INTERSYSTEMS

DeepSee Developer Tutorial

\Version 2011.1
26 May 2011

DeepSee Developer Tutorial

InterSystems Version 2011.1 26 May 2011
Copyright © 2011 InterSystems Corporation
All rights reserved.

This book was assembled and formatted in Adobe Page Description Format (PDF) using tools and information from the following sources:
Sun Microsystems, RenderX, Inc., Adobe Systems, and the World Wide Web Consortium at www.w3c.org. The primary document development
tools were special-purpose XML-processing applications built by InterSystems using Caché and Java.

InterSystems InterSystems

CACHE ... ENSEMBLE

Caché WEBLINK, Distributed Cache Protocol, M/SQL, M/NET, and M/PACT are registered trademarks of InterSystems Corporation.

InterSystems InterSystems InterSystems

NTERSYSTEMS HEALTHSHARE DEEPSEE ... RAKCARE

InterSystems Jalapefio Technology, Enterprise Cache Protocol, ECP, and InterSystems Zen are trademarks of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Customer Support
Tel: +1 617 621-0700
Fax: +1 617 374-9391
Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
L GETING SEAITE ..ottt b e e b et b e s e b e e b e se bt s e e st sbe st s b e e s b e e erenea 3
1.1 LOQQing IN 10 DEEPSELeoiciiieiirieierieieste ettt ettt ettt b et b et b et b e e eb e et et e 3

1.2 Configuring DeepSee to Use MUItIPIE CPUSc..cveicicicecece e 4

1.3 Setting Up the ENVIFONMENTc.voiiieicecece ettt st 4

I T g LT =L o [T - S 6

2 Contents of the DeePSEE SAMPIEcoiiiiiiier e bbb e e e 7
2.1 THE SAMPIE CIASSES ...ouvevieetirieiirteiert ettt b bbbt e et et et 7

2.2 DIAGNOSIS DALAeuiiveiiiteiete ettt b ettt ekt b et bbbt et b et b 9

2.3 The EXIra DA SEL ...eiveiiieiiie ittt bbbt 10

2.4 Controlling What IS GENEIAtEAceceiiieriirieieieiiiee st see e ee ettt sttt s e e e e 10

2.5 Generating AdditioNal DAtaccoeririeiierieeee e e e 11

2.6 Changing OF Deleting DALlccerviiuiriirie ettt bbb s e 11

3 Creating aDeePSEE MOUE ..ot b e bbb 13
3.1 Viewing a Class in the ArChITECTcovciriiriii s 13

3.2 Creating a BasiC DEEPSEE MOUEccvviieieieieicieces ettt ne e 17
3.2.1 Relationship of the DeepSee Model to the Class Definitioncccccvvvvivvievericicreennn, 21

3.3 Adding a Detail Listing to the MOdelc.coveiiiiiiiieece e 22

3.4 Validating the DIMENSIONScc.ciiiiiiiiie ettt bbb b st e 25

3.5 USING @ COllECTION PrOPEITY ..c.veueiveiiiteiiteriete ettt ettt snene s 27

3.6 Adding Placeholders for NUIl IMEMDEIScociiiiiiiiieiec e 29

3.7 Using Ranges, Translations, and TransformMationsc.ccocvveverenenenenerieresseeescese s see e 33

3.8 Adding Measures in the ANAIYZET ..o e e 35

3.9 Defining @ FIltered MEASUIEcviivieieieesie sttt e e ste e e ste e te et et e be e saeenaesaeeseesnaeseenneens 37
3.10 ACCESSING OThEr CIASSESeviitirieriiitiite sttt sttt sttt be st bbb b e b e e 39
3,11 MOTE] SUMMATY .tttk b et b et b et b e et ne ke se et nn bt sn b e snene s 40

T I I T 4T 0 o SRS 40

3112 IMIBASUIES ..tttk b bbbt b e st e et e s e e e e bt e bt e b e e bt eb e e b e nbeenenrenrennen 41

T T 15 1T o T T [RSP 41

3114 DELAI LISES vttt b et bbb et ebe b b sne 42

3.12 Additional Exercises for the REAEN ..ot 42

4 Creating PIVOL TADIEScuoceeeeee ettt et sttt et e e e et e e e 45
4.1 Creating a BasiC PIVOL TabIeccoiiiiiiiii e 45

4.2 Additional BasiC OPLIONSc.ccueieieeieeisisesrestesestesre e saessesie e seesseseeseessesessessessessessessessessenes 47

4.3 SPECITYING the SO OFUET ..c.veieecicece ettt se e e neene e 52

4.4 Using Ranking and NeStiNGg OPLIONSceieririerieiierieieieeeeeie ettt 55

4.5 Using Advanced Layout OPLIONScc.ciueeeieirinesit ettt st st 58

4.6 SUMMAry OF PIVOL TaDIESoveviiiiic e 62

B CIEaLING KPIS .ttt bbbt bbbtk b et b e n e 63
5.1 Creating SIMPIE KPIS ...uiiiiiieiie ettt sttt sttt neeneerenre e 63

5.2 Creating @ StriNg-TYPE KPI ..c.viiiieie ettt st e e neere e e 64

6 Creating DAsNDOAr AScoiiiieiiriiee ettt se ettt be b sae e 67
6.1 Creating a Simple Dashboard With @ Filter ... 67

6.2 Displaying @ KPI in @ SPEEHOMELETceiiiiiiiiiiie ettt e 70

DeepSee Developer Tutorial

6.3 AAAING MUILIPIE FIIEIS ..ottt e 73

6.4 Displaying a KPIin @ Labelcoooiriiiieeeiee e 75
7 Using Multiple Subject Areas TOGEINES ..o 77
7.1 Rules for Creating Multiple SUDJECT ATEASoviviiiiricerce et 77
7.2 Multiple Subject Areas in @ PiVOt Tablecocvviiiviiiice e 77
7.3 Multiple Subject Areas in @ DashbDOArdcccoeveeieiiniieiesere e 78
7.4 Setting Up the Initial City Rainfall SUDJECT AFacovviiririiiiiri e 80
7.5 Creating the Linked PIVOL TADIEccooiiiiiiiiee e 80
7.6 Adjusting the City Rainfall Subject Area and Pivot Table ..o 82
7.7 Creating a Dashboard That Uses Multiple SUDJECt AT€aSccooveirieiriiviieree e 83
8 Performing REal-tiME UPAALESccceeeeeceeeeces ettt srenaenaennens 87
ST o =10 UL o) o S PS 87
8.2 Adding and Deleting PatiENLSccviieiiiiiie s s e et sre e re e sre s 87
8.3 Changing Patient DALAccoevreirieirieiieese ettt e r e ene e 88
8.4 Changing DOCION DALcerveueireiiiieiiteiete ettt b et b e e b et nn b b e 89
Appendix A:Installing the Database for the Sample DeepSee Modelcccocveeereirennennenenee 91

DeepSee Developer Tutorial

About This Book

Important: This book is for DeepSee I. For information on DeepSee 11, see Getting Started with DeepSee 11, which

also lists the other books for DeepSee II.

This book is a tutorial to help developers learn the basic process of creating DeepSee models and then using them to create
pivot tables and dashboards. This book contains the following sections:

Getting Started

Contents of the DeepSee Sample
Creating a DeepSee Model

Creating Pivot Tables

Creating KPlIs

Creating Dashboards

Using Multiple Subject Areas Together
Performing Real-time Updates

Installing the Database for the Sample DeepSee Model

For a detailed outline, see the table of contents.

For more information, see the following books:

Overview of DeepSee, an introductory guide for all users who are interested in learning about DeepSee.
DeepSee Model Design Guide, an introductory guide for implementers and business users.

Using the DeepSee Connector, a guide for implementers who are using the DeepSee Connector to import externally
stored data. Note that the DeepSee Connector is available only with Ensemble.

Using the DeepSee Architect, a guide for implementers who are setting up a DeepSee model for use in the Analyzer.

Using the DeepSee Analyzer, a guide for implementers and advanced users who want to create pivot tables to embed
in applications — or who simply want to explore their data.

Using the DeepSee Dashboard Designer, a guide for implementers who are using the Dashboard Designer to create
dashboards.

Expressions and Scripts in DeepSee, an implementer guide that describes the syntax and options for all formulas,
expressions, and scripts supported in DeepSee. This book also lists all the locations where you can use these expressions
and scripts.

DeepSee Site Configuration and Maintenance Guide, a guide for implementers and system administrators. This book
describes how to configure and maintain a DeepSee site. It also includes a chapter that lists common problems and
their solutions.

DeepSee User Guide, a user manual for your end users. This book describes how to work with deployed dashboards
and pivot tables.

For general information, see the InterSystems Documentation Guide.

DeepSee Developer Tutorial 1

Getting Started

Important: This book is for DeepSee I. For information on DeepSee 11, see Getting Started with DeepSee 11, which
also lists the other books for DeepSee II.

The SAMPLES namespace includes the DeepSee sample, which consists of the DeepSee.Study.Patient class and related
classes. This sample is meant for use as the basis of a DeepSee model. It does not initially contain any data; nor does it
include a DeepSee model (dimensions, measures, and so on).

This sample is intended as a flexible starting point for working with DeepSee. You use this sample to generate as much
data or as little data as needed, and then you use the DeepSee Architect to create a DeepSee model that explores this data.
You can then create DeepSee pivot tables, KPIs, and dashboards based on this model. The sample contains enough com-
plexity to enable you to use the central DeepSee features and to anticipate many typical real-life scenarios.

This book presents hands-on exercises that use this sample, starting with the DeepSee Architect and concluding with the
DeepSee Dashboard Designer.

Important: If you have not yet used a DeepSee pivot table, it is suggested that you read the book Overview of DeepSee,
especially the first chapter.

1.1 Logging In to DeepSee

1. In Internet Explorer, go to the following URL.:

http://1ocal host: 57772/ csp/ sys/ bi/defaul t.htm

Where localhost is the server on which Caché is running, and 57772 is the port used by the web server.

If you have not yet specified a namespace, the system displays a page that prompts you for a namespace. Otherwise,
the system displays the DeepSee login page.

2. If you are prompted for a namespace, type the name of the namespace you want to work in and then click Logon to
DeepSee.

The system then displays the DeepSee login page.
3. Ifyou are prompted for a namespace, type SAMPLES and then click Logon to DeepSee.
The system then displays the DeepSee login page.

4. Onthe DeepSee login page, enter a DeepSee username and password. For example, you can use the username deno
with the password deno.

DeepSee Developer Tutorial 3

Getting Started

5.
6.

For Role, select deno.

Click Login.

1.2 Configuring DeepSee to Use Multiple CPUs

By default, DeepSee uses only 1 processor when it builds its indices. If your machine has multiple CPUs, it is useful to
configure DeepSee to use more processors, so that the rebuild is quicker.

Do the following:

1.

2
3.
4

Log in to DeepSee as described in the previous section.
Click Administrator > Site Configuration.
Click oLAP on the left.

For # of Rebuild Process, specify an integer. Typically you use a number that is the same as or slightly larger than the
number of processors.

Click save.

1.3 Setting Up the Environment

Before working with the DeepSee sample, you might find it worthwhile to modify the SAMPLES namespace so that the
DeepSee model that you create and the DeepSee indices that you generate are stored in separate databases used by this

namespace:
Database Name Database Purpose Comments
(Example)
Sanpl eDSModel To contain the DeepSee model.
Sanpl eDSI X To contain the DeepSee indices. Pre-expanded. Also, not journaled.

This procedure is not required but is useful for two reasons:

It enables you to replace your model with a DeepSee model from InterSystems, if desired; see the appendix “Installing
the Database for the Sample DeepSee Model.”

When you later upgrade your Caché installation to a newer release, your work with the DeepSee sample will be retained,
even though the SAMPLES database is replaced. (After upgrading, however, it will be necessary to recompile the
DeepSee sample classes, as well as regenerate the data and rebuild the DeepSee indices.)

The steps are as follows:

1. First, create the index database (Sanpl eDSI X, for example):
a. Access the Management Portal.
b. Click [Home] > [Configuration] > [System Administration] > [System Configuration] > [Local Databases].
c. Click New.
d. Specify the name of this database, as well as the directory in which to create it.
4 DeepSee Developer Tutorial

Setting Up the Environment

e. Click Next.
f. For Journal Globals, click No.
g. Click Finish.
2. Create the model database (Sanmpl eDSMbdel , for example). Follow steps a through e in the previous step and then
click Finish.
3. Click [Home] > [Configuration] > [System Administration] > [System Configuration] > [Namespaces].
4. In the row for the SAMPLES namespace, click Global Mappings.

5. Add the following global mappings:

Global Subscript Database Contents of This Global

Bl . * Sanpl eDSModel Most of the model definition

Bl i dx. * Sanpl eDSI X DeepSee indices

Bl | og. * Sanpl eDSI X Log data

Bl i dx. Condi ti on* Sanpl eDSModel Definitions of any compound members
SYS ("Bl'") Sanpl eDSModel DeepSee configuration settings

For example, to add the first mapping:

a. Click New Global Mapping.

b. For Global Database Location, select the model database (Sanpl eDSMbdel).
c. For Global Name, type Bl . *

d. Click Apply.

e. Click Close to close the dialog box.

f. Click save Changes to save this change.

Notice that the user interface automatically adds a mapping for SYS so that the result is as follows:

The global mappings for namespace SAMPLES are displ

| | Global Subscript | Database

. SAMPLEDSMODEL |Edit
Blidx.Condition™ SAMPLEDSMODEL |Edit
Blidx.™ SAMPLEDSIX Edit
Bllog.™ SAMPLEDSIX Edit
S5Y5 SAMPLES Edit
5Y5 ("BI") SAMPLEDSMODEL |Edit

DeepSee Developer Tutorial 5

Getting Started

1.4 Generating Data

To generate data for the DeepSee sample:
1. Inthe Terminal, switch to the SAMPLES namespace:

zn " SAMPLES'

2. Execute the following command:

do ##cl ass(DeepSee. Study. Uil s. Popul ate). Gener at eDat a()

This class method generates 10000 patients, a small sample to start.

Later you can regenerate the data to create a much larger data set if needed. The method also provides options that
control which child tables are created; see “Controlling What Is Generated,” in the next chapter.

For an overview of the classes, see the chapter “Contents of the DeepSee Sample.” Also see the class documentation.

6 DeepSee Developer Tutorial

Contents of the DeepSee Sample

When you create models in DeepSee, it is essential to start by becoming familiar with the data that you are using. This
chapter introduces the data used in the rest of this book.

The DeepSee.Study.Patient class and related classes are meant to represent a fictitious study of a set of patients, who have
assorted allergies and diagnoses. The sample is designed to enable you to try a wide variety of the features of DeepSee and
is not meant to contain truly realistic data. It has the following features:

» A method that you use to generate as much or as little data as you need.

e Anoption for including nulls in the generated data, to simulate real-life gaps in data.
» Built-in structure that you can use DeepSee to detect.

» Collection properties, including relationship properties.

» Date and time properties of various types.

» Simple string and numeric properties.

e Child tables of varying complexity.

e Achild table that contains (potentially) multiple rows for any given row in the parent table (and that cannot be accessed
from the primary table via cascading dot syntax).

» Structural difficulties that model non-ideal class definitions sometimes found in real-life applications. The purpose of
these is to demonstrate how to work around such difficulties when creating a DeepSee model. These difficulties include
the following:

— A detail table that is not linked to the primary table via a property relationship (and thus cannot be accessed from
the primary table via cascading dot syntax).

— An extra table containing an additional set of patients (so that the patients are not all within a single extent).

