

TECHNOLOGY LAB

Wie sich das Potential von Machine Learning ausreizen lässt

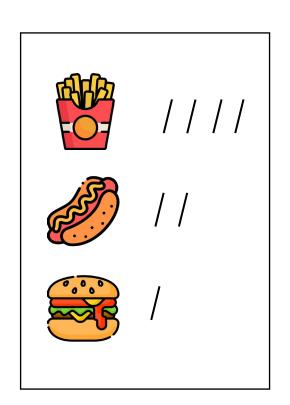
Felix Vetter | InterSystems

Beispiel: Entwickeln eines Empfehlungssystems

Üblicher Ansatz: einfach irgendwas vorschlagen

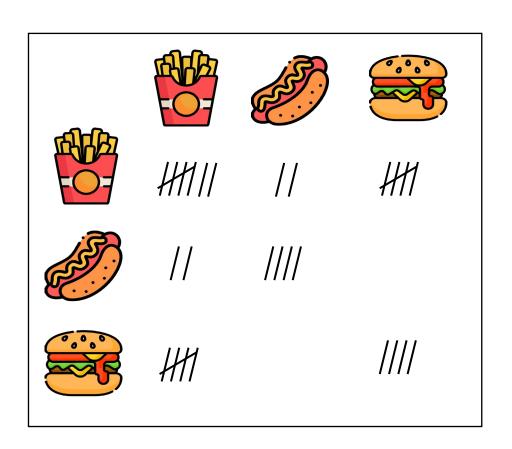
Mit System: Kaufverhalten analysieren

Mit System: Kaufverhalten analysieren



Besser: Produktkombinationen

Besser: Produktkombinationen



 7
 2
 5

 2
 4
 0

 5
 0
 4

Noch Besser: Mit Machine Learning

Machine Learning likes square data

	X						=	У
id ^	gender ^	date_birth ^	hypertension ^	heart_disease ^	ever_married ^	work_type ^	zip ^	stroke ^
67	Female	10/16/2003	0	0	No	Private	98815	0
77	Female	4/5/2007	0	0	No	children	98671	0
84	Male	5/17/1965	0	0	Yes	Private	99126	0
91	Female	3/29/1978	0	0	No	Private	98382	0
99	Female	12/24/1989	0	0	No	Private	98323	0
121	Female	4/1/1982	0	0	Yes	Private	98122	0
129	Female	8/23/1996	0	0	No	Private	98465	0
132	Female	1/21/1940	0	0	Yes	Govt_job	99016	0

Machine Learning likes square data

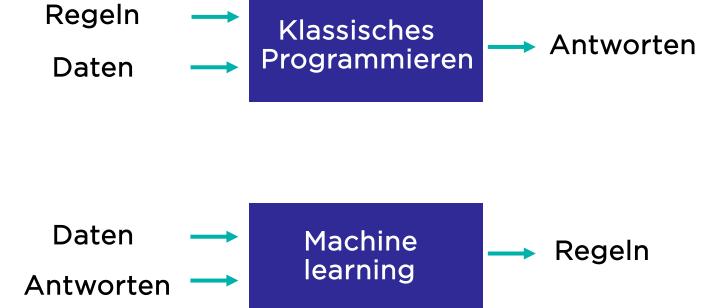
				X	X		=	y
id ^	gender ^	date_birth ^	hypertension ^	heart_disease ^	ever_married ^	work_type ^	zip ^	stroke ^
67	Female	10/16/2003	0	0	No	Private	98815	0
77	Female	4/5/2007	0	0	No	children	98671	0
84	Male	5/17/1965	0	0	Yes	Private	99126	0
91	Female	3/29/1978	lede Ze	eile ist	eine e	inzelr	1:62	0
99	Female	12/24/1989	orher:	ane ²	No	Private	98323	0
121	Female	4/1/1982	OHICH.	Jage	Yes	Private	98122	0
129	Female	8/23/1996	0	0	No	Private	98465	0
132	Female	1/21/1940	0	0	Yes	Govt_job	99016	0

Machine Learning likes square data

	f(x)							= y	
id ^	gender ^	date_birth ^	hypertension ^	heart_disease ^	ever_married ^	work_type ^	zip ^	stroke ^	
67	Female	10/16/2003	0	0	No	Private	98815	0	
77	Female	4/5/2007	0	0	No	children	98671	0	
84	Male	5/17/1965	0	0	Yes	Private	99126	0	
91	Female	3/29/1978	lede Ze	eile ist	eine e	inzelr	162	0	
99	Female	12/24/1989	orher:	ane	No	Private	98323	0	
121	Female	4/1/1982		Juge	Yes	Private	98122	0	
129	Female	8/23/1996	0	0	No	Private	98465	0	
132	Female	1/21/1940	0	0	Yes	Govt_job	99016	0	

Unterschied zum Programmieren?

