
DeepSee Developer Tutorial

Version 2011.1
26 May 2011

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

DeepSee Developer Tutorial
InterSystems Version 2011.1 26 May 2011
Copyright © 2011 InterSystems Corporation
All rights reserved.

This book was assembled and formatted in Adobe Page Description Format (PDF) using tools and information from the following sources:
Sun Microsystems, RenderX, Inc., Adobe Systems, and the World Wide Web Consortium at www.w3c.org.The primary document development
tools were special-purpose XML-processing applications built by InterSystems using Caché and Java.

 and

Caché WEBLINK, Distributed Cache Protocol, M/SQL, M/NET, and M/PACT are registered trademarks of InterSystems Corporation.

 , , and

InterSystems Jalapeño Technology, Enterprise Cache Protocol, ECP, and InterSystems Zen are trademarks of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Customer Support
+1 617 621-0700Tel:
+1 617 374-9391Fax:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Getting Started .. 3
1.1 Logging In to DeepSee ... 3
1.2 Configuring DeepSee to Use Multiple CPUs ... 4
1.3 Setting Up the Environment ... 4
1.4 Generating Data .. 6

2 Contents of the DeepSee Sample ... 7
2.1 The Sample Classes .. 7
2.2 Diagnosis Data ... 9
2.3 The Extra Data Set ... 10
2.4 Controlling What Is Generated ... 10
2.5 Generating Additional Data .. 11
2.6 Changing or Deleting Data ... 11

3 Creating a DeepSee Model ... 13
3.1 Viewing a Class in the Architect ... 13
3.2 Creating a Basic DeepSee Model ... 17

3.2.1 Relationship of the DeepSee Model to the Class Definition ... 21
3.3 Adding a Detail Listing to the Model ... 22
3.4 Validating the Dimensions .. 25
3.5 Using a Collection Property ... 27
3.6 Adding Placeholders for Null Members ... 29
3.7 Using Ranges, Translations, and Transformations ... 33
3.8 Adding Measures in the Analyzer .. 35
3.9 Defining a Filtered Measure ... 37
3.10 Accessing Other Classes ... 39
3.11 Model Summary ... 40

3.11.1 Dimensions ... 40
3.11.2 Measures .. 41
3.11.3 Listing Fields .. 41
3.11.4 Detail Lists ... 42

3.12 Additional Exercises for the Reader ... 42

4 Creating Pivot Tables ... 45
4.1 Creating a Basic Pivot Table .. 45
4.2 Additional Basic Options ... 47
4.3 Specifying the Sort Order ... 52
4.4 Using Ranking and Nesting Options .. 55
4.5 Using Advanced Layout Options ... 58
4.6 Summary of Pivot Tables ... 62

5 Creating KPIs ... 63
5.1 Creating Simple KPIs ... 63
5.2 Creating a String-type KPI ... 64

6 Creating Dashboards .. 67
6.1 Creating a Simple Dashboard with a Filter .. 67
6.2 Displaying a KPI in a Speedometer ... 70

DeepSee Developer Tutorial iii

6.3 Adding Multiple Filters .. 73
6.4 Displaying a KPI in a Label ... 75

7 Using Multiple Subject Areas Together .. 77
7.1 Rules for Creating Multiple Subject Areas .. 77
7.2 Multiple Subject Areas in a Pivot Table ... 77
7.3 Multiple Subject Areas in a Dashboard .. 78
7.4 Setting Up the Initial City Rainfall Subject Area ... 80
7.5 Creating the Linked Pivot Table ... 80
7.6 Adjusting the City Rainfall Subject Area and Pivot Table ... 82
7.7 Creating a Dashboard That Uses Multiple Subject Areas .. 83

8 Performing Real-time Updates .. 87
8.1 Preparation ... 87
8.2 Adding and Deleting Patients ... 87
8.3 Changing Patient Data .. 88
8.4 Changing Doctor Data .. 89

Appendix A:Installing the Database for the Sample DeepSee Model ... 91

iv DeepSee Developer Tutorial

About This Book

Important: This book is for DeepSee I. For information on DeepSee II, see Getting Started with DeepSee II, which
also lists the other books for DeepSee II.

This book is a tutorial to help developers learn the basic process of creating DeepSee models and then using them to create
pivot tables and dashboards. This book contains the following sections:

• Getting Started

• Contents of the DeepSee Sample

• Creating a DeepSee Model

• Creating Pivot Tables

• Creating KPIs

• Creating Dashboards

• Using Multiple Subject Areas Together

• Performing Real-time Updates

• Installing the Database for the Sample DeepSee Model

For a detailed outline, see the table of contents.

For more information, see the following books:

• Overview of DeepSee, an introductory guide for all users who are interested in learning about DeepSee.

• DeepSee Model Design Guide, an introductory guide for implementers and business users.

• Using the DeepSee Connector, a guide for implementers who are using the DeepSee Connector to import externally
stored data. Note that the DeepSee Connector is available only with Ensemble.

• Using the DeepSee Architect, a guide for implementers who are setting up a DeepSee model for use in the Analyzer.

• Using the DeepSee Analyzer, a guide for implementers and advanced users who want to create pivot tables to embed
in applications — or who simply want to explore their data.

• Using the DeepSee Dashboard Designer, a guide for implementers who are using the Dashboard Designer to create
dashboards.

• Expressions and Scripts in DeepSee, an implementer guide that describes the syntax and options for all formulas,
expressions, and scripts supported in DeepSee. This book also lists all the locations where you can use these expressions
and scripts.

• DeepSee Site Configuration and Maintenance Guide, a guide for implementers and system administrators. This book
describes how to configure and maintain a DeepSee site. It also includes a chapter that lists common problems and
their solutions.

• DeepSee User Guide, a user manual for your end users. This book describes how to work with deployed dashboards
and pivot tables.

For general information, see the InterSystems Documentation Guide.

DeepSee Developer Tutorial 1

1
Getting Started

Important: This book is for DeepSee I. For information on DeepSee II, see Getting Started with DeepSee II, which
also lists the other books for DeepSee II.

The SAMPLES namespace includes the DeepSee sample, which consists of the DeepSee.Study.Patient class and related
classes. This sample is meant for use as the basis of a DeepSee model. It does not initially contain any data; nor does it
include a DeepSee model (dimensions, measures, and so on).

This sample is intended as a flexible starting point for working with DeepSee. You use this sample to generate as much
data or as little data as needed, and then you use the DeepSee Architect to create a DeepSee model that explores this data.
You can then create DeepSee pivot tables, KPIs, and dashboards based on this model. The sample contains enough com-
plexity to enable you to use the central DeepSee features and to anticipate many typical real-life scenarios.

This book presents hands-on exercises that use this sample, starting with the DeepSee Architect and concluding with the
DeepSee Dashboard Designer.

Important: If you have not yet used a DeepSee pivot table, it is suggested that you read the book Overview of DeepSee,
especially the first chapter.

1.1 Logging In to DeepSee
1. In Internet Explorer, go to the following URL:

http://localhost:57772/csp/sys/bi/default.htm

Where localhost is the server on which Caché is running, and 57772 is the port used by the web server.

If you have not yet specified a namespace, the system displays a page that prompts you for a namespace. Otherwise,
the system displays the DeepSee login page.

2. If you are prompted for a namespace, type the name of the namespace you want to work in and then click Logon to

DeepSee.

The system then displays the DeepSee login page.

3. If you are prompted for a namespace, type SAMPLES and then click Logon to DeepSee.

The system then displays the DeepSee login page.

4. On the DeepSee login page, enter a DeepSee username and password. For example, you can use the username demo
with the password demo.

DeepSee Developer Tutorial 3

5. For Role, select demo.

6. Click Login.

1.2 Configuring DeepSee to Use Multiple CPUs
By default, DeepSee uses only 1 processor when it builds its indices. If your machine has multiple CPUs, it is useful to
configure DeepSee to use more processors, so that the rebuild is quicker.

Do the following:

1. Log in to DeepSee as described in the previous section.

2. Click Administrator > Site Configuration.

3. Click OLAP on the left.

4. For # of Rebuild Process, specify an integer. Typically you use a number that is the same as or slightly larger than the
number of processors.

5. Click Save.

1.3 Setting Up the Environment
Before working with the DeepSee sample, you might find it worthwhile to modify the SAMPLES namespace so that the
DeepSee model that you create and the DeepSee indices that you generate are stored in separate databases used by this
namespace:

CommentsDatabase PurposeDatabase Name
(Example)

To contain the DeepSee model.SampleDSModel

Pre-expanded. Also, not journaled.To contain the DeepSee indices.SampleDSIX

This procedure is not required but is useful for two reasons:

• It enables you to replace your model with a DeepSee model from InterSystems, if desired; see the appendix “Installing
the Database for the Sample DeepSee Model.”

• When you later upgrade your Caché installation to a newer release, your work with the DeepSee sample will be retained,
even though the SAMPLES database is replaced. (After upgrading, however, it will be necessary to recompile the
DeepSee sample classes, as well as regenerate the data and rebuild the DeepSee indices.)

The steps are as follows:

1. First, create the index database (SampleDSIX, for example):

a. Access the Management Portal.

b. Click [Home] > [Configuration] > [System Administration] > [System Configuration] > [Local Databases].

c. Click New.

d. Specify the name of this database, as well as the directory in which to create it.

4 DeepSee Developer Tutorial

Getting Started

e. Click Next.

f. For Journal Globals, click No.

g. Click Finish.

2. Create the model database (SampleDSModel, for example). Follow steps a through e in the previous step and then
click Finish.

3. Click [Home] > [Configuration] > [System Administration] > [System Configuration] > [Namespaces].

4. In the row for the SAMPLES namespace, click Global Mappings.

5. Add the following global mappings:

Contents of This GlobalDatabaseSubscriptGlobal

Most of the model definitionSampleDSModelBI.*

DeepSee indicesSampleDSIXBIidx.*

Log dataSampleDSIXBIlog.*

Definitions of any compound membersSampleDSModelBIidx.Condition*

DeepSee configuration settingsSampleDSModel("BI")SYS

For example, to add the first mapping:

a. Click New Global Mapping.

b. For Global Database Location, select the model database (SampleDSModel).

c. For Global Name, type BI.*

d. Click Apply.

e. Click Close to close the dialog box.

f. Click Save Changes to save this change.

Notice that the user interface automatically adds a mapping for SYS so that the result is as follows:

DeepSee Developer Tutorial 5

Setting Up the Environment

1.4 Generating Data
To generate data for the DeepSee sample:

1. In the Terminal, switch to the SAMPLES namespace:

 zn "SAMPLES"

2. Execute the following command:

 do ##class(DeepSee.Study.Utils.Populate).GenerateData()

This class method generates 10000 patients, a small sample to start.

Later you can regenerate the data to create a much larger data set if needed. The method also provides options that
control which child tables are created; see “Controlling What Is Generated,” in the next chapter.

For an overview of the classes, see the chapter “Contents of the DeepSee Sample.” Also see the class documentation.

6 DeepSee Developer Tutorial

Getting Started

2
Contents of the DeepSee Sample

When you create models in DeepSee, it is essential to start by becoming familiar with the data that you are using. This
chapter introduces the data used in the rest of this book.

The DeepSee.Study.Patient class and related classes are meant to represent a fictitious study of a set of patients, who have
assorted allergies and diagnoses. The sample is designed to enable you to try a wide variety of the features of DeepSee and
is not meant to contain truly realistic data. It has the following features:

• A method that you use to generate as much or as little data as you need.

• An option for including nulls in the generated data, to simulate real-life gaps in data.

• Built-in structure that you can use DeepSee to detect.

• Collection properties, including relationship properties.

• Date and time properties of various types.

• Simple string and numeric properties.

• Child tables of varying complexity.

• A child table that contains (potentially) multiple rows for any given row in the parent table (and that cannot be accessed
from the primary table via cascading dot syntax).

• Structural difficulties that model non-ideal class definitions sometimes found in real-life applications. The purpose of
these is to demonstrate how to work around such difficulties when creating a DeepSee model. These difficulties include
the following:

– A detail table that is not linked to the primary table via a property relationship (and thus cannot be accessed from
the primary table via cascading dot syntax).

– An extra table containing an additional set of patients (so that the patients are not all within a single extent).

2.1 The Sample Classes
The sample classes are as follows:

• DeepSee.Study.Utils.Populate contains the GenerateData() method and other methods to populate the classes.

• DeepSee.Study.Utils.ForModel contains utility methods for use in your DeepSee model. These are specific to this
sample.

DeepSee Developer Tutorial 7

• DeepSee.Study.Patient is the primary class. Each patient has properties like the following:

– A unique patient ID that identifies the patient within a fictitious epidemiological study.

– Age and gender. The age and gender combinations of the patients reflect the distribution of ages and genders as
recorded in the US 2000 census.