2.1 The Sample Classes

The sample classes are as follows:
» DeepSee.Study.Utils.Populate contains the GenerateData() method and other methods to populate the classes.

* DeepSee.Study.Utils.ForModel contains utility methods for use in your DeepSee model. These are specific to this
sample.

DeepSee Developer Tutorial 7

Contents of the DeepSee Sample

* DeepSee.Study.Patient is the primary class. Each patient has properties like the following:
— Auunique patient ID that identifies the patient within a fictitious epidemiological study.

— Age and gender. The age and gender combinations of the patients reflect the distribution of ages and genders as
recorded in the US 2000 census.

— Birth date and time.
— Home city. The city belongs to a parent ZIP code.
— A primary care physician.

— Alist of allergies. Each allergy is a complex piece of data that consists of an allergen, an allergy severity, and the
nature of the reaction to that allergen.

The allergies property is serial, so its data is stored in the DeepSee.Study.Patient table.

— Several properties that contain the same (or nearly the same) diagnosis data. Some of this data is stored in the
DeepSee.Study.Patient table, and some is stored in other tables.

The diagnoses are assigned based on age and gender, from a small set of diagnoses.

— Atest score (for a fictitious test administered to the patients in this study). For this test, the lowest possible value
is 50.

— Group to which the patient belongs (A or B).

DeepSee.Study.Patient inherits from %BI.Adaptor.
* DeepSee.Study.Doctor represents the doctors. Each doctor has properties like the following:
— Name. The first and last names are stored in separate fields.
— Main city in which this doctor works. The city belongs to a parent ZIP code.
— Group to which this doctor belongs (1, I1, or I11).
— Average number of patients that this doctor sees per week.
* Some code tables — that is, tables that consist of reference information used elsewhere. These tables include a Code

property and a Description property. The Code property is used internally (and is used in foreign keys), and the Description
property is the corresponding user-friendly string.

These tables are as follows:

— DeepSee.Study.Allergen

— DeepSee.Study.AllergySeverity

— DeepSee.Study.City

— DeepSee.Study.Diagnosis

— DeepSee.Study.NatureOfReaction

— DeepSee.Study.Profession

Each of these tables is set up in the same way. For example, DeepSee.Study.City contains an XData block which contains

the city data in a slightly structured form. The Setup() method in this class reads that XData block and populates the
table.

Tip: You can edit the XData block to include your own data.

When you run the GenerateData() method mentioned earlier, it calls these Setup() methods.

8 DeepSee Developer Tutorial

Diagnosis Data

* DeepSee.Study.PatientDetails contains additional data for the patients. It includes the following properties:
— Patient ID as used in the fictitious epidemiological study.
— Favorite color.

— Profession, if any, of the patient. Professions, in turn, belong to different industries.

This class is not linked to DeepSee.Study.Patient via a property relationship. Instead, you must use the patient ID to
connect DeepSee.Study.Patient and DeepSee.Study.PatientDetails.

Also, not all patients have records in this table.

* DeepSee.Study.PatientEncounter contains a record for each encounter (medical visit) of a patient, and thus can have
multiple records for any given patient. Not all patients have records in this table.

This table is not populated by default by the method shown earlier.

» DeepSee.Study.PatientDiagnosis, DeepSee.Study.PatientDiagnosis1, and DeepSee.Study.PatientDiagnosis2 store the
patient diagnosis data. For information on these variations, see “Diagnosis Data.”

» DeepSee.Study.PatientSet2 stores an additional set of patients with a slightly different (and smaller) set of fields.
This table is not populated by default by the method shown earlier.

* DeepSee.Study.CityRainfall stores rainfall data for the cities, over time. With this class, you can create a separate
DeepSee model, so that you can experiment with working with models in areas that are semantically unrelated.

This table is not populated by default by the method shown earlier.

2.2 Diagnosis Data

To help you learn different ways to use lists and other collections in DeepSee, this sample stores multiple versions of the
patients’ diagnoses. The DeepSee.Study.Patient class includes the following properties:

/1] Use the nain version to see how we handle lists of objects
Property Diagnoses As list O DeepSee. Study. Pati ent Di agnosi s;

/1] Use this variation to see how we handl e arrays.
Property DiagnosesAsArray As array O %&tring;

/1l Use this variation to see how we handle $LB |ists of strings.
Property Di agnosesAsLB As %.i st;

/1] Use this variation to see how DeepSee handl es pi eced strings.
Property Di agnosesAsString As %String;

/1] Use this variation to see how we handl e parent-child rel ationships
Rel ati onshi p D agnosesAsChil dren As DeepSee. St udy. Pati ent Di agnosi s1

[Cardinality = child, Inverse = Patient];

/1l Use this variation to see how we handl e one-many rel ati onshi ps

Rel ati onshi p Di agnosesAsMany As DeepSee. St udy. Pati ent Di agnosi s2
[Cardinality = many, Inverse = Patient];

A diagnosis consists of a diagnosis code, the corresponding description, the doctor who made the diagnosis, and other data
(which we omit for simplicity). The diagnosis properties in DeepSee.Study.Patient contain versions of this data as follows:

» The Diagnoses property is a list of DeepSee.Study.PatientDiagnosis. That class, in turn, includes these properties:
Property Di agnosi sCode As %&tring;

Property Di agnosedBy As DeepSee. St udy. Doct or;

» The DiagnosesAsArray property is an array of strings. The strings are the diagnosis codes.

DeepSee Developer Tutorial 9

Contents of the DeepSee Sample

» The DiagnosesAsLB property is a list — that is, a classic list such as produced by $L1STBUILD. Each list item is a
diagnosis code.

» The DiagnosesAsString property is a pieced string. It consists of diagnosis codes separated by commas.

» The DiagnosesAsChildren property establishes a parent-child relationship between the class DeepSee.Study.Patient
and the class DeepSee.Study.PatientDiagnosis1.

DeepSee.Study.PatientDiagnosis1 contains the diagnosis data in more detail than the preceding properties. This class
has the following properties:

Rel ationship Patient As DeepSee. Study. Pati ent
[Cardinality = parent, Inverse = D agnosesAsChildren];

Property Di agnosi sCode As %&tring;
Property Di agnosedBy As DeepSee. St udy. Doct or;

* The DiagnosesAsMany property establishes a one-to-many relationship between the class DeepSee.Study.Patient and
the class DeepSee.Study.PatientDiagnosis2.

DeepSee.Study.PatientDiagnosis2 has the following properties:

Rel ati onship Patient As DeepSee. Study. Pati ent
[Cardinality = one, Inverse = Di agnosesAsMany];

Property Di agnosi sCode As %&tring;
Property Di agnosedBy As DeepSee. St udy. Doct or;

When you generate data, the data generation method ensures that the diagnosis data in these properties is consistent. That
is, if a given patient has the diagnosis diabetes, that diagnosis is stored in each of these properties.

2.3The Extra Data Set

In an ideal scenario, all the unique patients would be stored in a single table. That is, to find the total number of patients,
you would have to count the records in only one table. That table serves as the starting point for accessing all data for those
patients.

In real life, however, you might need to access an additional set of patients in an unrelated table. (While this is not the best
object-oriented design, this scenario can occur if one organization merges with another. Rather than rewriting all the code
that both organizations own, it would be simpler to leave the data in its current storage.)

The sample gives you an easy way to practice with such a scenario. The extra set is not generated by default. For information
on generating the additional set of patients, see the following two sections.

2.4 Controlling What Is Generated

You can generate data in this sample in a variety of ways. The central method is the GenerateData() method of the
DeepSee.Study.Utils.Populate class, which has the following signature:
cl assnmet hod Gener at eDat a(pat Count As 9% nt eger = 10000,

pati entsPerDoc As Y%Nuneric = 25,

options As ¥string = "ADT",
genNul | s As %Bool ean = 1)

These arguments are as follows:

10 DeepSee Developer Tutorial

Generating Additional Data

patCount specifies the number of patients to create.
patientsPerDoc specifies the ratio of patients to doctors and thus determines the number of doctors to create.

options is a string that lets you control which data to generate. Depending on the characters you include in this string,
the method behaves as follows:

Character Action if String Includes This Character Default

"A" Generates allergies for the patients. Enabled
"D Generates diagnoses for the patients. Enabled
T Populates DeepSee.Study.PatientDetails. Enabled
"E" Populates DeepSee.Study.PatientEncounter. Disabled
"R Populates DeepSee.Study.CityRainfall. Disabled
"X Creates half the patients in DeepSee.Study.Patient and half in Disabled

DeepSee.Study.PatientSet2.

genNulls lets you control whether to include nulls in the generated data. If genNulls is 1, the method generates a random
percentage of nulls in specific parts of the data. For example, some percentage of patients will not receive a primary
care physician.

2.5 Generating Additional Data

To generate additional data, use the following methods. (You must first use the central GenerateData() method described
in the previous section.)

To generate additional patients for DeepSee.Study.Patient, use the AddPatients() class method of that class.
cl assnmet hod AddPati ent s(pat Count As % nteger = 100,

options As ¥string = "ADET",
genNul | s As %Bool ean = 1) as %t at us

To generate additional patients for DeepSee.Study.PatientSet2, use the AddPatients() class method of that class.

cl assnmet hod AddPati ent s(pat Count As 9% nteger = 500,
options As %string = "AD',
genNul | s As %Bool ean = 1) as %t atus

To generate rainfall data in DeepSee.Study.CityRainfall, use the GenerateData() class method of that class.

cl assnmet hod GenerateData() as ¥%status

This data is provided so that you can experiment with multiple, unconnected subject areas. See the chapter “Using
Multiple Subject Areas Together.”

2.6 Changing or Deleting Data

So that you can see how DeepSee handles changes to data, this sample also includes methods to change or delete data in
various tables. You must first use the central GenerateData() method described previously.

DeepSee Developer Tutorial 11

Contents of the DeepSee Sample

To delete a percentage of the patients (chosen randomly), use the DeletePatients() class method of the class
DeepSee.Study.Patient.

cl assnmet hod Del et eSonePati ent s(percent As %\uneric = 10) as %Status

To change assorted details for a percentage of patients, use the ChangeSomePatients() class method of the class
DeepSee.Study.Patient.

cl assnmet hod ChangeSonePati ent s(percent As 9%Numeric
rebuild As %Bool ean

20,
0)

This method calls the following three methods, which you can also call separately.

To change the group to which a patient is assigned, for a percentage of patients, use the ChangePatientGroups() class
method of the class DeepSee.Study.Patient.

cl assnmet hod ChangePati ent Groups(percent As %\uneric = 30)

To change the favorite color of a patient, for a percentage of patients, use the ChangePatientDetails() class method
of the class DeepSee.Study.PatientDetails.

20,
0)

cl assnmet hod ChangePati ent Det ai | s(percent As %\uneric
rebuild As %Bool ean

To generate additional patient encounters, use the AddEncounter () class method of the class
DeepSee.Study.PatientEncounter.

20,
0) as %status

cl assmet hod AddEncount ers(percent As %\umeric
rebuild As %Bool ean

To change the doctor group and patients per week for doctors, for some percentage of doctors, use the
ChangeSomeDoctor s() class method of the class DeepSee.Study.Doctor.

cl assnmet hod ChangeSoneDoct or s(percent As %Nuneric = 20
rebuild As %Bool ean = 0)

Though simple, all these changes are sufficient to demonstrate how to keep DeepSee indices current.

None of these methods affect DeepSee.Study.PatientSet2.

12

DeepSee Developer Tutorial

Creating a DeepSee Model

This tutorial starts with a Bl-enabled class and ends with a simple but complete DeepSee model that you can use in the
Analyzer. It consists of the following parts:

Viewing a class in the Architect

Creating a basic DeepSee model

Adding a detail listing to the model

Validating the dimensions

Using a collection property

Adding placeholders for null members

Using ranges, translations, and transformations

Defining additional measures in the Analyzer

© © N o g k~ w b PP

Defining a filtered measure in the Analyzer
10. Accessing data in other tables

11. Summary of the model definition

12. Self-guided exercises for you to try

Because all this work is within a single namespace, you can open two browser tabs and use one for the Architect and the
other for the Analyzer. The tutorial does not describe this technique specifically, but it can be a convenient way to work.

3.1Viewing a Class in the Architect

In this part of the tutorial, you get acquainted with how the Architect displays a class that is Bl-enabled.
1. Log into DeepSee as described earlier.
2. Click Data Modeler > Architect.

3. [;&2
Click the Open Class button in the Architect menu bar. By default, DeepSee lists all the classes that inherit from

%BI.Adaptor in this namespace.

Note: You can open other classes, as well. When you open a class from the Architect, DeepSee adds %BI.Adaptor
to the superclass list in that class definition.

DeepSee Developer Tutorial 13

Creating a DeepSee Model

4. Click the DeepSee.Study.Patient class and then click oK.

5 Click the Expand button ! beside DeepSee.Study.Patient. DeepSee displays the following:

=

..“ DeepSeaSample.Patient

Eﬂ---ﬁﬁllergiEE

----- [BirthDate

----- [Y BirthDateTimaStamp
----- [} BirthTime
]---hDiagnnEes
]---IE]DiagnaEesAsArra',r

..... D DiagnosesAsLE

----- D CiagnosesAsMany

----- D DiagnosesAsString

----- D Gender

H-IC3) HomeCity

----- D PatientGroup

----- [Y PatientiD

EEI---|E| PrimaryCarePhysician
----- D TestScore

----- [Textrield()

----- D DateField()

----- [chkField()

----- [§ AddPatients()

----- D ChangePatientGroups()
----- D ChangeSomePatients()
----- D DeletePatient!]

----- D DeletaSomePatients()
----- D GenerateDatal]

|_'i Lo N [P IR R R L

+1-..[%1

Notice that some of the properties of this class are shown as folders. Instance methods are shown at the bottom of the
list, along with three utilities (TextField(), DateField(), and ChkField()) provided by DeepSee.

6. Click the Expand button ! beside Allergies. DeepSee displays the following:

14

DeepSee Developer Tutorial

Viewing a Class in the Architect

E| :‘ DeepSeeSample.Patient

----- Age

SR Allergies)
----- [§ se1d()

----- D ElementClassType
----- D ElementType

----- D LiteralBehavior

----- D CrefStorage

----- D Cremer

----- D ReadOnly

----- D Size

----- D Storage
----- D StreamlLocation

----- D ocidData

----- D orefData

----- D LeOnConstructClonel)
----- [seUnSwizzleAt()

----- D Buildvaluefrray()

----- D Count()

This folder contains the properties and methods that are available for a list, because the Allergies property is defined
as alist:

Property Allergies As list O DeepSee. Study. PatientAll ergy;

DeepSee displays similar results for Diagnoses or DiagnosesAsArray, which are other types of collections.

The Architect does not display the properties and methods of the object used in the collection (in this case
DeepSee.Study.PatientAllergy), but you do have access to them in DeepSee.

Click the Expand button *! beside HomeCity. DeepSee displays the following:

----- D CiagnosesAsMany
----- D Gender

B~ HomeCity

-]

D Name

D FPopulation

D PostalCode

M e e

This folder contains the properties and methods of DeepSee.Study.City, because the HomeCity property is defined as
follows:

Property HomeCity As DeepSee. Study.City;

Click the Expand button ! beside PrimaryCarePhysician. DeepSee displays the following:

DeepSee Developer Tutorial 15

Creating a DeepSee Model

10.