Unterschied zum Programmieren?

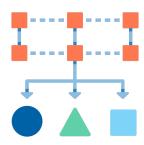


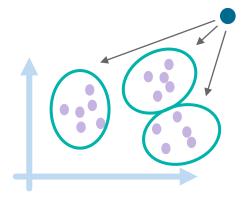
Machine Learning Problemtypen

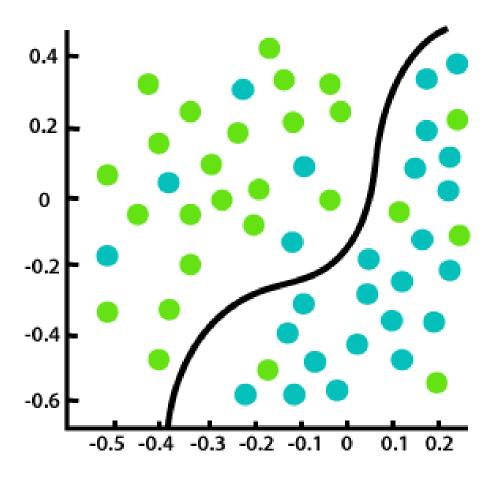
Supervised learning (labeled Data)

Unsupervised learning (unlabeled data)

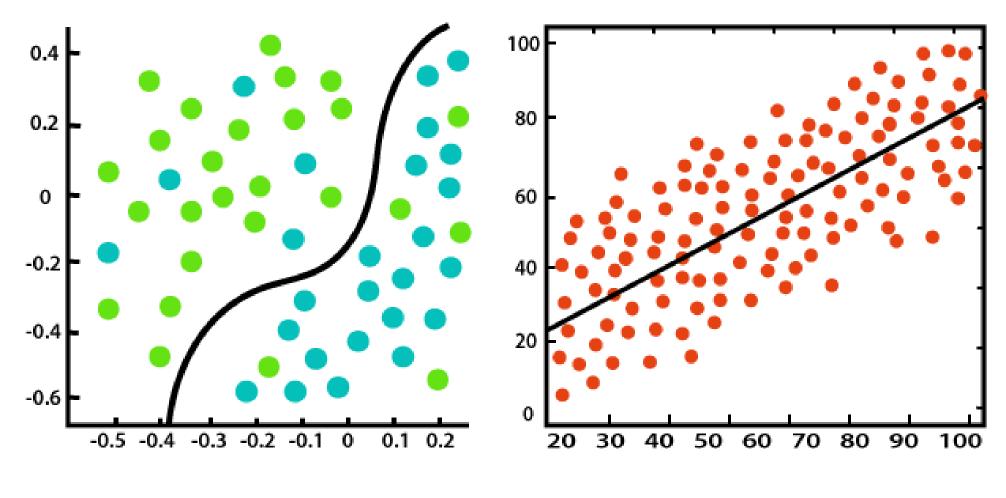
Regression







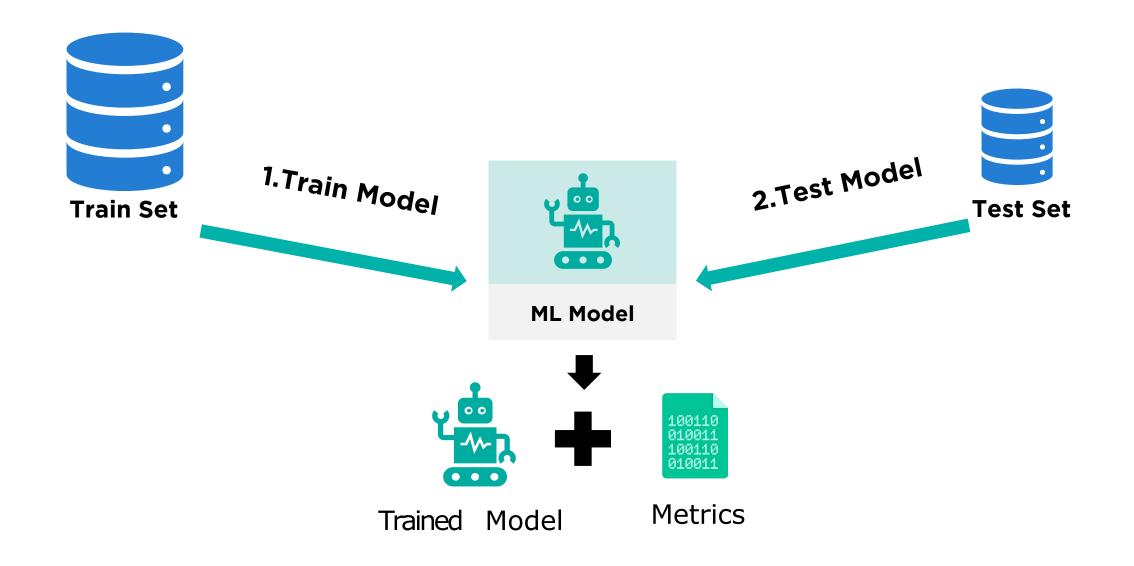
Classification



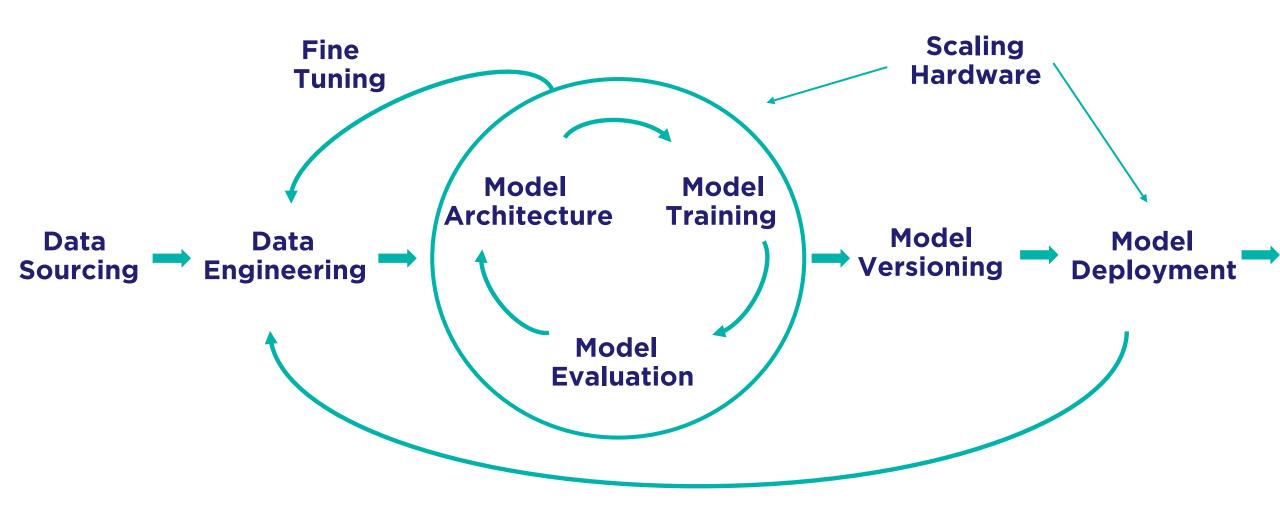
Classification

Regression

Ablauf "supervised Machine Learning"



ML Zyklus



Wie entstehen Metriken?

• Die wichtigste Quelle für die Schätzung der Accuracy bei classification ist die Confusion Matrix

True Class

S	
D	
$\overline{0}$	
7	
O	
ب	
<u>ပ</u>	
Ö	
O	
7	

S

	P	N
P	True Positives	False Positives
N	False Negatives	True Negatives

- Accuracy
- Precision
- Recall

Object Classifier?

Perzeptron?

XGB Regressor?

KI? Naïve Deep

PNN? Bayes: Learning? ChatGPT? Lance

Keras? Python?

Flow? Gradiantannterschiede?

Forest?

Abstieg?