– Birth date and time.

– Home city. The city belongs to a parent ZIP code.

– A primary care physician.

– A list of allergies. Each allergy is a complex piece of data that consists of an allergen, an allergy severity, and the
nature of the reaction to that allergen.

The allergies property is serial, so its data is stored in the DeepSee.Study.Patient table.

– Several properties that contain the same (or nearly the same) diagnosis data. Some of this data is stored in the
DeepSee.Study.Patient table, and some is stored in other tables.

The diagnoses are assigned based on age and gender, from a small set of diagnoses.

– A test score (for a fictitious test administered to the patients in this study). For this test, the lowest possible value
is 50.

– Group to which the patient belongs (A or B).

DeepSee.Study.Patient inherits from %BI.Adaptor.

• DeepSee.Study.Doctor represents the doctors. Each doctor has properties like the following:

– Name. The first and last names are stored in separate fields.

– Main city in which this doctor works. The city belongs to a parent ZIP code.

– Group to which this doctor belongs (I, II, or III).

– Average number of patients that this doctor sees per week.

• Some code tables — that is, tables that consist of reference information used elsewhere. These tables include a Code

property and a Description property. The Code property is used internally (and is used in foreign keys), and the Description

property is the corresponding user-friendly string.

These tables are as follows:

– DeepSee.Study.Allergen

– DeepSee.Study.AllergySeverity

– DeepSee.Study.City

– DeepSee.Study.Diagnosis

– DeepSee.Study.NatureOfReaction

– DeepSee.Study.Profession

Each of these tables is set up in the same way. For example, DeepSee.Study.City contains an XData block which contains
the city data in a slightly structured form. The Setup() method in this class reads that XData block and populates the
table.

Tip: You can edit the XData block to include your own data.

When you run the GenerateData() method mentioned earlier, it calls these Setup() methods.

8 DeepSee Developer Tutorial

Contents of the DeepSee Sample

• DeepSee.Study.PatientDetails contains additional data for the patients. It includes the following properties:

– Patient ID as used in the fictitious epidemiological study.

– Favorite color.

– Profession, if any, of the patient. Professions, in turn, belong to different industries.

This class is not linked to DeepSee.Study.Patient via a property relationship. Instead, you must use the patient ID to
connect DeepSee.Study.Patient and DeepSee.Study.PatientDetails.

Also, not all patients have records in this table.

• DeepSee.Study.PatientEncounter contains a record for each encounter (medical visit) of a patient, and thus can have
multiple records for any given patient. Not all patients have records in this table.

This table is not populated by default by the method shown earlier.

• DeepSee.Study.PatientDiagnosis, DeepSee.Study.PatientDiagnosis1, and DeepSee.Study.PatientDiagnosis2 store the
patient diagnosis data. For information on these variations, see “Diagnosis Data.”

• DeepSee.Study.PatientSet2 stores an additional set of patients with a slightly different (and smaller) set of fields.

This table is not populated by default by the method shown earlier.

• DeepSee.Study.CityRainfall stores rainfall data for the cities, over time. With this class, you can create a separate
DeepSee model, so that you can experiment with working with models in areas that are semantically unrelated.

This table is not populated by default by the method shown earlier.

2.2 Diagnosis Data
To help you learn different ways to use lists and other collections in DeepSee, this sample stores multiple versions of the
patients’ diagnoses. The DeepSee.Study.Patient class includes the following properties:

/// Use the main version to see how we handle lists of objects
Property Diagnoses As list Of DeepSee.Study.PatientDiagnosis;

/// Use this variation to see how we handle arrays.
Property DiagnosesAsArray As array Of %String;

/// Use this variation to see how we handle $LB lists of strings.
Property DiagnosesAsLB As %List;

/// Use this variation to see how DeepSee handles pieced strings.
Property DiagnosesAsString As %String;

/// Use this variation to see how we handle parent-child relationships
Relationship DiagnosesAsChildren As DeepSee.Study.PatientDiagnosis1
[Cardinality = child, Inverse = Patient];

/// Use this variation to see how we handle one-many relationships
Relationship DiagnosesAsMany As DeepSee.Study.PatientDiagnosis2
[Cardinality = many, Inverse = Patient];

A diagnosis consists of a diagnosis code, the corresponding description, the doctor who made the diagnosis, and other data
(which we omit for simplicity). The diagnosis properties in DeepSee.Study.Patient contain versions of this data as follows:

• The Diagnoses property is a list of DeepSee.Study.PatientDiagnosis. That class, in turn, includes these properties:

Property DiagnosisCode As %String;

Property DiagnosedBy As DeepSee.Study.Doctor;

• The DiagnosesAsArray property is an array of strings. The strings are the diagnosis codes.

DeepSee Developer Tutorial 9

Diagnosis Data

• The DiagnosesAsLB property is a list — that is, a classic list such as produced by $LISTBUILD. Each list item is a
diagnosis code.

• The DiagnosesAsString property is a pieced string. It consists of diagnosis codes separated by commas.

• The DiagnosesAsChildren property establishes a parent-child relationship between the class DeepSee.Study.Patient

and the class DeepSee.Study.PatientDiagnosis1.

DeepSee.Study.PatientDiagnosis1 contains the diagnosis data in more detail than the preceding properties. This class
has the following properties:

Relationship Patient As DeepSee.Study.Patient
[Cardinality = parent, Inverse = DiagnosesAsChildren];

Property DiagnosisCode As %String;

Property DiagnosedBy As DeepSee.Study.Doctor;

• The DiagnosesAsMany property establishes a one-to-many relationship between the class DeepSee.Study.Patient and
the class DeepSee.Study.PatientDiagnosis2.

DeepSee.Study.PatientDiagnosis2 has the following properties:

Relationship Patient As DeepSee.Study.Patient
[Cardinality = one, Inverse = DiagnosesAsMany];

Property DiagnosisCode As %String;

Property DiagnosedBy As DeepSee.Study.Doctor;

When you generate data, the data generation method ensures that the diagnosis data in these properties is consistent. That
is, if a given patient has the diagnosis diabetes, that diagnosis is stored in each of these properties.

2.3 The Extra Data Set
In an ideal scenario, all the unique patients would be stored in a single table. That is, to find the total number of patients,
you would have to count the records in only one table. That table serves as the starting point for accessing all data for those
patients.

In real life, however, you might need to access an additional set of patients in an unrelated table. (While this is not the best
object-oriented design, this scenario can occur if one organization merges with another. Rather than rewriting all the code
that both organizations own, it would be simpler to leave the data in its current storage.)

The sample gives you an easy way to practice with such a scenario. The extra set is not generated by default. For information
on generating the additional set of patients, see the following two sections.

2.4 Controlling What Is Generated
You can generate data in this sample in a variety of ways. The central method is the GenerateData() method of the
DeepSee.Study.Utils.Populate class, which has the following signature:

classmethod GenerateData(patCount As %Integer = 10000,
 patientsPerDoc As %Numeric = 25,
 options As %String = "ADT",
 genNulls As %Boolean = 1)

These arguments are as follows:

10 DeepSee Developer Tutorial

Contents of the DeepSee Sample

• patCount specifies the number of patients to create.

• patientsPerDoc specifies the ratio of patients to doctors and thus determines the number of doctors to create.

• options is a string that lets you control which data to generate. Depending on the characters you include in this string,
the method behaves as follows:

DefaultAction if String Includes This CharacterCharacter

EnabledGenerates allergies for the patients."A"

EnabledGenerates diagnoses for the patients."D"

EnabledPopulates DeepSee.Study.PatientDetails."T"

DisabledPopulates DeepSee.Study.PatientEncounter."E"

DisabledPopulates DeepSee.Study.CityRainfall."R"

DisabledCreates half the patients in DeepSee.Study.Patient and half in
DeepSee.Study.PatientSet2.

"X"

• genNulls lets you control whether to include nulls in the generated data. If genNulls is 1, the method generates a random
percentage of nulls in specific parts of the data. For example, some percentage of patients will not receive a primary
care physician.

2.5 Generating Additional Data
To generate additional data, use the following methods. (You must first use the central GenerateData() method described
in the previous section.)

• To generate additional patients for DeepSee.Study.Patient, use the AddPatients() class method of that class.

classmethod AddPatients(patCount As %Integer = 100,
 options As %String = "ADET",
 genNulls As %Boolean = 1) as %Status

• To generate additional patients for DeepSee.Study.PatientSet2, use the AddPatients() class method of that class.

classmethod AddPatients(patCount As %Integer = 500,
 options As %String = "AD",
 genNulls As %Boolean = 1) as %Status

• To generate rainfall data in DeepSee.Study.CityRainfall, use the GenerateData() class method of that class.

classmethod GenerateData() as %Status

This data is provided so that you can experiment with multiple, unconnected subject areas. See the chapter “Using
Multiple Subject Areas Together.”

2.6 Changing or Deleting Data
So that you can see how DeepSee handles changes to data, this sample also includes methods to change or delete data in
various tables. You must first use the central GenerateData() method described previously.

DeepSee Developer Tutorial 11

Generating Additional Data

• To delete a percentage of the patients (chosen randomly), use the DeletePatients() class method of the class
DeepSee.Study.Patient.

classmethod DeleteSomePatients(percent As %Numeric = 10) as %Status

• To change assorted details for a percentage of patients, use the ChangeSomePatients() class method of the class
DeepSee.Study.Patient.

classmethod ChangeSomePatients(percent As %Numeric = 20,
 rebuild As %Boolean = 0)

This method calls the following three methods, which you can also call separately.

• To change the group to which a patient is assigned, for a percentage of patients, use the ChangePatientGroups() class
method of the class DeepSee.Study.Patient.

classmethod ChangePatientGroups(percent As %Numeric = 30)

• To change the favorite color of a patient, for a percentage of patients, use the ChangePatientDetails() class method
of the class DeepSee.Study.PatientDetails.

classmethod ChangePatientDetails(percent As %Numeric = 20,
 rebuild As %Boolean = 0)

• To generate additional patient encounters, use the AddEncounters() class method of the class
DeepSee.Study.PatientEncounter.

classmethod AddEncounters(percent As %Numeric = 20,
 rebuild As %Boolean = 0) as %Status

• To change the doctor group and patients per week for doctors, for some percentage of doctors, use the
ChangeSomeDoctors() class method of the class DeepSee.Study.Doctor.

classmethod ChangeSomeDoctors(percent As %Numeric = 20
 rebuild As %Boolean = 0)

Though simple, all these changes are sufficient to demonstrate how to keep DeepSee indices current.

None of these methods affect DeepSee.Study.PatientSet2.

12 DeepSee Developer Tutorial

Contents of the DeepSee Sample

3
Creating a DeepSee Model

This tutorial starts with a BI-enabled class and ends with a simple but complete DeepSee model that you can use in the
Analyzer. It consists of the following parts:

1. Viewing a class in the Architect

2. Creating a basic DeepSee model

3. Adding a detail listing to the model

4. Validating the dimensions

5. Using a collection property

6. Adding placeholders for null members

7. Using ranges, translations, and transformations

8. Defining additional measures in the Analyzer

9. Defining a filtered measure in the Analyzer

10. Accessing data in other tables

11. Summary of the model definition

12. Self-guided exercises for you to try

Because all this work is within a single namespace, you can open two browser tabs and use one for the Architect and the
other for the Analyzer. The tutorial does not describe this technique specifically, but it can be a convenient way to work.

3.1 Viewing a Class in the Architect
In this part of the tutorial, you get acquainted with how the Architect displays a class that is BI-enabled.

1. Log in to DeepSee as described earlier.

2. Click Data Modeler > Architect.

3.
Click the Open Class button in the Architect menu bar. By default, DeepSee lists all the classes that inherit from
%BI.Adaptor in this namespace.

Note: You can open other classes, as well. When you open a class from the Architect, DeepSee adds %BI.Adaptor

to the superclass list in that class definition.

DeepSee Developer Tutorial 13

4. Click the DeepSee.Study.Patient class and then click OK.

5. Click the Expand button beside DeepSee.Study.Patient. DeepSee displays the following:

Notice that some of the properties of this class are shown as folders. Instance methods are shown at the bottom of the
list, along with three utilities (TextField(), DateField(), and ChkField()) provided by DeepSee.

6. Click the Expand button beside Allergies. DeepSee displays the following:

14 DeepSee Developer Tutorial

Creating a DeepSee Model

This folder contains the properties and methods that are available for a list, because the Allergies property is defined
as a list:

Property Allergies As list Of DeepSee.Study.PatientAllergy;

DeepSee displays similar results for Diagnoses or DiagnosesAsArray, which are other types of collections.

The Architect does not display the properties and methods of the object used in the collection (in this case
DeepSee.Study.PatientAllergy), but you do have access to them in DeepSee.