E| ! PrimaryCarePhysician
----- Y E5TIH

----- D DioctorGroup

----- D FirstName

----- D LastName

- MainCity

----- D PatientsParWweaak
----- D ChangeSomeDoctors(
----- D GenerateData(]
----- D TestScore

----- 8 TastrFialdll

This folder contains the properties and methods of DeepSee.Study.Doctor, because the PrimaryCarePhysician property
is defined as follows:

Property PrimaryCarePhysician As DeepSee. St udy. Doct or;

Expand other folders and examine their contents. Compare what you see to what this section has discussed so far.

Open this class (DeepSee.Study.Patient) in Studio and compare the list of properties you see there to the list shown in
the Architect.

Notice that this class includes a property, DiagnosesAsChildren, that is not displayed in the Architect. This property is
defined as follows:

Rel ati onshi p Di agnosesAsChi |l dren As DeepSee. St udy. Pati ent Di agnosi s1
[Cardinality = children, Inverse = Patient];

You can use this property in DeepSee even though the Architect does not display it.

The following rules govern the display of a class in the Architect:

For a Bl-enabled class, all properties are shown except — for a parent-child relationship — the side that is marked
Cardinality = children.

This display is recursive; that is, properties of properties are shown.

If a property is a collection (a list, an array, or a relationship), it is shown as a folder that contains the properties and
methods of the collection.

If a property is of type %List (which is the object equivalent of $L1STBUIL D), it is not shown as a folder.
For example, see the DiagnosesAsLB property, which is included in this sample to illustrate this point.

If a property is a relationship, it is not shown as a folder.

For example, see the DiagnosesAsMany property, which is included in this sample to illustrate this point.
If a class is not accessible from the base class via cascading dot syntax, it is not shown by default.

For example, the Architect does not display DeepSee.Study.PatientDetails or DeepSee.Study.PatientEncounter by
default.

The Architect does not display properties and methods inherited from superclasses.

All dimensions, measures, and listing fields are based either on a source property or on a source expression (which is a
Caché ObjectScript expression) that can use properties of any class.

16

DeepSee Developer Tutorial

Creating a Basic DeepSee Model

Important: The Architect provides a useful view of the class properties, which makes it very easy to create DeepSee
elements based on those properties. It is important, however, to know that although this view provides a
convenient way to access some properties, you can also use a source expression to access any data,
including properties and methods of the superclasses. In some cases, you might need to use dynamic SQL.
These source expressions are evaluated when the indices are built and thus do not affect your runtime
performance. This tutorial demonstrates these points later.

3.2 Creating a Basic DeepSee Model

In this part of the tutorial, you create dimensions, measures, and a subject area, using DeepSee.Study.Patient as the base
class.

1. Access the Architect and open the class DeepSee.Study.Patient.

2. Click the pim tab, expand the folders, and double-click each of the following properties (or drag and drop them to the
Dimensions table):

¢ Age
e BirthDate
e Gender

e PatientGroup

e TestScore

e Within HomeCity, Name

e Within HomeCity, PostalCode

* Within PrimaryCarePhysician, DoctorGroup
e Within PrimaryCarePhysician, LastName

As you do this, the Architect defines a dimension based on each of these properties. When you are done, DeepSee
displays something like the following (your ID values might be different from this):

DeepSee Developer Tutorial 17

Creating a DeepSee Model

Dimensions

Sort By @ | ID e

1D | Dimension Name | Property | DataType | Active |
10001 Age Age Number
10002 BirthDate BirthDate Date
10003 Gender Gender Values
10004 FatientGroup FatientGroup Values
10005 TestScore TestScore Number
10006 DioctorGroup FPrimaryCarePhysician.DoctorGroup Values
10007 LastMame PrimaryCarePhysician.LastName Walues
10008 Name HomeCity.Name Walues
- | | o

The Test Scor e dimension is also a measure, because Data Type is Number. In fact, this is the process to define
measures: add a numeric dimension.

3. Now rename most of these dimensions, as follows:
a. Click the dimension in the table.
b. The tabs below the table now show details for this dimension.
c. Edit Dimension Name within the General tab.
d. Click update to save this change.
The buttons in the lower right apply to the currently selected dimension. If you do not save changes before

selecting another dimension, your changes to that dimension are discarded.

Use the following new names:

Old Name New Name

Bi rt hDat e Birth Date
Pat i ent Group Patient G oup
Nane Home Gty
Post al Code Home ZI P

Last Name Doct or

Test Scor e Test Score
Doct or G oup Doctor G oup

Do not forget to click Update after you modify a dimension.

Now DeepSee displays something like the following:

18 DeepSee Developer Tutorial

Creating a Basic DeepSee Model

Dimensions

Sort By

1D | Dimension Name | Property | DataType | Active |
10001 Age Age Number
10002 Birth Date BirthDate Date
10002 Gender Gender Values
10004 Patient Group PatientGroup Values
10005 Test Score TestScore Number
10006 Doctor Group PrimaryCarePhysician.DoctorGroup Values
10007 Doctor PrimaryCarePhysician.LastMame Walues
10008 Home City HomeCity.Name Walues
I S -

4. Double-click Age again in the DeepSee.Study.Patient folder. This step adds this property again to the table on the right.
Then make the following changes:
a. Rename the new item to Age Year .
b. On the General tab, change the type to values.
This step defines the new item as a dimension rather than as a measure.

¢. Click update to save this change.

5. Next we modify the definition of the Doct or dimension so that it uses both the first and last names. To do this:
a. Click Doct or in the Dimensions table.
b. On the General tab, type the following Caché ObjectScript expression into Complex Code:

% hi s. Pri maryCar ePhysician. FirstNane _" " _% hi s. Pri maryCar ePhysi ci an. Last Nane

Here, the variable %this represents the current patient. This code is executed when you build the DeepSee indices;
DeepSee iterates through the base class and builds the indices for each record in that class. When it does so, it
executes any expression in Complex Code and uses it to index that dimension.

c. Delete the string Pri mar yCar ePhysi ci an. Last Nanme contained in the second property field. This step is
optional but makes the definition less confusing to view.

d. Click Update to save this change.

The details for this dimension are now as follows:

DeepSee Developer Tutorial 19

Creating a DeepSee Model

General I Manual Child Browse I Translation/Replacement I Fanges I Script I SQL
Dimension Name goctar Listing Field :] Count P
Data Type Values Vl Transformation Type : | Mone
Froperty : DeepSee.Study.Patient
Link Property : Link To:

Cnﬁmlex Code : Sethis.PrimaryCarePhysician.Firstlame_" "_%this.PrimaryCarePhysician.LastName

6. Next, we define a subject area so that we can see these dimensions in the Analyzer. To do this:
a. Click the Subject tab.
b. In Subject Name, type the name Pat i ent s.

c. Onthe Role Access tab, click the check box next to the deno role.

Subject Details

Subject Name : Patients

Subject Filter

Access All Dim .? Active ?

Role Access | Drill Down | Dimension Access | Custom Agg

@m Default Detail Listing | Filter for Detail Listing
demo

d. Click Add.

7. Compile the base class and rebuild the DeepSee indices. To do so:

- o
Click the Process button in the menu bar.

b. Click Rebuild. This option recompiles and then rebuilds.

c. 1
Click the Close button ﬂ in the upper right to close this dialog box.

Tip: This dialog box is not always automatically refreshed when the compilation or rebuild status changes. To
refresh the display and see the current status, click Refresh.

8. Verify that you can access this model from the Analyzer. To do so:

a. Click Main > Analyzer.

Click the Browse button El in the Subject Area panel.

20 DeepSee Developer Tutorial

Creating a Basic DeepSee Model

Suhject Area |

c. Click Pati ent s and then click OK.

If Pat i ent s is not listed, make sure you gave access to this subject area to the deno role.

Now the Analyzer displays the following:

Subject Area

Patient=

[

..... D Age Year
- [TBirth Drate

..... D Home City
..... D Patient Group

[

..... D_ﬂ,ge

...... D Test Score

If you do not see these dimensions and measures, make sure that you have rebuilt the DeepSee indices.

Note: Unlike the other dimensions created here, the Doct or dimension can have a very large number of members,
depending on the size of your data set. In a real-world implementation, it is unlikely that you would create a
dimension at such a low level. This tutorial uses this dimension because it demonstrates a couple of key points.

3.2.1 Relationship of the DeepSee Model to the Class Definition

When you define a DeepSee model, the model definition is stored in globals and the details are visible only via the Architect.
When you compile the class, however, Caché uses the model definition and the class definition together and compiles both
into the same INT code. Caché uses the INT code to determine how to create the fact table and indices. For details, see
Overview of DeepSee.

DeepSee Developer Tutorial 21

Creating a DeepSee Model

3.3 Adding a Detall Listing to the Model

In this part of the tutorial, we add a simple detail listing. First we create listing fields and then we use them to create detail
listings.

There are two kinds of listing fields:

» Adimension-type listing field is a listing field whose definition is owned by a dimension definition. If you redefine or
delete the dimension, the listing field is automatically redefined or deleted as well.

The data used by the listing field is stored in a DeepSee global, which means that its performance is fast. This kind of
listing field, however, requires more disk space than the other kind.

* Anindependent listing field is a listing field that has an independent definition (not dependent on the definition of any
dimension).

For this kind of listing field, DeepSee does not access the data until the user displays the detail listing; then DeepSee
directly accesses the source data.

In this part of the tutorial, we will create both kinds of listing fields.

1. Atthe top of the page, click Data Modeler > Architect.

2.
Click the Open Class button [?__?

3. Click the DeepSee.Study.Patient class and then click OK.
4. Click the Dim tab.

In the Dimensions table, notice that the Listing check box is selected for the Age, Bi rt h Dat e, and Test Score
dimensions.

By default, when you create a date or numeric dimension, it is also created as a dimension-type listing field.

Click the Detail List tab and then click the Expand button ! next to Dimension Listing Field. This folder lists all the
dimension-type listing fields:

Available Fields
= = Dimension ListingFiald

- Dﬁge

6. Add Gender as another dimension-type listing field. To do so:
a. Click the Dim tab.
h. In the Dimensions table, click Gender .
c. Onthe General tab, click the Listing Field check box.

d. Click update to save this change.

To see this change, click the Detail List tab and then click the Expand button *l next to Dimension Listing Field.

22 DeepSee Developer Tutorial

Adding a Detail Listing to the Model

Available Fields
E||'j Cimension ListingField

i Y Age

...... D Birth Date

8. Add another listing field, Pat i ent | D, as an independent listing field. To do so:
a. Click the List Field Library tab.
The Listing Field table is initially empty.
b. Expand the class hierarchy on the left.
c. Double-click PatientiD. A new listing field is immediately added.

d. On the General tab below the Listing Field table, edit the value for Dimension Name (which specifies the name for
this listing field). Change the name to Pati ent | D.

e. Click Update in the lower right.

Now the table looks like this:

Fields Caption Data Type

Fatient ID FatientID Text

9. Now create a detail listing that includes all these listing fields.
a. Click the Detail List tab.
b. InListing Name, type Basi ¢ Det ai | s.
¢. InAvailable Fields, expand the two folders so that you can see all the available listing fields.

The Dimension Listing Field folder lists the dimension-type fields. The Listing Fields Library folder lists the inde-
pendent listing fields.

Available Fialds
|_:_||'i| Dimension ListingField

o Dhge

...... D Birth Date

..... D Gender

- D Test Score

...... D Allergy Count
B[ListingFields Library
.. Patient ID

DeepSee Developer Tutorial 23

Creating a DeepSee Model

f.
g.

Double-click each of the listing fields. When you double-click a field, it is added to the area on the right, which
lists the contents of this detail listing.

The order of the listing fields here controls the order of the fields in the actual detail listing. However, you can
add fields in any order and change the order later. To change the position of a listing field, right-click it and click
Move Up Or Move Down.

Click the Role Access tab.
On the Role Access tab, click the check box next to the deno role.

Click Add.

10. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

Tip: You can instead recompile in Studio and rebuild the indices in the Terminal. To rebuild the indices in the

Terminal, change to the SAMPLES namespace and execute the following command:

Do ##cl ass(DeepSee. St udy. Pati ent). H Rebui | d()

11. Verify that you can access this detail listing in the Analyzer. To do so:

a.
b.

Click Main > Analyzer.

The Pat i ent s subject area should be displayed from the last time you used the Analyzer. However, if it is not,

click the browse button E in the Subject Area panel. Then click Pat i ent s and then click oK.

Click Find in the upper right. The Analyzer then displays a pivot table that counts the records in this subject area.

It looks like this:

10,000

Right-click on the white cell and then click Listing to Screen.

If this option is not listed, make sure you gave access to this detail listing to the deno role. If correcting that does
not fix the problem, make sure that you recompiled and rebuilt.

DeepSee then displays something like the following:

basic details o
patentin __Tage Towthoate] Genderiestocore
SUBJ 100301 20 Oct 2007 F ~
SUBJ_ 1003202 4 14 Apr 2005 M 83
SUBJ_100303 T4 23 Aug 35 F 583
SUBJ_1003204 28 26 May 81 F

SUBJ_100305 40 09 Jul 69 ™ 84
SUBJ_100306 (=1 29 Apr432 F 82
SUBJ 100307 31 21 Jul 78 F =i |
SUBJ_1003Z208 ig 12 Jan 91 F S6
SUBJ_10030% Ja 28 Mar 29 F 86
SUBJ_100310 =11 31Jul 41 M = el
SUBJ_100311 74 132 Ot 35 F

SUBJ_100312 12 01 Feb 97 ™ 72

24

DeepSee Developer Tutorial

Validating the Dimensions

If you do not see a result similar to this, make sure that you recompiled and rebuilt.

3.4 Validating the Dimensions

This part of the tutorial shows you a simple way to validate the dimensions that you have created so far. In this part, we
use the Analyzer to determine how many records each dimension accesses.

1.
2.

Access the Analyzer and open the Pat i ent s subject area.

Notice the Filter pane in the lower left. This pane indicates the number of records currently in the subject area.

Filter Clear | Edit

10,000 100,

The first number (10000) indicates how many patients are in the subject area. The second number (100.00%) indicates
whether you have applied any filtering in the Analyzer. The value 100% means that you have not applied any filter.

In the toolbar, click the Autofind button ﬂ

The button changes to look like this: Ll
Now whenever you change the pivot table, the Analyzer immediately updates the display.
In the upper right, click the list for Grand and select Total.

The Analyzer now displays a simple pivot table that looks like this:

10,000

Double-click Age Year or drag and drop this dimension to the Rows pane.

The Analyzer then displays this dimension as rows, as follows; the details are different for you because the data gener-
ation is random.

(0

The pivot table contains more than one page of results.

Note: You can see that the years are sorted as if they are strings. It would be preferable to sort the years numerically.
A later chapter shows how to do this.

Click the Go to End button in the lower right:

DeepSee Developer Tutorial 25

Creating a DeepSee Model

9.

10.

11.

12.

| I |P'E|gel Df3|:-|:-|||

The Analyzer displays the following on the last page of results:

rgevaur_| comt

Grand Total 10,000

The value for Grand Tot al is the same as the total record count for the subject area. This result is correct.

Click the Clear button & in the upper right of the Rows pane. This removes the dimension you used from this pane
without otherwise changing the pivot table.

Click the Expand button *I next to Bi rt h Dat e in the Dimension pane.

Bl Birth Date

..... [Y Birth Date Day

..... D Birth Date Month

..... [Y Birth Date Pericod

..... D Birth Drate Quarter

..... D Birth Date Week

..... [§ Birth Date Week of Month
..... D Birth Date Weekday

..... D Birth Date Year

Double-click any dimension in this folder or drag and drop this dimension to the Rows pane.

The Analyzer then displays the following:

2072
2466
2458
2,504

Grand Total 10,000

The value for Grand Tot al is the same as the total record count for the subject area. This result is correct.