Neuronale **NetzeEnsehable**

PMML?

Machine Learning?

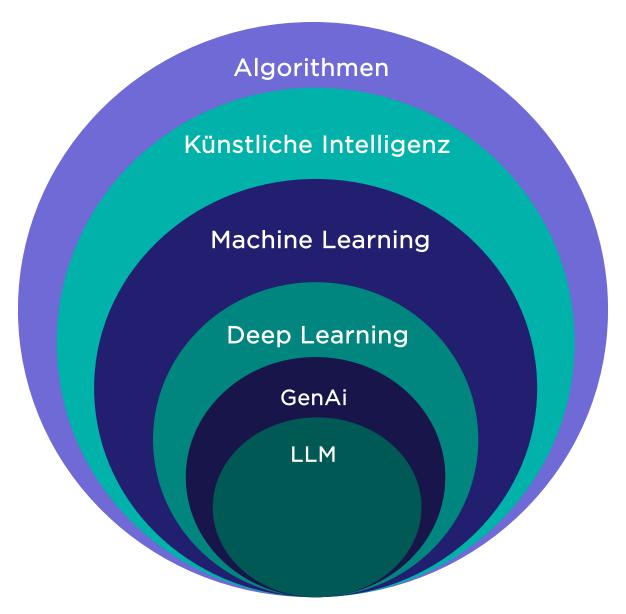
NLP?

Hidden Lagring? Layer? **Recognition?**

Kurz durchatmen

- 3 sek EIN
- 3 sek AUS

Der KI Jungle mal einfach



You

Erstelle mir einen Vortrag mit Inhalt mit dem Titel "Wie sich das Potential von Machine Learning ausreizen lässt"

ChatGPT

Nein.

Message ChatGPT...

eXplainableAi

Ihr erstes Machine Learning Modell

Herd- platte	Angeschaltet	Herdplatte leuchtet	TopfAuf Herd	Induktion		Essen dampft	Herd Berühren
1							1
1	1	1	1				0
1	1	0	0	1			1
1	45	Kiwi	1	0			-(0)
1	1	0	0	1	1		1
1	0	0	0	_	0	1	-(0)
1	0	0	0	_	0	1	-(0)

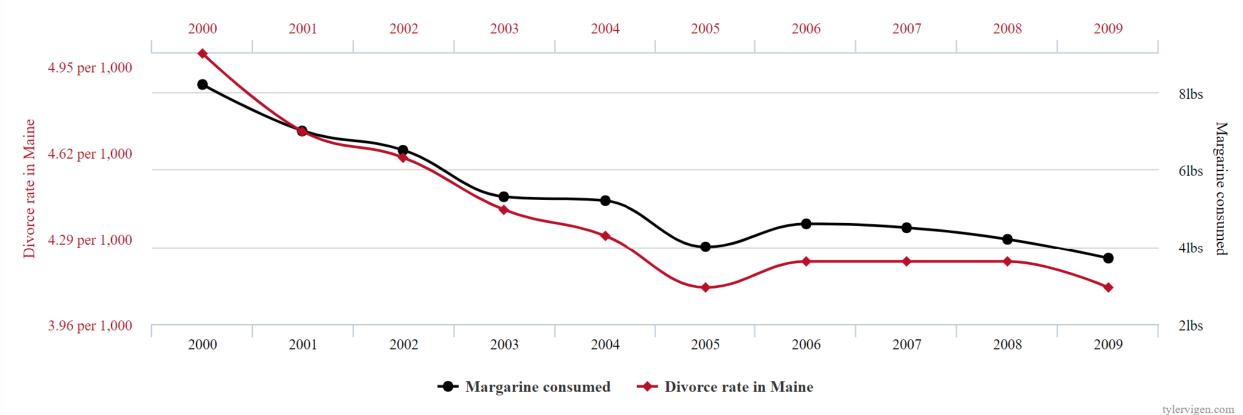
Hohe Datenqualität

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)

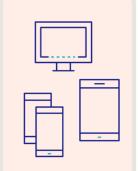


Data sources: National Vital Statistics Reports and U.S. Department of Agriculture