7. Click the Expand button beside HomeCity. DeepSee displays the following:

This folder contains the properties and methods of DeepSee.Study.City, because the HomeCity property is defined as
follows:

Property HomeCity As DeepSee.Study.City;

8. Click the Expand button beside PrimaryCarePhysician. DeepSee displays the following:

DeepSee Developer Tutorial 15

Viewing a Class in the Architect

This folder contains the properties and methods of DeepSee.Study.Doctor, because the PrimaryCarePhysician property
is defined as follows:

Property PrimaryCarePhysician As DeepSee.Study.Doctor;

9. Expand other folders and examine their contents. Compare what you see to what this section has discussed so far.

10. Open this class (DeepSee.Study.Patient) in Studio and compare the list of properties you see there to the list shown in
the Architect.

Notice that this class includes a property, DiagnosesAsChildren, that is not displayed in the Architect. This property is
defined as follows:

Relationship DiagnosesAsChildren As DeepSee.Study.PatientDiagnosis1
[Cardinality = children, Inverse = Patient];

You can use this property in DeepSee even though the Architect does not display it.

The following rules govern the display of a class in the Architect:

• For a BI-enabled class, all properties are shown except — for a parent-child relationship — the side that is marked
Cardinality = children.

• This display is recursive; that is, properties of properties are shown.

• If a property is a collection (a list, an array, or a relationship), it is shown as a folder that contains the properties and
methods of the collection.

• If a property is of type %List (which is the object equivalent of $LISTBUILD), it is not shown as a folder.

For example, see the DiagnosesAsLB property, which is included in this sample to illustrate this point.

• If a property is a relationship, it is not shown as a folder.

For example, see the DiagnosesAsMany property, which is included in this sample to illustrate this point.

• If a class is not accessible from the base class via cascading dot syntax, it is not shown by default.

For example, the Architect does not display DeepSee.Study.PatientDetails or DeepSee.Study.PatientEncounter by
default.

• The Architect does not display properties and methods inherited from superclasses.

All dimensions, measures, and listing fields are based either on a source property or on a source expression (which is a
Caché ObjectScript expression) that can use properties of any class.

16 DeepSee Developer Tutorial

Creating a DeepSee Model

Important: The Architect provides a useful view of the class properties, which makes it very easy to create DeepSee
elements based on those properties. It is important, however, to know that although this view provides a
convenient way to access some properties, you can also use a source expression to access any data,
including properties and methods of the superclasses. In some cases, you might need to use dynamic SQL.
These source expressions are evaluated when the indices are built and thus do not affect your runtime
performance. This tutorial demonstrates these points later.

3.2 Creating a Basic DeepSee Model
In this part of the tutorial, you create dimensions, measures, and a subject area, using DeepSee.Study.Patient as the base
class.

1. Access the Architect and open the class DeepSee.Study.Patient.

2. Click the Dim tab, expand the folders, and double-click each of the following properties (or drag and drop them to the
Dimensions table):

• Age

• BirthDate

• Gender

• PatientGroup

• TestScore

• Within HomeCity, Name

• Within HomeCity, PostalCode

• Within PrimaryCarePhysician, DoctorGroup

• Within PrimaryCarePhysician, LastName

As you do this, the Architect defines a dimension based on each of these properties. When you are done, DeepSee
displays something like the following (your ID values might be different from this):

DeepSee Developer Tutorial 17

Creating a Basic DeepSee Model

The TestScore dimension is also a measure, because Data Type is Number. In fact, this is the process to define
measures: add a numeric dimension.

3. Now rename most of these dimensions, as follows:

a. Click the dimension in the table.

b. The tabs below the table now show details for this dimension.

c. Edit Dimension Name within the General tab.

d. Click Update to save this change.

The buttons in the lower right apply to the currently selected dimension. If you do not save changes before
selecting another dimension, your changes to that dimension are discarded.

Use the following new names:

New NameOld Name

Birth DateBirthDate

Patient GroupPatientGroup

Home CityName

Home ZIPPostalCode

DoctorLastName

Test ScoreTestScore

Doctor GroupDoctorGroup

Do not forget to click Update after you modify a dimension.

Now DeepSee displays something like the following:

18 DeepSee Developer Tutorial

Creating a DeepSee Model

4. Double-click Age again in the DeepSee.Study.Patient folder. This step adds this property again to the table on the right.

Then make the following changes:

a. Rename the new item to Age Year.

b. On the General tab, change the type to Values.

This step defines the new item as a dimension rather than as a measure.

c. Click Update to save this change.

5. Next we modify the definition of the Doctor dimension so that it uses both the first and last names. To do this:

a. Click Doctor in the Dimensions table.

b. On the General tab, type the following Caché ObjectScript expression into Complex Code:

%this.PrimaryCarePhysician.FirstName _" "_%this.PrimaryCarePhysician.LastName

Here, the variable %this represents the current patient. This code is executed when you build the DeepSee indices;
DeepSee iterates through the base class and builds the indices for each record in that class. When it does so, it
executes any expression in Complex Code and uses it to index that dimension.

c. Delete the string PrimaryCarePhysician.LastName contained in the second property field. This step is
optional but makes the definition less confusing to view.

d. Click Update to save this change.

The details for this dimension are now as follows:

DeepSee Developer Tutorial 19

Creating a Basic DeepSee Model

6. Next, we define a subject area so that we can see these dimensions in the Analyzer. To do this:

a. Click the Subject tab.

b. In Subject Name, type the name Patients.

c. On the Role Access tab, click the check box next to the demo role.

d. Click Add.

7. Compile the base class and rebuild the DeepSee indices. To do so:

a.
Click the Process button in the menu bar.

b. Click Rebuild. This option recompiles and then rebuilds.

c.

Click the Close button in the upper right to close this dialog box.

Tip: This dialog box is not always automatically refreshed when the compilation or rebuild status changes. To
refresh the display and see the current status, click Refresh.

8. Verify that you can access this model from the Analyzer. To do so:

a. Click Main > Analyzer.

b.
Click the Browse button in the Subject Area panel.

20 DeepSee Developer Tutorial

Creating a DeepSee Model

c. Click Patients and then click OK.

If Patients is not listed, make sure you gave access to this subject area to the demo role.

Now the Analyzer displays the following:

If you do not see these dimensions and measures, make sure that you have rebuilt the DeepSee indices.

Note: Unlike the other dimensions created here, the Doctor dimension can have a very large number of members,
depending on the size of your data set. In a real-world implementation, it is unlikely that you would create a
dimension at such a low level. This tutorial uses this dimension because it demonstrates a couple of key points.

3.2.1 Relationship of the DeepSee Model to the Class Definition

When you define a DeepSee model, the model definition is stored in globals and the details are visible only via the Architect.
When you compile the class, however, Caché uses the model definition and the class definition together and compiles both
into the same INT code. Caché uses the INT code to determine how to create the fact table and indices. For details, see
Overview of DeepSee.

DeepSee Developer Tutorial 21

Creating a Basic DeepSee Model

3.3 Adding a Detail Listing to the Model
In this part of the tutorial, we add a simple detail listing. First we create listing fields and then we use them to create detail
listings.

There are two kinds of listing fields:

• A dimension-type listing field is a listing field whose definition is owned by a dimension definition. If you redefine or
delete the dimension, the listing field is automatically redefined or deleted as well.

The data used by the listing field is stored in a DeepSee global, which means that its performance is fast. This kind of
listing field, however, requires more disk space than the other kind.

• An independent listing field is a listing field that has an independent definition (not dependent on the definition of any
dimension).

For this kind of listing field, DeepSee does not access the data until the user displays the detail listing; then DeepSee
directly accesses the source data.

In this part of the tutorial, we will create both kinds of listing fields.

1. At the top of the page, click Data Modeler > Architect.

2.
Click the Open Class button .

3. Click the DeepSee.Study.Patient class and then click OK.

4. Click the Dim tab.

In the Dimensions table, notice that the Listing check box is selected for the Age, Birth Date, and Test Score
dimensions.

By default, when you create a date or numeric dimension, it is also created as a dimension-type listing field.

5. Click the Detail List tab and then click the Expand button next to Dimension Listing Field. This folder lists all the
dimension-type listing fields:

6. Add Gender as another dimension-type listing field. To do so:

a. Click the Dim tab.

b. In the Dimensions table, click Gender.

c. On the General tab, click the Listing Field check box.

d. Click Update to save this change.

7. To see this change, click the Detail List tab and then click the Expand button next to Dimension Listing Field.

22 DeepSee Developer Tutorial

Creating a DeepSee Model

8. Add another listing field, Patient ID, as an independent listing field. To do so:

a. Click the List Field Library tab.

The Listing Field table is initially empty.

b. Expand the class hierarchy on the left.

c. Double-click PatientID. A new listing field is immediately added.

d. On the General tab below the Listing Field table, edit the value for Dimension Name (which specifies the name for
this listing field). Change the name to Patient ID.

e. Click Update in the lower right.

Now the table looks like this:

9. Now create a detail listing that includes all these listing fields.

a. Click the Detail List tab.

b. In Listing Name, type Basic Details.

c. In Available Fields, expand the two folders so that you can see all the available listing fields.

The Dimension Listing Field folder lists the dimension-type fields. The Listing Fields Library folder lists the inde-
pendent listing fields.

DeepSee Developer Tutorial 23

Adding a Detail Listing to the Model

d. Double-click each of the listing fields. When you double-click a field, it is added to the area on the right, which
lists the contents of this detail listing.

The order of the listing fields here controls the order of the fields in the actual detail listing. However, you can
add fields in any order and change the order later. To change the position of a listing field, right-click it and click
Move Up or Move Down.

e. Click the Role Access tab.

f. On the Role Access tab, click the check box next to the demo role.

g. Click Add.

10. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

Tip: You can instead recompile in Studio and rebuild the indices in the Terminal. To rebuild the indices in the
Terminal, change to the SAMPLES namespace and execute the following command:

 Do ##class(DeepSee.Study.Patient).HiRebuild()

11. Verify that you can access this detail listing in the Analyzer. To do so:

a. Click Main > Analyzer.

b. The Patients subject area should be displayed from the last time you used the Analyzer. However, if it is not,

click the browse button in the Subject Area panel. Then click Patients and then click OK.

c. Click Find in the upper right. The Analyzer then displays a pivot table that counts the records in this subject area.
It looks like this:

d. Right-click on the white cell and then click Listing to Screen.

If this option is not listed, make sure you gave access to this detail listing to the demo role. If correcting that does
not fix the problem, make sure that you recompiled and rebuilt.

DeepSee then displays something like the following:

24 DeepSee Developer Tutorial

Creating a DeepSee Model

If you do not see a result similar to this, make sure that you recompiled and rebuilt.

3.4 Validating the Dimensions
This part of the tutorial shows you a simple way to validate the dimensions that you have created so far. In this part, we
use the Analyzer to determine how many records each dimension accesses.

1. Access the Analyzer and open the Patients subject area.

2. Notice the Filter pane in the lower left. This pane indicates the number of records currently in the subject area.

The first number (10000) indicates how many patients are in the subject area. The second number (100.00%) indicates
whether you have applied any filtering in the Analyzer. The value 100% means that you have not applied any filter.

3.
In the toolbar, click the Autofind button .

The button changes to look like this:

Now whenever you change the pivot table, the Analyzer immediately updates the display.

4. In the upper right, click the list for Grand and select Total.

The Analyzer now displays a simple pivot table that looks like this:

5. Double-click Age Year or drag and drop this dimension to the Rows pane.

The Analyzer then displays this dimension as rows, as follows; the details are different for you because the data gener-
ation is random.

The pivot table contains more than one page of results.

Note: You can see that the years are sorted as if they are strings. It would be preferable to sort the years numerically.
A later chapter shows how to do this.

6.
Click the Go to End button in the lower right:

DeepSee Developer Tutorial 25

Validating the Dimensions

The Analyzer displays the following on the last page of results:

The value for Grand Total is the same as the total record count for the subject area. This result is correct.

7. Click the Clear button in the upper right of the Rows pane. This removes the dimension you used from this pane
without otherwise changing the pivot table.

8. Click the Expand button next to Birth Date in the Dimension pane.

9. Double-click any dimension in this folder or drag and drop this dimension to the Rows pane.

The Analyzer then displays the following:

The value for Grand Total is the same as the total record count for the subject area. This result is correct.

10. Click Clear button in the upper right of the Rows pane. This removes the dimension you used from this pane without
otherwise changing the pivot table.

11. Double-click Gender or drag and drop this dimension to the Rows pane.

The value for Grand Total is the same as the total record count for the subject area. This result is correct.

12. Repeat the preceding process for Home City, Home ZIP, Patient Group, and Doctor.

You will find that for Patient Group, Doctor Group, and Doctor, the Grand Total is smaller than the total
record count for the subject area. This indicates that not all patients are assigned to a patient group, not all patients
have a recorded primary care physician, and not all doctors are assigned to a doctor group. We address these gaps in
a later part of the tutorial.

