileList^%apiOBJ(classlist,flag,.errorlog)

Compiles the list of classes specified in the comma-delimited string classlist. flag and errorlog are
described in their own sections elsewhere.

Compiling All Classes in a Namespace

You can use the following command to compile all classes in a namespace already loaded into the Class
Dictionary:

Do CompileNameSpace^%apiOBJ(flag,.errorlog)

flag and errorlog are described in their own sections elsewhere.

Compiling All System Classes

You can use the following command to compile all system classes already loaded into the Class Dictionary:

Do CompileSystem^%apiOBJ(flag,.errorlog)

Compiles all system classes. These are classes defined with the System keyword. flag and errorlog are
described in their own sections elsewhere.

Compiling All Classes

You can use the following command to compile compile all classes in a namespace and all system classes
already loaded into the Class Dictionary:

Do CompileAll^%apiOBJ(flag,.errorlog)

flag and errorlog are described in their own sections elsewhere.

Exporting Classes

The Caché Object Utility Library can export classes from the Class Dictonary into four different types of
text files: CDL files, Java Files, ODL files, and TLB files.

Exporting Classes to CDL Files

You can use the following command to export classes from the Class Dictionary to a CDL file:

file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html

Do ExportCDLList^%apiOBJ(classlist,file,flag,.errorlog)

Exports all of the classes listed in the comma-delimited string classlist to the CDL file file. This file can then
be loaded and compiled into any Caché Objects system. flag and errorlog are described in their own
sections elsewhere.

Exporting Classes to Java Files

You can use the following command to export classes from the Class Dictionary to Java files:

Do ExportJavaList^%apiOBJ(classlist,dir,flag,.errorlog)

Exports all of the classes listed in the comma-delimited string classlist to the directory dir. This results in a
file for each class called classname.java in that directory. flag and errorlog are described in their own
sections elsewhere.

Exporting Classes to ODL Files

You can use the following command to export classes from the Class Dictionary to an ODL file:

Do ExportODLList^%apiOBJ(classlist,file,flag,.errorlog)

Exports all of the classes listed in the comma-delimited string classlist to the ODL file file. This file can
then be used in C++. flag and errorlog are described in their own sections elsewhere.

Exporting Classes to TLB Files

You can use the following command to export classes from the Class Dictionary to a TLB file:

Do ExportTLBList^%apiOBJ(classlist,file,flag,.errorlog)

Exports all of the classes listed in the comma-delimited string classlist to the Type Library file. This file can
be used directly by C++. flag and errorlog are described in their own sections elsewhere.

Deleting Classes

You can use the Caché Objects Command Level Utility to delete classes from the Class Dictionary. You can
delete a single class or delete all classes in a namespace.

Deleting a Single Class

You can use the following command to delete a single class from the Class Dictionary:

Do Delete^%apiOBJ(classname)

Deletes the class classname and its generated routines from the current namespace.

Deleting All Classes in a Namespace

You can use the following command to delete all classes in a namespace from the Class Dictionary:

Do DeleteAll^%apiOBJ()

Deletes all classes and their generated routines in the current namespace.

file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/errorlogargument.html

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

The value of flag is a string expression containing a series of one or more single character compiler
options.

The options for flag include:

Code Code Name Usage

a Application Specifies to compile non-system classes. This
code is ignored for Export* commands.

b Compile Subclasses Specifies to compile subclasses of the
specified classes.

c Compile For the Load* commands this specifies that
the class or classes should also be compiled.
This code is ignored for the Compile* and
Export* commands.

d Display The progress of the load, compile, or export is
displayed to the screen.

f Force Compilation The specified classes will be compiled
regardless of whether any objects are in use.
If objects of the classes being compiled are
open, the will be marked invalid and users will
get <CLASS COMPILING> or <CLASSES
RECOMPILED> errors.

k Keep Source All code generated by the classes during
compilation will be stored in Caché. By
default, source code is deleted from Caché
once compilation is successfully completed.
This code is ignored for the Export*
commands.

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

errorlog returns from 0 to n error messages in the following format:

errorlog=n
errorlog(1)=errormsg1
errorlog(2)=errormsg2
…
errorlog(n)=errormsgn

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

p Compile %* classes Compile classes that start with a percent sign
(``%"). This flag is used in conjunction with
the ``s" flag to compile system classes in the
CACHELIB namespace under the direction of
the InterSystems Worldwide Response Center.

r Recursive All superclasses of the specified classes will be
compiled as well as all of the data type classes
used by these classes. System classes will
only be compiled if the s code is set. This code
is ignored for the Export* commands.

s System Compiles system classes. This code is ignored
for the Export* commands.

u Update Only classes that need to be compiled will be
compiled. If the class has not changed since
last compilation, it will not be compiled. This
code is ignored for the Export* commands.

v Keep objects valid Any open objects will remain valid after the
compilation. These objects should be used
with caution since the in-memory structure of
the objects may have been changed by the
new compilation. This code is ignored for the
Export* commands.

