AI in HealthCare

Operational Use Cases

Dr Rami Riman Director of Clinical and Business Improvements

A Blend of Care and Innovation at the Clinic

Mr. Thompson Dr. Brew Digital Barista

Tabular vs Generative AI

Tabular

- Structured Data
- Clinical data analysis
- Predictive modeling
- Decision support systems
- Highly interpretable
- Well-suited for rule-based systems
- Requires relatively smaller amounts of data
- Easier to anonymize
- Well-suited for scaling

Generative

- Unstructured Data
- Medical image analysis
- Natural language processing
- Drug discovery, genomics
- Less interpretable
- Capable of generating new insights and recommendations
- Typically requires a large amount of data
- May pose challenges in protecting patient privacy
- May require significant computational resources

Tabular AI: Solution Design

Ľ

4 Step Approach

ML Use Case: Reducing Rate of Readmissions

<u>Problem description</u>: Identify the probability that patients will be readmitted to the hospital with a diagnosis linked to the original admission.

<u>Objective</u>: Reduce the readmission rate to improve patient outcome and reduce costs/loss of revenue.

True Reduction in Readmission

Financial Impact

Clinically validated for data from 2021 against the predicted episodes

5000

5000 IP Episodes / Year 400 IP Readmissions can be avoided

25000 AED

Average Cost per IP Episode 25000 AED

50% can be deducted by Payor if readmission within 30 days

5 Million AED

Potential Loss every year for a single facility

Clinic No Show Reductions

- **Objective:** To increase the quality of care and reduce waste of time, clinical resources and revenue.
- <u>Implementation</u>: Predicting the possibility of "noshow" when booking a new case to allow better management of resource time.

Impact

DRG Discrepancy

Hospitals and payors use DRG codes to quantify a fixed pay per service. These codes depend on Diagnosis, Procedure and Length of stay. In many cases some diagnosis and procedure coding is missed as well as an underestimate of the level of care given. The AI logic allows the coders before submitting a claim to identify such cases be able to review and adjust the DRG code if needed thus avoid potential revenue loss.

Diabetes Prediction

- **Objective:** Identify the probability that patients will develop a diabetes diagnosis in a specific time interval (survival time).
- Implementation: Survival Analysis -> analyzing the expected duration of time until the diabetes diagnosis occurs. Survival analysis involves the modelling of time-to-event data.
- <u>Solution</u>: an indication through an alert of when the patient will likely develop a diabetes diagnosis.

Survival Analysis by entire population

Survival Analysis by single patient

Tabular AI Use cases

	Use-case	Description
Clinical	Antibiotic Resistance	Analyze the risk of developing antibiotic resistance based on the choice of antibiotics and the patient's history
	Chronic Disease Package Eligibility (Diabetes)	Identify the probability that patients will develop a diabetes diagnosis in a specific time interval (survival time) and be elligible to enroll in preventative care program
	Diabetes Risk Prediction	Identify the probablity of a diabetic patient to have an increased Risk score
	MI Prediction	Identify the probability that patients will develop a myocardial Infarction in a specific time interval (survival time)
	Osteoporosis Predication	Identify the probability that patients will develop a Osteoporosis in a specific time interval (survival time)
	COPD Exacerbation	Identify the probability that COPD patients will develop a COPD Exacerbation in a specific time interval (survival time)
	Asthma Attack Predication	Identify the probability that Asthmatic patients will develop a Asthma Exacerbation in a specific time interval (survival time)
	Chronic Disease Package Eligibility (Essential Hypertension)	Estimate the probability that a patient will develop a Essential Hypertension and thus be elligible for preventative care program enrolment
	Chronic Disease Package Eligibility (COPD)	Estimate the probability that a patient will develop a COPD and thus be elligible for preventative care program enrolment
	Chronic Disease Package Eligibility (Cardiac Myopathy)	Estimate the probability that a patient will develop a Cardiac Myopathy and thus be elligible for preventative care program enrolment
	Chronic Disease Package Eligibility (Hyperlipidemia)	Estimate the probability that a patient will develop a Hyperlipidemia and thus be elligible for preventative care program enrolment
	Early Microbiology pathogen detection	identify the high probability samples for positive microbiology cultures / antibiotic resistnce
	Early Sepsis Detection	Identify probablity of a patient to transition into septic shock and alert for early intervention
	Breast Cancer Prediction	Identify the probablity of a healthy patient to develop Breast Cancer

Tabular AI Use cases

	Use-case	Description
Admin	Clinic No-Show Prediction	Predicting the possibility of "no-show" when booking a new case to allow better management of resource time
	Prediction of Surgical Procedure Time	Predicting surgical procedure time at the time of booking new cases, based on procedure, care provider and patient data
	Prediction of Emergency Waiting Time	To predict the waiting time from admission until seen by doctor in the emergency room
	Predication of Lab Sample rejection	Predict the probablity of lab sample rejection at the time of collection
	Predict the resources needed	Identify the number of clinical staff needed for a particular location on a particular day
	Predict waiting list acceptance time	Identify time to action for a waiting list to help avoid agreed time breaches
	Predict OPD Pharmacy Waiting time	Identify the estimated waiting time in the OPD department for new prescriptions
	Inpatient Length of Stay Prediction	Prediction of medical inpatient length of stay. Length of stay (LOS) estimates are important for patients, doctors and hospital administrators.
RCM	DRG Discrepancy	Identification of the potential loss of revenue due to an incorrect DRG calculation
	Inpatient Readmission Prediction	Identify the probability that inpatients will be readmitted to the hospital within 30 days with a diagnosis linked to the original admission
	Predict Expensive stock utilisation	Identify the number of selected stock requirements within time frame to better manage stock at hand and avoid wasted Revenue
	Service approval / denial by insurance	Analyzing a pattern for approval rejection by insurance provider to predict probability of rejection ahead of time
	Claims Approvals/Denials	Analyzing a pattern for approval / denial of claims by insurance provider to predict probability of rejection ahead of time

Generative AI

- Mainly aiming to enhance user experience
- Aid in improved efficiency
- Allows eliminating redundancy
- It saves effort and time
- Clinical Documentation Improvement

Generative AI Use cases

	Use-case	Description
	Identify gaps in patient record	Identify missing clinical / admin information in a medical record and suggest correct information
	Create claims report	Create medical justified claims report to support on the claim process and reduce rejection
	Generate handover lists and notes	Identify the correct pairing of cases to staff for faster handover along with Handover notes creation
	Create Operative reports	Use of video recording and structured data entry to create surgical reports
	Suggest evidence-based protocols	Identify suitable evidence based best practices and suggest to clinicians
Generative	Utilise dictation tools to generate structured data	Identify text from dictation tool and convert into structed data like diagnosis, problems, medical history
AI	Enhance medication compliance	Monitor patient habits and data input to better predict medication compliance
	Identify best stock to utilize	Analyse stock at hand and identify the most suitable for utilisation based on price, insurance, user and clinical case
	Identify area of revenue growth	Analyse revenue data and identify potential services for increased growth and potential expansion
	Identify time for Hardware upgrade	Monitor hardware utilisation and identify the best time to upgrade
	Identify risk for security breach	Monitor system utilisation and early detect potential breaches
	Support Issue recording and identifying	Monitor system utilisation after upgrades and record steps followed at time of issue reporting

Ŭ

AI in action

Live Demo

Thank you