Ignore the Age and Test Score dimensions, which are for advanced use.

26 DeepSee Developer Tutorial

Creating a DeepSee Model

3.5 Using a Collection Property
In DeepSee.Study.Patient, the Allergies property is a collection. This part of the tutorial shows you some ways to use such
properties in DeepSee:

1. Access the Architect and display the DeepSee.Study.Patient class.

Tip: Every time you access the Architect, you must select the class to work with. Instead of switching continually
between the Architect and the Analyzer, however, you can open two browser tabs and use one for the Architect
and the other for the Analyzer. The tutorial does not describe this technique specifically, but it can be a conve-
nient way to work.

2. Add a measure that contains the number of allergies that a patient has. To do so, we use the Allergies property, as follows:

a. Click New in the lower right.

b. For Dimension Name, use Allergy Count.

c. For Data Type, use Number.

d. For Complex Code, use the following expression:

%this.Allergies.Count()

This expression uses the Count() method of the Allergies property.

e. Click Add.

The new dimension is added to the table.

f. Click the Active check box in the row for the new measure.

g. Click Update to save this change.

3. Add a dimension that is based on the allergies that the patients have. This dimension will have one member for each
distinct allergy. To add this dimension, use the Manual Child Browse option as follows:

a. Click New in the lower right.

b. For Dimension Name, use Allergies.

c. For Type, use Values.

d. Click the Manual Child Browse tab.

e. Type the following into Loop Coding:

for i=1:1:%this.Allergies.Count() do

Note: There must be two spaces before do and one space after it. There cannot be any line breaks after this.

DeepSee Developer Tutorial 27

Using a Collection Property

This syntax controls how to iterate for a given patient, when building the index for this dimension. Specifically,
it loops through all the allergies for the patient.

f. Type the following into Each Fetch:

set val=%this.Allergies.GetAt(i).Allergen.Description

This syntax gets the user-friendly allergen description and places it into the variable val. The variable name is
hardcoded; that is, DeepSee expects you to set this variable.

g. Click Add.

The new dimension is added to the table.

h. Click the Active check box in the row for the new dimension.

i. Click Update to save this change.

4. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

5. Display the new Allergies dimension as rows. Include the total line.

28 DeepSee Developer Tutorial

Creating a DeepSee Model

Because a patient can have multiple allergies, the grand total can be different from the total number of patients.

Some patients have no allergy data. That is, the Allergies property is null. These patients are filtered out of the pivot
table when you use the Allergies dimension. There are several ways to address this issue; see next section for an
example.

The absence of allergy data is not the same as knowing that a patient has no known allergies. Medical information
systems often include a way to record that a patient has no known allergies. For example, the system might include an
“allergen” called nil known allergies. The user asks the patient whether he or she has any allergies, and if the
answer is “No,” the user selects the value nil known allergies. DeepSee does not assign any special meaning
to this string. The dimension treats this “allergen” in the same way as any other allergen.

3.6 Adding Placeholders for Null Members
In an earlier part, we discovered that there are possible problems with the following dimensions:

• Patient Group

• Doctor Group

• Doctor

• Allergies

For all of these, a patient might have a null value for the data used by the dimension. This means that the dimension omits
that patient by default. This is correct behavior, but your users might prefer to see a placeholder member in the dimension.

DeepSee Developer Tutorial 29

Adding Placeholders for Null Members

The placeholder member would be used to collect all patients that have a null value for this dimension. The dimension
would not omit any patients.

This part of the tutorial shows several ways to address these cases.

1. Access the Architect and display the DeepSee.Study.Patient class.

2. Click the Patient Group dimension in the dimension table. Because this dimension is based directly on a source
property, we can handle null values for it as follows:

a. Click the Translation/Replacement tab.

b. For Null Field Replacement, type None.

c. Click Update to save this change.

3. Repeat the preceding set of steps for the Doctor Group dimension.

4. Click the Doctor dimension in the dimension table. Because this dimension is based directly on a source expression
(that is, using Complex Code), that expression must detect and correctly handle null values.

a. Click the General tab.

b. Edit Complex Code as follows:

$CASE(%this.PrimaryCarePhysician.LastName,"":"No Doctor",
:%this.PrimaryCarePhysician.FirstName_" "_%this.PrimaryCarePhysician.LastName)

Note: Do not include the line break that is shown here. This line break is included only for readability of the
documentation.

c. Click Update to save this change.

5. For the Allergies dimension, we cannot use either of these techniques, which do not work with Manual Child Browse.

First, create a dimension that places patients into two groups: those with recorded allergies and those whose allergies
are null:

a. Create a new dimension as follows:

• Dimension Name: Allergies Are Null

• Complex Code:

$SELECT(%this.Allergies.Count()=0:"Yes",1:"No")

This new dimension gives us an easy way to access the patients that have no recorded data for the Allergies
property. We will use it as a building block to add a new member to the Allergies dimension.

b. After you add the dimension, click the Active check box in the row for the new dimension and click Update to
save this change.

30 DeepSee Developer Tutorial

Creating a DeepSee Model

6. In the next step, we use this new dimension (Allergies Are Null) to add a placeholder member to the Allergies
dimension. (Yes, a dimension can use other dimensions.)

a. Click the Compound Member tab.

b. Click Add.

c. Enter the following details:

• Dimensions: Allergies (This is the name of the dimension to which we are adding a member.)

• Condition Name: No Information Available (This is the name of the member that we are adding.)

• Dynamic: Clear this check box so that this dimension is indexed along with the others.

d. In the Filter area, add the following filter expression:

[Allergies Are Null = Yes]

On the Compound Member tab, the member definition now looks as follows:

e. Click Update to save this change.

7. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

8. Return to the Analyzer and display the Patient Group dimension as rows as we did previously. You should now
see something like the following:

9. Display the Doctor dimension as we did previously. Page down as needed. You should now see something like the
following:

DeepSee Developer Tutorial 31

Adding Placeholders for Null Members

Also, the grand total should now be 10000.

10. Display the Allergies dimension as rows. Include the grand total. Now you should see something like the following:

32 DeepSee Developer Tutorial

Creating a DeepSee Model

Notice that the new member is included. Also notice that the grand total is greater than the number of patients, which
is expected now that this dimension is using all the patients.

3.7 Using Ranges,Translations, and Transformations
In this part of the tutorial, we use options that transform the original values for dimensions into other values:

1. Access the Architect and display the DeepSee.Study.Patient class.

2. Add another dimension that is based on the patient age but that uses ranges. The new dimension places patients into
ten-year buckets. To do so:

a. Double-click Age again in the DeepSee.Study.Patient folder. This step adds this property again to the table on the
right.

b. Rename the new item to Age Bucket.

c. On the General tab, change the type to Values.

d. Click the Ranges tab.

e. Right-click and then select Add Line.

f. Type data into the new line as follows:

g. Add more lines, one to define each bucket. For the last bucket, use the caption of 80+

h. Click Update to save this change.

3. Add a dimension, Age Group, that is similar to the preceding dimension but that places patients into larger groups
as follows:

4. Redefine the Gender dimension to use a transformation. This dimension is based on the following property:

Property Gender As %String(DISPLAYLIST = ",Female,Male", VALUELIST = ",F,M");

DeepSee Developer Tutorial 33

Using Ranges, Translations, and Transformations

Currently the members of this dimension are F and M, which are the values stored in the database (that is, the values
given by the VALUELIST parameter). We can redefine this dimension so that the members are Female and Male,
that is, the values given by the DISPLAYLIST parameter. To do so:

a. Click Gender in the dimension table.

b. On the General tab, click Transformation Type and then click External Value. (External Value is a predefined
transformation provided by DeepSee.)

c. Click Update to save this change.

Note: The values given by the VALUELIST and DISPLAYLIST parameters are sometimes referred to as the internal
value and the external value, respectively.

5. Redefine the Patient Group dimension to use a translation, as follows:

a. Click Patient Group in the dimension table.

b. Click the Translation/Replacement tab.

c. Right-click and select Add Line.

d. In the new, empty row, type A into Original Text.

e. Type Group A into Translate To.

f. Add another line to translate B into Group B.

g. Click Update to save this change.

6. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

7. Return to the Analyzer and display the new Age Bucket dimension as rows. Include the total line. You should now
see something like the following:

34 DeepSee Developer Tutorial

Creating a DeepSee Model

If your grand total is not the same as the record count in your base class, be sure that you defined the ranges correctly.

8. Display the new Age Group dimension as rows. Include the total line.

You should now see something like the following:

9. Display the Gender dimension as rows:

10. Display the Patient Group dimension as rows:

3.8 Adding Measures in the Analyzer
You define the base measures in the Architect, but you can define additional measures in the Analyzer. In particular, this
is how to define measures that are aggregated in ways other than by addition. In this part of the tutorial, we examine the
measures defined so far and we refine them.

1.
In the Analyzer, click the New button .

2. In the Measures panel, double-click Count, Age, Allergy Count, and Test Score and then click Find. The
Analyzer then displays the cumulative values for these four measures, across the entire subject area:

The Count measure shows the count of records in the subject area; this measure name could be too generic for the
users.

DeepSee Developer Tutorial 35

Adding Measures in the Analyzer

The other measures are all aggregated by addition. For example, Age is the cumulative age for all patients in the subject
area. It would probably be more useful to have additional measures that show average values.

3. Right-click in the Measures panel on the left and click Add Measure. DeepSee then displays a dialog box where you
can define a new measure.

4. Create a new Patient Count measure as follows:

a. For Metric Name, use Patient Count.

b. Drag and drop [Count] from Measure to Formula.

Within a measure formula, the syntax [measure name] represents the value of a base measure. The formula
can use Caché ObjectScript syntax, in addition to DeepSee functions (discussed next).

c. Click OK.

5. Create the new Average Age measure as follows:

a. Right-click in the Measures panel and click Add Measure.

b. For Metric Name, use Average Age.

c. Drag and drop [Age] from Measure to Formula.

d. Drag and drop .Average from Functions to Formula.

The formula now is as follows:

[Age.Average]

36 DeepSee Developer Tutorial

Creating a DeepSee Model

e. For Dec. Place, enter 2.

f. Click OK.

6. Create the additional measures Average Allergy Count and Average Test Score.

When you drag and drop a measure into a pivot table, DeepSee copies the current definition of the measure into that
pivot table. This means that if you redefine the measure in the Measures panel (perhaps because you made an error),
the pivot table is not affected. This feature can cause a little extra work during development but does keep the pivot
table definitions stable.

7. Display the new measures, in the same way that we displayed the base measures:

By default, DeepSee measures consider all records, including nulls. A null value is treated as zero. So the Average Test
Score measure might need revision, because the lowest possible score on this test is 50. Some patients do have a null
value for the TestScore property, and the null scores are treated as 0. So the average test score is lower than it would be if
we excluded those patients. In the next section, we redefine the measure Average Test Score to correct that problem.

3.9 Defining a Filtered Measure
In this part of this tutorial, we redefine the measure Average Test Score so that it filters out the patients that have null
test scores.

1. Use the Architect to create a dimension that places the patients into two groups: those with null test scores and those
with non-null test scores:

• Dimension Name: Tested?

• Data Type: Values

• Complex Code:

$SELECT(%this.TestScore="":"No",1:"Yes")

2. After you add the dimension, click the Active check box in the row for the new dimension and click Update to save
this change.

3. Recompile the base class and rebuild the DeepSee indices.

4. Go to the Analyzer.

5. Redefine the Average Test Score as follows:

a. Right-click in the Measures panel and click Edit Measure.

b. Click Edit in the Filter area. Enter the following filter expression:

[Tested? = Yes]

c. Click OK.

DeepSee Developer Tutorial 37

Defining a Filtered Measure

6.
In the Analyzer, click the New button .

7. Double-click the Tested? dimension to display this dimension as rows.

8. Double-click the Test Score, Average Test Score, and Patient Count measures and then click Find.

The No row shows data for patients that do not have a test score, and the Yes row shows data for patients that do have
a test score.

In the No row, Test Score is 0, as expected. Also Average Test Score is null, which is correct.

38 DeepSee Developer Tutorial

Creating a DeepSee Model

3.10 Accessing Other Classes
The DeepSee Architect provides easy access to most of the properties within the BI-enabled class, but we can use other
properties, as well, including properties of classes that you can access only via SQL. In this part of the tutorial, we access
the data in the DeepSee.Study.PatientDetails class from our base class.