Click Clear button (& in the upper right of the Rows pane. This removes the dimension you used from this pane without
otherwise changing the pivot table.

Double-click Gender or drag and drop this dimension to the Rows pane.
The value for Grand Tot al is the same as the total record count for the subject area. This result is correct.
Repeat the preceding process for Home City, Hone ZI P, Pati ent G oup, and Doct or.

You will find that for Pat i ent Group, Doctor Group, and Doct or, the Grand Tot al is smaller than the total
record count for the subject area. This indicates that not all patients are assigned to a patient group, not all patients
have a recorded primary care physician, and not all doctors are assigned to a doctor group. We address these gaps in
a later part of the tutorial.

Ignore the Age and Test Scor e dimensions, which are for advanced use.

26

DeepSee Developer Tutorial

Using a Collection Property

3.5 Using a Collection Property

In DeepSee.Study.Patient, the Allergies property is a collection. This part of the tutorial shows you some ways to use such
properties in DeepSee:

1. Access the Architect and display the DeepSee.Study.Patient class.

Tip:

Every time you access the Architect, you must select the class to work with. Instead of switching continually
between the Architect and the Analyzer, however, you can open two browser tabs and use one for the Architect
and the other for the Analyzer. The tutorial does not describe this technique specifically, but it can be a conve-
nient way to work.

2. Add ameasure that contains the number of allergies that a patient has. To do so, we use the Allergies property, as follows:

Click New in the lower right.

For Dimension Name, use Al | er gy Count .
For Data Type, use Number.

For Complex Code, use the following expression:

% his.Allergies. Count()

This expression uses the Count() method of the Allergies property.
Click Add.

The new dimension is added to the table.

Click the Active check box in the row for the new measure.

Click update to save this change.

General I Manual Child Brovwse I Translation/Replacemeant I Ranges I Seript I SqQL |
Dimension Name Allergy Count Listing Field : Count Per Node :
Datz Type Number hd Transformation Type : | None ~
Property : DeepSee.Study.Patient

Link Property : Link To:

Code P ggthis.Allergies. Count()

3. Add a dimension that is based on the allergies that the patients have. This dimension will have one member for each
distinct allergy. To add this dimension, use the Manual Child Browse option as follows:

a.
b.

Click New in the lower right.

For Dimension Name, use Al | er gi es.
For Type, use Values.

Click the Manual Child Browse tab.
Type the following into Loop Coding:

for i=1:1:%his.Allergies.Count() do

Note: There must be two spaces before do and one space after it. There cannot be any line breaks after this.

DeepSee Developer Tutorial 27

Creating a DeepSee Model

This syntax controls how to iterate for a given patient, when building the index for this dimension. Specifically,
it loops through all the allergies for the patient.

Type the following into Each Fetch:

set val =% his. Allergies. GetAt(i).Al lergen.Description

This syntax gets the user-friendly allergen description and places it into the variable val. The variable name is
hardcoded; that is, DeepSee expects you to set this variable.

General I Manual Child Browse | Translation/Replacement | Ranges | Script | soL |
for i=1:11:%this.Allergies.Count) do

set val=%this.Allergies.Getat(i).Allergen.Description

Click Add.
The new dimension is added to the table.
Click the Active check box in the row for the new dimension.

Click update to save this change.

4. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

5.

Display the new Al | er gi es dimension as rows. Include the total line.

28

DeepSee Developer Tutorial

Adding Placeholders for Null Members

Because a patient can have multiple allergies, the grand total can be different from the total number of patients.

Some patients have no allergy data. That is, the Allergies property is null. These patients are filtered out of the pivot
table when you use the Al | er gi es dimension. There are several ways to address this issue; see next section for an
example.

The absence of allergy data is not the same as knowing that a patient has no known allergies. Medical information
systems often include a way to record that a patient has no known allergies. For example, the system might include an
“allergen” called ni | known al | er gi es. The user asks the patient whether he or she has any allergies, and if the
answer is “No,” the user selects the value ni | known al | er gi es. DeepSee does not assign any special meaning
to this string. The dimension treats this “allergen™ in the same way as any other allergen.

3.6 Adding Placeholders for Null Members

In an earlier part, we discovered that there are possible problems with the following dimensions:
e Patient G oup

e Doctor Goup

* Doctor

e Alergies

For all of these, a patient might have a null value for the data used by the dimension. This means that the dimension omits
that patient by default. This is correct behavior, but your users might prefer to see a placeholder member in the dimension.

DeepSee Developer Tutorial 29

Creating a DeepSee Model

The placeholder member would be used to collect all patients that have a null value for this dimension. The dimension
would not omit any patients.

This part of the tutorial shows several ways to address these cases.
1. Access the Architect and display the DeepSee.Study.Patient class.

2. Click the Pati ent G oup dimension in the dimension table. Because this dimension is based directly on a source
property, we can handle null values for it as follows:

a. Click the Translation/Replacement tab.
b. For Null Field Replacement, type None.

c. Click update to save this change.

3. Repeat the preceding set of steps for the Doct or G oup dimension.

4. Click the Doct or dimension in the dimension table. Because this dimension is based directly on a source expression
(that is, using Complex Code), that expression must detect and correctly handle null values.

a. Click the General tab.
b. Edit Complex Code as follows:

$CASE(% hi s. Pri mar yCar ePhysi ci an. Last Nare, "": "No Doctor",
1% hi s. PrimaryCarePhysician. FirstName_" "_% hi s. Pri maryCar ePhysi ci an. Last Nane)

Note: Do not include the line break that is shown here. This line break is included only for readability of the
documentation.

c. Click update to save this change.

| General I Manual Child Browse I Translation/Replacement I Ranges I Script I SQL |
Dimension Mame nocpar Listing Field D Count Per Node
Data Type alues hd Transformation Type : | Mone i
Property : DeepSee.Study.Patient
Link Property : Link To:

Complex Code : SCASE(%ethis.PrimaryCarePhysician.LastName,"":"No Doctor”, 1%this.PrimaryCarePhysician.Firstlame_" "_%
this.PrimaryCarePhysician.LastMame)

5. Forthe Al | er gi es dimension, we cannot use either of these techniques, which do not work with Manual Child Browse.

First, create a dimension that places patients into two groups: those with recorded allergies and those whose allergies
are null:

a. Create a new dimension as follows:
e Dimension Name: Al | ergi es Are Nul |
* Complex Code:

$SELECT(% hi s. Al | ergi es. Count () =0: "Yes", 1: "No")

This new dimension gives us an easy way to access the patients that have no recorded data for the Al | er gi es
property. We will use it as a building block to add a new member to the Al | er gi es dimension.

b. After you add the dimension, click the Active check box in the row for the new dimension and click Update to
save this change.

30 DeepSee Developer Tutorial

Adding Placeholders for Null Members

6. Inthe next step, we use this new dimension (Al | er gi es Are Nul |)toadd a placeholder membertothe Al | er gi es
dimension. (Yes, a dimension can use other dimensions.)

a. Click the Compound Member tab.
b. Click Add.
c. Enter the following details:
e Dimensions: Al | er gi es (This is the name of the dimension to which we are adding a member.)
e Condition Name: No | nf or mati on Avai | abl e (This is the name of the member that we are adding.)

» Dynamic: Clear this check box so that this dimension is indexed along with the others.

d. In the Filter area, add the following filter expression:

[Allergies Are Null = Yes]

On the Compound Member tab, the member definition now looks as follows:

Cimensions @ Allergies |:| Dynamic ?
Condition Hame : Me Infermaticon Available
itar Clear Edit

[allergies Are Null = Yas]

e. Click update to save this change.

7. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

8. Return to the Analyzer and display the Pat i ent G- oup dimension as rows as we did previously. You should now

Patient
Group

see something like the following:

4,046

3,969
1,985
Grand Total 10,000

9. Display the Doct or dimension as we did previously. Page down as needed. You should now see something like the
following:

DeepSee Developer Tutorial 31

Creating a DeepSee Model

Doctor
Neil O'Donnell

Meil Ragon

Mellie Hanson
Mellie Thringer
Mellie Olsen
Mellie Zucherro
No Doctor

Morbert Awvery

Also, the grand total should now be 10000.

19

21
29
29
16
19
35
24
1,546
28

10. Display the Al | er gi es dimension as rows. Include the grand total. Now you should see something like the following:

Allergies
Mo Information Available
additive /coloring agent

animal dander

bee stings

dairy products

nil known allergies

peanuts

shellfish

g

trea nuts
wheat

Grand Total

4,365

466
496
013
511
489
459
515
471
4849
509
483
o11
4562
o232
459
202

12,232

32

DeepSee Developer Tutorial

Using Ranges, Translations, and Transformations

Notice that the new member is included. Also notice that the grand total is greater than the number of patients, which
is expected now that this dimension is using all the patients.

3.7 Using Ranges, Translations, and Transformations

In this part of the tutorial, we use options that transform the original values for dimensions into other values:

1.
2.

Access the Architect and display the DeepSee.Study.Patient class.

Add another dimension that is based on the patient age but that uses ranges. The new dimension places patients into
ten-year buckets. To do so:

a.

Double-click Age again in the DeepSee.Study.Patient folder. This step adds this property again to the table on the
right.

Rename the new item to Age Bucket .

On the General tab, change the type to values.
Click the Ranges tab.

Right-click and then select Add Line.

Type data into the new line as follows:

| Caption | From __|inclusive [To______ [inclusive_
0-5 I:l 5

Add more lines, one to define each bucket. For the last bucket, use the caption of 80+

Click update to save this change.

| Caption | From __|inclusive | To | inclusive Ji
0-3 I:l 9

as follows:

10-19 10 19

20-25 20 25

30-35 20 35 ‘v‘

3. Add adimension, Age Group, that is similar to the preceding dimension but that places patients into larger groups
| Caption | From ____linclusive [To ______linclusive |

0-29 H 29
20-59 20 59
60+ &0]

4. Redefine the Gender dimension to use a transformation. This dimension is based on the following property:

Property Gender As %String(Dl SPLAYLI ST = ", Fenul e, Mal e", VALUELIST = ",F, M);

DeepSee Developer Tutorial 33

Creating a DeepSee Model

Currently the members of this dimension are F and M which are the values stored in the database (that is, the values
given by the VALUELIST parameter). We can redefine this dimension so that the members are Fenal e and Mal e,
that is, the values given by the DISPLAYLIST parameter. To do so:

a.
b.

Click Gender in the dimension table.

On the General tab, click Transformation Type and then click External Value. (External Value is a predefined
transformation provided by DeepSee.)

Click update to save this change.

Note: The values given by the VALUELIST and DISPLAYLIST parameters are sometimes referred to as the internal

value and the external value, respectively.

5. Redefine the Pat i ent G oup dimension to use a translation, as follows:

a.

b.

Click Pat i ent G oup in the dimension table.
Click the Translation/Replacement tab.
Right-click and select Add Line.

In the new, empty row, type A into Original Text.
Type G oup A.into Translate To.

Add another line to translate B into G oup B.

Click update to save this change.

| General | Manual Child Browse | Translation/Replacement

Original Text Translate To

A Group A
B Group B

6. Recompile the base class and rebuild the DeepSee indices, as in the previous part of this tutorial.

7. Return to the Analyzer and display the new Age Bucket dimension as rows. Include the total line. You should now
see something like the following:

Eacy
Bucket

40-49 1,485
10,000

34

DeepSee Developer Tutorial

Adding Measures in the Analyzer

If your grand total is not the same as the record count in your base class, be sure that you defined the ranges correctly.
8. Display the new Age Gr oup dimension as rows. Include the total line.

You should now see something like the following:

Z
4,156
4,164
a0+ 1,680

Grand Total 10,000

9. Display the Gender dimension as rows:

2,217

4,783

10. Display the Pat i ent Gr oup dimension as rows:

Froup
Group A 4,046

Group B 3,969

1,985

3.8 Adding Measures in the Analyzer

You define the base measures in the Architect, but you can define additional measures in the Analyzer. In particular, this
is how to define measures that are aggregated in ways other than by addition. In this part of the tutorial, we examine the
measures defined so far and we refine them.

' O
In the Analyzer, click the New button .

2. Inthe Measures panel, double-click Count , Age, Al | er gy Count, and Test Scor e and then click Find. The
Analyzer then displays the cumulative values for these four measures, across the entire subject area:

Count Allergy Test Score
Count
m 10,000 263434,.00 805500 592,066,00

The Count measure shows the count of records in the subject area; this measure name could be too generic for the
users.

DeepSee Developer Tutorial 35

Creating a DeepSee Model

The other measures are all aggregated by addition. For example, Age is the cumulative age for all patients in the subject
area. It would probably be more useful to have additional measures that show average values.

3. Right-click in the Measures panel on the left and click Add Measure. DeepSee then displays a dialog box where you
can define a new measure.

D [Age.Distinct]

D [&ge Bucket.Distinct]
D [Age Group.Distinct]
D [Age Year.Distinct]

D [&llergies.Distinct]

D [Allergies Null.Distinct]
D [Allergy Count.Distinct]
D [Birth Date.Distinct]

| Y [Birth Date Day.Distinct

JSAverage
Distinct

Max
Min Display Styla: ec. Place:

FirstDate

LastDate

4. Create anew Pati ent Count measure as follows:
a. For Metric Name, use Pat i ent Count .
b. Dragand drop [Count] from Measure to Formula.

Within a measure formula, the syntax [measur e nane] represents the value of a base measure. The formula
can use Caché ObjectScript syntax, in addition to DeepSee functions (discussed next).

c. Click oK.

5. Create the new Aver age Age measure as follows:
Right-click in the Measures panel and click Add Measure.

a
b. For Metric Name, use Aver age Age.

134

Drag and drop [Age] from Measure to Formula.
d. Dragand drop . Aver age from Functions to Formula.
The formula now is as follows:

[Age. Aver age]

36 DeepSee Developer Tutorial

Defining a Filtered Measure

6.

7.

e. For Dec. Place, enter 2.

f. Click oK.

Create the additional measures Aver age Al | ergy Count and Aver age Test Score.

When you drag and drop a measure into a pivot table, DeepSee copies the current definition of the measure into that
pivot table. This means that if you redefine the measure in the Measures panel (perhaps because you made an error),
the pivot table is not affected. This feature can cause a little extra work during development but does keep the pivot
table definitions stable.

Display the new measures, in the same way that we displayed the base measures:

Patient Average Averag Averag
P— A Allergy Test
a= Count Score

m 10,000 360.24 0.81 2921

By default, DeepSee measures consider all records, including nulls. A null value is treated as zero. So the Aver age Test
Scor e measure might need revision, because the lowest possible score on this test is 50. Some patients do have a null

value for the TestScore property, and the null scores are treated as 0. So the average test score is lower than it would be if
we excluded those patients. In the next section, we redefine the measure Aver age Test Scor e to correct that problem.

3.9 Defining a Filtered Measure

In this part of this tutorial, we redefine the measure Aver age Test Scor e so that it filters out the patients that have null
test scores.

1.

Use the Architect to create a dimension that places the patients into two groups: those with null test scores and those
with non-null test scores:

e Dimension Name: Test ed?
e DataType: Val ues
* Complex Code:

$SELECT(% hi s. Test Score="":"No", 1: "Yes")

After you add the dimension, click the Active check box in the row for the new dimension and click Update to save
this change.

Recompile the base class and rebuild the DeepSee indices.

Go to the Analyzer.

Redefine the Aver age Test Scor e as follows:

a. Right-click in the Measures panel and click Edit Measure.

b. Click Edit in the Filter area. Enter the following filter expression:

[Tested? = Yes]

c. Click oK.