The flag options are not case sensitive. By default, Caché Objects compiles application classes and
displays status information during loading and compilation. The Load* commands do not compile by
default. You must use the ``c" option if you want a Load* command to compile.

You can suppress a code by preceding it with ``-``. For example, a flag setting ``cr-d" would cause a
recursive compile without displaying any status information.

Examples:

Do LoadFile^%apiOBJ("C:\MyClasses\Car.cdl","cr")

Do LoadDir^%apiOBJ("C:\MyClasses","c")

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

The Caché Object Utility Library provides a mechanism for customizing your Caché environment using the
SetEnvironment^%apiOBJ() call. You can also determine the current environment settings by using
GetEnvironment^%apiOBJ.

Currently, you can:

● Set default compilation flags
● Set storage strategy aliases
● Set the default locale for error messages

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

You can use the Caché Object Utility Library to set or display your own default compilation flags. Any of
the supported flags can be specified on by default.

Assigning the Default Flags

You can use the following command to assign default compilation flags for your system:

Do SetEnvironment^%apiOBJ($$$cENVdefaultflags,myflags)

Displaying the Default Flags

You can use the following command to display the current default flags:

Do GetEnvironment^%apiOBJ($$$cENVdefaultflags,.myflags)

This returns the current default flags, myflags.

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

You can use the Caché Object Utility Library to assign the storage strategy associated with a particular
storage strategy alias or to display the storage strategy currently associated with a particular storage
strategy alias..

Assigning a Storage Strategy

You can use the following command to assign a storage strategy to a particular storage strategy alias:

Do SetEnvironment^%apiOBJ($$$cENVstoragestrategy,aliasname,storagestrategy)

This assigns the storage strategy storagestrategy to the alias aliasname. aliasname must start with $.
storagestrategy must be defined in every class which defines its storage strategy as aliasname.

Displaying a Storage Strategy

You can use the following command todisplay the storage strategy associated with a particular storage
strategy alias:

Do GetEnvironment^%apiOBJ($$$cENVstoragestrategy,aliasname,.storagestrategy)

This returns the storage strategy storagestrategy associated with the alias aliasname.

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

You can use the Caché Object Utility Library to set or display the current default locale. This locale will be
used to display error messages. On Windows, the default locale will be used only if the error messages are
not available in the locale used for Windows.

Assigning the Default Locale

You can use the following command to assign default compilation flags for your system:

Do SetEnvironment^%apiOBJ($$$cENVdefaultlocale,mylocale)

where mylocale is the three letter code for the desired locale.

Displaying the Default Flags

You can use the following command to display the current default locale:

Do GetEnvironment^%apiOBJ($$$cENVdefaultlocale,mylocale)

This returns the three letter abbreviation for the current default locale, mylocale.

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

The Caché Object Utility Library provides several calls to add user-defined error messages to Caché and to
display the error messages returned within status codes:

● Add new error messages
● Display error messages

Add Error Messages to Caché

You can use the Caché Object Utility Library to add new error messages to Caché using the following call:

DO AddError^%apiOBJ(errorname,errorcode,errortext,locale))

where errorname is the name of the error, errorcode is the number assigned to the error, errortext is the
error message, and locale is the locale for the error.

The error name becomes a macro used to return the error from methods that return status. User-defined
errors must have numbers above 10000. You must separately define the error in each locale you wish to
use it in.

The combination of error number and locale must be unique for each error, but the same error code can
be used for multiple locales.

Display Error Messages

You can use the Caché Object Utility Library to display the error message associated with the status code
of a method which did not successfully execute. If sc is the status code returned by a method which did
not execute successfully, you can display the error text using the following call:

DO $$DisplayError^%apiOBJ(sc)

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

The Caché Object Utility Library provides three calls for debugging object applications. These calls provide
the following functionality:

● Display an object's details
● List all objects in current process
● Kill all objects in current process

Display an Object's Details

The Caché Object Utility Library allows you to display details about any object in memory using the
following call:

DO DumpObject^%apiOBJ(oref)

This call displays the OREF, class name, reference count, OID, concurrency, and the value of each
property of the object.

List All Objects in the Current Process

The Caché Object Utility Library allows you to display information about all objects in the current process
using the following call:

DO ListAllObjects^%apiOBJ()

This call displays the OREF and class name of every object in the current process.

Kill All Objects in the Current Process

The Caché Object Utility Library allows you to kill all objects in the current process using the following call:

DO KillAllObjects^%apiOBJ()

This call displays removes all objects in the current process from memory. %Close() and %OnClose()
methods are not called for these objects..