1. In Studio, open the class DeepSee.Study.Utils.ForModel.

2. Look at the definition of the GetFavoriteColor() method, which is as follows:

ClassMethod GetFavoriteColor(patientID As %String) As %String
{
 Set ReturnValue="No Data Available"
 Set myquery="SELECT FavoriteColor AS ReturnValue FROM DeepSee_Study.PatientDetails "
 _"WHERE PatientDetails.PatientID=?"
 Set rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
 Set status=rset.Prepare(myquery)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Write "Prepare error"}
 Set status=rset.Execute(patientID)
 If $$$ISERR(status) {Do $System.Status.DisplayError(status) Write "Execute error"}
 While rset.Next() {
 Set ReturnValue=rset.Data("ReturnValue")
 }
 Quit ReturnValue
}

This method does the following:

a. Uses the PatientID property of a patient as input.

b. Uses an SQL query to access the patient's record in DeepSee.Study.PatientDetails and get the FavoriteColor field.

c. Returns the favorite color (if available) or the string "No Data Available" if not.

Note: There is a normal (non-DeepSee) index on the PatientID field in DeepSee.Study.PatientDetails. This enables
the query to run more quickly than it would otherwise.

If your application does include tables that can be related most easily through SQL queries, as in this example,
you probably already have indices on the relevant fields. If not, you should add them.

3. Access the Architect and open the class DeepSee.Study.Patient.

4. Create a new dimension that invokes this method, as follows:

a. Set Dimension Name as Favorite Color.

b. Specify Complex Code as follows:

##class(DeepSee.Study.Utils.ForModel).GetFavoriteColor(%this.PatientID)

This code is executed when you build the indices; see the notes about performance in the previous step.

5. After you add the dimension, click the Active check box in the row for the new dimension and click Update to save
this change.

6. Recompile the base class and rebuild the DeepSee indices.

7. Open the Analyzer and display the new dimension as rows. Include the grand total. Now you should see something
like the following:

DeepSee Developer Tutorial 39

Accessing Other Classes

3.11 Model Summary
For reference, this section summarizes the model defined in this tutorial.

3.11.1 Dimensions

The model includes the following dimensions:

• Age Bucket — Groups patients into ten-year age buckets. For example, a patient who is 17 years old is in the 10–19
bucket.

Each patient belongs to exactly one member of this dimension.

• Age Group — Groups patients into three buckets by age. For example, a patient who is 17 years old is in the 0–29
bucket.

Each patient belongs to exactly one member of this dimension.

• Age Year — Groups patients into one-year age buckets.

Each patient belongs to exactly one member of this dimension.

• Allergies — Groups patients by allergy. A given patient can have any number of allergies and thus can belong to
any number of the members of this dimension.

This dimension includes the member No Information Available, which contains all patients with null allergy
data.

• Allergies Are Null — Groups patients into two members. The member Yes contains all patients that have null
allergy data; the member No contains all the other patients. This dimension is used by the Allergies dimension.

• Birth Date — Groups patients by birth date. This is a standard DeepSee date-type dimension. Each patient belongs
to exactly one member of each variation of this dimension. There are no nulls in this data.

• Doctor — Groups patients by primary care physician.

This dimension includes the member No Doctor, which applies to any patient with no recorded primary care physician.

Each patient belongs to exactly one member of this dimension.

40 DeepSee Developer Tutorial

Creating a DeepSee Model

Note: Unlike the other dimensions, the Doctor dimension can have a very large number of members, depending
on the size of your data set. In a real-world implementation, it is unlikely that you would create a dimension
at such a low level. This tutorial uses this dimension because it provides a useful demonstration of Complex

Code.

• Doctor Group — Groups patients by the assigned group of the primary care physician.

This dimension includes the member None, which applies to any doctor who was not assigned to a doctor group.

Each patient belongs to exactly one member of this dimension.

• Favorite Color — Groups patients by favorite color.

This dimension includes the member No Data Available, which applies to any patient with no recorded favorite
color.

Each patient belongs to exactly one member of this dimension.

• Gender — Groups patients by gender. Each patient belongs to exactly one member of this dimension. There are no
nulls in this data.

• Home City — Groups patients by home city. Each patient belongs to exactly one member of this dimension. There
are no nulls in this data.

• Home ZIP — Groups patients by home ZIP code. Each patient belongs to exactly one member of this dimension.
There are no nulls in this data.

• Patient Group — Groups patients by the assigned patient groups.

This dimension includes the member None, which applies to any patient who was not assigned to a patient group.

Each patient belongs to exactly one member of this dimension.

• Tested? — Groups patients into two members. The member No contains all patients that have a null test score; the
member Yes contains all the other patients. This dimension is used by the Average Test Score measure.

3.11.2 Measures

The model contains the following measures defined in the Architect:

• Count — The default measure, this displays the number of patients. Also see Patient Count.

• Age — Displays the cumulative age of the patients.

• Allergy Count — Displays the cumulative count of allergies of the patients.

• Test Score — Displays the cumulative test score of all patients.

The model contains the following measures defined in the Analyzer:

• Average Age — Displays the average age of the patients.

• Average Allergy Count — Displays the average allergy count, per patient, considering all patients.

• Average Test Score — Displays the average test score, per patient, considering only the patients that have non-
null test scores.

• Patient Count — Displays the number of patients.

3.11.3 Listing Fields

The model contains the following dimension-type listing fields:

DeepSee Developer Tutorial 41

Model Summary

• Allergy Count — Displays the number of allergies that the patient has.

• Age — Displays the age of the patient.

• Birth Date — Displays the birth date of the patient.

• Gender — Displays the gender of the patient.

• Test Score — Displays the test score of the patient.

The model also contains one independent listing field:

• PatientID — Displays the ID of the patient.

3.11.4 Detail Lists

The model contains one detail list, named Basic Details, which contains all the listing fields. It is available to all roles.

3.12 Additional Exercises for the Reader
The preceding sections are meant to help you become familiar with the Architect and common tasks you perform there.
To continue the learning experience, create the following elements. Some of these are variations of the elements you have
already created; these variations are suggested to give you experience with different forms of data. Some elements are new.

CommentsElement NameElement
Type

Use the same technique that we used for allergies.Allergy SeveritiesDimension

Use the BirthDateTimeStamp property.Birth Date TimeStampDimension

Display the birth time in hour buckets. Use the BirthTime

property.
Birth TimeDimension

Display the birth time in hour buckets. Use the
BirthDateTimeStamp property.

Birth Time from

TimeStamp

Dimension

Use the Diagnoses property.DiagnosesDimension

Use the DiagnosesAsArray property.Diagnoses As ArrayDimension

Use the DiagnosesAsChildren property.Diagnoses As ChildrenDimension

Use the DiagnosesAsLB property.Diagnoses as LBDimension

Use the DiagnosesAsMany property.Diagnoses as ManyDimension

Use the Industry property in DeepSee.Study.PatientDetails.IndustryDimension

Use the Profession property in DeepSee.Study.PatientDetails.ProfessionDimension

Use the TestScore property. Display the lowest test score for
any set of patients. Note that the minimum possible score for
this test is 50.

Minimum Test ScoreMeasure

Use the TestScore property. Display the highest test score for
any set of patients.

Maximum Test ScoreMeasure

42 DeepSee Developer Tutorial

Creating a DeepSee Model

CommentsElement NameElement
Type

Display the number of encounters for any set of patients.Encounter CountMeasure

Display the average encounter count per patient, for any set
of patients.

Average Encounter

Count

Measure

Note that by default, the sample does not include encounter data. To add encounter data, execute the following command
in the Terminal:

 Do ##class(DeepSee.Study.PatientEncounter).AddEncounters()

DeepSee Developer Tutorial 43

Additional Exercises for the Reader

4
Creating Pivot Tables

This chapter presents a tutorial in multiple parts:

1. Creating a basic pivot table

2. Using additional basic options

3. Specifying the sort order of members in a pivot table

4. Using options for ranking and nesting

5. Using advanced layout options

This tutorial uses the data from the previous chapter. However, you can adapt the steps as needed for your own data model.

4.1 Creating a Basic Pivot Table
It is quick and easy to create pivot tables with the Analyzer, but there are many shortcuts and many variations. This section
demonstrates the basic steps.

1. Log in to DeepSee as described earlier.

2. Click Main > Analyzer.

3.
Click the New button .

4. Select a subject area. The subject areas have already been defined; their purpose is to partition data for use by different
user roles.

To select a subject area:

a.
Click the Browse button in the Subject Area panel.

The system lists the subject areas that are available to you, according to the role you used when you logged in.

b. Click Patients and then click OK. The subject area is then shown in the Subject Area panel, and its contents are
now available within the Analyzer, in the panels on the left. These panels list the available dimensions, computations,
measures, and other elements in this subject area.

DeepSee Developer Tutorial 45

The Patients subject area contains information about patients; it includes information such as their allergies,
primary care physicians, home city and ZIP code, favorite color, and so on. For an overview of these model elements,
see “Model Summary” in the preceding chapter.

5.
In the toolbar, click the Autofind button .

The button changes to look like this:

Tip: If you do not enable autofind, you must click Find to display the pivot table, each time you redefine the pivot
table.

6. Now specify the measures to display in the pivot table. Measures are data that can be displayed in the body or main
area of the pivot table.

a. Drag Patient Count from the Measures panel and drop it in the Metrics panel.

As soon as you do, the pivot table is updated as follows:

b. Drag and drop Average Age as well. When you do, the pivot table is updated as follows:

Tip: Alternatively, you can double-click each measure, one at a time.

7. Specify how to break down the measures, which are currently aggregated across the entire subject area. For this
example, drag Home City from the Dimension panel and drop it in the Row panel. When you do, the pivot table is
updated as follows:

Each city is shown in a separate row. A dimension contains members, so the cities are members of the Home City
dimension. The pivot table shows separate data for each member of this dimension.

46 DeepSee Developer Tutorial

Creating Pivot Tables

8. Save the pivot table and give it a name. Here, we are saving the underlying query that retrieves the data, along with
the information needed to display it the way you chose. We are not saving the data.

To save the pivot table:

a.
Click the Save button and then click Save Pivot.

b. For Name, type Count and Age by City.

c. For Notes, optionally type any notes.

d.
Click the Browse button next to Folder and select a folder such as Default. Then click OK.

e. Click OK to accept the name.

f. Click OK on the confirmation dialog box.

You have successfully created a reusable pivot table that you can include in your applications. Later, when you create
dashboards, you can insert this pivot table, place it, and resize it as needed. When the pivot table runs, it retrieves the
current data as instructed by the query.

9. It is worthwhile to develop a formal understanding of what you are viewing. Compare the pivot table with the options
you used.

Note the following points:

• The green cells display labels, and the white (and off-white) cells display data.

• The measures (Patient Count and Average Age) are displayed as columns.

To understand the contents of a given data cell, use the information given by the corresponding labels. For example,
consider the cell in the Cedar Falls row, in the Patient Count column. This cell displays the total number
of patients whose home city is Cedar Falls.

Similarly, consider the Average Age column for the Cedar Falls row. This cell displays the average age of
patients whose home city is Cedar Falls.

• Data cells display aggregate data, and the aggregation can be performed in different ways. For Patient Count,
DeepSee sums the numbers. For Average Age, DeepSee averages the numbers. Other aggregations are possible.

4.2 Additional Basic Options
In this part of the tutorial, we explore additional basic options:

1.
In the Analyzer, click the New button .

2. If autofind is not enabled, enable it.

DeepSee Developer Tutorial 47

Additional Basic Options

Meaningbutton

Autofind is enabled.

Autofind is disabled.

3. Drag Patient Count from the Measures panel and drop it in the Metrics panel.

4. Click the Expand button next to Birth Date. This expands the folder to show the birth date variations (for any
date-type dimension, the Dimension panel displays a collapsible folder containing multiple variants).

5. Drag Birth Date Year to the Row panel. DeepSee updates the pivot table as follows:

6. Notice that this pivot table spans multiple pages. The lower right of the page shows buttons that you can use to move
from page to page:

48 DeepSee Developer Tutorial

Creating Pivot Tables

7. Now drag Gender to the Column panel. DeepSee updates the pivot table as follows:

8. Compare this pivot table to the previous one. Because we added Gender to the columns, the patient count is now
broken out and grouped by the patient gender. That is, the Female > Patient Count column shows the count of
female patients, and the Male > Patient Count column shows the count of male patients. As before, each row
shows the number of patients born in a given year.

Also notice that the numbers in this pivot table agree (as they should) with the numbers in the previous pivot table.
For example, the previous pivot table indicated that 15 patients were born in 1910. This pivot table tells us that all 15
of those are female.

9. Save this pivot table, using the name Patient Counts by Birth Year and Gender.

10. Let us create another variation. Right-click in the Row panel or the Column panel and then click Swap between Row

and Column. As soon as you do, the pivot options are changed, and the pivot table is immediately updated.

This pivot table displays the same data as the previous one, but has the dimensions reversed. Notice that the measures
are still displayed as columns.