DeepSee Developer Tutorial 37

Creating a DeepSee Model

Average Test Score

D [Count]

[[Age]

D [Allergy Count]
D [Birth Data]

[Test Score.Average]

D [Age.Distinct]

D [Age Bucket.Distinct]

D [Age Group.Distinct]

D [Age Year.Distinct]

D [Allergies.Distinct]

D [allergies Are Null.Distinct]
D [allergy Count.Distinct] [Tested? = Yes]
D [Birth Date.Distinct]

[% [Birth Date Day.Distinct

JSAverage

Distinct

Max

Min Display Style: Dec. Place:
.FirstDate 2
LastDate

g 0
In the Analyzer, click the New button .

7. Double-click the Test ed? dimension to display this dimension as rows.

8. Double-click the Test Score, Average Test Score, and Pati ent Count measures and then click Find.

Awverage -
Test Score Test SE
Count
SCore
0.00 2,015
592,110,00 74,19 7,981

The No row shows data for patients that do not have a test score, and the Yes row shows data for patients that do have
a test score.

In the No row, Test Scor e is 0, as expected. Also Aver age Test Scor e is null, which is correct.

38 DeepSee Developer Tutorial

Accessing Other Classes

3.10 Accessing Other Classes

The DeepSee Architect provides easy access to most of the properties within the Bl-enabled class, but we can use other
properties, as well, including properties of classes that you can access only via SQL. In this part of the tutorial, we access
the data in the DeepSee.Study.PatientDetails class from our base class.

1. In Studio, open the class DeepSee.Study.Utils.ForModel.
2. Look at the definition of the GetFavoriteColor () method, which is as follows:

Cl assMet hod Get FavoriteCol or(patientlD As %Btring) As %5tring
{

Set ReturnVal ue="No Data Avail abl e"
Set nyquery="SELECT FavoriteCol or AS ReturnVal ue FROM DeepSee_Study. PatientDetails "
_"WHERE Pati entDetails. PatientlD=?"
Set rset =##cl ass(%Resul t Set) . ¥0New(" ¥Dynam cQuery: SQL")
Set status=rset.Prepare(nyquery)
I f $$3$1 SERR(status) {Do $System Status.Di splayError(status) Wite "Prepare error"}
Set status=rset.Execute(patientlD)
If $$$I SERR(st atus) {Do $System Status. Di spl ayError(status) Wite "Execute error"}
Wil e rset. Next() {
Set ReturnVal ue=rset. Dat a(" Ret ur nVal ue")

}
Quit ReturnVal ue
}

This method does the following:
a. Usesthe Pati ent | Dproperty of a patient as input.
b. Uses an SQL query to access the patient's record in DeepSee.Study.PatientDetails and get the FavoriteColor field.

c. Returns the favorite color (if available) or the string " No Dat a Avai | abl e" if not.

Note: There is a normal (non-DeepSee) index on the PatientID field in DeepSee.Study.PatientDetails. This enables
the query to run more quickly than it would otherwise.

If your application does include tables that can be related most easily through SQL queries, as in this example,
you probably already have indices on the relevant fields. If not, you should add them.
3. Access the Architect and open the class DeepSee.Study.Patient.
4. Create a new dimension that invokes this method, as follows:
a. Set Dimension Name as Favorite Col or.
b. Specify Complex Code as follows:

##cl ass(DeepSee. Study. Utils. For Model). Get FavoriteCol or (% hi s. Pati ent| D)

This code is executed when you build the indices; see the notes about performance in the previous step.
5. After you add the dimension, click the Active check box in the row for the new dimension and click Update to save
this change.
6. Recompile the base class and rebuild the DeepSee indices.

7. Open the Analyzer and display the new dimension as rows. Include the grand total. Now you should see something
like the following:

DeepSee Developer Tutorial 39

Creating a DeepSee Model

 Fovorte otar_| Gt |

3.11 Model Summary

For reference, this section summarizes the model defined in this tutorial.

3.11.1 Dimensions

The model includes the following dimensions:

Age Bucket — Groups patients into ten-year age buckets. For example, a patient who is 17 years old is in the 10-19
bucket.

Each patient belongs to exactly one member of this dimension.

Age G oup — Groups patients into three buckets by age. For example, a patient who is 17 years old is in the 0-29
bucket.

Each patient belongs to exactly one member of this dimension.
Age Year — Groups patients into one-year age buckets.
Each patient belongs to exactly one member of this dimension.

Al | er gi es — Groups patients by allergy. A given patient can have any number of allergies and thus can belong to
any number of the members of this dimension.

This dimension includes the member No | nf or mati on Avai | abl e, which contains all patients with null allergy
data.

Al l ergies Are Nul | — Groups patients into two members. The member Yes contains all patients that have null
allergy data; the member No contains all the other patients. This dimension is used by the Al | er gi es dimension.

Bi rt h Dat e — Groups patients by birth date. This is a standard DeepSee date-type dimension. Each patient belongs
to exactly one member of each variation of this dimension. There are no nulls in this data.

Doct or — Groups patients by primary care physician.
This dimension includes the member No Doct or , which applies to any patient with no recorded primary care physician.

Each patient belongs to exactly one member of this dimension.

40

DeepSee Developer Tutorial

Model Summary

Note: Unlike the other dimensions, the Doct or dimension can have a very large number of members, depending
on the size of your data set. In a real-world implementation, it is unlikely that you would create a dimension
at such a low level. This tutorial uses this dimension because it provides a useful demonstration of Complex
Code.

Doct or Gr oup — Groups patients by the assigned group of the primary care physician.

This dimension includes the member None, which applies to any doctor who was not assigned to a doctor group.

Each patient belongs to exactly one member of this dimension.

Favorite Col or — Groups patients by favorite color.

This dimension includes the member No Dat a Avai | abl e, which applies to any patient with no recorded favorite
color.

Each patient belongs to exactly one member of this dimension.

Gender — Groups patients by gender. Each patient belongs to exactly one member of this dimension. There are no
nulls in this data.

Hone City — Groups patients by home city. Each patient belongs to exactly one member of this dimension. There
are no nulls in this data.

Home ZI P— Groups patients by home ZIP code. Each patient belongs to exactly one member of this dimension.
There are no nulls in this data.

Pati ent G oup — Groups patients by the assigned patient groups.
This dimension includes the member None, which applies to any patient who was not assigned to a patient group.
Each patient belongs to exactly one member of this dimension.

Test ed? — Groups patients into two members. The member No contains all patients that have a null test score; the
member Yes contains all the other patients. This dimension is used by the Aver age Test Scor e measure.

3.11.2 Measures

The model contains the following measures defined in the Architect:

Count — The default measure, this displays the number of patients. Also see Pat i ent Count .
Age — Displays the cumulative age of the patients.
Al |l ergy Count — Displays the cumulative count of allergies of the patients.

Test Scor e — Displays the cumulative test score of all patients.

The model contains the following measures defined in the Analyzer:

Aver age Age — Displays the average age of the patients.
Average Allergy Count — Displays the average allergy count, per patient, considering all patients.

Aver age Test Scor e — Displays the average test score, per patient, considering only the patients that have non-
null test scores.

Pati ent Count — Displays the number of patients.

3.11.3 Listing Fields

The model contains the following dimension-type listing fields:

DeepSee Developer Tutorial 41

Creating a DeepSee Model

e Allergy Count — Displays the number of allergies that the patient has.

* Age — Displays the age of the patient.

* Birth Dat e — Displays the birth date of the patient.

» Gender — Displays the gender of the patient.

 Test Score — Displays the test score of the patient.

The model also contains one independent listing field:

* Patient| D— Displays the ID of the patient.

3.11.4 Detail Lists

The model contains one detail list, named Basi ¢ Det ai | s, which contains all the listing fields. It is available to all roles.

3.12 Additional Exercises for the Reader

The preceding sections are meant to help you become familiar with the Architect and common tasks you perform there.
To continue the learning experience, create the following elements. Some of these are variations of the elements you have
already created; these variations are suggested to give you experience with different forms of data. Some elements are new.

Element Element Name Comments

Type

Dimension Al lergy Severities Use the same technique that we used for allergies.

Dimension Birth Date Ti meStanp Use the BirthDateTimeStamp property.

Dimension Birth Tine Display the birth time in hour buckets. Use the BirthTime
property.

Dimension Birth Time from Display the birth time in hour buckets. Use the

Ti meSt anp BirthDateTimeStamp property.

Dimension Di agnoses Use the Diagnoses property.

Dimension Di agnoses As Array Use the DiagnosesAsArray property.

Dimension Di agnoses As Children | Use the DiagnosesAsChildren property.

Dimension Di agnoses as LB Use the DiagnosesAsLB property.

Dimension Di agnoses as Many Use the DiagnosesAsMany property.

Dimension | ndustry Use the Industry property in DeepSee.Study.PatientDetails.

Dimension Pr of essi on Use the Profession property in DeepSee.Study.PatientDetails.

Measure M ni num Test Score Use the TestScore property. Display the lowest test score for
any set of patients. Note that the minimum possible score for
this test is 50.

Measure Maxi mum Test Score Use the TestScore property. Display the highest test score for
any set of patients.

42 DeepSee Developer Tutorial

Additional Exercises for the Reader

Element Element Name Comments

Type

Measure Encount er Count Display the number of encounters for any set of patients.

Measure Aver age Encounter Display the average encounter count per patient, for any set
Count of patients.

Note that by default, the sample does not include encounter data. To add encounter data, execute the following command
in the Terminal:

Do ##cl ass(DeepSee. St udy. Pati ent Encount er) . AddEncount er s()

DeepSee Developer Tutorial 43

Creating Pivot Tables

This chapter presents a tutorial in multiple parts:

1. Creating a basic pivot table

2. Using additional basic options

3. Specifying the sort order of members in a pivot table
4. Using options for ranking and nesting
5

Using advanced layout options

This tutorial uses the data from the previous chapter. However, you can adapt the steps as needed for your own data model.

4.1 Creating a Basic Pivot Table

Itis quick and easy to create pivot tables with the Analyzer, but there are many shortcuts and many variations. This section
demonstrates the basic steps.

1. Log into DeepSee as described earlier.
2. Click Main > Analyzer.

3.
Click the New button E

4. Select a subject area. The subject areas have already been defined; their purpose is to partition data for use by different
user roles.

To select a subject area:

Click the Browse button El in the Subject Area panel.

Subject Area

The system lists the subject areas that are available to you, according to the role you used when you logged in.

b. Click Pat i ent s and then click OK. The subject area is then shown in the Subject Area panel, and its contents are
now available within the Analyzer, in the panels on the left. These panels list the available dimensions, computations,
measures, and other elements in this subject area.

DeepSee Developer Tutorial 45

Creating Pivot Tables

The Pat i ent s subject area contains information about patients; it includes information such as their allergies,
primary care physicians, home city and ZIP code, favorite color, and so on. For an overview of these model elements,
see “Model Summary” in the preceding chapter.

In the toolbar, click the Autofind button m

The button changes to look like this: L]

Tip: If you do not enable autofind, you must click Find to display the pivot table, each time you redefine the pivot
table.

6. Now specify the measures to display in the pivot table. Measures are data that can be displayed in the body or main
area of the pivot table.

a. DragPatient Count from the Measures panel and drop it in the Metrics panel.

Patient
Count

As soon as you do, the pivot table is updated as follows:

10,000

b. Drag and drop Aver age Age as well. When you do, the pivot table is updated as follows:

Patient Average
Counk Age

10,000 26.34

Tip: Alternatively, you can double-click each measure, one at a time.

7. Specify how to break down the measures, which are currently aggregated across the entire subject area. For this
example, drag Home Ci t'y from the Dimension panel and drop it in the Row panel. When you do, the pivot table is

updated as follows:
Home Patient Avearage
City Count Age
Cedar Falls 1,127 36.24

Centerville 1,081 27.15

Cyprass 1,185 35.63
Elm Heights 1,088 35.41
1,104 37.20
1,073 26.54
1,115 36.27
1,126 36.28
1,091 36,24

Each city is shown in a separate row. A dimension contains members, so the cities are members of the Home City
dimension. The pivot table shows separate data for each member of this dimension.

46 DeepSee Developer Tutorial

Additional Basic Options

8.

Save the pivot table and give it a name. Here, we are saving the underlying query that retrieves the data, along with
the information needed to display it the way you chose. We are not saving the data.

To save the pivot table:

" 5
Click the Save button L= and then click Save Pivot.

b. For Name, type Count and Age by City.

c. For Notes, optionally type any notes.

Click the Browse button El next to Folder and select a folder such as Default. Then click OK.

e. Click oK to accept the name.

f. Click oK on the confirmation dialog box.

You have successfully created a reusable pivot table that you can include in your applications. Later, when you create

dashboards, you can insert this pivot table, place it, and resize it as needed. When the pivot table runs, it retrieves the
current data as instructed by the query.

It is worthwhile to develop a formal understanding of what you are viewing. Compare the pivot table with the options
you used.

Row * X | Column ¥ | Metrics* ¥ &
H-[jHome City L.[4 Patient Count
D Average Age

Note the following points:
» The green cells display labels, and the white (and off-white) cells display data.
e The measures (Pati ent Count and Aver age Age) are displayed as columns.

To understand the contents of a given data cell, use the information given by the corresponding labels. For example,
consider the cell in the Cedar Fal | s row, inthe Pati ent Count column. This cell displays the total number
of patients whose home city is Cedar Falls.

Similarly, consider the Aver age Age column for the Cedar Fal | s row. This cell displays the average age of
patients whose home city is Cedar Falls.

» Datacells display aggregate data, and the aggregation can be performed in different ways. For Pat i ent Count,
DeepSee sums the numbers. For Aver age Age, DeepSee averages the numbers. Other aggregations are possible.

4.2 Additional Basic Options

In this part of the tutorial, we explore additional basic options:

1.

2.

In the Analyzer, click the New button Ij .

If autofind is not enabled, enable it.

DeepSee Developer Tutorial 47

Creating Pivot Tables

button Meaning
.lm Autofind is enabled.
ﬂ Autofind is disabled.

3. DragPati ent Count from the Measures panel and drop it in the Metrics panel.

4. Click the Expand button *l nextto Bi rt h Dat e. This expands the folder to show the birth date variations (for any
date-type dimension, the Dimension panel displays a collapsible folder containing multiple variants).

B Birth Date
..... D Birth Date Day

..... D Birth Date Month

..... D Birth Drate Period

..... D Birth Date Quarter

..... D Birth Drate wWeeak

..... D Birth Date Week of Month
..... D Birth Date Weekday

..... D Birth Date vear

5. DragBirth Date Year tothe Row panel. DeepSee updates the pivot table as follows:

Birth
Date
Year

Patient

Count

15
15
14

g

3
10
10
10
16
10

i3
6. Notice that this pivot table spans multiple pages. The lower right of the page shows buttons that you can use to move
from page to page:

Fage 1 of 2| = :l-—||

48 DeepSee Developer Tutorial

Additional Basic Options

7.

10.

11.

Now drag Gender to the Column panel. DeepSee updates the pivot table as follows:

=] 4

Year
4000

o =

Compare this pivot table to the previous one. Because we added Gender to the columns, the patient count is now
broken out and grouped by the patient gender. That is, the Femal e > Pati ent Count column shows the count of
female patients, and the Mal e > Pati ent Count column shows the count of male patients. As before, each row
shows the number of patients born in a given year.

Also notice that the numbers in this pivot table agree (as they should) with the numbers in the previous pivot table.
For example, the previous pivot table indicated that 15 patients were born in 1910. This pivot table tells us that all 15
of those are female.