Datenherkunft

Mehrere Datenquellen

- Hohe Datenqualität
- Datenherkunft
- Mehrere Datenquellen



Externe Clients und Server

Interoperabilität

API Manager

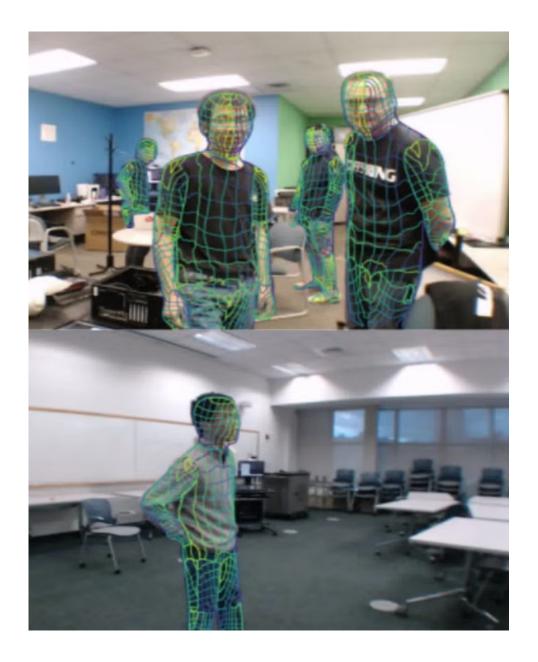
Multi-Model Datenbank

Reports

Analytics

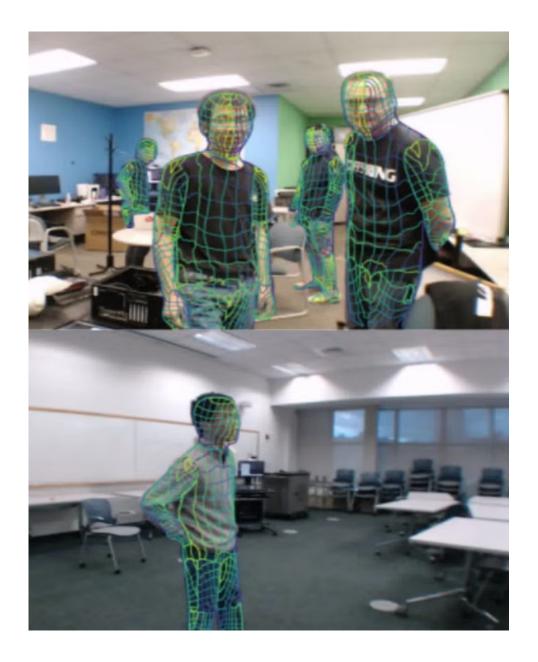
IntegratedML

Externe ML Engines



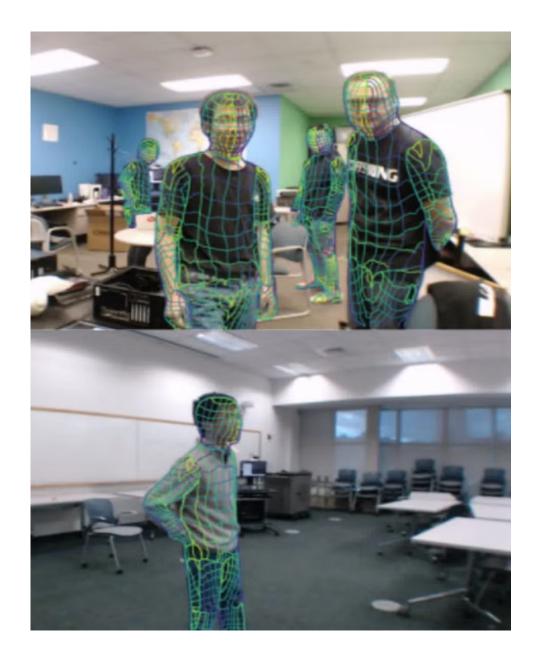
"KI
ist weder böse noch
gut, es ist das was
der Mensch daraus
macht"