11. Let us create a pivot table that uses multiple dimensions as a row or column:

a.
Click the New button .

b. Drag Age Group to the Row panel.

c. Drag Age Bucket to the Row panel.

DeepSee Developer Tutorial 49

Additional Basic Options

d. Drag Gender to the Column panel.

e. Drag Patient Count and Average Allergy Count to the Metrics panel.

The pivot table looks like the following:

12. Compare this pivot table with the options that define it.

Notice the following:

• The age groups and age buckets are shown as rows.

• Because the Age Group dimension is listed first, the age groups are the outer row dimension.

• Because Gender is used as columns, this pivot table contains an outer column for each gender.

• The measures are shown as data columns, within each gender.

You can include any number of dimensions in the Row panel and any number of dimensions in the Column panel. The
results are analogous to this example.

13. Save this pivot table, using the name Age Groups and Buckets.

14. Let us consider how the order of dimensions affects a pivot table. In the Row panel, right-click Age Bucket and click
Move Up. As soon as you do, the pivot table is updated as follows:

50 DeepSee Developer Tutorial

Creating Pivot Tables

15. Notice that this pivot table shows the same numbers as the previous, but the rows are now organized differently. Because
Age Bucket is now the first dimension used in Row, it is the outermost grouping. Age Group is the next dimension
and is included within Age Bucket.

16. Now we create a pivot table that includes summary lines (totals and subtotals):

a.
Click the New button .

b. Drag Age Group to the Row panel.

c. Drag Age Bucket to the Row panel.

d. Drag Gender to the Column panel.

e. Drag Patient Count to the Metrics panel.

The pivot table now looks like this:

DeepSee Developer Tutorial 51

Additional Basic Options

f. In the upper right, click the drop-down list for Grand and then click Total.

g. Click the drop-down list for Sub and then click Total.

Now the pivot table includes both subtotals and the grand total, and it looks like the following:

17. Save this pivot table, using the name Example with Summaries.

In this tutorial, we enabled the autofind option so that the pivot table was redisplayed each time we made a design change.
With a large data set, however, it can be impractical to constantly redisplay the pivot table. Thus the autofind option is
disabled by default.

4.3 Specifying the Sort Order
One of the most common requirements is to control the order in which the members of a dimension are sorted. For any
dimension, the default sort order is ascending sort, treating the member names as strings.

This section shows a couple of ways to control the sort order. Note that the sort order affects both the pivot table and the
corresponding chart (not discussed in this tutorial).

1.
Click the New button .

52 DeepSee Developer Tutorial

Creating Pivot Tables

2. If autofind is not enabled, enable it, as described in the preceding section.

3. Drag Patient Count to the Metrics panel.

4. Drag Age Year to the Row panel.

The pivot table now looks like this:

5. Click the Expand button next to the Age Year dimension in the Row panel.

6. Right-click All Condition and then select Edit Condition.

DeepSee then displays a dialog box where you can customize this dimension, as it appears in this pivot table.

7. For Sorting, select Numeric Ascending. Do not make any other changes in this dialog box.

8. Click OK.

The pivot table now looks as follows:

The change you made applies only to the current pivot table.

9. Optionally save this pivot table.

Now we look at another pivot table, and we specify sorting in a different way.

10.
Click the New button .

DeepSee Developer Tutorial 53

Specifying the Sort Order

11. Drag Patient Count to the Metrics panel.

12. Drag Favorite Color to the Row panel.

The pivot table now looks like this:

You might prefer to see the member No Data Available at the top or the bottom.

13. Click the Expand button next to the Favorite Color dimension in the Row panel.

14. Right-click All Condition and then select Edit Condition.

DeepSee then displays a dialog box where you can customize this dimension, as it appears in this pivot table. The
upper area of this dialog box includes a list of the members on the left:

15. Click Select All, which moves all members from the left list to the empty list on the right.

16. In the right list, click the member No Data Available and then click the up arrow button repeatedly to move this
member to the start of the list.

Ignore the Sorting option that is shown beneath this list; it has no effect when you select members.

17. Click OK.

The change you made applies only to the current pivot table.

Now the pivot table appears as follows:

54 DeepSee Developer Tutorial

Creating Pivot Tables

18. Optionally save this pivot table.

4.4 Using Ranking and Nesting Options
In many cases, you are interested in the details of only the top-ranked or bottom-ranked members. For example, you might
be interested only in the top-selling products or the departments with the slowest response times. This section of the tutorial
shows how you can easily perform such ranking.

1.
Click the New button .

2. If autofind is not enabled, enable it, as described in the preceding section.

3. Drag Patient Count to the Metrics panel.

4. Drag Allergies to the Row panel.

The pivot table now looks like this:

5. In the upper right, click the Rank :Top # link. DeepSee then displays the following dialog box:

DeepSee Developer Tutorial 55

Using Ranking and Nesting Options

6. For Number of rows to be displayed, type 4.

7. For Ranking based on column, type 1.

8. Click OK.

The pivot table now looks like this:

9. Save this pivot table, using the name Top Allergies.

Now we will use this pivot table within another pivot table to create a more complex layout.

10.
Click the New button .

11. Drag and drop Age Group to the Row panel.

12.
Click the Link Report button .

DeepSee displays a dialog box that has multiple tabs.

56 DeepSee Developer Tutorial

Creating Pivot Tables

13. Click the Nested Report tab.

14. Right-click in the empty area of this tab and then click Add Line.

DeepSee displays another dialog box, containing a list of folders.

15. Click the Expand button next to the Default folder to expand it.

16. Click the Top Allergies pivot table and then click OK to select it.

17. Click OK to close the dialog box.

18. Save this pivot table, using the name Top Allergies by Age Group.

19.
Click the Open Pivot Table button , click the Top Allergies by Age Group pivot table, and then click OK.

DeepSee then displays the pivot table as follows:

DeepSee Developer Tutorial 57

Using Ranking and Nesting Options

4.5 Using Advanced Layout Options
In this part of the tutorial, we improve the previous pivot table by removing the No Information Available member
from the age groups and placing it after them instead.

1. First, we redefine the Top Allergies pivot table to filter out null allergies:

a.
Click the Open Pivot Table button , click the Top Allergies pivot table, and then click OK.

b. Click Edit in the Filter panel in the lower left.

c. Double-click Allergies Are Null in the Dimension list.

d. Double-click the No member.

This generates a filter expression as follows:

[Allergies Are Null = No]

e. Click OK.

f. In the upper right, click the Rank :Top 4 link.

g. For Number of rows to be displayed, change the value to 3.

h. Click OK.

58 DeepSee Developer Tutorial

Creating Pivot Tables

i. Save your changes.

This pivot table now looks like the following:

2. Now reopen the Top Allergies by Age Group pivot table. Now it looks like this:

Now we want to add a row that looks like this:

To add this row, we will define another pivot table and append to the end of the first one.

3. Define a new pivot table as follows:

a.
Click the New button .

b. Drag and drop Age Group to the Row panel.

DeepSee Developer Tutorial 59

Using Advanced Layout Options

c. Drag and drop Allergies to the Row panel.

d. Click the Expand button next to Age Group.

e. Right-click All Condition and then click Edit Condition.

f. In Compound Name, in the bottom area of the dialog box, specify All Ages.

In this step and the next step, we define a custom member of this dimension. This member will select all data.

g. For Compound Query, type the following filter expression, which uses a wildcard:

[Age Group ?= *]

h. Click Add Compound.

This step places the new custom member in the list in the upper right, which means that DeepSee will display only
this member.

i. Click OK.

Now this pivot table looks as follows:

Now we need to filter out the records that have non-null allergy data.

j. Click Edit in the Filter panel in the lower left.

k. Double-click Allergies Are Null in the Dimension list.

l. Double-click the Yes member.

60 DeepSee Developer Tutorial

Creating Pivot Tables

This generates a filter expression as follows:

[Allergies Are Null = Yes]

m. Click OK.

n. Save this pivot table, using the name All Age Groups - No Allergy Data

This new pivot table looks as follows:

4. Now reopen the Top Allergies by Age Group pivot table, which currently looks like this:

5.
Click the Link Report button .

DeepSee displays a dialog box that has multiple tabs.

6. Click the Union tab.

7. Right-click in the empty area of this tab and then click Add Line.

DeepSee displays another dialog box, containing a list of folders.

8. Click the Expand button next to the Default folder to expand it.

9. Click the All Age Groups - No Allergy Data pivot table and click OK.

10. Click Match Column and then click OK.

11. Click Find.

DeepSee Developer Tutorial 61

Using Advanced Layout Options

The pivot table now looks like this:

12. Save the pivot table.

4.6 Summary of Pivot Tables
In this part of the tutorial, we created the following pivot tables:

• Count and Age by City

• Patient Counts by Birth Year and Gender

• Example with Summaries

• Top Allergies

• All Age Groups - No Allergy Data

• Top Allergies by Age Group

62 DeepSee Developer Tutorial

Creating Pivot Tables

5
Creating KPIs

A key performance indicator (KPI) is an aggregate value that you can display on its own in a speedometer or label on a
dashboard. KPIs are based directly on measures or on formulas that combine measures.

This part of the tutorial shows you how to create KPIs. It includes the following sections:

1. Creating simple KPIs

2. Creating a string KPI

In the next part of the tutorial, we use these KPIs on a dashboard.

5.1 Creating Simple KPIs
In this part of the tutorial, we create a couple of simple KPIs:

1. Log in to DeepSee as described earlier in this book.

2. Click Main > KPI Setup. DeepSee displays a page like the following:

3. Add a KPI as follows:

a. For Name, type Average Allergy Count.

b. For Subject Area, select the Patients subject area.

c. For Measure, select the Average Allergy Count measure.

d. Click Add.

DeepSee Developer Tutorial 63

e. Click OK.

DeepSee creates the KPI. In the left area of the page, DeepSee displays the new KPI within the Default folder, as follows:

The number shown in square brackets is the ID of the KPI; make a note of this for future use.

4. Click New.

5. Add another KPI as follows:

a. For Name, type Average Age.

b.
For Folder, click the Browse button and then click the Default folder.

c. For Subject Area, select the Patients subject area.

d. For Measure, select the Average Age measure.

e. Click Add.

f. Click OK.

g. Make a note of the ID of the KPI that you just added.

5.2 Creating a String-type KPI
Measures and KPIs can contain string or date values, instead of numeric values. A string KPI can be a useful form of
aggregate data.

For example, suppose that we are interested in the average age of the patients, and we want to convert that number to a
string and display that in a label on the dashboard.

1. First, we must create a suitable measure. To do so:

a. Access the Analyzer.

b. In the Measures panel, right-click and select Add Measure.

c. For Metric Name, type Average Age (string).

d. For Formula, type the following:

$SELECT([Age.Average]<21:"Youths",[Age.Average]<55:"Adults",1:"Seniors")

e. For Display Style, select String.

f. Click OK.

64 DeepSee Developer Tutorial

Creating KPIs

2. Test this measure in the Analyzer to ensure that it does display strings. To do so, create a pivot table that uses the
measure. For example:

3. Click Main > KPI Setup.

4. Add a KPI as follows:

a. For Name, type Average Age (string).

b. For Subject Area, select the Patients subject area.

c. For Measure, select the Average Age (string) measure.

d. Click Add.

e. Click OK.

f. Make a note of the ID of the KPI that you just added.

DeepSee Developer Tutorial 65

Creating a String-type KPI

6
Creating Dashboards

This part of the tutorial shows you how to create dashboards. It includes the following sections:

1. Creating a simple dashboard with a filter

2. Adding a speedometer that displays a KPI

3. Creating a dashboard with multiple filters

4. Adding a label that displays a string KPI

6.1 Creating a Simple Dashboard with a Filter
In the first part of the tutorial, we create a simple dashboard that contains a pivot table and a drop-down list (called a combo
box) that filters it.

1. Log in to DeepSee as described earlier in this book.

2. Click Main > Open Dashboard and then click New.

DeepSee displays a dialog box where you specify the basic properties of the new dashboard.

3. In this dialog box, specify the following basic information:

• For Board Name, type the name of this dashboard: Dashboard Test 1.

•
For Folder, click the Browse button and select the Default folder.

4. Click OK.

DeepSee then displays the dashboard in edit mode.

5. Add a pivot table to this dashboard as follows:

a.
Click the Add Pivot Table button .

b. In the List Of Pivot section, expand folders as needed and click the Count and Age by City pivot table

c. Click OK.

The pivot table is added in the upper left corner of the dashboard.

d. Drag and drop the pivot table to the desired location.

DeepSee Developer Tutorial 67

e. Resize the pivot table as needed.

6. Add a combo box to this dashboard as follows:

a.
Click the Add Combo Box button .

b.
For Subject Area, click the Browse button , click the Patients subject area, and click OK. The dimensions
in this subject area are then displayed within Dimensions.

c. For Dimensions, double-click the Home ZIP dimension.