Save this pivot table, using the name Pati ent Counts by Birth Year and Gender.

Let us create another variation. Right-click in the Row panel or the Column panel and then click Swap between Row
and Column. As soon as you do, the pivot options are changed, and the pivot table is immediately updated.

Patient Patient Patient Patient Patient Patient Patie
Count Count Count Count Cou
15 14

2 3 10

Gender

Count Count

15

This pivot table displays the same data as the previous one, but has the dimensions reversed. Notice that the measures
are still displayed as columns.

Let us create a pivot table that uses multiple dimensions as a row or column:

a.
Click the New button E

b. Drag Age G oup to the Row panel.

c. Drag Age Bucket to the Row panel.

DeepSee Developer Tutorial 49

Creating Pivot Tables

d. Drag Gender to the Column panel.

e. DragPatient Count and Average Al |l ergy Count to the Metrics panel.

The pivot table looks like the following:

Patient
Count

m 661 0.79 688 0.79
- 705 0.85 728 0.80
m 692 0.83 o882 0.82
m 200 076 776 0.82
40-49 728 021 757 076
m S68 0.77 325 0.80
- 389 0.89 308 0.84
- 268 0.77 261 0.77
a0+ 235 0.86 119 0.80

12. Compare this pivot table with the options that define it.

-[[T)Age Group H-[Eender | e

- [T)fae Bucket

Notice the following:
* The age groups and age buckets are shown as rows.
» Because the Age G oup dimension is listed first, the age groups are the outer row dimension.
» Because Gender is used as columns, this pivot table contains an outer column for each gender.
e The measures are shown as data columns, within each gender.
You can include any number of dimensions in the Row panel and any number of dimensions in the Column panel. The
results are analogous to this example.
13. Save this pivot table, using the name Age Groups and Bucket s.

14. Letus consider how the order of dimensions affects a pivot table. In the Row panel, right-click Age Bucket and click
Move Up. As soon as you do, the pivot table is updated as follows:

50 DeepSee Developer Tutorial

Additional Basic Options

s
Ja]
Li:]

i Age
Bucket Group

O BN

=]
I

=)
(=]
+
(=]
(=]
+

800
728
268
389
268
233

0.79
0.85
0.83
076
0.281
0.77
0.89
0.77
0.86

776
757
230
308
261
119

073
0.80
0.82
0.82
076
0.80
0.84
077
0.80

15. Notice that this pivot table shows the same numbers as the previous, but the rows are now organized differently. Because
Age Bucket is now the first dimension used in Row, it is the outermost grouping. Age Gr oup is the next dimension

and is included within Age Bucket .

16. Now we create a pivot table that includes summary lines (totals and subtotals):

a.
Click the New button E

b. Drag Age G oup to the Row panel.
c. Drag Age Bucket to the Row panel.

d. Drag Gender to the Column panel.

e. DragPatient Count to the Metrics panel.

The pivot table now looks like this:

Age
Group

2
:

Age
Bucket

a0+

Patient Patient
Count Count

651
705
652
a00
728
568
289
268
233

Baa
728
=14
776
7o7
535
208
261
113

DeepSee Developer Tutorial

51

Creating Pivot Tables

f. In the upper right, click the drop-down list for Grand and then click Total.

ol 12 v [Find

g. Click the drop-down list for Sub and then click Total.

Total | v Find

Now the pivot table includes both subtotals and the grand total, and it looks like the following:

| | |remele | male
Group Bucket Count Count
m 661 688
- 705 el
m 632 a82
2,058 2,098
m 800 77e
40-49 728 757
m 568 535
2,058 2,068
z85 308
268 261
a0+ 235 119

Sub Total S92 a88

u
=
e
Li}]

Grand Total

4,854

17. Save this pivot table, using the name Exanpl e wi th Summari es.

In this tutorial, we enabled the autofind option so that the pivot table was redisplayed each time we made a design change.
With a large data set, however, it can be impractical to constantly redisplay the pivot table. Thus the autofind option is
disabled by default.

4.3 Specifying the Sort Order

One of the most common requirements is to control the order in which the members of a dimension are sorted. For any
dimension, the default sort order is ascending sort, treating the member names as strings.

This section shows a couple of ways to control the sort order. Note that the sort order affects both the pivot table and the
corresponding chart (not discussed in this tutorial).

1.
Click the New button E

52 DeepSee Developer Tutorial

Specifying the Sort Order

2. If autofind is not enabled, enable it, as described in the preceding section.
3. DragPati ent Count to the Metrics panel.
4. Drag Age Year to the Row panel.

The pivot table now looks like this:

Patient
Count

123
141
149
159
169

1927

%

6. Right-click All Condition and then select Edit Condition.
DeepSee then displays a dialog box where you can customize this dimension, as it appears in this pivot table.

7. For Sorting, select Numeric Ascending. Do not make any other changes in this dialog box.

Year

129

8. Click oK.

The pivot table now looks as follows:

150
140
140

The change you made applies only to the current pivot table.
9. Optionally save this pivot table.
Now we look at another pivot table, and we specify sorting in a different way.

10.
Click the New button E

DeepSee Developer Tutorial 53

Creating Pivot Tables

11. Drag Pati ent Count to the Metrics panel.
12. Drag Favorite Col or tothe Row panel.

The pivot table now looks like this:

Count

You might prefer to see the member No Dat a Avai | abl e at the top or the bottom.

13. Click the Expand button ! next to the Favori t e Col or dimension in the Row panel.

14. Right-click All Condition and then select Edit Condition.

DeepSee then displays a dialog box where you can customize this dimension, as it appears in this pivot table. The
upper area of this dialog box includes a list of the members on the left:

| caption Name s F=vorit= Color Original . e

Blue

Green

No Data Available
Crange

Purple

Red

Yellow

15. Click select All, which moves all members from the left list to the empty list on the right.

16. In the right list, click the member No Dat a Avai | abl e and then click the up arrow button repeatedly to move this
member to the start of the list.

Ignore the Sorting option that is shown beneath this list; it has no effect when you select members.
17. Click oK.
The change you made applies only to the current pivot table.

Now the pivot table appears as follows:

54 DeepSee Developer Tutorial

Using Ranking and Nesting Options

Fawvorite Color

Patient
Count

Mo Data Awvailable 2,287

1,253
1,220
1,226
1,215
1,325

1,260

18. Optionally save this pivot table.

4.4 Using Ranking and Nesting Options

In many cases, you are interested in the details of only the top-ranked or bottom-ranked members. For example, you might
be interested only in the top-selling products or the departments with the slowest response times. This section of the tutorial
shows how you can easily perform such ranking.

1.
Click the New button E

2. If autofind is not enabled, enable it, as described in the preceding section.
3. DragPatient Count to the Metrics panel.
4. Drag Al | er gi es to the Row panel.

The pivot table now looks like this:

. Patient

Mo Information Awvailable 4432

additive, coloring agent 492
animal dander 478
Si4
bee stings 483
dairy products 482
497

5. Inthe upper right, click the Rank : Top # link. DeepSee then displays the following dialog box:

DeepSee Developer Tutorial 55

Creating Pivot Tables

Top @ Bottom {:}

Number of rows to be displayed

Ranking based on column :

Rank by column title :

Remain's Classification :

6. For Number of rows to be displayed, type 4.
7. For Ranking based on column, type 1.
8. Click oK.

The pivot table now looks like this:

Allergies

Patient
Count

Mo Information Available 4,432

S14
497
494

Others 6,101

9. Save this pivot table, using the name Top Al | er gi es.
Now we will use this pivot table within another pivot table to create a more complex layout.

10.
Click the New button E

11. Drag and drop Age G oup to the Row panel.

Group
1,560

12.
Click the Link Report button EL

DeepSee displays a dialog box that has multiple tabs.

56 DeepSee Developer Tutorial

Using Ranking and Nesting Options

13. Click the Nested Report tab.
14. Right-click in the empty area of this tab and then click Add Line.
DeepSee displays another dialog box, containing a list of folders.

15. Click the Expand button I next to the Default folder to expand it.

16. Click the Top Al | er gi es pivot table and then click OK to select it.

Column Link *MNested Report

Pivot | ParentRowLabel

[10017] Top Allergies

17. Click oK to close the dialog box.

18. Save this pivot table, using the name Top Al |l ergi es by Age G oup.

19.
Click the Open Pivot Table button & clickthe Top Al l ergi es by Age G oup pivot table, and then click OK.

DeepSee then displays the pivot table as follows:

DeepSee Developer Tutorial 57

Creating Pivot Tables

Top Allergies by Age Group

207
o

o

4.5 Using Advanced Layout Options

In this part of the tutorial, we improve the previous pivot table by removing the No | nf or mat i on Avai | abl e member
from the age groups and placing it after them instead.

1. First, we redefine the Top Al | er gi es pivot table to filter out null allergies:

a.
Click the Open Pivot Table button Eﬁ click the Top Al | er gi es pivot table, and then click oK.

b. Click Edit in the Filter panel in the lower left.
c. Double-click Al I ergi es Are Nul | inthe Dimension list.
d. Double-click the No member.

This generates a filter expression as follows:

[Allergies Are Null = Noj

e. Click ok.
f. In the upper right, click the Rank : Top 4 link.

For Number of rows to be displayed, change the value to 3.

5 e

Click oK.

58 DeepSee Developer Tutorial

Using Advanced Layout Options

i. Save your changes.

This pivot table now looks like the following:

Top Allergies

. Patient

S14

497
494

Others 6,101

2. Now reopenthe Top Al l ergi es by Age G oup pivot table. Now it looks like this:

Top Allergies by Age Group

e Allergies Patient
Group = Count

229

kY
/s]
1]

g_ (=
T
m

2149

additive/coloring agent 214
Others 2,368
nil known allergies 213
211

207

2,001

a1
i 85
60+
bee stings 81
Others 937

Now we want to add a row that looks like this:

| All Ages | No Information Awvailable 4,432

To add this row, we will define another pivot table and append to the end of the first one.

3. Define a new pivot table as follows:

a.
Click the New button E

b. Drag and drop Age G oup to the Row panel.

DeepSee Developer Tutorial 59

Creating Pivot Tables

c. Draganddrop Al | ergi es to the Row panel.

d- Click the Expand button *l next to Age Gr oup.
e. Right-click All condition and then click Edit Condition.
f. In Compound Name, in the bottom area of the dialog box, specify Al | Ages.
In this step and the next step, we define a custom member of this dimension. This member will select all data.
g. For compound Query, type the following filter expression, which uses a wildcard:

[Age Group ?= *]

h. Click Add Compound.

This step places the new custom member in the list in the upper right, which means that DeepSee will display only
this member.

i. Click ok.

Now this pivot table looks as follows:

Now we need to filter out the records that have non-null allergy data.
j- Click Edit in the Filter panel in the lower left.
k. Double-click Al | ergi es Are Nul |l inthe Dimension list.

. Double-click the Yes member.

60 DeepSee Developer Tutorial

Using Advanced Layout Options

This generates a filter expression as follows:

[Allergies Are Null = Yes]

m. Click ok.

n. Save this pivot table, using the name Al Il Age Groups - No Allergy Data

This new pivot table looks as follows:

No Information Awvailable

All Ages

4. Now reopen the Top Al l ergi es by Age G oup pivot table, which currently looks like this:

Top Allergies by Age Group

additive/ coloring agent

nil known allergies

Age _ Patient
Group

Click the Link Report button E-L

DeepSee displays a dialog box that has multiple tabs.

6. Click the union tab.

7. Right-click in the empty area of this tab and then click Add Line.
DeepSee displays another dialog box, containing a list of folders.

8. Click the Expand button = next to the Default folder to expand it.

Age _
Group

4432

229
2149
214
2,568
213
211
207
25351
91
85
g1
937

9. Clickthe All Age Groups - No Allergy Data pivot table and click oK.

10. Click Match Column and then click oK.

11. Click Find.

DeepSee Developer Tutorial

61

Creating Pivot Tables

The pivot table now looks like this:

Top Allergies by Age Group

EErNN -
8
o

12. Save the pivot table.

4.6 Summary of Pivot Tables

In this part of the tutorial, we created the following pivot tables:
e Count and Age by City

e Patient Counts by Birth Year and Gender

e Exanple with Summaries

e Top Allergies

* Al Age Goups - No Allergy Data

e Top Allergies by Age G oup

62 DeepSee Developer Tutorial

Creating KPIs

A key performance indicator (KPI) is an aggregate value that you can display on its own in a speedometer or label on a
dashboard. KPIs are based directly on measures or on formulas that combine measures.

This part of the tutorial shows you how to create KPIs. It includes the following sections:
1. Creating simple KPIs
2. Creating a string KPI

In the next part of the tutorial, we use these KPIs on a dashboard.

5.1 Creating Simple KPIs

In this part of the tutorial, we create a couple of simple KPlIs:
1. Log into DeepSee as described earlier in this book.

2. Click Main > KPI Setup. DeepSee displays a page like the following:

KPI List Recent . .
S eIGEE L Key Performance Indicator Detail

B-IC0 [15] Help

B0 [2] Library Name : Active ?
LT [25] SMS Folder : Default]
Minimum : Maximum :
Query I Formula I value Range I Child I Static I Test Run

3. Add a KPI as follows:
a. For Name, type Aver age Al l ergy Count.
b. For Subject Area, select the Pat i ent s subject area.
c. [For Measure, select the Aver age Al | er gy Count measure.

d. Click Add.

DeepSee Developer Tutorial 63

Creating KPIs

e. Click oK.

DeepSee creates the KPI. In the left area of the page, DeepSee displays the new KPI within the Default folder, as follows:

KPI List
B~ [1] Default
ISR 10002] Avers
E-IC [13] Help
jfl [2] Library
[[25] SMS

The number shown in square brackets is the 1D of the KPI; make a note of this for future use.
4. Click New.
5. Add another KPI as follows:

a. For Name, type Aver age Age.

> - e
For Folder, click the Browse button and then click the Default folder.

c. For Subject Area, select the Pat i ent s subject area.
d. For Measure, select the Aver age Age measure.

e. Click Add.

f. Click OK.

g. Make a note of the ID of the KPI that you just added.

5.2 Creating a String-type KPI

Measures and KPIs can contain string or date values, instead of numeric values. A string KPI can be a useful form of
aggregate data.

For example, suppose that we are interested in the average age of the patients, and we want to convert that number to a
string and display that in a label on the dashboard.

1. First, we must create a suitable measure. To do so:
a. Access the Analyzer.
b. Inthe Measures panel, right-click and select Add Measure.
c. For Metric Name, type Aver age Age (string).
d. For Formula, type the following:

$SELECT([Age. Aver age] <21: " Yout hs", [Age. Aver age] <55: " Adul ts", 1: " Seni ors")

e. For Display Style, select String.

f. Click oK.

64 DeepSee Developer Tutorial

Creating a String-type KPI

2. Test this measure in the Analyzer to ensure that it does display strings. To do so, create a pivot table that uses the
measure. For example:

Youths

Adults

Seniors

3. Click Main > KPI Setup.

4. Add a KPI as follows:

a.

b.

For Name, type Aver age Age (string).

For Subject Area, select the Pat i ent s subject area.

For Measure, select the Aver age Age (string) measure.
Click Add.

Click oK.

Make a note of the ID of the KPI that you just added.

DeepSee Developer Tutorial

65

Creating Dashboards

This part of the tutorial shows you how to create dashboards. It includes the following sections:
1. Creating a simple dashboard with a filter

2. Adding a speedometer that displays a KPI

3. Creating a dashboard with multiple filters

4. Adding a label that displays a string KPI

6.1 Creating a Simple Dashboard with a Filter

In the first part of the tutorial, we create a simple dashboard that contains a pivot table and a drop-down list (called a combo
box) that filters it.