Quelle: https://news.yahoo.com/ai-see-people-walls-using-145124648.html

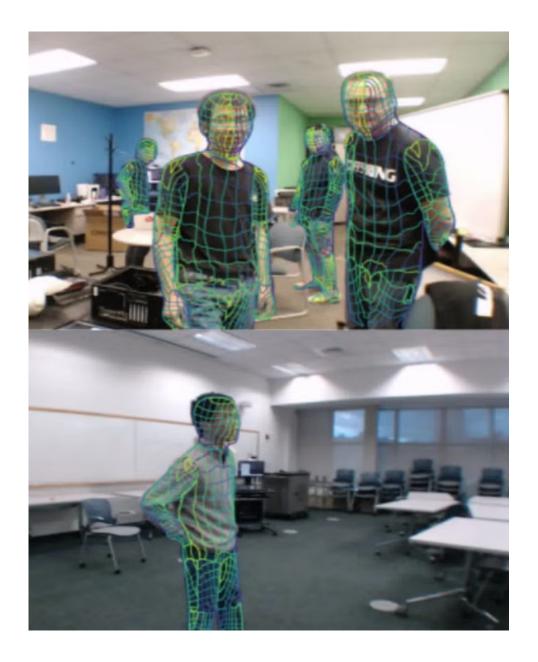


"Gentechnik
ist weder böse noch
gut, es ist das was
der Mensch daraus
macht"

Quelle: https://news.yahoo.com/ai-see-people-walls-using-145124648.html

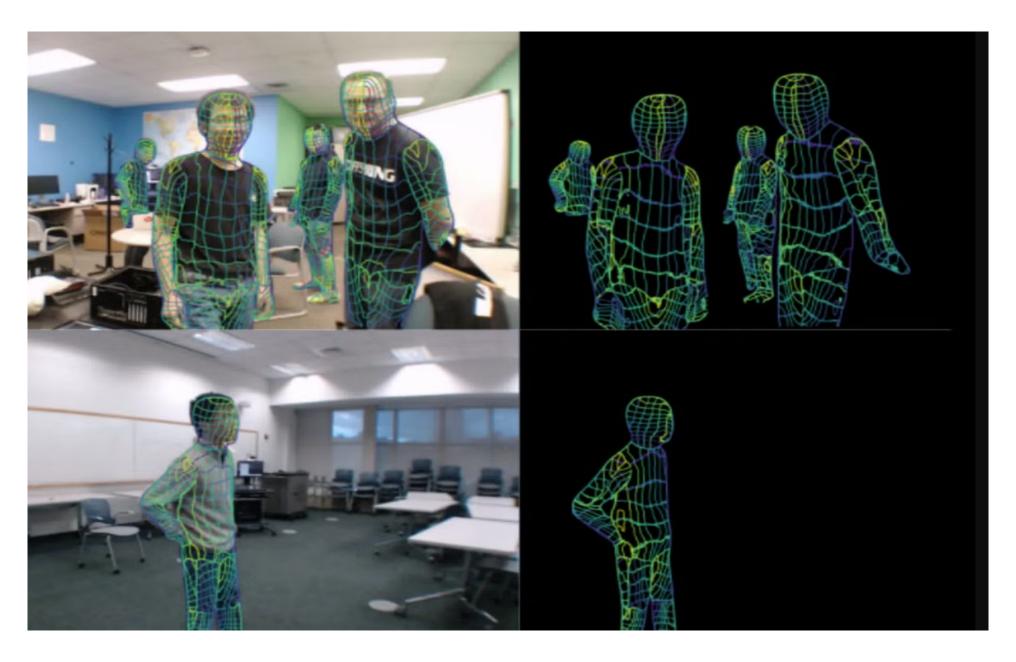


"Kernspaltung ist weder böse noch gut, es ist das was der Mensch daraus macht"



"KI
ist weder böse noch
gut, es ist das was
der Mensch daraus
macht"

Quelle: https://news.yahoo.com/ai-see-people-walls-using-145124648.html



Quelle: https://news.yahoo.com/ai-see-people-walls-using-145124648.html

Was ist wichtig für die Arbeit mit KI?

- Was soll mit KI erreicht werden
- Welche Datenquellen brauche ich dafür
- Welche Datenmodelle brauche ich dafür
- Ethische Erwägung und Test auf Bias
- Dauerhafte Modellpflege und Überwachung der Metriken

Call to action: Sprechen Sie uns an!

"ML ist wie Sex im Teenageralter:

- Jeder redet darüber
- niemand weiß wirklich, wie man es macht
- · jeder denkt, dass alle anderen es tun
- · also behaupten sie, dass sie es auch tun."

Let's Connect

Felix Vetter | InterSystems
Sales Engineer Intern
+49 1744797827
felix.vetter@intersystems.com