DeepSee updates the right area as follows:

d. Click OK.

The combo box is added in the upper left corner of the dashboard.

e. Drag and drop the combo box to the desired location.

f. Resize the combo box as needed.

7. Add a label as follows:

a.
Click the Add Label button .

b. For Normal Display, type Patient ZIP Code:

c. Click Font.

d. For Font Style, click Bold.

e. For Font Size, click 12.

f. Click OK to accept the font changes.

g. Click OK.

The label is added in the upper left corner of the dashboard.

h. Drag and drop the label to the desired location.

i. Resize the label as needed.

8. Create a filter link between the combo box and the pivot table, as follows:

a. Right-click the combo box and then click Set as Filter.

b. Right-click the pivot table and then click Apply Filter to this object. When you do so, a blue line is drawn between
the two elements.

9. Create a refresh link between the combo box and the pivot table, as follows:

a. Right-click the combo box and then click Set as Refresh Trigger.

b. Right-click the pivot table and then click Set as Refresh Target. When you do so, a gray line is drawn between the
two elements. The line is very close to the blue line and might be difficult to see.

68 DeepSee Developer Tutorial

Creating Dashboards

10. Look for the Object Properties dialog box, which looks like this:

If this dialog box is not currently displayed, click the Show Object Properties Box button in the right side of the
toolbar.

11. Click the label and make a note of its position.

12. Click the combo box. Then edit its y-position to be the same as the label.

13. Click the pivot table. Then edit its x-position to be the same as the label.

14.
Click the Save Dashboard button . Then click OK.

15.

Click the Close button in the upper right of the Designer.

DeepSee displays the new dashboard in view mode.

16. Refresh the browser window.

DeepSee displays something like this:

DeepSee Developer Tutorial 69

Creating a Simple Dashboard with a Filter

Test the dashboard by selecting a ZIP code from the combo box. The pivot table should be filtered and refreshed immediately
to show only data associated with that member:

6.2 Displaying a KPI in a Speedometer
In this part of the tutorial, we edit the previous dashboard to display a KPI in a speedometer.

1. Right-click and then click Edit Dashboard.

2. Add a speedometer to this dashboard as follows:

a.
Click the Add Speedometer button .

b. For Caption, type Average Allergy Count.

c.
For KPI Override Setting, click the Browse button , expand folders as needed, and click the Average
Allergy Count KPI.

d. Click OK.

70 DeepSee Developer Tutorial

Creating Dashboards

The speedometer is added in the upper left corner of the dashboard.

e. Drag and drop the speedometer to the desired location.

f. Resize the speedometer as needed.

3. Create a filter link between the combo box and the speedometer, as follows:

a. Right-click the combo box and then click Set as Filter.

b. Right-click the speedometer and then click Apply Filter to this object. When you do so, a blue line is drawn between
the two elements.

4. Create a refresh link between the combo box and the speedometer, as follows:

a. Right-click the combo box and then click Set as Refresh Trigger.

b. Right-click the speedometer and then click Set as Refresh Target. When you do so, a gray line is drawn between
the two elements.

5. Rearrange the other dashboard elements if needed.

6.
Click the Save Dashboard button . Then click OK.

7.

Click the Close button in the upper right of the Designer.

DeepSee displays the new dashboard in view mode.

8. Refresh the browser window.

Now your dashboard might look like this:

DeepSee Developer Tutorial 71

Displaying a KPI in a Speedometer

When you choose an item from the combo box, the pivot table and the speedometer should both be automatically filtered
and refreshed. For example:

72 DeepSee Developer Tutorial

Creating Dashboards

6.3 Adding Multiple Filters
In this part of the tutorial, we create a slightly more complex dashboard that contains multiple combo boxes. Instead of
including refresh links between these combo boxes and the pivot table, we add a button and use that as the refresh trigger.

1. Right-click and then click New Dashboard > Blank.

2. In the dialog box, specify the following basic information:

• For Board Name, type the name of this dashboard: Dashboard Test 2.

•
For Folder, click the Browse button and select the Default folder.

3. Click OK.

DeepSee then displays the dashboard in edit mode.

4. Add the Count and Age by City pivot table to this dashboard as you did in the previous part of the tutorial.

5. Add a combo box to this dashboard, as you did in the previous part of the tutorial. For this combo box, use the
dimension Age Group.

6. Add a second combo box as follows:

a. Right-click the first combo box and then click Duplicate. The copy is placed directly on top of the original.

b. Drag and drop the copy.

c. Double-click the copy, which displays a dialog box of its properties.

DeepSee Developer Tutorial 73

Adding Multiple Filters

d. In this dialog box, double-click a different dimension. In this case, use the dimension Favorite Color.

e. Click OK.

7. For each combo box, add a filter link between that combo box and the pivot table, as follows:

a. Right-click the combo box and then click Set as Filter.

b. Right-click the pivot table and then click Apply Filter to this object. When you do so, a blue line is drawn between
the two elements.

8. Optionally add labels above or next to the combo boxes.

9. Add a button to this dashboard as follows:

a. Click Add Button .

b. For Normal Display, type Find

c. Click OK.

The button is added in the upper left corner of the dashboard.

d. Drag and drop the button to the desired location.

10. Create a refresh link between the button and the pivot table, as follows:

a. Right-click the button and then click Set as Refresh Trigger.

b. Right-click the pivot table and then click Set as Refresh Target. When you do so, a gray line is drawn between the
two elements.

The result looks like the following:

11.
Click the Save Dashboard Button . Then click OK.

12.

Click the Close button in the upper right of the Designer.

DeepSee displays the new dashboard in view mode.

13. Refresh the browser window.

Depending upon your data, your data model, and your pivot table, DeepSee displays something like this:

74 DeepSee Developer Tutorial

Creating Dashboards

Test the new dashboard by clicking options from the drop-down lists. Notice that the pivot table is not refreshed until you
click Find.

6.4 Displaying a KPI in a Label
In this part of the tutorial, we edit the previous dashboard to display a string KPI in a label.

1. Right-click and then click Edit Dashboard.

2.
Click the Add Label button .

DeepSee displays a dialog box in which you specify the details.

3. For Normal Display, type the following:

$$KPI(10003)

For 10003, substitute the ID of the Average Age (string) KPI that you created earlier.

4. Click OK.

The label is added in the upper left corner of the dashboard.

5. Add filter links between each combo box and the new label.

6. Add a refresh link between the button and the new label.

7.
Click the Save Dashboard button . Then click OK.

8.

Click the Close button in the upper right of the Designer.

DeepSee Developer Tutorial 75

Displaying a KPI in a Label

DeepSee displays the new dashboard in view mode.

9. Refresh the browser window.

Now your dashboard might look like this:

When you select items from the combo boxes and then click Find, DeepSee updates both the pivot table and the label. For
example:

76 DeepSee Developer Tutorial

Creating Dashboards

7
Using Multiple Subject Areas Together

For simplicity, this book has assumed so far that you are creating and using only a single subject area. However, it is often
convenient or even necessary to create and use multiple subject areas in combination. This chapter discusses the following
topics:

• Rules to follow when you create multiple subject areas to use together

• What it means to use multiple subject areas in a pivot table

• What it means to use multiple subject areas in a dashboard

• How to set up the secondary subject area for use in this part of the tutorial

• How to create an initial version of the linked pivot table shown in this chapter

• How to create a corrected version of the linked pivot table

• How to create the dashboard shown in this chapter

7.1 Rules for Creating Multiple Subject Areas
To define multiple subject areas that you can use together as described in this chapter, do the following:

• Identify all the dimensions that are common across the subject areas. Typically, dimensions based on time and location
are common, even for unrelated subject areas.

Other dimensions might or might not be common depending on whether the subject areas are related to each other in
any meaningful sense. For example, suppose that one subject area represents transactions and another represents the
customers who own the transactions. These two subject areas might have common dimensions such as customer, customer
class, and so on.

• When you define those dimensions, ensure that the dimension names and sets of member names are the same in all
relevant subject areas. (The underlying details of Complex Code, transformation options, and so on do not matter. All
that matters is that the DeepSee indices work the same way, even if they are created differently.)

7.2 Multiple Subject Areas in a Pivot Table
You can use the Link options in the Analyzer to link pivot tables that are defined in different subject areas. For example:

DeepSee Developer Tutorial 77

This pivot table is a horizontal link of two other pivot tables. The right pivot table (used as the right data column) is defined
in the Patients subject area and shows the number of patients born in each year. The left pivot table (used as the left
data column) is defined in the City Rainfall subject area and shows the number of inches of rain that fell in that year.

In order for the resulting pivot table to respond correctly to filters, you must follow the rules listed earlier in this chapter.

7.3 Multiple Subject Areas in a Dashboard
With DeepSee, your overall goal is to create dashboards. A dashboard usually includes one or more data elements (which
can be pivot tables, charts, detail listings, or KPIs displayed in dashboards or labels), as well as one or more filters that
apply to those data elements.

Within a dashboard, the data elements can belong to different subject areas. If you follow the rules listed earlier in this
chapter, the dashboard can include filters that use the dimensions that are common to subject areas. This means that you
can create a dashboard like the following:

78 DeepSee Developer Tutorial

Using Multiple Subject Areas Together

If the user selects a city and a year from the drop-down lists, the dashboard is filtered as follows:

DeepSee Developer Tutorial 79

Multiple Subject Areas in a Dashboard

7.4 Setting Up the Initial City Rainfall Subject Area
The rest of this chapter shows you how to define the simple pivot tables and dashboards shown in the previous sections. It
also demonstrates the rules given earlier in this chapter.

We start by creating the rainfall data and defining an initial version of the City Rainfall subject area:

1. Generate the city rainfall data, by entering the following command in the Terminal, in the SAMPLES namespace:

 do ##class(DeepSee.Study.CityRainfall).GenerateData()

Note: This method assumes that the cities have already been created (which occurs when you generate patients).
Unless you have already generated patients as described earlier in this book, this method does not generate
any data.

2. Access the DeepSee Architect and open the class DeepSee.Study.CityRainfall.

3. Define the following elements:

DetailsElement NameElement
Type

Use the City.Name property.CityDimension

Use the MonthAndYear property.DateDimension

Use the InchesOfRain property.Inches Of RainMeasure

4. Define a subject area named City Rainfall.

5. Compile the class DeepSee.Study.CityRainfall and build the DeepSee indices.

7.5 Creating the Linked Pivot Table
In this section, we create an initial version of linked pivot table:

1. In the Analyzer, go to the Patients subject area.

2. Define and save a pivot table as follows:

• Row — Birth Date Year

• Metrics — Patient Count

• Name of pivot table — Patient Count by Year

80 DeepSee Developer Tutorial

Using Multiple Subject Areas Together

3. In the Analyzer, go to the City Rainfall subject area.

4. Define and save a pivot table as follows:

• Row — Date Year

• Metrics — Inches Of Rain

5. Then do the following:

a.
Click the Link Reports button .

b. On the Column Link tab, right-click and select Add Line.

DeepSee then displays a dialog box in which you can select another pivot table.

c. Select the pivot table Patient Count by Year and click OK. The new row is added to the table on the Column

Link tab.

d. Click the Include Parent Query check box.

e. Click OK.

f. Use the Save As option to save the resulting pivot table with the name Patient Count and Rainfall by
Year.

6. Click Find.

DeepSee displays something like the following:

DeepSee Developer Tutorial 81

Creating the Linked Pivot Table

The pivot table looks correct. Next we examine whether it can be filtered correctly.

7. Click the Edit option in the Filter pane and apply a filter like the following:

[City = Juniper]

8. Click Find. When you do so, the right data column is removed. This occurs because the filter you have applied removes
this column. The Patients subject area does not recognize the City dimension and thus the patient data is filtered
out.

In the next section we correct this problem.

7.6 Adjusting the City Rainfall Subject Area and Pivot
Table
As noted earlier in this chapter, two subject areas can respond to the same filter only if the dimension name and the member
names are the same in both subject areas.

We could change the dimension names in the Patients subject area to be more general (City instead of Home City,
for example). By now, however, you may have created many pivot tables using the current names, and it would be undesirable
to have to change those. So instead we will rename the dimensions in the City Rainfall subject area:

1. In the Architect, access the City Rainfall subject area.

2. Make the following changes in this subject area:

• Rename the City dimension to Home City.

• Rename the Date dimension to Birth Date.

82 DeepSee Developer Tutorial

Using Multiple Subject Areas Together

3. Compile the class DeepSee.Study.CityRainfall and build the DeepSee indices.

4. In the Analyzer, open the Patient Count and Rainfall by Year pivot table.

5. Make the following changes to this pivot table:

a. Redefine this pivot table to use Birth Date Year instead of Date Year for rows.

b. While the pivot table is still displayed, click the Expand button next to Birth Date in the Row pane.

c. Right-click All Condition and then click Edit Condition.

d. Edit Caption Name to be Date Year.

e. Click OK.

f. Save the pivot table.