1. Log into DeepSee as described earlier in this book.
2. Click Main > Open Dashboard and then click New.

DeepSee displays a dialog box where you specify the basic properties of the new dashboard.
3. Inthis dialog box, specify the following basic information:

» For Board Name, type the name of this dashboard: Dashboard Test 1.

For Folder, click the Browse button IZ' and select the Default folder.

4. Click oK.
DeepSee then displays the dashboard in edit mode.
5. Add a pivot table to this dashboard as follows:

Click the Add Pivot Table button LT,
b. Inthe List Of Pivot Section, expand folders as needed and click the Count and Age by Gty pivot table
c. Click ok.

The pivot table is added in the upper left corner of the dashboard.
d. Drag and drop the pivot table to the desired location.

DeepSee Developer Tutorial 67

Creating Dashboards

e. Resize the pivot table as needed.

6. Add a combo box to this dashboard as follows:
" Click the Add Combo Box button .
b . [] o _ . . o
Or Subject Area, click the Browse button , click the Pat i ent s subject area, and click OK. The dimensions
in this subject area are then displayed within Dimensions.
c. For Dimensions, double-click the Honme ZI P dimension.
DeepSee updates the right area as follows:
Selected
Subject Area Patients
Cimensicn Home ZIFP
d. Click oK.
The combo box is added in the upper left corner of the dashboard.
e. Drag and drop the combo box to the desired location.
f. Resize the combo box as needed.
7. Add a label as follows:
a.
Click the Add Label button HL£4.
b. For Normal Display, type Pati ent ZI P Code:
c. Click Font.
d. For Font Style, click Bold.
e. For Font Size, click 12.
f. Click oK to accept the font changes.
g. Click ok.
The label is added in the upper left corner of the dashboard.
h. Drag and drop the label to the desired location.
i. Resize the label as needed.
8. Create a filter link between the combo box and the pivot table, as follows:
a. Right-click the combo box and then click Set as Filter.
b. Right-click the pivot table and then click Apply Filter to this object. When you do so, a blue line is drawn between
the two elements.
9. Create a refresh link between the combo box and the pivot table, as follows:
a. Right-click the combo box and then click Set as Refresh Trigger.
b. Right-click the pivot table and then click Set as Refresh Target. When you do so, a gray line is drawn between the
two elements. The line is very close to the blue line and might be difficult to see.
68 DeepSee Developer Tutorial

Creating a Simple Dashboard with a Filter

10.

11.
12.
13.
14.

15.

16.

ComboBox

" Patient Z1

* |Pivot table - [10002]Count and Age by City

Look for the Object Properties dialog box, which looks like this:

o 49
- 101
Lize

Width: 165
Height: 23

If this dialog box is not currently displayed, click the Show Object Properties Box button ﬁ in the right side of the
toolbar.

Click the label and make a note of its position.
Click the combo box. Then edit its y-position to be the same as the label.

Click the pivot table. Then edit its x-position to be the same as the label.

| |
Click the Save Dashboard button . Then click oK.

Click the Close button ﬂ in the upper right of the Designer.
DeepSee displays the new dashboard in view mode.

Refresh the browser window.

DeepSee displays something like this:

DeepSee Developer Tutorial 69

Creating Dashboards

Patient ZIP Code: | v

B v
City Count Age

1,127 36,24
1,081 37.15
1,185 35.63
1,088 3541
1,104 37.20
1,073 36,54
m 1,115 36,27 "

Test the dashboard by selecting a ZIP code from the combo box. The pivot table should be filtered and refreshed immediately
to show only data associated with that member:

Patient ZIP Code: EXSZANNN |

- Lavel n of O -

Home Patient Average
i t:r Count Age

C\rpress 1,185 35.63

Magnolia 1,073 36.54
1,115 35,27

6.2 Displaying a KPl in a Speedometer

In this part of the tutorial, we edit the previous dashboard to display a KPI in a speedometer.
1. Right-click and then click Edit Dashboard.
2. Add a speedometer to this dashboard as follows:

a Click the Add Speedometer button !

b. For Caption, type Aver age Al l ergy Count.

c.
For KPI Override Setting, click the Browse button El expand folders as needed, and click the Aver age
Al l ergy Count KPI.

d. Click oK.

70 DeepSee Developer Tutorial

Displaying a KPI in a Speedometer

The speedometer is added in the upper left corner of the dashboard.
e. Drag and drop the speedometer to the desired location.

f. Resize the speedometer as needed.

3. Create afilter link between the combo box and the speedometer, as follows:
a. Right-click the combo box and then click Set as Filter.
b. Right-click the speedometer and then click Apply Filter to this object. When you do so, a blue line is drawn between
the two elements.
4. Create a refresh link between the combo box and the speedometer, as follows:
a. Right-click the combo box and then click Set as Refresh Trigger.
b. Right-click the speedometer and then click Set as Refresh Target. When you do so, a gray line is drawn between

the two elements.

5. Rearrange the other dashboard elements if needed.

| |
Click the Save Dashboard button . Then click OK.

Click the Close button a in the upper right of the Designer.
DeepSee displays the new dashboard in view mode.

8. Refresh the browser window.

Now your dashboard might look like this:

DeepSee Developer Tutorial 71

Creating Dashboards

fiyerage Allergy Count

O/l 1[7](8]

Patient ZIP Code:

Count and Age by City

Home Patient
City Count

Redwood

1,185
1,146
1,072
1,076
1,088
1,135
1,089
1,102

1,107

Average
Age

25.82
356,635
25.56
37.70
35.16
34,58
26,74
25,10

35.89

When you choose an item from the combo box, the pivot table and the speedometer should both be automatically filtered

and refreshed. For example:

72

DeepSee Developer Tutorial

Adding Multiple Filters

foserage Allergy Count

Patient ZIP Code: [z2006 o4

Count and Age by City

Home Patient Average
City Count Age

Juniper 1,088 35.16

6.3 Adding Multiple Filters

In this part of the tutorial, we create a slightly more complex dashboard that contains multiple combo boxes. Instead of
including refresh links between these combo boxes and the pivot table, we add a button and use that as the refresh trigger.

1. Right-click and then click New Dashboard > Blank.
2. Inthe dialog box, specify the following basic information:

» For Board Name, type the name of this dashboard: Dashboard Test 2.

For Folder, click the Browse button |I| and select the Default folder.

3. Click oK.
DeepSee then displays the dashboard in edit mode.
4. Addthe Count and Age by City pivot table to this dashboard as you did in the previous part of the tutorial.

5. Add a combo box to this dashboard, as you did in the previous part of the tutorial. For this combo box, use the
dimension Age G oup.

6. Add a second combo box as follows:
a. Right-click the first combo box and then click Duplicate. The copy is placed directly on top of the original.
b. Drag and drop the copy.

c. Double-click the copy, which displays a dialog box of its properties.

DeepSee Developer Tutorial 73

Creating Dashboards

10.

11.

12.

13.

d. Inthis dialog box, double-click a different dimension. In this case, use the dimension Favorite Col or.

e. Click oK.

For each combo box, add a filter link between that combo box and the pivot table, as follows:

a. Right-click the combo box and then click Set as Filter.

b. Right-click the pivot table and then click Apply Filter to this object. When you do so, a blue line is drawn between

the two elements.

Optionally add labels above or next to the combo boxes.

Add a button to this dashboard as follows:

a. Click Add Button ks,
b. For Normal Display, type Fi nd
c. Click ok.
The button is added in the upper left corner of the dashboard.
d. Drag and drop the button to the desired location.

Create a refresh link between the button and the pivot table, as follows:

a. Right-click the button and then click Set as Refresh Trigger.

b. Right-click the pivot table and then click Set as Refresh Target. When you do so, a gray line is drawn between the

two elements.

The result looks like the following:

ComboBox = ComboBox

Find

" .

Pivot table - [10009] Count and Age by City

| |
Click the Save Dashboard Button . Then click OK.

Click the Close button ﬂ in the upper right of the Designer.
DeepSee displays the new dashboard in view mode.

Refresh the browser window.

Depending upon your data, your data model, and your pivot table, DeepSee displays something like this:

74

DeepSee Developer Tutorial

Displaying a KPI in a Label

Count and Age by City

City Count Age
1,185 35.82
1,145 36.65
1,072 33.096
1,076 37.70
1,088 35.16
1,135 34,98
m 1,089 36,74
1,102 35.10
m 1,107 35.89

Test the new dashboard by clicking options from the drop-down lists. Notice that the pivot table is not refreshed until you
click Find.

6.4 Displaying a KPl in a Label

In this part of the tutorial, we edit the previous dashboard to display a string KPI in a label.

1.
2.

Right-click and then click Edit Dashboard.

Click the Add Label button B4
DeepSee displays a dialog box in which you specify the details.
For Normal Display, type the following:

$$KPI (10003)

For 10003, substitute the ID of the Aver age Age (string) KPI that you created earlier.

Click oK.
The label is added in the upper left corner of the dashboard.
Add filter links between each combo box and the new label.

Add a refresh link between the button and the new label.

| |
Click the Save Dashboard button . Then click OK.

Click the Close button H in the upper right of the Designer.

DeepSee Developer Tutorial

75

Creating Dashboards

DeepSee displays the new dashboard in view mode.

9. Refresh the browser window.

Now your dashboard might look like this:

Adults

Count and Age by City

City Count Age
1,185 35.82
1,146 36.65
1,072 35.56

1,076 37.70
1,088 35.16
1,135 24.98
1,089 36.74
1,102 23.10
1,107 30,89

When you select items from the combo boxes and then click Find, DeepSee updates both the pivot table and the label. For
example:

Seniors

60+ v| |Blue vl Find |

Count and Age by City

Home Patient Average
City Count Age
Cedar Falls 27 69,23

Centervilla 27 71.63
33| 7145

76 DeepSee Developer Tutorial

Using Multiple Subject Areas Together

For simplicity, this book has assumed so far that you are creating and using only a single subject area. However, it is often
convenient or even necessary to create and use multiple subject areas in combination. This chapter discusses the following
topics:

Rules to follow when you create multiple subject areas to use together

What it means to use multiple subject areas in a pivot table

What it means to use multiple subject areas in a dashboard

How to set up the secondary subject area for use in this part of the tutorial
How to create an initial version of the linked pivot table shown in this chapter
How to create a corrected version of the linked pivot table

How to create the dashboard shown in this chapter

7.1 Rules for Creating Multiple Subject Areas

To define multiple subject areas that you can use together as described in this chapter, do the following:

Identify all the dimensions that are common across the subject areas. Typically, dimensions based on time and location
are common, even for unrelated subject areas.

Other dimensions might or might not be common depending on whether the subject areas are related to each other in
any meaningful sense. For example, suppose that one subject area represents transactions and another represents the
customers who own the transactions. These two subject areas might have common dimensions such as customer, customer
class, and so on.

When you define those dimensions, ensure that the dimension names and sets of member names are the same in all
relevant subject areas. (The underlying details of Complex Code, transformation options, and so on do not matter. All
that matters is that the DeepSee indices work the same way, even if they are created differently.)

7.2 Multiple Subject Areas in a Pivot Table

You can use the Link options in the Analyzer to link pivot tables that are defined in different subject areas. For example:

DeepSee Developer Tutorial 77

Using Multiple Subject Areas Together

Patient Count and Rainfall by Year

Inches Patient
Of Rain Count

25,74

13.84
12,39
17.20
16,82
19.65
23,82
16.50
22,78
i8.19
17.47 3
17.06 1

This pivot table is a horizontal link of two other pivot tables. The right pivot table (used as the right data column) is defined
in the Pat i ent s subject area and shows the number of patients born in each year. The left pivot table (used as the left
data column) is defined inthe Ci t y Rai nf al | subject area and shows the number of inches of rain that fell in that year.

In order for the resulting pivot table to respond correctly to filters, you must follow the rules listed earlier in this chapter.

7.3 Multiple Subject Areas in a Dashboard

With DeepSee, your overall goal is to create dashboards. A dashboard usually includes one or more data elements (which
can be pivot tables, charts, detail listings, or KPIs displayed in dashboards or labels), as well as one or more filters that
apply to those data elements.

Within a dashboard, the data elements can belong to different subject areas. If you follow the rules listed earlier in this
chapter, the dashboard can include filters that use the dimensions that are common to subject areas. This means that you
can create a dashboard like the following:

78 DeepSee Developer Tutorial

Multiple Subject Areas in a Dashboard

Year: City:

Patient Count by Home City and Birth Year

Cedar _ Elm - 5
- CEHtENI”E ﬂ
Birth . - - - - - . . -
Date Patient Patient Patient Patient Patient Patient Patient Patient Patient
Count Count Count Count Count Count Count Count Count
] 2 1 1

1

3
2 2 1 2 1 1 2 1
3 1

Y

W

[] lrage 1 ofz[>]=]

Inches OF Inches Inches Inches Inches

Rain Of Rain Of Rain Of Rain Of Rain Of Rain
22,41 19.40 21.81 17.91 23,74 19,77 20.54 14,57 17.78
17 44 18.60 20.04 23,14 13,84 23,44 20.47 22.56 18,88
17.49 19,92 20.26 22,63 12,29 15.04 19.26 25.15 18,98
16,61 23.26 24,37 18,11 17.20 14,635 17.54 24,03 24,07

W

|-':|-: Page 1 of 3 :-I:v-l

If the user selects a city and a year from the drop-down lists, the dashboard is filtered as follows:

Year: |1isi0 ~| City: |ElmHeights |

Patient Count by Home City and Birth Year

Rainfall by City and Year

Inches
Of Rain

i7.16

DeepSee Developer Tutorial

79

Using Multiple Subject Areas Together

7.4 Setting Up the Initial City Rainfall Subject Area

The rest of this chapter shows you how to define the simple pivot tables and dashboards shown in the previous sections. It
also demonstrates the rules given earlier in this chapter.

We start by creating the rainfall data and defining an initial version of the Ci ty Rai nf al | subject area:
1. Generate the city rainfall data, by entering the following command in the Terminal, in the SAMPLES namespace:

do ##cl ass(DeepSee. Study. C tyRai nfal |). Generat eDat a()

Note: This method assumes that the cities have already been created (which occurs when you generate patients).
Unless you have already generated patients as described earlier in this book, this method does not generate
any data.

2. Access the DeepSee Architect and open the class DeepSee.Study.CityRainfall.

3. Define the following elements:

Element Element Name Details

Type

Dimension Cty Use the City.Name property.
Dimension Dat e Use the MonthAndYear property.
Measure Inches OF Rain Use the InchesOfRain property.

4. Define a subjectareanamed City Rainfall.

5. Compile the class DeepSee.Study.CityRainfall and build the DeepSee indices.

7.5 Creating the Linked Pivot Table

In this section, we create an initial version of linked pivot table:
1. Inthe Analyzer, go to the Pat i ent s subject area.
2. Define and save a pivot table as follows:

* Row—Birth Date Year

e Metrics — Pati ent Count

* Name of pivot table — Pat i ent Count by Year

80 DeepSee Developer Tutorial

Creating the Linked Pivot Table

Patient Count by Year

Birth
Date
Year

Patient
Count

3. Inthe Analyzer,gotothe Gity Rai nfall subjectarea.
4. Define and save a pivot table as follows:
* Row—Date Year

e Metrics— I nches O Rain

Date
Year

Inches
Of Rain

1600 179,92

1901 178.41
1902 175,12

1503 1759.86

0 ()4 176.61

5. Then do the following:

a.
Click the Link Reports button E-L

b. On the Column Link tab, right-click and select Add Line.
DeepSee then displays a dialog box in which you can select another pivot table.

c. Selectthe pivot table Pat i ent Count by Year and click OK. The new row is added to the table on the Column
Link tab.

d. Click the Include Parent Query check box.
e. Click oK.
f. Use the Save As option to save the resulting pivot table with the name Pati ent Count and Rainfal |l by
Year .
6. Click Find.