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

You can use the Caché Object Utility Library to perform these additional tasks:

● Access a method indirectly
● Get the value of a property
● Set the value of a property
● Get the version number
● Manipulate concurrency settings
● Manipulate transaction settings

Accessing a Method Indirectly

The Caché Object Utility Library allows you to run a method of a particular object indirectly. You can use
the following commands to respectively run methods which return a value and methods which do not
return a value:

Set x=$$InvokeMethod^%apiOBJ(class,oref,method,parm1,parm2,…,parm9)
Do InvokeMethod^%apiOBJ(class,oref,method,parm1,parm2,…,parm9)

Runs the method method of the instance oref of class class using the parameters passed in parmn

Getting the Value of a Property

You can use the Caché Object Utility Library to get the value of a property in any object in memory using
the following call:

SET name=$$GetProperty^%apiOBJ(oref, propname)

where oref is the OREF of the object and propname is the name of the property to return.

Setting the Value of a Property

You can use the Caché Object Utility Library to set the value of a property in any object in memory using
the following call:

DO SetProperty^%apiOBJ(oref, propname,value)

where oref is the OREF of the object, propname is the name of the property to change, and value is the
new value to set..

Getting the Version Number

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

You can use the Caché Object Utility Library to get the version number of your Caché Objects installation.
You can use the following command to get the version number:

DO $$GetVersion^%apiOBJ()

This prints the version number of the Caché Objects system that is currently installed.

Alternately, you can use the following command to just return the build number:

SET build=$$GetBuildNumber^%apiOBJ()

Manipulating Concurrency Settings

You can use the Caché Object Utility Library to get the current concurrency mode or to set the
concurrency mode.

Getting the Current Concurrency Mode

You can use the following command to get the current concurrency mode:

 SET mode=$$GetConcurrencyMode^%apiOBJ()

This returns the current setting of the default concurrency mode.

Setting the Concurrency Mode

You can use the following command to set the concurrency mode:

SETsc=$$SetConcurrencyMode^%apiOBJ(mode)

This function sets the default concurrency mode for the current process to mode. It returns the previous
default concurrency mode. Valid values for mode include 0,1,2,3, and 4. If mode has an invalid value the
function returns ``InvalidConcurrencyMode". For example:

Set oldsetting=$$SetConcurrencyMode^%apiOBJ(1)

Manipulating Transaction Settings

You can use the Caché Object Utility Library to get the current transaction mode or to set the transaction
mode.

Getting the Transaction Mode

You can use the following command to get the transaction mode:

SET mode=$$GetTransactionMode^%apiOBJ()

This returns the current setting of the default transaction mode.

Setting the Transaction Mode

You can use the following command to set the transaction mode:

SET sc=$$SetTransactionMode^%apiOBJ(mode)

This function sets the default transaction mode for the current process to mode. It returns the previous
default transaction mode. Valid values for mode include 0 and 1. If mode has an invalid value the function
returns ``InvalidTransactionMode". For example:

Set oldsetting=$$SetTransactionMode^%apiOBJ(1)

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

Revision Date:
May 13, 1999

Caché
Object Utility Library Reference

Copyright © 1998, InterSystems Corporation

All rights reserved

NOTICE

PROPRIETARY CONFIDENTIAL

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive, Cambridge,
MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems Corporation. No part
of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval
system or translated into any human or computer language, in any form, by any means, in whole or in part, without the express prior written consent of
InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent set forth in the
standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation. InterSystems Corporation
makes no representations and warranties concerning such software programs other than those set forth in such standard software license agreement(s).
In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising out of the use of such software programs is limited
in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS CORPORATION ON
THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION REFERENCE SHOULD BE
MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION, COPIES OF WHICH WILL BE MADE
AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion and
without notice, to make substitutions and modifications in the products and practices described in this document.

Caché™, InterSystems Caché™, Caché SQL™, Visual M™, Caché ObjectScript™, Caché Objects™, DCP™ ISM™, DTM™, DT-MAX™, DT-Windows™,
DSM™, DSM DDP™, and DASL™ are trademarks of InterSystems Corporation.

VAX™, Alpha™, OpenVMS™, and DEC™ are trademarks of Digital Equipment Corporation.

Microsoft®, MS-DOS®, Microsoft Access®, and, Excel® are registered trademarks and Windows™, Windows NT™, Windows 95™, Visual Basic™, and
Visual C++™ are trademarks of Microsoft Corporation.

UNIX® is a registered trademark of X/Open Company Ltd.

ORACLE® is a registered trademark of Oracle Corporation.

For support questions about any InterSystems products, contact the InterSystems Worldwide Response Center:

Phone: US: +1 617 621-0700 Europe: +44 (0) 1753 830-077
Fax: US: +1 617 374-9391 Europe: +44 (0) 1753 861-311

Internet — support@intersys.com FTP Site — ftp.intersys.com World Wide Web — www.intersys.com

javascript:go();
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/index.html
file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html
mailto:support@intersys.com
ftp://ftp.intersys.com/
http://www.intersys.com/

[Classes] [Environment] [Errors] [Debugging] [Other Tasks] [Copyrights] [Feedback]

file:///C|/Documents%20and%20Settings/baryza.ISC/3.1/APIOBJREF/html/documentation_feedback.html