6. Open the pivot table Patient Count and Rainfall by Year.

7. Try again to filter the pivot table using the new dimension name:

[Home City = Juniper]

You should see that both columns are filtered. For example:

7.7 Creating a Dashboard That Uses Multiple Subject
Areas
In the last part of this tutorial, we create the dashboard shown earlier in this chapter:

DeepSee Developer Tutorial 83

Creating a Dashboard That Uses Multiple Subject Areas

1. In the Analyzer, go to the Patients subject area.

2. Define and save a pivot table as follows:

• Row — Birth Date Year

• Column — Home City

• Metrics — Patient Count

• Name of pivot table — Patient Count by Home City and Birth Year

3. Go to the City Rainfall subject area.

4. Define and save a pivot table as follows:

• Row — Birth Date Year

• Column — Home City

• Metrics — Inches Of Rain

• Name of pivot table — Rainfall by City and Year

5. Change the caption in the second pivot table as follows:

a. Click the Expand button next to Birth Date Year in the Row pane.

b. Right-click All Condition and then click Edit Condition.

c. Edit Caption Name to be Year.

d. Click OK.

6. Save the Rainfall by City and Year pivot table again.

7. Access the Dashboard Designer.

8. Create a new dashboard.

9. To the new dashboard, add two pivot tables (Patient Count by Home City and Birth Year and Rainfall
by City and Year).

10. Add a combo box as follows:

a.
Click the Add Combo Box button .

b.
For Subject Area, click the Browse button , click the City Rainfall subject area, and click OK.

c. For Dimensions, double-click the Birth Date Year dimension.

d. Click OK.

The combo box is added in the upper left corner of the dashboard.

e. Drag and drop the combo box to the desired location.

f. Resize the combo box as needed.

The Birth Date Year dimension of the City Rainfall contains more dates than the same dimension in the
other subject area. Because we would like to see all possible dates, this is the dimension we use.

11. Add another combo box. This one should use the Home City dimension. You can use either subject area to get this
dimension.

84 DeepSee Developer Tutorial

Using Multiple Subject Areas Together

12. Add refresh triggers and filter links from these two combo boxes to both of the pivot tables.

13. Add labels.

DeepSee Developer Tutorial 85

Creating a Dashboard That Uses Multiple Subject Areas

8
Performing Real-time Updates

The sample enables you to see that DeepSee can display live data. It includes multiple methods that update various data
elements. This chapter describes how to see these real-time updates.

8.1 Preparation
To prepare, do the following:

1. Enable incremental updates for this DeepSee installation. To do so, go to Administrator > Site Configuration and select
the option ETL > Incremental Index Update. Then click Save.

2. Recompile DeepSee.Study.Patient.

3. Make sure that the DeepSee indices are current. If they are not, run HiRebuild() in DeepSee.Study.Patient.

4. In the Analyzer, create the following simple pivot tables:

Other OptionsMetricsRowPivot Table Name

Patient Count and Encounter
Count (if you have created this
measure)

Counts

Select Grand TotalPatient CountPatient GroupPatient Groups

Select Grand TotalPatient CountFavorite ColorFavorite Colors

Select Grand TotalPatient CountDoctor GroupDoctors

8.2 Adding and Deleting Patients
To show that the DeepSee indices are updated when you add and delete patients:

1. Display the Counts pivot table.

2. In the Terminal, execute the following command to add some patients:

 do ##class(DeepSee.Study.Patient).AddPatients()

DeepSee Developer Tutorial 87

The output (in the Terminal) indicates the current patient count.

3. Rerun the pivot table to see the change in the patient count.

4. In the Terminal, execute the following command to delete some patients:

 do ##class(DeepSee.Study.Patient).DeleteSomePatients()

The output (in the Terminal) indicates the current patient count.

Note: Deleting patients is significantly slower compared to the other changes documented in this chapter.

5. Rerun the pivot table to see the change in the patient count, as well as the current patient count.

If you have enabled incremental updates, then when you add, update, or delete an object from DeepSee.Study.Patient,
DeepSee updates the indices automatically.

This occurs because the base class inherits from %BI.Adaptor, which provides the methods %OnAfterSave() and %OnDelete()

and the triggers HyperDelete, HyperInsert, and HyperUpdate, all of which automatically update the DeepSee indices.
For example, when an object is saved, Caché runs the method %OnAfterSave(), which updates the DeepSee indices for this
object. Similarly, when an record is deleted, inserted, or updated via SQL, Caché fires the corresponding trigger, which
updates the DeepSee indices for this record.

8.3 Changing Patient Data
In DeepSee.Study.Patient, you can use the method ChangeSomePatients() to change assorted properties for a random
percentage of patients. This method makes changes as follows:

• The patient is assigned to a different patient group.

• The favorite color of a patient is changed.

• Additional patient encounters are added.

These three changes occur to different randomly selected subsets of patients. For example, a patient’s favorite color might
be changed, but that patient might not receive any new patient encounters.

To demonstrate that DeepSee recognizes these real-time changes:

1. Display the Patient Groups or the Favorite Colors pivot table.

2. In the Terminal, execute the following command:

 do ##class(DeepSee.Study.Patient).ChangeSomePatients(,1)

The first argument is the percentage of patients to change; the default is 20 percent.

The second argument is the rebuild argument. If this equals 1, the method will update the DeepSee indices for the
affected patients. DeepSee performs this update only if you have enabled incremental updates as described earlier.

3. Rerun the pivot table. You should see changes in the number of patients within each patient group and with each
favorite color. There should be, however, no overall change in the patient count.

To demonstrate that DeepSee recognizes real-time additions to the encounters, use the Counts pivot table. In this case,
you should also see an increase in the total encounter count. There should be, however, no overall change in the patient
count.

The ChangeSomePatients() calls the following methods:

88 DeepSee Developer Tutorial

Performing Real-time Updates

• ChangePatientGroups() in DeepSee.Study.Patient. This method causes Caché to run %OnAfterSave() and update
the indices for the affected patients.

• ChangePatientDetails() in DeepSee.Study.PatientDetails. This method changes data in DeepSee.Study.PatientDetails.

Because DeepSee.Study.Patient does not see this class, this method does not cause Caché to run %OnAfterSave().

Instead, if rebuild is 1, the method determines the IDs of the affected patients and calls zzBuildOne() for those IDs,
updating the DeepSee indices. The relevant section of code is as follows:

Set patID=patdetails.PatientID

Set myquery="SELECT ID FROM DeepSee_Study.Patient WHERE PatientID=?"
Set rset=##class(%ResultSet).%New("%DynamicQuery:SQL")
Set status=rset.Prepare(myquery)
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}
Set status=rset.Execute(patID)
If $$$ISERR(status) {Do $System.Status.DisplayError(status) Quit}
While rset.Next() {
 Set id=rset.Data("ID")
 Do ##class(DeepSee.Study.Patient).zzBuildOne(id)
 }

• AddEncounters() in DeepSee.Study.PatientEncounter. This method adds records to DeepSee.Study.PatientEncounter.

Because DeepSee.Study.Patient does not see this class, this method does not cause Caché to run %OnAfterSave().

Instead, if rebuild is 1, the method determines the IDs of the affected patients and calls zzBuildOne() for those IDs,
updating the DeepSee indices. The technique is similar to the one shown in the previous item.

8.4 Changing Doctor Data
In DeepSee.Study.Doctor, you can use the method ChangeSomeDoctors() to randomly change the doctor group and patients
per week of some doctors.

1. Display the Doctors pivot table.

2. In the Terminal, execute the following command:

 do ##class(DeepSee.Study.Doctor).ChangeSomeDoctors(,1)

The first argument is the percentage of doctors to change; the default is 20 percent.

The second argument is the rebuild argument. If this equals 1, the method will update the DeepSee indices for the
affected patients. DeepSee performs this update only if you have enabled incremental updates as described earlier.

3. Rerun the pivot table. You should see a change in the number of patients with doctors in each group, but no overall
change in the patient count.

This method determines the IDs of the affected patients and calls zzBuildOne() for those IDs, updating the DeepSee indices.
The technique is similar to the one shown previously.

DeepSee Developer Tutorial 89

Changing Doctor Data

A
Installing the Database for the Sample
DeepSee Model

If you reconfigured the SAMPLES namespace as described in “Setting Up the Environment,” the DeepSee model that you
have created is in a separate database. You can replace that database with a model database provided by InterSystems.

You might do this if you want to bypass the exercises and simply examine a working DeepSee model.

To obtain and install this database:

1. Access the InterSystems ftp site: ftp.intersystems.com.

2. Go to the directory pub/deepsee/.

3. Download the file DeepSee.Study.Model.zip.

4. Uncompress this file, which includes CACHE.DAT and readme.txt.

5. If your operating system is big-endian, use the cvendian tool to convert the downloaded CACHE.DAT to a big-endian
database. See the section on “Using cvendian to Convert Between Big-endian and Little-endian Systems” in Caché
Specialized System Tools and Utilities.

The downloaded CACHE.DAT was created on a Windows machine and is little-endian.

6. Stop Caché.

7. Find the directory that contains your model database file (the file used by the database SampleDSModel, if you used
that name).

8. Rename your CACHE.DAT file, for example, to SaveCACHE.DAT.

9. Move the new CACHE.DAT into that directory.

10. Restart Caché.

11. In the Terminal, switch to the SAMPLES namespace and then enter the following command:

 do setPath^%bi.SMr.Setup(1)

This command updates the path options. (The settings used in the downloaded model database are unlikely to be
appropriate for your machine.) For information, see the DeepSee Site Configuration and Maintenance Guide.

12. In DeepSee, adjust the # of Rebuild Processes? option as appropriate for your machine. See the section “Configuring
DeepSee to Use Multiple CPUs,” earlier in this book.

In the downloaded model database, this option is set to 2.

13. Recompile the class DeepSee.Study.Patient and then rebuild the DeepSee indices.

DeepSee Developer Tutorial 91

This model database is meant for use with the DeepSee.Study sample. You can use this only if your SAMPLES namespace
is configured as described in “Setting Up the Environment.”

92 DeepSee Developer Tutorial

Installing the Database for the Sample DeepSee Model

	Table of Contents
	About This Book
	1 Getting Started
	1.1 Logging In to DeepSee
	1.2 Configuring DeepSee to Use Multiple CPUs
	1.3 Setting Up the Environment
	1.4 Generating Data

	2 Contents of the DeepSee Sample
	2.1 The Sample Classes
	2.2 Diagnosis Data
	2.3 The Extra Data Set
	2.4 Controlling What Is Generated
	2.5 Generating Additional Data
	2.6 Changing or Deleting Data

	3 Creating a DeepSee Model
	3.1 Viewing a Class in the Architect
	3.2 Creating a Basic DeepSee Model
	3.2.1 Relationship of the DeepSee Model to the Class Definition

	3.3 Adding a Detail Listing to the Model
	3.4 Validating the Dimensions
	3.5 Using a Collection Property
	3.6 Adding Placeholders for Null Members
	3.7 Using Ranges, Translations, and Transformations
	3.8 Adding Measures in the Analyzer
	3.9 Defining a Filtered Measure
	3.10 Accessing Other Classes
	3.11 Model Summary
	3.11.1 Dimensions
	3.11.2 Measures
	3.11.3 Listing Fields
	3.11.4 Detail Lists

	3.12 Additional Exercises for the Reader

	4 Creating Pivot Tables
	4.1 Creating a Basic Pivot Table
	4.2 Additional Basic Options
	4.3 Specifying the Sort Order
	4.4 Using Ranking and Nesting Options
	4.5 Using Advanced Layout Options
	4.6 Summary of Pivot Tables

	5 Creating KPIs
	5.1 Creating Simple KPIs
	5.2 Creating a String-type KPI

	6 Creating Dashboards
	6.1 Creating a Simple Dashboard with a Filter
	6.2 Displaying a KPI in a Speedometer
	6.3 Adding Multiple Filters
	6.4 Displaying a KPI in a Label

	7 Using Multiple Subject Areas Together
	7.1 Rules for Creating Multiple Subject Areas
	7.2 Multiple Subject Areas in a Pivot Table
	7.3 Multiple Subject Areas in a Dashboard
	7.4 Setting Up the Initial City Rainfall Subject Area
	7.5 Creating the Linked Pivot Table
	7.6 Adjusting the City Rainfall Subject Area and Pivot Table
	7.7 Creating a Dashboard That Uses Multiple Subject Areas

	8 Performing Real-time Updates
	8.1 Preparation
	8.2 Adding and Deleting Patients
	8.3 Changing Patient Data
	8.4 Changing Doctor Data

	Appendix A:Installing the Database for the Sample DeepSee Model