DeepSee displays something like the following:

DeepSee Developer Tutorial 81

Using Multiple Subject Areas Together

Patient Count and Rainfall by Year

Data Inches Patient
Year Of Rain Count

179,93

178.41
175,12
179.86
176.61
17721
174,47
17240
178.97
186,92
168.95 12

178.61 12

The pivot table looks correct. Next we examine whether it can be filtered correctly.
7. Click the Edit option in the Filter pane and apply a filter like the following:
[Cty = Juniper]
8. Click Find. When you do so, the right data column is removed. This occurs because the filter you have applied removes

this column. The Pat i ent s subject area does not recognize the Ci t y dimension and thus the patient data is filtered
out.

In the next section we correct this problem.

7.6 Adjusting the City Rainfall Subject Area and Pivot
Table

As noted earlier in this chapter, two subject areas can respond to the same filter only if the dimension name and the member
names are the same in both subject areas.

We could change the dimension names in the Pat i ent s subject area to be more general (C ty instead of Home City,
for example). By now, however, you may have created many pivot tables using the current names, and it would be undesirable
to have to change those. So instead we will rename the dimensions inthe G ty Rai nf al | subject area:

1. Inthe Architect, access the Gty Rai nf al | subject area.
2. Make the following changes in this subject area:
* Renamethe C ty dimensionto Hone City.

e Rename the Dat e dimensionto Bi rt h Dat e.

82 DeepSee Developer Tutorial

Creating a Dashboard That Uses Multiple Subject Areas

3. Compile the class DeepSee.Study.CityRainfall and build the DeepSee indices.
4. Inthe Analyzer, open the Pati ent Count and Rainfall by Year pivot table.
5. Make the following changes to this pivot table:

a. Redefine this pivot table to use Bi rt h Dat e Year instead of Dat e Year for rows.

b While the pivot table is still displayed, click the Expand button = next to Bi rt h Dat e in the Row pane.

¢. Right-click All condition and then click Edit Condition.
d. Edit caption Name to be Dat e Year.
e. Click oK.

f. Save the pivot table.

6. Open the pivot table Pati ent Count and Rainfall by Year.
7. Try again to filter the pivot table using the new dimension name:

[Home City = Juni per]

You should see that both columns are filtered. For example:

Patient Count and Rainfall by Year

Date Inches Patiant
Year Of Rain Count

7.7 Creating a Dashboard That Uses Multiple Subject
Areas

In the last part of this tutorial, we create the dashboard shown earlier in this chapter:

DeepSee Developer Tutorial

83

Using Multiple Subject Areas Together

1. Inthe Analyzer, go to the Pat i ent s subject area.
2. Define and save a pivot table as follows:
* Row—Birth Date Year
e Column—Hone City
* Metrics —Pati ent Count
e Name of pivot table — Pat i ent Count by Honme City and Birth Year
3. Gotothe Gty Rainfall subjectarea.
4. Define and save a pivot table as follows:
* Row—Birth Date Year
e Column—Hone City
* Metrics—Inches O Rain
e Name of pivottable — Rainfall by Cty and Year
5. Change the caption in the second pivot table as follows:
& Click the Expand button [*] nextto Bi rt h Date Year in the Row pane.
b. Right-click All Condition and then click Edit Condition.
c. Edit caption Name to be Year .
d. Click oK.
6. SavetheRainfall by Gty and Year pivot table again.
7. Access the Dashboard Designer.
8. Create a new dashboard.
9. Tothe new dashboard, add two pivot tables (Pat i ent Count by Honme City and Birth Year andRai nf al |
by City and Year).
10. Add a combo box as follows:
% Click the Add Combo Box button (21,
b e . [] o _ _ _ .
Or Subject Area, click the Browse button ,clickthe Gi ty Rai nfall subjectarea, and click oK.
c. For Dimensions, double-click the Bi rt h Date Year dimension.
d. Click oK.
The combo box is added in the upper left corner of the dashboard.
e. Drag and drop the combo box to the desired location.
f. Resize the combo box as needed.
TheBirth Date Year dimension of the Gty Rai nfal | contains more dates than the same dimension in the
other subject area. Because we would like to see all possible dates, this is the dimension we use.
11. Add another combo box. This one should use the Hone Ci t y dimension. You can use either subject area to get this
dimension.
84 DeepSee Developer Tutorial

Creating a Dashboard That Uses Multiple Subject Areas

12. Add refresh triggers and filter links from these two combo boxes to both of the pivot tables.

13. Add labels.

DeepSee Developer Tutorial 85

Performing Real-time Updates

The sample enables you to see that DeepSee can display live data. It includes multiple methods that update various data
elements. This chapter describes how to see these real-time updates.

8.1 Preparation

To prepare, do the following:

1. Enable incremental updates for this DeepSee installation. To do so, go to Administrator > Site Configuration and select
the option ETL > Incremental Index Update. Then click Save.

2. Recompile DeepSee. St udy. Pati ent.
3. Make sure that the DeepSee indices are current. If they are not, run HiRebuild() in DeepSee. St udy. Pat i ent .

4. Inthe Analyzer, create the following simple pivot tables:

Pivot Table Name Row Metrics Other Options
Count s Pati ent Count and Encount er

Count (if you have created this

measure)
Pati ent G oups Patient G oup Pati ent Count Select Grand Total
Favorite Colors | Favorite Col or Pati ent Count Select Grand Total
Doctors Doct or G oup Pati ent Count Select Grand Total

8.2 Adding and Deleting Patients

To show that the DeepSee indices are updated when you add and delete patients:
1. Display the Count s pivot table.
2. Inthe Terminal, execute the following command to add some patients:

do ##cl ass(DeepSee. Study. Pati ent). AddPati ents()

DeepSee Developer Tutorial 87

Performing Real-time Updates

The output (in the Terminal) indicates the current patient count.
3. Rerun the pivot table to see the change in the patient count.
4. In the Terminal, execute the following command to delete some patients:

do ##cl ass(DeepSee. Study. Pati ent). Del et eSonePat i ent s()
The output (in the Terminal) indicates the current patient count.
Note: Deleting patients is significantly slower compared to the other changes documented in this chapter.
5. Rerun the pivot table to see the change in the patient count, as well as the current patient count.
If you have enabled incremental updates, then when you add, update, or delete an object from DeepSee.Study.Patient,

DeepSee updates the indices automatically.

This occurs because the base class inherits from %BI.Adaptor, which provides the methods %OnAfterSave() and %OnDelete()
and the triggers Hyper Delete, HyperInsert, and Hyper Update, all of which automatically update the DeepSee indices.
For example, when an object is saved, Caché runs the method %OnAfterSave(), which updates the DeepSee indices for this
object. Similarly, when an record is deleted, inserted, or updated via SQL, Caché fires the corresponding trigger, which
updates the DeepSee indices for this record.

8.3 Changing Patient Data

In DeepSee.Study.Patient, you can use the method ChangeSomePatients() to change assorted properties for a random
percentage of patients. This method makes changes as follows:

» The patient is assigned to a different patient group.

» The favorite color of a patient is changed.

« Additional patient encounters are added.

These three changes occur to different randomly selected subsets of patients. For example, a patient’s favorite color might
be changed, but that patient might not receive any new patient encounters.

To demonstrate that DeepSee recognizes these real-time changes:

1. Display the Pati ent Groups orthe Favorite Col ors pivot table.

2. Inthe Terminal, execute the following command:

do ##cl ass(DeepSee. St udy. Pati ent). ChangeSonePati ents(, 1)

The first argument is the percentage of patients to change; the default is 20 percent.

The second argument is the rebuild argument. If this equals 1, the method will update the DeepSee indices for the
affected patients. DeepSee performs this update only if you have enabled incremental updates as described earlier.

3. Rerun the pivot table. You should see changes in the number of patients within each patient group and with each
favorite color. There should be, however, no overall change in the patient count.

To demonstrate that DeepSee recognizes real-time additions to the encounters, use the Count s pivot table. In this case,
you should also see an increase in the total encounter count. There should be, however, no overall change in the patient
count.

The ChangeSomePatients() calls the following methods:

88 DeepSee Developer Tutorial

Changing Doctor Data

ChangePatientGroups() in DeepSee.Study.Patient. This method causes Caché to run % OnAfter Save() and update
the indices for the affected patients.

ChangePatientDetails() in DeepSee.Study.PatientDetails. This method changes data in DeepSee.Study.PatientDetails.
Because DeepSee.Study.Patient does not see this class, this method does not cause Caché to run % OnAfter Save().

Instead, if rebuild is 1, the method determines the IDs of the affected patients and calls zzBuildOne() for those IDs,
updating the DeepSee indices. The relevant section of code is as follows:

Set pat| D=patdetails.PatientlD

Set nyquery="SELECT | D FROM DeepSee_St udy. Pati ent WHERE Pati ent | D=?"
Set rset =##cl ass(%Resul t Set) . ¥0New(" ¥Dynam cQuery: SQL")
Set status=rset. Prepare(nyquery)
I f $3$$1 SERR(status) {Do $System Status.Di splayError(status) Quit}
Set status=rset.Execute(patlD)
If $$$I SERR(status) {Do $System Status.Di splayError(status) Quit}
VWil e rset. Next () {

Set id=rset.Data("ID")

Do ##cl ass(DeepSee. Study. Patient).zzBuil dOne(i d)

}

AddEncounter () in DeepSee.Study.PatientEncounter. This method adds records to DeepSee.Study.PatientEncounter.

Because DeepSee.Study.Patient does not see this class, this method does not cause Caché to run % OnAfter Save().

Instead, if rebuild is 1, the method determines the IDs of the affected patients and calls zzBuildOne() for those IDs,
updating the DeepSee indices. The technique is similar to the one shown in the previous item.

8.4 Changing Doctor Data

In DeepSee.Study.Doctor, you can use the method ChangeSomeDoctor 5() to randomly change the doctor group and patients
per week of some doctors.

1.
2.

Display the Doct or s pivot table.
In the Terminal, execute the following command:

do ##cl ass(DeepSee. St udy. Doct or) . ChangeSoneDoct or s(, 1)

The first argument is the percentage of doctors to change; the default is 20 percent.

The second argument is the rebuild argument. If this equals 1, the method will update the DeepSee indices for the
affected patients. DeepSee performs this update only if you have enabled incremental updates as described earlier.

Rerun the pivot table. You should see a change in the number of patients with doctors in each group, but no overall
change in the patient count.

This method determines the IDs of the affected patients and calls zzBuildOne() for those IDs, updating the DeepSee indices.
The technique is similar to the one shown previously.

DeepSee Developer Tutorial 89

Installing the Database for the Sample
DeepSee Model

If you reconfigured the SAMPLES namespace as described in “Setting Up the Environment,” the DeepSee model that you
have created is in a separate database. You can replace that database with a model database provided by InterSystems.

You might do this if you want to bypass the exercises and simply examine a working DeepSee model.

To obtain and install this database:

1.

a M w0 D>

10.
11.

12.

13.

Access the InterSystems ftp site: ftp.intersystems.com.

Go to the directory pub/deepsee/.

Download the file DeepSee.Study.Model.zip.

Uncompress this file, which includes CACHE.DAT and readme.txt.

If your operating system is big-endian, use the cvendian tool to convert the downloaded CACHE.DAT to a big-endian
database. See the section on “Using cvendian to Convert Between Big-endian and Little-endian Systems” in Caché
Specialized System Tools and Utilities.

The downloaded CACHE.DAT was created on a Windows machine and is little-endian.
Stop Caché.

Find the directory that contains your model database file (the file used by the database Sanpl eDSModel , if you used
that name).

Rename your CACHE.DAT file, for example, to Save CACHE. DAT.

Move the new CACHE.DAT into that directory.

Restart Caché.

In the Terminal, switch to the SAMPLES namespace and then enter the following command:

do setPat h"%i . SM . Set up(1)

This command updates the path options. (The settings used in the downloaded model database are unlikely to be
appropriate for your machine.) For information, see the DeepSee Site Configuration and Maintenance Guide.

In DeepSee, adjust the # of Rebuild Processes? option as appropriate for your machine. See the section “Configuring
DeepSee to Use Multiple CPUs,” earlier in this book.

In the downloaded model database, this option is set to 2.

Recompile the class DeepSee.Study.Patient and then rebuild the DeepSee indices.

DeepSee Developer Tutorial 91

Installing the Database for the Sample DeepSee Model

This model database is meant for use with the DeepSee.Study sample. You can use this only if your SAMPLES namespace
is configured as described in “Setting Up the Environment.”

92 DeepSee Developer Tutorial

	Table of Contents
	About This Book
	1 Getting Started
	1.1 Logging In to DeepSee
	1.2 Configuring DeepSee to Use Multiple CPUs
	1.3 Setting Up the Environment
	1.4 Generating Data

	2 Contents of the DeepSee Sample
	2.1 The Sample Classes
	2.2 Diagnosis Data
	2.3 The Extra Data Set
	2.4 Controlling What Is Generated
	2.5 Generating Additional Data
	2.6 Changing or Deleting Data

	3 Creating a DeepSee Model
	3.1 Viewing a Class in the Architect
	3.2 Creating a Basic DeepSee Model
	3.2.1 Relationship of the DeepSee Model to the Class Definition

	3.3 Adding a Detail Listing to the Model
	3.4 Validating the Dimensions
	3.5 Using a Collection Property
	3.6 Adding Placeholders for Null Members
	3.7 Using Ranges, Translations, and Transformations
	3.8 Adding Measures in the Analyzer
	3.9 Defining a Filtered Measure
	3.10 Accessing Other Classes
	3.11 Model Summary
	3.11.1 Dimensions
	3.11.2 Measures
	3.11.3 Listing Fields
	3.11.4 Detail Lists

	3.12 Additional Exercises for the Reader

	4 Creating Pivot Tables
	4.1 Creating a Basic Pivot Table
	4.2 Additional Basic Options
	4.3 Specifying the Sort Order
	4.4 Using Ranking and Nesting Options
	4.5 Using Advanced Layout Options
	4.6 Summary of Pivot Tables

	5 Creating KPIs
	5.1 Creating Simple KPIs
	5.2 Creating a String-type KPI

	6 Creating Dashboards
	6.1 Creating a Simple Dashboard with a Filter
	6.2 Displaying a KPI in a Speedometer
	6.3 Adding Multiple Filters
	6.4 Displaying a KPI in a Label

	7 Using Multiple Subject Areas Together
	7.1 Rules for Creating Multiple Subject Areas
	7.2 Multiple Subject Areas in a Pivot Table
	7.3 Multiple Subject Areas in a Dashboard
	7.4 Setting Up the Initial City Rainfall Subject Area
	7.5 Creating the Linked Pivot Table
	7.6 Adjusting the City Rainfall Subject Area and Pivot Table
	7.7 Creating a Dashboard That Uses Multiple Subject Areas

	8 Performing Real-time Updates
	8.1 Preparation
	8.2 Adding and Deleting Patients
	8.3 Changing Patient Data
	8.4 Changing Doctor Data

	Appendix A:Installing the Database for the Sample DeepSee Model

